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ABSTRACT: Product yield optimization in bimodal reaction sequences including
degradation has been performed considering three-phase reactors such as the jet loop and
trickle bed reactors. The considered reaction network comprises two consecutive
homogeneous reaction steps toward intermediates which are converted to the
corresponding final products by heterogeneously catalyzed reactions, while the reactant
and these intermediates are susceptible to irreversible degradation. In the jet loop reactor,
the so-called “homogeneous product” is the main product; hence, the remaining
challenge is the reduction of degradation. For the trickle bed reactor, gas—liquid mass
phase transfer plays a very pronounced role in its ultimate performance. Higher gas flow
rates may be employed in the trickle bed reactor to overcome potential mass-transfer
limitations and selectively form the “heterogeneous product”. Lower gas flow rates result
in a less effective gas dissolution, and product selectivities change toward the
homogeneous product, rendering avoiding degradation difficult.

— -
G Vs

Phom Pl;et

B INTRODUCTION

reactions where gas—liquid mass transfer can be limiting, such

Several chemical processes comprise a combination of
homogeneous bulk-phase reactions and heterogeneously
catalyzed ones, the reductive amination of aldehydes, ketones,
and alcohols being a notorious example.' ™ Relevant reaction
schemes involve bulk-phase amination steps along with
heterogeneously catalyzed reduction steps. Proper optimization
of this interplay between bulk phase and heterogeneously
catalyzed reactions allows the selective formation of primary,
secondary, or tertiary amines, as required. Industrially, the
reductive amination of alcohols is performed in fixed bed gas-
phase or three-phase trickle bed reactor systems, whereas
stirred tank reactors are used for the reductive amination of
aldehydes or ketones." The latter is imposed by safety
constraints as the heat of reaction is significantly higher for
the amination of carbonyl feedstocks compared to that of
alcohols. Oxidative coupling of methane is another well-known
reaction requiring heterogeneously catalyzed and gas-phase
reactions. Methane activation proceeds heterogeneously on the
catalyst surface, the resulting radicals being cougled homoge-
neously in the gas phase of fixed bed reactors.” Three-phase
ozonation of oxalic acid in wastewater treatment is performed
in slurry reactors, and operating conditions are chosen such that
noncatalytic ozone decomposition is limited.”

Compared to stirred tank reactors, loop reactors are more
and more appreciated because they are safer and mass transfer
is enhanced at a lower power cost, as has been demonstrated
for ethoxylation and propoxylation processes.” Especially for
ethoxylation, a loop reactor is preferred as the extent of the
highly exothermic gas-phase decomposition of ethylene oxide
can be minimized as a consequence of the better gas—liquid
mass transfer. Also, the ignition of the gas mixtures is prevented
as no mechanical stirrer is present in this reactor.® Furthermore,
loop reactors are simple in design and are most suitable for fast
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as in phosgenations, aminations, and hydrogenations.g’10
Mixing is also very fast, and apart from high mass-transfer
efficiencies, high heat-transfer efficiencies are obtained via the
heat exchanger in the reactor’s loop. Loop reactors are also
preferred for the easy scale-up ability, as was shown for the
reductive alkylation of amines.'"' However, given the low
catalyst content, loop reactors are deemed to be suboptimal for
solely heterogeneously catalyzed reactions and hence are more
appropriate for multiphase applications involving also homoge-
neous reactions.

Heterogeneously catalyzed reactions not involving any bulk-
phase reactions are typically performed in three-phase trickle
bed reactors, such as for aromatics hydrogenation."” In this
case, mass transfer from the gas to the liquid phase was
identified as rate-limiting in the initial stage of the reaction.
Similar conclusions were obtained for hydrotreatment reactions
in trickle bed reactors, the limitations being even more
pronounced on the pilot plant scale than on the industrial
scale as higher liquid velocities are reached on the latter scale."*

Trickle bed reactor models have also been presented for
reactions consuming liquids with a non-negligible vapor
pressure, such as the hydrogenation of cyclohexene to
cyclohexane. It was shown that reaction rates are significantly
enhanced at operating conditions leading to only a partial
catalyst wetting."”

