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Abstract 

 Down Syndrome (DS), the most common aneuploidy seen in live-borns, is caused 

by trisomy for chromosome 21. DS imposes high risks for multiple health issues 

involving various systems of the body. The genetic complexity of trisomy 21 and natural 

variation between all individuals has impeded understanding of the specific cell 

pathologies and pathways involved.   In addition, chromosomal disorders have been 

considered outside the hopeful progress in gene therapies for single-gene disorders. Here 

we test the feasibility of correcting imbalanced expression of genes across an extra 

chromosome by expression of a single gene, XIST, the key player in X chromosome 

inactivation. We targeted a large XIST transgene into one chromosome 21 in DS iPS cells, 

and demonstrated XIST RNA spreads and induces heterochromatin and gene silencing 

across that autosome in cis.   

By making XIST inducible, this allows direct comparison of effects of trisomy 21 

expression on cell function and phenotypes. Importantly, XIST-induction during in vitro 

hematopoiesis normalized excess production of differentiated blood cell types 

(megakaryocytes and erythrocytes), known to confer high risk for myeloproliferative 

disorder and leukemia.    In contrast, trisomy silencing enhances production of iPS and 

neural stem cells, consistent with DS clinical features.  Further analysis revealed that 

trisomy 21 initially impacts the endothelial hematopoietic transition (EHT) to generate 

excess CD43+ progenitors, and also increases their colony forming potential.  

Furthermore, results provide evidence for a key role for enhanced IGF signaling, 

involving over-expression of non-chromosome 21 genes controlled by trisomy 21.  

Finally, experiments to examine trisomy effects on angiogenesis showed no effect on 
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production of endothelial cells, but it remains unclear whether trisomic cells may differ in 

ability to form vessels.  

Collectively, this thesis demonstrates proof-of-principle for XIST-mediated 

“trisomy silencing”.  Phenotypic improvement of hematopoietic and neural stem cells 

demonstrates the value for research into DS pathogenesis, but also provides a foundation 

of potential for future development of “chromosome therapy” for DS patients. 
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Chapter I: Introduction 

Down syndrome (DS) is the most frequently occurring chromosomal disorder and 

the leading cause of intellectual disability, resulting from the presence of an additional 

copy of chromosome 21. Besides the neurological system, DS individuals exhibit a 

variety of pathologies associated with many different body systems, caused by increased 

activities of chromosome 21 genes, including the hematopoietic and immune systems. 

One obvious approach for developing therapies for a genetic disorder is to understand the 

pathogenic mechanism and correct the dysregulated genes or pathways. However, since 

there are over four hundred coding and non-coding genes on chromosome 21, it is 

technically impractical to correct the dosage of these genes one by one. Additionally, 

simultaneous expression of multiple genes at the theoretical 1.5-fold disturbs many 

biochemical pathways in many organs, manifested by pathologies in many body systems 

in DS individuals, which makes it extremely difficult to identify and understand the 

pathogenic mechanisms. Moreover, genetic variations among individuals further 

complicate the identification of critical genes and pathways that cause symptoms. 

Therefore, the DS research field still has a relatively insufficient understanding about the 

detailed pathogenic mechanism involved (for most aspects of the syndrome), in order to 

devise an efficient therapy for DS patients. To avoid these complexities, we took a novel 

approach in this thesis work to transcriptionally silence one chromosome 21 by XIST 

RNA mediated chromosome inactivation, which we termed “trisomy silencing”. This 

system allows us to demonstrate normalization of DS related cellular phenotypes and to 

study the pathogenic mechanisms in the context of the hematopoietic system. 

Demonstrations of phenotypic improvement in DS iPSCs from silencing one 
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chromosome 21 are also included. In this chapter, introductions for various topics 

including Down syndrome, hematopoiesis, X chromosome inactivation, and disease 

modeling using induced pluripotent stem cells are provided as essential background 

knowledge for the research in this thesis. 

 

The challenges of Down syndrome 

Chromosomal abnormalities are a large part of the genetic burden in infants, 

impacting 1 in 140 live births, and Down syndrome is the most common viable human 

aneuploidy. Aneuploidy is present when cells contain an incorrect number of 

chromosomes, or another form of chromosomal imbalance due to translocations, 

duplications, and deletions. In most cases, aneuploidy for a whole chromosome causes 

death of the developing fetus, accounting for 50% or more of miscarriages. Loss of an 

autosome is embryonic lethal, but there are a few types of autosomal trisomy that are 

seen in newborns, including trisomy for 21, 18, and 13 (Driscoll and Gross 2009). The 

majority of trisomy 13 and 18 infants die within the first few years, however, individuals 

with trisomy 21, the cause of Down syndrome, can live into their 60’s or beyond, but face 

several medical challenges characteristic of Down syndrome. While this thesis work 

focuses on Down syndrome, we note that the innovative approach to silence an extra 

autosome would also be applicable to translational research and possibly a therapeutic 

strategy for the other viable autosomal trisomies of chromosome 13 and 18.  

Although the first description of Down Syndrome (DS) phenotypes was made by 

Langdon Down in 1866 (Down 1995), the cause of DS was not clear until scientists 

confirmed the correct number of chromosomes in human cells. In 1959, Lejeune, Gautier, 



	

	

12	

and Turpin were able to identify the consistent chromosomal abnormality in karyotypes 

prepared from DS individuals, trisomy 21. The most common cause of trisomy 21 is 

meiotic nondisjunction during maternal oogenesis (Figure 1.1). While trisomy 21 is 

generally not heritable, in a small subset of cases, DS can be heritable when a parent 

carries a balanced translocation in which part of chromosome 21 is attached to another 

chromosome, frequently chromosome 14. Patients who are mosaic have a mixture of 

euploid and trisomy 21 cells and noticeably many mosaic patients have much less severe 

phenotypes. Importantly, parents with isochromosome 21, in which one chromosome 21 

is fused with another, will have 100% of viable children with DS. 

The frequency of Down syndrome is approximately one in 800 newborns in the 

United States today. The most influential factor for DS pregnancy is maternal age, 

because the frequency of meiotic nondisjunction increases in women with age. Although 

women older than 35 have a substantially increased risk for DS pregnancy, most babies 

with Down syndrome are born to younger pregnant women, as younger women constitute 

the majority of pregnant women. Additionally, DS pregnancies are associated with an 

increased rate of miscarriage and stillbirth, with several studies suggesting that up to 70% 

of DS fetuses are lost, especially with increased maternal age (Savva et al. 2006).   