In our previous work we discussed the effect of the catalyst
amount on the product spectrum in bimodal reaction
sequences.'® In the present work, we expand the framework
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by adding gaseous reactants, also accounting for the possible
limitations related to the gas—liquid mass transfer, and by
including degradation reactions. Reactor simulations are
performed aiming at the selective production of heterogeneous
or homogeneous reaction products while avoiding degradation.
The transfer of a light gas and its dissolution in the liquid phase
plays a critical role. The considered reactor types range from
slurry to fixed bed reactors; the jet loop reactor is representative
for the former reactor type and the trickle bed for the latter
reactor type.

B PROCEDURES

Reaction Network and Kinetics. The considered reaction
network, see Figure 1, is an extended version of the previously
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Figure 1. Reaction network used for the optimization study.
Homogeneous bulk-phase reactions are represented by green solid
lines, while heterogeneously catalyzed reactions are represented by red
dotted lines. The corresponding rate and equilibrium coefficients are
presented in Table 1.

employed one. It involves the formation of a heterogeneous
product “Py;” and a homogeneous product “Py,,,” and is based
on glucose reductive aminolysis.'”

In a first step, a nonvolatile reactant “A” mixed with a solvent
reacts with a reactant “B”, having a non-negligible vapor
pressure, in the liquid phase with the formation of two identical
heterogeneous intermediates, denoted as “I;,.,”. This heteroge-
neous intermediate can be converted to the homogeneous
intermediate “Ij,,,,” through a consecutive liquid-phase reaction.
Both intermediates can be converted to the respective products
via a heterogeneously catalyzed reaction with a dissolved gas
“X”. The components A, L, and I, are furthermore
susceptible to unimolecular irreversible degradation to the
components represented with the subscript “D” in Figure 1.

The first step is based on the reaction of a carbohydrate
molecule containing four carbon atoms, which is dissolved in
water, with dimethylamine toward two molecules consisting of
two carbon atoms in the carbohydrate backbone. A
condensation of dimethylamine with the carbohydrate and a
retro-aldol cleavage reaction step are thus lumped together in
this step. The consecutive homogeneous reaction stems from
the keto—enol tautomerism, while the heterogeneously
catalyzed reactions are hydrogenation reactions. The degrada-
tion reactions comprise all possible steps involved in
carbohydrate degradation.

The rate coefficients used for the reaction network given in
Figure 1 are reported in Table 1, along with the values of the
adsorption equilibrium coeflicients and thermodynamic equili-
brium coeflicients. These values originate from previous work
but have been extended and tuned to better illustrate the effects
of the various phenomena that may occur with the presently
considered reaction network.'®"” Among others, this tuning
involves capturing the effects of homogeneous catalysis, as they

Table 1. Rate Coefficients, Thermodynamic Equilibrium
Coefficients, and Adsorption Equilibrium Coefficients for
the Reaction Network Shown in Figure 1

Rate coefficients Thermodynamic equilibrium coefficients [-]

ki [m > mol s 5-10° K, 1-10
Ky [mol kgea™' s 5107 K; 1-10°
ks [s] 5:107 Adsorption equilibrium coefficients [m; > mol ]
kp [s"] 1-10* Kads peg = Kads o 1-107
Kads,x 1

occur in the reductive aminolysis, in the considered rate
coeflicients, i.e, in k; and k;.

Equations 1—7 illustrate how the reaction rates are calculated
for the reaction network shown in Figure 1. Mathematically, it
is most straightforward to express the rates of both the
heterogeneously catalyzed and homogeneous bulk-phase
reactions as a function of the reactor volume. In this way
these expressions can be directly used in the corresponding
reactor equations.

2

_ k C.C. — CIhet [ 1 =3 —1]
n = K| 4L % £, molm, S

! (1)
k I<;1c]s,X1'<;1c]s,I}mCXCIhQt I/V::at
h=k
(1 + ‘Kads,Ihe(CIhet + Kads,IhumCIhum + ‘Kads,XCX)2 V;
[molm,*s™'] @)

_ k C _ Clhom [ I -3 —l]
3 = Ky Lot —I< £, molm, ~s

3 3)

k I<ads,XI<ads,IhumCXCIhom I/V;at

Ty =Ky 2

(1 + Kads,lhetclhe( + Kads,lhomclhom + I<ads,XCX) Vr
[molm, 3 s™"] (4)
ro = kpCpg,  [mol m, s (5)
1y = kDCIheKSL [mol mr_3 s (6)
r, = kDCIth{;’L [mol mr_3 s ?7)

In eqs 1-7, € represents the liquid fraction, W, the catalyst
mass, and V, the corresponding reactor volume.