With hundreds of genes being triplicated and overexpressed, DS individuals can 

display significant pathology in various systems of the body, but some features are more 

consistent than others. The syndrome is consistently characterized by dysmorphic facial 

features, delayed psychomotor development, mild to moderate intellectual disability and 

cognitive impairment. Early onset of Alzheimer’s disease is also highly common in DS 

individuals. Other pathologies that are commonly observed in subsets of DS patients 
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Figure 1.1 Meiotic nondisjunction causes trisomy 21. 

Nondisjunction during meiosis contributes to most cases (~95%) of Down syndrome. 
Chromosomes colored in red and blue represent maternal and paternal chromosome 21, 
respectively. In this example, meiotic nondisjunction is illustrated in the eggs but these 
can also happen in the opposite way where the sperms have too many or too few copies 
of chromosome 21 due to meiotic nondisjunction.	
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include congenital heart disease, seen in ~40% of patients, acute lymphoblastic leukemia, 

20 times more common, acute megakaryocytic leukemia, 500-fold more frequent than the 

general population, and higher incidence of respiratory infections (Figure 1.2) 

(Antonarakis 2017).  

 

Impaired cognitive functioning is the consistent defect of DS individuals 

Although clinical symptoms of DS vary from individual to individual, impaired 

cognition is recognized as the most consistent and pressing feature of DS. Almost all DS 

patients have difficulty in learning, memory, and language that lead to mild to severe 

intellectual disability. Although lower IQ scores are seen in DS individuals, children 

score as only “mildly” or “moderately” affected, but cognitive impairment can progress 

to “severe” in adults (Couzens et al. 2011; Couzens et al. 2012). Particularly, verbal 

processing and speech are often a weakness associated with DS individuals, with about 

half of DS children having difficulty in articulation of speech. In adults, the disabilities 

related to language skills can become more prominent with increasing age and other 

aspects of cognitive functions, such as learning and memory, are adversely affected as 

well. Although many DS patients are sociable and cooperative, and can form strong 

relationships, impaired cognitive functioning can also affect social development of DS 

individuals to some extent, which, combined with other pathologies of DS, significantly 

impact the quality of life of DS individuals and their families. MRI studies using post-

mortem brains from DS patients revealed reduced brain size and brachycephaly (shorter 

skull), particularly the frontal and temporal areas that include the uncus and hippocampus 

are disproportionally smaller in DS brains. These anatomic abnormalities in brain are  
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Figure 1.2 Major characteristics of Down syndrome. 

Down syndrome, caused by trisomy 21, is characteristic by numerous defects within the 
body. A major portion of this thesis work will focus on the leukemia aspect of the 
syndrome, with emphasis on acute megakaryocytic leukemia.	
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likely the underlying causes of the impaired cognitive functioning in DS patients (Lott 

2012). 

 

DS individuals are at higher risk for early-onset of Alzheimer disease   

Early-onset of Alzheimer disease (EOAD) is defined as Alzheimer disease 

diagnosed before the age of 65. With advances in medical care, life expectancy of DS 

patients has increased and it is now recognized that they have an increased risk of EOAD. 

While other genes on chromosome 21 may contribute, the presence of a third copy of the 

APP gene on chromosome 21 is thought to be the primary cause (Wiseman et al. 2015). 

APP encodes a protein called amyloid precursor protein that is naturally cleaved into 

several peptides, some of which are released outside the cell, including one called 

amyloid beta peptide. Since one of the observations from people with Alzheimer’s 

disease is the accumulation of clumps of amyloid beta peptide, called amyloid plaques, in 

the brain, increased dosage of the APP gene in DS patients is widely thought to underlie 

the EOAD in DS (Wiseman et al. 2015). The accumulation of amyloid plaques may 

interact with subcellular organelles of the neurons, triggering neuronal dysfunction and 

apoptosis that ultimately lead to memory decline and dementia. Increased expression of 

APP in a mouse model of DS has been shown to cause disruption of nerve growth factor 

transportation and may result in cholinergic neuron degeneration in the forebrain (Salehi 

et al. 2006). This might be related to the disruption of the endocytosis pathway caused by 

APP mediated RAB5 activation that results in enlargement of endosomes (Xu et al. 2016). 

In addition, triplication of the APP gene alone in the normal non-DS population causes 

early-onset of Alzheimer’s disease (Sleegers et al. 2006). Other genes on chromosome 21 
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involved in endocytosis pathway are also thought to contribute to EOAD in DS, including 

CSTB and SYNJ1 (Cossec et al. 2012; Zhu et al. 2013). Therefore, DS is a good model for 

studying Alzheimer’s disease and more detailed pathogenic mechanism remain to be 

explored.  

 

Congenital heart disease is commonly associated with DS newborns 

Congenital heart disease (CHD) is another major common phenotype in DS, 

clinically observed in about 40% of DS patients (Ferencz et al. 1989). The most common 

form of DS associated CHD is atrioventricular septal defects (AVSD), accounting for 

43% of DS-CHD cases. Other forms of DS associated CHD includes ventricular septal 

defects (VSD), atrial septal defects (ASD), and tetralogy of Fallot that constitute 32%, 

19%, and 6% of DS-CHD, respectively. By analyzing rare partial trisomy 21 cases 

(individuals with duplication of only a small region of chromosome 21) associated with 

CHD, one study suggests the segment of chromosome 21 required to develop CHD can 

be narrowed to a 1.77 Mb region between genes DSCAM and ZBTB21 (Barlow et al. 

2001; Korbel et al. 2009). Another study using multiple animal models further suggested 

a role for DCSAM and COL6A2 overexpression in the development of ASD (Grossman et 

al. 2011). In addition to specific chromosome 21 genes, scientists also suggested single 

nucleotide polymorphisms (SNP) and copy number variations (CNV) are involved in 

determining the risk of developing CHDs in DS patients (Sailani et al. 2013). However, a 

detailed mechanism about the pathogenesis of DS-CHD is still lacking and more large-

scale genomic analyses of DS-CHD and DS-non-CHD patients are needed. 
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DS-associated hematopoietic abnormalities cause increased chance of childhood 

leukemia and compromised immune functions   

The hematopoietic system appears to be impacted by trisomy 21 as DS 

individuals suffer from multiple hematopoietic defects, including increased risks for 

childhood leukemia and for infections, partially attributed to immunodeficiency. Two 

major types of leukemia commonly seen in DS children are acute B-lymphoblastic 

leukemia and acute megakaryocytic leukemia. A significant portion of this thesis work 

will be dedicated to demonstrating correction of cellular phenotypes associated with 

acute megakaryocytic leukemia.  

 

DS-associated acute B-lymphoblastic leukemia 

The most frequent childhood leukemia among the general population is acute B-

lymphoblastic leukemia (ALL) and the incidence of ALL is approximately 20-fold higher 

in DS children. DS children with ALL (DS-ALL) have poorer survivor rates than non-DS 

children with ALL (non-DS-ALL). Gene expression analysis of DS-ALL reveals that it is 

a highly heterogeneous disease for which it is difficult to elucidate the molecular causes 

of pathogenesis. However, more than half of the DS-ALL cases have overexpression of 

CRFL2 caused by chromosomal rearrangements or deletions that create P2RY8-CRFL2 

chimeric transcripts (Mullighan et al. 2009). Additionally, aberrant CRLF2 expression in 

DS-ALL cases are associated with mutations in either JAK2 or RAS genes, suggesting 

cooperative effects of these two genetic events in the pathogenesis of DS-ALL 

(Mullighan et al. 2009; Hertzberg et al. 2010; Nikolaev et al. 2014). These genetic 

features of DS-ALL are likely to have adverse impacts on the prognosis for 
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chemotherapy and thus result in lowered overall survival rates compared to non-DS-ALL 

patients. Although none of these genes are located on chromosome 21, overexpression of 

HMGN1, a nucleosome remodeling gene encoded on chromosome 21, in B cells 

suppresses global level of H3k27me3 and promotes proliferation of B progenitor cells 

and development of ALL in T65Dn mice, a mouse model of DS (Figure 1.3) (Lane et al. 

2014). Interestingly, the most frequent chromosomal abnormalities associated with non-

DS-ALL cases are acquired trisomy 21 and tandem triplication and quadruplication of the 

long arm of chromosome 21 (Baialardo et al. 1996; Heerema et al. 2007). Notably, many 

of these cases involve additional copies of the RUNX1 gene, a chromosome 21 gene 

commonly associated with translocation in multiple types of leukemia (Harewood et al. 

2003). Therefore, these findings provide a rationale behind the increased risk of ALL in 

DS children. 

 

DS-associated acute megakaryocytic leukemia 

Another type of leukemia that has an increased incidence in DS children is acute 

megakaryocytic leukemia (AMKL), a subtype of acute myeloid leukemia, which is the 

main focus of this thesis work. While the frequency in the general population is very rare, 

DS children have a 500-fold increased risk for AMKL (Al-Kasim et al. 2002). AMKL is 

characterized by abnormal expansion of megakaryoblasts, the precursor of 

megakaryocytes (platelet-producing cells), in circulating blood and the bone marrow. The 

megakaryoblasts ultimately replace normal bone marrow elements, resulting in a 

decreased number of red blood cells, white blood cells, and platelets that further cause  
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Figure 1.3 Pathogenesis in Down syndrome associated leukemia. 

Hypothesized mechanisms for Down syndrome associated acute lymphblastic leukemia 
(DS-ALL) and acute megakaryocytic leukemia (DS-AMKL) are illustrated. For DS-ALL 
(upper part of the figure), the presence of three copies of HMGN1 gene, which encodes 
nucleosome remodeling protein, promotes B cell proliferation and with additional driver 
mutations on either JAK2 or RAS cause the progression to DS-ALL. For DS-AMKL 
(bottom part of the figure), trisomy 21 alone promotes over-proliferation of 
megakaryocytes and in combination with acquired somatic mutations on GATA1 gene 
that causes exclusive expression of GATA1s, a shorter form of GATA1, result in 
transient myeloproliferative disorder (DS-TMD). Although a portion of DS-TMD cases 
resolves spontaneously, additional driver somatic mutations can drive the progression of 
some DS-TMD cases to DS-AMKL.  
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anemia, recurring infections, and bleeding disorders, respectively. DS-AMKL usually 

occurs before DS children reach the age of 4, and similar to non-DS-AMKL, DS-AMKL 

is associated with bone marrow fibrosis, presumably due to an increased number of 

megakaryocytes or megakaryoblasts (Roy et al. 2009). 

The most unique characteristic of DS-AMKL is its association with a 

hematopoietic abnormality commonly seen in DS newborns, transient myeloproliferative 

disorder (TMD). TMD occurs in approximately 10-15% of all DS newborns and is 

characterized by increased circulating megakaryoblasts, which normally should be 

present in the bone marrow. Other characteristics include an increased amount of red 

blood cells, enlarged liver with megakaryocytic infiltration, and liver fibrosis. TMD can 

present substantial medical issues with approximately 20% mortality rate due to severe 

liver damage and complications in heart and lung. However, the majority of DS-TMD 

cases do not cause clinical symptoms in DS newborns despite massive numbers of 

megakaryoblasts in the blood. Interestingly, most DS-TMD cases recover spontaneously. 

However, a substantial fraction (about 20%) of DS-TMD cases further develop into DS-

AMKL. Although more experimental evidence is needed for this hypothesis, the 

spontaneous recovery of DS-TMD is probably due to the fact that TMD is a fetal origin 

disorder resulting from dysregulation of megakaryopoiesis during fetal liver 

hematopoiesis, the change of environment for hematopoiesis from liver to bone marrow 

after birth resolves the disorder.  