Reactor Types and Model Equations. Reactor simu-
lations were performed with in-house developed FORTRAN
codes. The systems of differential and algebraic equations are
solved using an open-source code, DASPK, as available from
Netlib.'® The jet loop reactor, representing a low catalyst-to-
liquid ratio, consists of a reactor vessel and a non-negligible
volume of tubing in the recirculation loop. The liquid phase is
recycled at high flow rates through this loop and mixed with the
gas before injection into the liquid in the reactor vessel, see also
Figure 2a. In the trickle bed reactor, a high catalyst-to-liquid
ratio reactor type, gas and liquid flow cocurrently over a fixed
catalyst bed, as shown in Figure 2b. The mass balances are
presented in the following sections. Isothermal operation is
considered in order not to complicate the observations made.
Moreover, temperature excursions would mainly enhance
degradation reactions which are to be avoided anyway.

Jet Loop Reactor: Low Catalyst-to-Liquid Ratio.
Overall, the jet loop reactor, see Figure 2a, operates as a
batch reactor. The reactor is first loaded with all reactants and
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Figure 2. Representation of the reactor types: (a) jet loop reactor and
(b) trickle bed reactor.

the catalyst. It is assumed that during the jet loop reactor
operation, the catalyst is completely wetted and recirculates
along with the liquid phase through the loop, at the same flow
rate. The amount of liquid used is such that the loop is
completely filled with the liquid and that sufficient liquid
remains to occupy a significant volume fraction of the reactor
vessel. The gas phase remains entirely in the reaction vessel,
and only the fraction that is completely dissolved in the liquid
phase flows through the loop.

For the purposes of this work, the jet loop reactor is modeled
making use of the scheme shown in Figure 3. Because the jet
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Figure 3. Schematic representation of the jet loop reactor for
modeling purposes.

injectors used in these reactor types have high efficiencies and a
high dissolution of the gas in the liquid is obtained, the reactor
vessel can best be represented as a continuous stirred tank
reactor (CSTR) for which the mass balance of component j can
be expressed as in eq 8.

dnj 1 1
— =F. — F RV a
dt J,)in j,out + jor [mo N ] (8)

While n; represents the total amount of j, i.e, in the gas and
liquid phase, all other terms in eq 8 are related to the liquid
phase. The gas phase remains in the reactor vessel and is
simulated to be in thermodynamic equilibrium with the liquid
phase owing to the reported high mixing efficiencies and
correspondingly high mass-transfer coefficients. The corre-
sponding simulation results may be slightly different from
reality, but simulating this case is also very advantageous as the

observed phenomena are not masked by mass transfer and can

be directly related to the operating conditions. The initial
condition corresponding to eq 8 is shown in eq 9.

nj(t =0) = nlp [mol] (9)

The loop is modeled as a plug flow reactor (PFR) for which
the corresponding mass balance of a component j is shown in
eq 10.

oC, oC,
g — = —uy—
ot * ox (10)

The initial condition required for eq 10 expresses that the
loop is completely filled with liquid and therein suspended
catalyst, see eq 11. The boundary condition stems from the
effluent of the reactor vessel, as shown in eq 12.

+ R, [molm,s™"]

C(t=0)=C [molm ] (11)

C(x =0) = C corr

Density changes, resulting in a velocity profile in the tubing,
are captured using eq 13 expressing the total mass balance, an
equation that has already been applied to, for example,
modeling of loop polymerizations:'

I, _ 5 MMR

0x=

[mol m; ] (12)

[mLS mr—3 S_l]
=1 b (13)

The superficial liquid velocity stems from the flow rate Fy
imposed by the pump in the loop, see eq 14, the latter being
the boundary condition corresponding to eq 13.

Vx(‘x = xPump) = a |:InL3 m, ? s l] (14)

Simulations have shown that the variation of the superficial
liquid velocity resulting from density changes is very limited
(«1%), and this hence justifies that the superficial liquid
velocity can be placed before the differential term on the right-
hand side in eq 10.