The evidence that DS-TMD as the precursor of DS-AMKL came from the finding 

that the blast cells (overproduced megakaryoblasts) in both disorders harbor the same 

somatic mutations in the GATA1 gene that causes exclusive expression of GATA1s, the 
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shorter form of GATA1 (Roberts et al. 2013). These mutations consist of various short 

deletions, insertions, and point mutations that cluster within exon 2, and results in an 

introduction of a premature stop codon. The use of a downstream alternative initiator 

codon results in translation of GATA1s that lacks the amino-terminal transcriptional 

activation domain (Wechsler et al. 2002). GATA1 is located on the X chromosome and is 

an important hematopoietic transcriptional factor involved in erythropoiesis and 

megakaryopoiesis (Kuhl et al. 2005). Interestingly, these GATA1s mutations are only 

detected in blast cells of DS-TMD and DS-AMKL and not in any other somatic cells in 

DS individuals. AMKL patients in the non-DS population or DS patients who have other 

types of leukemia do not have these mutations either, suggesting GATA1s is an unique 

feature shared between DS-TMD and DS-AMKL. However, DS-AMKL blast cells are 

also usually associated with various additional mutations that are not detected in DS-

TMD blast cells. These observations suggest that DS-AMKL blast cells are a clonal 

evolution of DS-TMD blast cells and additional genetic events are required for the 

progression from DS-TMD to DS-AMKL (Nikolaev et al. 2013; Yoshida et al. 2013). 

Although GATA1s mutations are thought to be the cause for both DS-TMD and DS-

AMKL (Ahmed et al. 2004; Ge et al. 2006), excessive production of hematopoietic cells, 

particularly erythroid and megakaryocytic cells, have been observed as early as the 

second trimester in DS fetal liver, without detectable GATA1 mutations that contribute to 

TMD and leukemia (Chou et al. 2008; Tunstall-Pedoe et al. 2008). Hence, this suggests 

that trisomy 21 alone may be sufficient to cause hematopoietic abnormalities in fetal liver 

hematopoiesis, a precursor for later hematopoietic abnormalities commonly developed in 

DS children. Additionally, GATA1s mutations alone without trisomy 21 fail to initiate 
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leukemia-like symptoms in both human and mouse models. Therefore, DS-AMKL is a 

multistep disease initially involving yet to be defined effects of trisomy 21 on 

hematopoiesis, followed by acquired GATA1s mutations that cause DS-TMD, and then 

multiple other mutations that ultimately result in DS-AMKL (Figure 1.3). A key point in 

understanding the contribution of trisomy 21 is the extent to which abnormalities in DS 

hematopoiesis arise prior to GATA1s mutations. Work in this thesis will bear on this 

question by studying hematopoiesis as a function of trisomy 21 without the GATA1s 

mutations. Use of the experimental system here allows us to investigate changes prior to 

GATA1s mutations as well as examine the potential of correction by “trisomy silencing” 

with XIST RNA (as further explained below).  

Currently, the most effective treatment for DS-AMKL is chemotherapy. 

Interestingly, compared to non DS-AMKL, DS-AMKL have significantly higher event-

free survival rates after cytosine arabinoside based chemotherapy. However, despite 

effective chemotherapy for DS-AMKL, DS-ALL patients usually don’t respond as well 

and need more aggressive treatments than non-DS-ALL patients. Regardless, 

chemotherapy is still a difficult process for all DS children with leukemia and the results 

of this thesis work to serve as a potential alternative therapeutic approach in the future. 

Additionally, use of this experimental system may also help uncover mechanisms for 

improved chemotherapy responsiveness, which could be beneficial for non-DS-AMKL 

patients that are relatively difficult to treat by chemotherapy. 

 

DS-associated immunodeficiency  
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In addition to the subset of DS children who have DS associated childhood 

leukemia, it is also important to note that less severe hematopoietic abnormalities are also 

seen in almost all DS patients, with potentially broad effects on health. A major one of 

these involves the immune system (Roizen and Amarose 1993; David et al. 1996; de 

Hingh et al. 2005; Bloemers et al. 2010). 

DS children suffer from greatly increased infection rates compared to normal 

children, mainly in the upper respiratory tract. These frequent infections in DS patients 

are characterized by increased severity and a prolonged course of disease, and historically, 

respiratory infections had been the major cause of death. Several defects in immune 

compartments have been described and are postulated to contribute to increased 

infections in Down syndrome. For the innate immune system, defective neutrophil 

chemotaxis and low humoral immune response are most consistently reported to be 

associated with respiratory infections (Khan et al. 1975). For the adaptive immune system, 

the normal lymphocyte expansion in infancy is absent and mild to moderate B and T cell 

lymphopenia (abnormal low levels of lymphocytes in the blood) are observed in DS 

children (de Hingh et al. 2005). Additionally, the size of thymus, a lymphoid organ in 

which T cells mature, in DS children is smaller than age-matched controls (Prada et al. 

2005). Despite major well documented abnormalities in the DS immune system, the 

genetic mechanisms determining these immunological deficits are still not well defined 

or not heavily studied.  

Although research in DS has not focused on immunodeficiency, recent evidence 

suggesting involvement of immune responses in the development of neurological 

disorders provides a renewed interest and driving force for scientists to investigate the DS 
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immune system (Liewluck and Miravalle 2015). Since all immune players are derived 

from the hematopoietic system, abnormal hematopoiesis may well contribute to not only 

immunological but also neurological defects in DS. Therefore, correction of 

hematopoietic abnormalities may have broader implications for immunological and 

neurological aspects of DS, beyond the leukemia aspect studied here. 

 

Efficient treatments for DS are still lacking due to insufficient understanding of DS 

pathogenesis 

To cure a genetic disease, an obvious approach would be to identify the 

pathogenic responsible gene(s) or pathways and then pursue either genetic therapy or 

more traditional therapeutic agents, such as drugs, to correct the pathologies. However, 

this approach is not easily translated to DS due to the complexity of genes involved in 

trisomy 21. Chromosome 21 is the smallest human chromosome, which might in part 

explain why it is the most frequent trisomy seen in live births. Nonetheless, there is 

estimated to be up to four hundred genes, including about two hundred protein coding 

genes and numerous potential non-coding RNAs, encoded from chromosome 21. Given 

this number of overexpressed genes, it is very difficult to estimate how many would have 

an impact if expressed 50% more and thus be dosage sensitive. Investigations into this 

have been further perplexed by genetic variation among all individuals (including DS 

patients), which complicates interpretations of many studies. Therefore, there is currently 

no cure and no standard treatment for all DS individuals.  