Trickle Bed Reactor: High Catalyst-to-Liquid Ratio.
The second reactor type considered in the present work is a
trickle bed reactor, see Figure 2b. It is a continuous flow reactor
with a high catalyst-to-liquid ratio. The steady-state mass
balance for a component j can be written as in eqs 15 and 16
for the gas and liquid phase, respectively.

drS cS
_] = _kGL,'aGLgcat — - CL [mOI mr_3 S_l]
dv ) H, J

r j (15)
dr’ ct

j j L -3 -1
o = kg, A1 Eeat ST G|+ R [molm, s ]

r j

(16)

The right-hand side of eq 16, hence, has a term that describes
interphase mass transfer and a reaction rate term that describes
both homogeneous bulk liquid phase and heterogeneously
catalyzed reactions. The inlet flow rates are the boundary
conditions required to solve the set of eqs 15 and 16 (see eqs
17 and 18).

F]G(Vr =0) = F].G‘0 [mols™"] (17)
F]L(Vr =0) = F].L’o [mols™'] (18)
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The catalyst pellets are assumed to be fully wetted in the
range of investigated operating conditions. The gas- and liquid-
side mass-transfer coefficients are calculated at every value of
the axial coordinate based on the correlations of Wild and Sato,
respectively.””*' The overall gas—liquid mass-transfer coef-
ficient is then calculated based on the two-resistance model.””
In the full range of investigated operating conditions the trickle
flow regime was verified using the flow regime map of
Fukushima and Kusaka.”*

Definitions. The simulation results are quantified in terms
of reactant A conversion and product selectivities. Equation 19
defines the conversion of A:

Ma = M

Xy=—F5— [mol mol ™"

iy (19)
The selectivity toward product j obtained from reactant A is
calculated using Equation 20:

= M [mol mol™']
2(”2, — ) (20)

The factor 2 in eq 20 arises from the stoichiometric
coefficients in reaction 1, see also Figure 1. N; relates to these
stoichiometric coefficients and is 1 for Phey Phoms Iherp, and
Limp and 2 for Ap. No distinction is made between the
individual degradation products, ie, only the sum of their
selectivities is considered: Sp, = S, pa + S, _pa + Sapa. The

Sia

yield of product j obtained from reactant A is defined as the
selectivity times the conversion, as in eq 21.

N(n, — n?)
=27 % [molmol™]

Y.
A 213 (21)

Jr

B REACTOR SIMULATIONS

Large-scale reactor simulations were performed to assess the
effects of varying the operating conditions on the product
spectrum. In this work the B/A ratio, the X/A ratio, and the
total pressure were varied. In addition, the catalyst mass
suspended in the jet loop reactor was also varied, while the
effect of varying the total feed flow rate on the product
spectrum was examined in the trickle bed reactor. The variation
of these equal or similar operating conditions might be less
relevant in one of the reactors compared to the other one;
nevertheless, the simulation results are such that they can be
directly compared from one reactor type to the other.

Jet Loop Reactor. The reactor vessel and the loop have a
volume of 4.75 and 0.63 m® respectively and is at present used
commercially, for reactions such as aminations, with a typical
annual production of 1-2 kton/year. All simulations were
performed at conditions where the vapor pressure of the
volatile reactant B amounts to 2.2 MPa. The volumetric flow
rate imposed by the pump in the loop amounts to 250 m®> h™".
The reactant A is always diluted 30-fold in the solvent. The
simulations are performed with an initial amount of liquid in
the reactor of approximately 3.75 m®.

The composition of the mixture in the jet loop reactor is
presented in Figure 4 for the reference case.

The homogeneous product is clearly the most abundant
product in the jet loop reactor. The latter could be expected
based on the catalyst-to-liquid ratio, which is low for this
reactor type; hence, bulk liquid-phase reactions are favored. It

100%
= 80%
o)
€ 60%
©
£ a0%
o
@ 20%
=
0%
o o o o o o o
o o o o o o
™M o [} o~ wn o0
- - -
time (s)

B oegradation [l Pron [ Pre

Figure 4. Molar heterogeneous (P.) and homogeneous (Py,.,)
product yields as a function of time in the jet loop reactor for the
reference case (n,° = 1300 mol, B/A = 20, X/A = 30, p = 7.5 MPa,
W, = 60 kg). Product yields were calculated using model simulated
compositions from eqs 8—14 and the parameters shown in Table 1.

B Intermediates

can be clearly seen from Figure 4 that full conversion of A,
mainly to the intermediates, is reached quite rapidly. The latter
are subsequently converted to the homogeneous product with a
90% vyield, apart from a 6% yield toward the heterogeneous
product and 4% of degradation products.