Current treatments are usually based on each DS individual’s physical and 

intellectual needs. Proper treatments are also chosen according to their personal strength 
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and limitations. Depending on the symptoms, DS individuals may need immediate 

medical treatments, such as surgery and chemotherapy for congenital heart disease and 

leukemia, respectively, as well as lifelong treatments, such as a special diet for DS 

individuals with digestive problems. For intellectual disability, early interventions and 

educational therapies have been shown effective for helping DS individuals live 

independently and thus improve their outcomes and qualities of life (Guralnick 2010; 

Guralnick 2011). Additionally, drugs for improving the cognitive function of DS 

individuals are also under development, however, the effectiveness of these drugs 

remains unclear. 

In sum, since the identification of Down syndrome, no cure has been developed 

and most of the therapies mentioned above are more sociological then medical. Although 

scientists have spent a tremendous amount of effort to try to determine the molecular 

mechanisms of DS pathogenesis, in order to identify therapeutic targets, the number of 

genes involved and genetic variation among DS individuals significantly complicate this 

task. Therefore, understanding for most pathogenic mechanisms of DS are still lacking. 

This thesis work advances progress towards developing therapeutics for DS 

blood-related disorders in two ways. Instead of trying to figure out which dosage 

sensitive genes or pathways might cause DS symptoms, we attempted to shut down the 

extra chromosome 21 in order to correct the imbalanced transcriptome and reverse 

phenotypes caused by trisomy 21 in DS iPSCs. Additionally, the novel experimental 

system we developed can be utilized to help decipher the developmental steps in DS 

hematopoiesis pathways to understand the biology and to develop therapeutic drugs to 

treat or even prevent leukemia. 
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The process of normal Hematopoiesis 

Since one of the major focuses in this thesis is to demonstrate the correction of 

DS-associated hematopoietic phenotypes, essential knowledge for normal hematopoiesis 

is provided in this section. Hematopoiesis is the process of generating different types of 

blood cells from a rare population of cells residing in the bone marrow called 

hematopoietic stem cells (HSC) that have self-renewal capacity (Hattori et al.). The 

hematopoietic development hierarchy is shown in Figure 1.4. HSCs can give rise to 

multipotent progenitors (MPPs), which only have limited capacity to self-renewal but can 

further differentiate into all types of hematopoietic cells. The hematopoietic system can 

be subdivided into the lymphoid and myeloid compartments, comprised of the progeny of 

common lymphoid progenitors (CLP) and common myeloid progenitors (CMP), 

respectively, and both CLP and CMP are derived from MPPs. CMPs can further 

differentiate into megakaryocyte-erythrocyte progenitors (MEPs), common progenitors 

for megakaryocytes and erythrocytes, and granulocyte-monocyte progenitors (GMPs), 

common progenitors for cells involved in the innate immune response. The lymphoid 

compartment contains T cells and B cells that are involved in the adaptive immune 

response. Hence the process of normal hematopoiesis has wide and varied effects on 

health and function of the whole body. 

Hematopoiesis begins during early embryogenesis and throughout adulthood to 

generate and replenish the blood cells for the life of the organism. Despite its complexity, 

it is by far the most well understood developmental system. In addition, transplantation of 

bone marrow cells, which contain hematopoietic stem and progenitor cells, can cure  
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Figure 1.4 Development of the hematopoietic system. 

This diagram shows the hematopoietic development hierarchy. Notably, DS-TMD, the 
precursor form of DS-AMKL, is featured by overproduction of erythrocytes and 
megakaryocytes.	
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several hematological disorders and is today the most widely deployed regenerative 

therapy clinically. However, finding a immunocomaptiable donor is usually time 

consuming and the procedure for bone marrow transplantation is difficult for both the 

donor and recipient. Hence, development of alternative approaches to obtain or produce 

healthy hematopoietic stem and progenitor cells is of great value for treating 

hematological disorders and these require in depth understanding of molecular 

mechanisms and cellular development involved in hematopoiesis. Since the 

hematopoietic abnormalities associated with DS individuals occur most in infancy and 

childhood, suggesting that the defects arise from fetal hematopoiesis, this section will 

focus on the process of prenatal hematopoiesis. 

 

There are two waves of hematopoiesis during early embryogenesis 

Embryos need oxygen to maintain proper development, therefore, the 

hematopoietic system is one of the very first to develop in early embryogenesis. Due to 

the inaccessibility of human embryos, current understandings about the process of 

hematopoietic development during early embryogenesis mostly come from experiments 

done in zebrafish and mice. There are two waves of hematopoiesis during early 

embryogenesis, the primitive and definitive hematopoiesis. Primitive hematopoiesis 

includes formation of erythroid progenitors that give rise to erythrocytes and 

macrophages during early embryonic development (Palis and Yoder 2001). These 

erythroid progenitors first appear in blood islands in the extra-embryonic yolk sac early 

in development and do not have self-renewal capacity (Paik and Zon 2010).The primary 

purpose of primitive hematopoiesis is to produce red blood cells facilitating tissue 
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oxygenation as the embryo is growing rapidly (Orkin and Zon 2008). Hematopoietic 

lineage specifications are tightly regulated by numerous hematopoietic transcriptional 

factors. Gata1 and Pu.1, master regulators for erythrocyte and myeloid development, 

respectively, are two critical genes involved in primitive hematopoiesis (Scott et al. 1994; 

Cantor and Orkin 2002). Gata1 knockout results in embryonic lethality due to failed 

development of mature erythrocytes. Additionally, Gata1 knockdown experiments done 

in zebrafish demonstrated that blood cells switch to the myeloid fate with increased 

expression of myeloid related genes including Pu.1. In contrast, Pu.1 knockdown causes 

increased Gata1 expressing cells and these cells later upregulate embryonic hemoglobin 

genes, suggesting their switch to erythroid fate (Rhodes et al. 2005). Based on the 

physical interaction between Gata1 and Pu.1, the switch is hypothesized to occur as a 

result of competition for target genes (Cantor and Orkin 2002). Primitive hematopoiesis 

is very transitory and is rapidly replaced by definitive hematopoiesis that generates adult-

type hematopoietic cells. 