The effect of increasing the B/A ratio, in the jet loop reactor
corresponding to a decrease in the initial amount of A to
maintain the initial amount of liquid in the reactor, from 10 to
40 is shown in Figure Sa. The heterogeneous product yield
increases from 3% to 12%, and the yield of the degradation
products decreases from 8% to 2%. The yield of the
homogeneous product initially increases by 1.5% to a maximum
value of 91% but subsequently decreases again as the B/A ratio
exceeds 20, with a 86% yield being reached at a B/A ratio of 40.
Several phenomena contribute to the observed yield changes.
First, as the B/A ratio increases, r, is relatively increased
compared to degradation of A. In general the liquid
concentration of A and the intermediates is lower, which
leads to lower degradation rates. In addition, the ratio of the
catalyst to A increases such that the heterogeneously catalyzed
reactions are more favored. At a B/A ratio up to 20 this results
in both increased yields of P, and Py, while there is
significant competition between the conversion of I to I,
(r;) and to Py (r,) at higher B/A ratios. Hence, the
heterogeneous product yield continuously increases while the
homogeneous product yield decreases at a B/A ratio exceeding
20.

Varying the ratio of X/A has a small effect on the product
spectrum, as can be seen in Figure Sb. The homogeneous
product yield is 90% in both cases, while the heterogeneous
product yield increases by 1% on decreasing the X/A ratio, and
correspondingly the amount of degradation reactions is
decreased. This can be explained by the vapor—liquid
equilibrium as the fraction of B in the liquid phase increases
from 34%, when X/A = 30, to 36%, when X/A = 10, and the
corresponding increase in the reaction rate r,.

A total pressure increase, as shown in Figure Sc, has a similar
but even less pronounced effect on the liquid fraction of B as
decreasing the X/A ratio. Hence, only slight yield increases in
heterogeneous product and decreases in degradation products
are observed with varying the pressure.

Increasing the catalyst mass significantly reduces the amount
of degradation products, thus favoring the formation of Py,
and Py, (see Figure 5d). As was shown in our previous work,
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Figure S. Molar heterogeneous (P},,) and homogeneous (P,,,,) product yields as a function of varying operating conditions in the jet loop reactor.
(a) Variation of the B/A ratio while X/A = 30, p = 7.5 MPa, W_,, = 60 kg, (b) Variation of the X/A ratio while B/A = 20, p = 7.5 MPa, W, = 60 kg,
(c) Variation of the total pressure while B/A = 20, X/A = 30, W,,, = 60 kg, (d) Variation of the catalyst mass while B/A = 20, X/A = 30, p = 7.5
MPa. Product yields were calculated using model simulated compositions from eqs 8—14 and the parameters shown in Table 1.

the yield of the homogeneous product exhibits a broad
maximum as a function of the catalyst amount while the
heterogeneous product yield steadily increases.

Trickle Bed Reactor. A continuous flow reactor with a
diameter of 1 m and a length of 4 m was selected for this work.
These values allow for flexibility in the trickle flow regime while
similar optimal product yields can be achieved on a yearly basis
compared to the jet loop reactor with a limited number of
tubes. The bulk density of the catalyst bed py.4, defined as W,/
V,, is assumed to be 1000 kg, m™>, and the reactant A is
diluted 30-fold in the solvent.

The composition of the mixture as a function of the axial
coordinate x is presented in Figure 6 for the reference case.

From Figure 6 it can be observed that the heterogeneous
product is the most abundantly obtained one, besides a
significant amount of homogeneous product and only a
marginal fraction of degradation products. The presence of a
significant amount of homogeneous product is, at least partially,
counterintuitive for a reactor with a high catalyst-to-liquid ratio.
At the investigated operating conditions the heterogeneous
product yield amounts to 60%, while that of the homogeneous
product remains as high as 40%. This unexpected observation
stems from pronounced mass-transfer limitations for the
gaseous reactant X to the liquid phase. Instead, the mass
transfer is somewhat slower than the rate at which X reacts with
L to Py Hence, in the liquid phase being poor in X, I is
rather further converted to I, and, ultimately, to Py,.

When the B/A ratio is increased, see Figure 7a, the yield of
the heterogeneous product exhibits a minimum and then
increases, whereas the yield of the homogeneous product
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Figure 6. Molar heterogeneous (P,,) and homogeneous (Py,y)
product yields as a function of the axial coordinate in the trickle bed
reactor for the reference case (F,° = 1.25 X 107! mol s™%, B/A = 20,
X/A = 30, p = 7.5 MPa) Product yields were calculated using model
simulated compositions from eqs 15—18 and the parameters shown in
Table 1.

exhibits a maximum and, subsequently, decreases. The latter
maximum was also observed in the jet loop reactor while the
minimum in heterogeneous product yield was not. The
presence of a higher amount of B and hence also a higher
gas flow rate results in an enhanced gas—liquid mass-transfer
coefficient, explaining why more heterogeneous product is
formed at a higher B/A ratio in the trickle bed reactor while
suppression of degradation was the main effect in the jet loop
reactor.
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Figure 7. Molar heterogeneous (P},) and homogeneous (Py,,) product yields as a function of varying operating conditions in the trickle bed
reactor. (a) Variation of the B/A ratio while F,° = 1.25 X 107" mol s™}, X/A = 30, p = 7.5 MPa; (b) variation of the X/A ratio while F,” = 1.25 X
107" mol 5™, B/A = 20, p = 7.5 MPa; (c) variation of the total pressure while F,’ = 1.25 X 10" mol s™!, B/A = 20, X/A = 30; (d) variation of the
feed flow rate while B/A = 20, X/A = 30, p = 7.5 MPa. Product yields were calculated using model simulated compositions from eqs 15—18 and the

parameters shown in Table 1.

A similar, and much more pronounced, effect is observed
when the X/A ratio is increased, as shown in Figure 7b. The
yield of Py, then increases to 80% while the yield of Py, drops
to 19% when the X/A ratio is increased to 40. A further
increase of this X/A ratio to 100 results in a further increased
yield of Py as a consequence of the strongly, by a factor of 2
for the gaseous reactant X and higher for, e.g. B, enhanced gas—
liquid mass transfer, with a yield of the latter heterogeneous
product amounting to no less than 98%. In the jet loop reactor
the change in B concentration was the predominant effect of
varying the X/A ratio resulting in lower heterogeneous product
yields at higher X/A ratios. In the trickle bed, on the other
hand, the enhanced gas—liquid mass transfer is the main effect
of increasing the X/A ratio, resulting in increased heteroge-
neous product yields.

A pressure increase results in a decrease of the heterogeneous
product yield and a corresponding increase of the homoge-
neous product yield (see Figure 7c). The overall gas—liquid
mass-transfer coeflicient for X increases with the pressure; thus,
it would be expected that the heterogeneous product would be
more favored. As described for the jet loop reactor, the pressure
increase also results in a larger fraction of the volatile reactant B
in the liquid phase. In this case, the mole fraction of B in the
liquid phase increases at the expense of the solvent, resulting in
a significant increase of r,. Therefore, the concentration of I, is
so abundant that even the higher amount of X transferred to
the liquid phase is not enough to shift the product spectrum
toward Py,

14197

Figure 7d shows the effect of varying the feed flow rate of A
while keeping all ratios constant, and hence varying the total
gas and liquid flow rate, within the trickle flow regime. The
selectivity shift from the homogeneous product to the
heterogeneous product is immediately evident. Both the
increase in B in the liquid phase and, especially, the increase
of the overall gas—liquid mass-transfer coeflicient for X are
significant. The former explains the initial buildup of
intermediates and formation of some P, up to a certain
point, after which no more intermediates are present. The
remainder of A is then converted to I, and directly to P,
Ultimately, the transfer of X becomes sufficiently fast to
selectively produce Pyp,. The optimum Py yield in Figure 7d
can be explained by the incomplete conversion of the reactant
A at the highest feed rates.

Comparison of the Different Reactors and Overall
Product Spectrum Optimization. Product yields, under
realistic conditions, in the jet loop reactor are always toward the
homogeneous product and do not vary greatly. The aim when
selecting this reactor clearly has to be the optimization of the
Pyom vield and, apart from that, suppressing the formation of
degradation products. Several sets of operating conditions
resulted in a Py, yield of 91%, along with 5% Py,

The simulated trickle bed reactor behavior is more complex.
The heterogeneously catalyzed reaction steps are favored as
long as the overall gas—liquid mass transfer of the gaseous
reactant is not limiting. A combination of a higher flow rate of
A at the lowest operating pressure with elevated B/A and X/A
ratios results in 98% Py, yield and 1% Py, (see Figure 8a).
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Figure 8. Molar heterogeneous (P,,) and homogeneous (Py,,)
product yields as a function of the axial coordinate in the trickle bed
reactor: (a) maximal heterogeneous product yield (F,” = 2.5 x 107"
mol s7!, B/A = 40, X/A = 60, p = 6.0 MPa) and (b) maximal
homogeneous product yield (F\’=6.25% 10> mol s™}, B/A = 10, X/
A =20, p = 9.0 MPa). Product yields were calculated using model
simulated compositions from eqs 15—18 and the parameters shown in
Table 1.