 In most organisms, there is a transient wave of definitive hematopoiesis occurring 

in blood islands in the yolk sac that produces erythroid-myeloid progenitors (EMP) 

(Bertrand et al. 2007; McGrath et al. 2011). These progenitors later colonize the fetal 

liver before the emergence of HSCs. A second wave of definitive hematopoiesis involves 

the production of HSCs, which are multipotent and can give rise to all lineages of blood 

cells. In most vertebrates, this process occurs in the aorta-gonad-mesonephros (AGM) 

region of the developing embryo and the HSCs later migrate to and colonize the fetal 

liver (Cumano and Godin 2007). Interestingly, Runx1, a chromosome 21 gene, has been 

shown to be required for initiation of definitive hematopoiesis. Knocking down Runx1 in 
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mice causes absent development of definitive erythroid, myeloid, and lymphoid cells 

(Wang et al. 1996). Similar observations have been shown in developing zebrafish 

embryos as well (Paik and Zon 2010). Fetal liver definitive HSCs are cycling cells but 

become quiescent after they further migrate to bone marrow, the site of adult 

hematopoiesis, later in development. 

 Understanding the mechanism for the formation of HSCs is critical because this 

will help the development of techniques that generate HSCs in vitro from iPSCs, which 

may serve as an alternative way to obtain patient-specific HSCs for cell therapies for 

hematological disorders. Additionally, since Runx1 from chromosome 21 is required for 

definitive hematopoiesis to generate HSCs, trisomy 21 may well have effects on 

formation of HSCs, which may further cause abnormalities in the hematopoietic system 

associated with DS individuals. 

 

HSCs are generated from hemogenic endothelium 

Due to the clinical value of HSCs in regenerative medicine, the developmental 

process of HSCs has been a highly focused area of research. In early 1900s, a number of 

researchers observed clusters of cells with hematopoietic capacity present in close 

connection with the endothelium of the ventrolateral aspect of the developing aorta in 

vertebrates including bat, mongoose, chick, pig, rabbit, and human (Adamo and Garcia-

Cardena 2012). The hypothesis that blood cells are developed from a specialized 

endothelium, termed hemogenic endothelium, was then proposed. Early evidence 

supporting this hypothesis includes shared markers between blood and vascular cells and 

lineage-tracing endothelium in developing chick embryo (Jaffredo et al. 1998; Jaffredo et 
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al. 2000). More recently, lineage-tracing experiments done in mouse further support this 

hypothesis (Zovein et al. 2008). The strongest evidence for this hypothesis came from 

time-lapse imaging studies that visualized the transition from endothelial to 

hematopoietic cells in real-time (Eilken et al. 2009; Bertrand et al. 2010; Boisset et al. 

2010; Kissa and Herbomel 2010). The process of generating hematopoietic cells from 

endothelium, which involves a morphological change of the endothelial cells to form 

round hematopoietic cells, was named “endothelial to hematopoietic transition (EHT)” 

(Figure 1.5).  

Hemogenic endothelium is a very transitory cell population that exists only in a 

very short developmental window and only small subsets of endothelium in sites of 

definitive hematopoiesis are hemogenic. This special subset of endothelium is defined by 

exhibiting endothelial morphology and phenotype while also the ability to produce 

hematopoietic cells and endothelial offspring. The co-expression of both endothelial and 

hematopoietic markers in this small subset of endothelium has made identifying and 

purifying hemogenic endothelium from endothelial cells and hematopoietic cells difficult. 

To further understand the mechanism behind EHT, efforts have been made by 

researchers to identify essential genes that regulate this process. As an important gene 

expressed in definitive HSCs, Runx1 was knocked out to study its normal function. 

Mouse embryos with homozygous mutations in Runx1 resulted in an embryonic lethal 

with absent definitive hematopoiesis while primitive hematopoiesis was only marginally 

affected (Okuda et al. 1996; Sasaki et al. 1996; Wang et al. 1996). Being the first gene 

that upon mutated causes distinct effects separating primitive and definitive 

hematopoiesis, Runx1 has since become the focus of research. Runx1 expression was only  
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Figure 1.5 Endothelial to hematopoietic transition (EHT) 

During definitive hematopoiesis, hematopoietic stem cells (HSCs) are generated from 
hemogenic endothelium, a small subset of endothelium that has the capacity to produce 
hematopoietic cells. Genes involved in this endothelial to hematopoietic transition 
includes RUNX1, SCL, HOXA3, and SOX17. 
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found in subsets of endothelial cells located in sites of definitive hematopoiesis, prior to 

the emergence of hematopoietic stem cells but not in endothelial cells elsewhere (North 

et al. 1999; Ottersbach and Dzierzak 2005; Rhodes et al. 2008). The temporal and spatial 

expression pattern of Runx1 suggests its role in the formation of HSCs from hemogenic 

endothelium. Conditional deletion of Runx1 in VE-Cadherin positive endothelial cells in 

developing mouse embryos causes failure to produce definitive HSCs, suggesting the role 

of Runx1 in the endothelial to hematopoietic transition (Chen et al. 2009). Interestingly, 

in the absence of Runx1, hemogenic endothelium is still made but no definitive 

hematopoietic cells are formed.  

In addition to Runx1, several other genes including SCL, HoxA3, and Sox17 have 

also been reported involved in EHT. Knocking out SCL in mouse ES cells undergoing 

hematopoietic differentiation resulted in the absence of hemogenic endothelium and the 

formation of hematopoietic cells (Lancrin et al. 2009). HoxA3 down-regulation within 

hemogenic endothelium correlates with the onset of Runx1 expression and re-expression 

of HoxA3 in nascent hematopoietic progenitors reestablishes the endothelial program 

(Iacovino et al. 2011).  Overexpression of Sox17 was also shown to result in expansion of 

a cell population with properties similar to hemogenic endothelium (Clarke et al. 2013; 

Nakajima-Takagi et al. 2013).  

As mentioned earlier, hematopoietic abnormalities in DS individuals can be 

observed as early as in fetal hematopoiesis stage (Chou et al. 2008; Tunstall-Pedoe et al. 