More challenging is the optimization of the Py, yield in a
trickle bed reactor. The latter can be achieved at lower flow
rates of A at the highest operating pressure and lower B/A and
X/A ratios resulting in a 89% P, yield and 7% of Py, (see
Figure 8b). Also, a non-negligible amount of degradation
products is present in the reaction mixture. Note that this
maximum P, yield approaches that obtained in the jet loop
reactor. The trickle bed reactor hence allows a broader variety
of product spectra because gas—liquid mass-transfer limitations
can be avoided or, on the contrary, exploited to tune the
product spectrum either way. This tuning is possible only as
long as the trickle bed reactor does not have a high length-to-
diameter ratio. Optimal exploitation of such a reactor would
lead to higher flow rates and thus enhanced mass transfer
which, ultimately, will always result in high heterogeneous
product selectivities. Accounting for the exothermicity of
glucose reductive aminolysis could lead to degradation
reactions becoming more pronounced. The latter is expected
to be especially so for the trickle bed reactor because of more
challenging temperature control.

B CONCLUSIONS

Reactor simulations for a bimodal reaction sequence including
degradation reactions allow the interpretation and optimization
of homogeneous and heterogeneous product yields. While
higher homogeneous product yields are typically obtained in a
reactor with a low catalyst-to-liquid ratio such as a jet loop
reactor, a trickle bed reactor configuration easily allows the
optimization of the heterogeneous product yield. The inherent
efficient mixing in the CSTR section of the jet loop reactor
limits the flexibility in the product yields that can be obtained
with this reactor. The homogeneous product is always obtained
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in the highest amounts, and the focus of an optimization study
for this reactor is primarily to reduce the extent of degradation
products and second to reduce the extent of product loss
through the formation of heterogeneous product. On the other
hand, in a reactor with a high catalyst-to-liquid ratio such as a
trickle bed reactor, the product spectrum can be tuned to a
greater extent. Mass-transfer limitations of the gaseous reactant
directly interfere in the reaction rates of the heterogeneously
catalyzed steps. Maximization of the mass transfer, mainly by
increasing the feed flow rate of the gaseous reactant, will result
in a very high heterogeneous product yield, up to 99% in the
best case. Reducing this flow rate can completely shift the
product spectrum toward the homogeneous product. In this
case the goal is again to reduce the amount of degradation
reactions and the extent to which heterogeneous product is
being formed, rendering the challenge similar to operating the
jet loop reactor.
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H NOTATION

Roman Letters
agy, = interfacial area m? my4°
C; = liquid concentration of component j, mol m;
F; = molar flow rate of component j, mol s
F, = volumetric flow rate imposed by the pump, m;* s~
H; = Henry’s constant of component j, m;® mg~
k; rate coefficient of reaction i, m® mol™' s
mol kg, ™' s or 7!
kg; = overall gas—liquid mass-transfer coefficient of

1

— -1

or

-1

3

m—l -1

component j, m® m*s7!

K; = thermodynamic equilibrium coefficient of reaction i, —
K4, = adsorption equilibrium coefficient of component j,
m;> mol™!

MM, = molar mass of component j, kg mol™*

n; = molar amount of component j, mol

N; = stoichiometric correction factor, —

r, = reaction rate of reaction i, mol m, > s

R; = net rate of formation of component j, mol m, % s
S;a = selectivity toward product j originating from reactant
A, mol mol™

t = batch time, s

v, = axial velocity in the x direction, m;” m, ™ s

V, = reactor volume, m,?

W, = catalyst mass, kg,

X, = conversion of the reactant A, mol mol™!
Yjs = yield toward product j originating from reactant A,

mol mol™
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ey = liquid fraction, m;* m,
€qy = catalyst bed fraction, my.® m, >
p; = density of component j, kg m; "
Q = cross-sectional area of the loop, m,*

-3

Subscripts
in = inlet
out = outlet

Superscripts

0 = initial
G =gas
L = liquid
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