2008), therefore, it is of interest to identify at which developmental stage the trisomy 21 

gene expression affects hematopoiesis. One study using an isogenic system to compare 

hematopoietic differentiation from trisoimc and disomic human pluripotent stem cells 
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(PSCs) revealed an increased production of early hematopoietic progenitor cells resulted 

from trisomy 21 (Maclean et al. 2012), which suggests that DS fetal hematopoietic 

abnormalities can be modeled by human PSCs. Consistent with its role in HSC formation 

and definitive hematopoiesis, the third copy of RUNX1 on the extra chromosome 21 has 

been shown indispensible for overproduction of early hematopoietic progenitor cells 

during in vitro hematopoietic differentiation from DS iPSCs (Banno et al. 2016). In 

chapter III of this thesis study, I will demonstrate that our inducible trisomy silencing 

system can recapitulate hematopoietic phenotypes revealed by the isogenic trisomic and 

disomic system, and therefore useful for studying effects of trisomy 21 on early 

hematopoiesis.  

 

Experimental approaches to model and study Down syndrome 

Mouse models of DS 

 Based on the mouse strains developed by Gropp, A. et al. that allow generation of 

trisomy for any mouse chromosome (Gropp et al. 1974), the phenotypic similarities 

between trisomy 16 mouse and DS, and the synteny between human chromosome 21 

(HSA21) and mouse chromosome 16, the trisomy 16 mouse (Ts16) was identified as a 

potential mouse model of DS (Polani and Adinolfi 1980; Miyabara et al. 1982). However, 

the embryonic lethality of Ts16 in mice makes it difficult to use in most DS related 

research. To overcome this, Davisson et al. created a mouse model termed Ts65Dn that 

has an extra chromosome that contains regions of mouse chromosome 16 homologous to 

HSA21, translocated to centromere of mouse chromosome 17 (Davisson et al. 1990; 

Davisson et al. 1993). Since Ts65Dn possesses several physical, behavioral, and 
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neurological features similar to those seen in DS individuals, it has since become the 

most widely used mouse model for DS research. As advances have been made on the 

techniques to manipulate the mouse chromosome, other mouse models with partial 

trisomy for HSA21 have also been developed. A mouse trisomy model for all syntenic 

regions of HSA21 was produced by appropriate crosses of several partial trisomy 21 mice 

(Yu et al. 2010). Although this mouse model has not been fully characterized for DS 

features, its availability provides the trisomy 21 community enthusiasm for new 

discoveries in the future. Another very widely used mouse model of DS is Tc1. Tc1 was 

constructed by introducing a copy of the human chromosome 21 (HSA21) in mice 

(Hernandez et al. 1999). Although the HSA21 in Tc1 has several deletions, 

rearrangements, and duplications due to previous irradiations, it is still widely used for 

DS research, especially for Alzheimer neuropathologies seen in DS. 

Although most major hypotheses about the mechanisms behind DS biology and 

pathologies come from studies using various mouse models of DS, the species 

differences are still a barrier that limits DS research and conclusions about human 

biology. For example, all mouse models of DS don’t recapitulate most of the 

hematopoietic abnormalities commonly seen in DS children and DS newborns (unless 

additional genetic modifications are introduced). This has led researchers seeking 

alternative models for DS. 

 

New ways to model DS 

 Thanks to the invention of methods for generating induced pluripotent stem cells 

(iPSCs), iPSCs derived from DS patients have become an emerging new cellular model 
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for studies of human DS cell pathologies. Since iPSCs can be theoretically differentiated 

into all the cell types in the body, DS iPSCs can be valuable for studying various aspects 

of DS including neuronal, hematopoietic, and cardiac phenotypes. This will enhance our 

ability to determine which cell types show pathology and when in the developmental 

process the pathology arise, as I investigate here. Ultimately, genome editing techniques, 

such as zinc finger nuclease and CRISPR, will allow researchers to identify the 

contribution of specific genes or sets of genes to certain phenotypes in cell models that 

most naturally relate to DS individuals. Moreover, the combined efforts of genome 

editing and gene delivery techniques have accelerated the development of gene therapy 

for various genetic diseases.  

 However, although recent advances have been made in developing gene therapies 

for various genetic diseases, DS has not been considered as a candidate to develop gene 

therapy, due to the large amount of over-dosed genes from chromosome 21. To overcome 

this challenge, in this thesis, I applied the chromosome-wide silencing property of a long 

non-coding RNA, XIST, to silence one copy of chromosome 21. This approach simplifies 

the need for silencing hundreds of genes to the simple addition of a single gene, XIST, to 

“dosage compensate” trisomy 21 expression. More details for XIST-mediated 

chromosome silencing are explained in the next section. 

 

XIST Mediated Chromosome Silencing 

Discoveries of X-inactivation and a remarkable RNA 

 In most mammals, sex is determined by the XY sex-determination system in 

which females have two X chromosomes and males have one X and one Y chromosome. 
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This context induces an imbalance of X chromosome genes between two sexes and 

therefore a mechanism to dosage balance X-linked genes, X chromosome inactivation 

(XCI), is required. The first observation of the inactive X chromosome came from the 

discovery made by Barr and Bertram in 1949 (Barr and Bertram 1949). They noticed a 

small body near the nucleolus of cat neurons that could be stained with the same dye that 

stains chromosomes. While they had no clue as to the composition of this small body, 

they termed it “sex chromatin” because this small body was found only in female cells of 

mammals. The thought that X chromosomes might act differently than autosomes came 

with the discovery of the first mouse X-linked gene that, when mutated, caused an 

unusual pattern of white spotting in the coat. This was seen only in females and mutation 

of this gene in males caused embryonic lethality. Additionally, Welshons and Russell 

showed that mice with a single X chromosome and without the Y chromosome, termed 

XO, are viable and fertile females. This suggested that the Y chromosome was the male 

determining factor and one active X chromosome was sufficient for survival of female 

cells (Welshons and Russell 1959). Furthermore, in 1959, Susumu Ohno showed that the 

two X chromosomes in female cells appeared different, with one being autosome-like and 

another being condensed and heterochromatic, suggesting it was inactivated (Ohno et al. 

1959). Given the above observations, Mary Lyon proposed a theory that one X 

chromosome is randomly selected to be inactivated during early embryogenesis in female 

mammalian cells (Lyon 1961). 

 In order to understand the mechanisms of X chromosome inactivation, analysis of 

both human and mouse rearranged X chromosomes revealed the existence of the X 

chromosome inactivation center (XIC), the region required for initiation of X 
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chromosome inactivation (Brown et al. 1991b). A major breakthrough came from the 

identification of a human 17 kb long non-coding RNA, XIST, and its mouse counterpart, 

Xist, mapped to XIC and expressed only from the inactivated X chromosome, suggesting 

its potential role in X chromosome inactivation (Brown et al. 1991a; Brown et al. 1992). 

Furthermore, the discovery that XIST/Xist RNA coats the inactivated X chromosome at 

interphase in female cells and the absence of X chromosome inactivation after deletion of 

Xist in mice confirmed the requirement of XIST/Xist for X chromosome inactivation in 

female cells (Clemson et al. 1996).  

 

Known Mechanisms for XIST-mediated X-inactivation 

Fifty years after the initial proposal of X chromosome inactivation, much progress 

has been made for understanding the mechanism of X chromosome inactivation (XCI). 

Due to the inaccessibility of human embryos, most research has been done in mouse 

models, thought to largely reflect XCI in other mammals, including humans.  

Xist RNA is the critical player in XCI. During early embryogenesis, when cells 

are still in the pluripotent state, Xist RNA is expressed at low levels from both active X 

chromosomes in female cells. Upon differentiation, one of the two active X chromosomes 

is randomly selected to go through XCI and Xist RNA is up-regulated and stabilized from 

the chosen X chromosome. Although the mechanism of random choice is not understood 

yet, the Xist antisense transcription unit, Tsix, seems to play a critical role in the choice of 

Xist allele to be upregulated. The expression of Tsix is accompanied by the appearance of 

repressive chromatin modifications on the promoter of Xist and the deletion of Tsix in 

mouse leads to preferential upregulation of Xist in the deleted locus (Lee and Lu 1999). 
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However, this Tsix dependent mechanism is not well conserved among species and the 

regulation of initiating XCI in human early embryos is still not clear yet. The coincidence 

of down-regulated pluripotency factors and up-regulation of Xist during mouse ES cell 

differentiation suggested that pluripotency factors may play roles in the regulation of 

initiating XCI, although further evidence is still needed for this hypothesis since this does 

not explain why Xist is up-regulated only in female cells, but not in male cells. Recent 

findings showed that several X-linked loci might participate in female specific up-

regulation of Xist in mice, including Rnf12, Xpr, and Jpx (Augui et al. 2007; Jonkers et al. 

2009; Tian et al. 2010; Barakat et al. 2011). 

Although the Xist mediated XCI is conserved among most mammals, the 

sequence of Xist is largely variable except for a series of conserved repeat motifs, termed 

repeat A to F (Brockdorff et al. 1992; Brown et al. 1992). Upon up-regulation from the 

randomly selected X chromosome, Xist RNA spreads across the whole X chromosome 

territory in cis, a critical process for silencing the X chromosome. While several proteins 

with both RNA and DNA binding domains (including Saf-A and YY1) have been 

suggested involved in Xist spreading across the X chromosome in cis, the precise 

mechanisms are still unclear. Additionally, deletion experiments showed that certain 

regions on the Xist transcript are required for different aspects of Xist function (Wutz et al. 

2002). For example, repeat C is suggested to be required for proper Xist spread and 

localization. Interestingly, interaction between repeat C and the RGG domain (putative 

RNA binding domain) of Saf-A has been shown and disruption of Saf-A leads to mis-

localization of Xist RNA in some cell types. However, the evidence that repeat C is 

required in XIST localization in human female cells is still lacking. 
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While the critical regions for Xist localization are still not clear, the region of the 

Xist transcript required for proper gene silencing (in both human and mouse female cells) 

is much more well-defined. Repeat A is the most conserved region on Xist transcript 

among species and its role in gene silencing is confirmed from multiple independent 

research groups. Importantly, Xist RNA lacking repeat A was capable of spreading across 

the entire X chromosome but did not result in proper chromosome silencing, suggesting 

its unique role in gene silencing (Wutz et al. 2002; Chow et al. 2010). The repeat A is 

composed of eight motifs that form inter-repeat double stranded duplexes, flanked by 

single stranded regions (Lu et al. 2016). This unique structure is thought critical for 

interaction with multiple RNA binding proteins, including SPEN, RBM15 and WTAP, 

recently identified as factors required for initiating the Xist-mediated chromosome 

silencing cascade in mouse ESCs (Chu et al. 2015; Moindrot et al. 2015; Monfort et al. 

2015).  

The interaction between SPEN and Xist is repeat A dependent (Chu et al. 2015). 

Once recruited to Xist, SPEN can interact with the SMRT corepressor deacetylase 

complex that contains HDAC3 for histone deacetylation of X-linked genes. Defective 

XCI can be observed with depletion of HDAC3, SMRT, or SPEN, suggesting a role for 

recruitment of SMRT-HDAC3 complex by SPEN in Xist-mediated transcriptional 

silencing of X-linked genes (Figure 1.6A) (Shi et al. 2001; You et al. 2013; McHugh et al. 

2015). Additionally, a recent study conducted by Patil, D.P. et al. reported a functional 

link between N6-Adenosine methylation (m6A), a common post-transcriptional 

modification, and Xist-mediated gene silencing (Patil et al. 2016). RBM15 interacts with 

Xist RNA and recruits m6A machinery through its interacting protein, WTAP, whose  
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Figure 1.6 Mechanisms for Xist mediated X chromosome inactivation. 

(A) SPEN is recruited by Xist through the A repeat. Further recruitment of SMRT 
complex that has HDAC3 results in deacetylation of X-linked genes. (B) RBM15 can 
bind to Xist and interact with MTTL3 through WTAP. MTTL3 methylates adenosine 
residues on Xist RNA and YTHDC1, an m6A reader that binds to m6A residues on Xist, 
is required for gene silencing. (C) PRC1 and PRC2 that put heterochromatic 
modifications on X-linked genes are recruited by Xist during XCI through yet unknown 
mechanisms. 
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interaction partner, MTTL3, then methylates adenosine residues on Xist RNA (Figure 

1.6B) (Patil et al. 2016). Depletion of either RBM15 or WTAP resulted in decreased 

recruitment of MTTL3 and m6A levels within Xist and knocking down either RBM15 or 

MTTL3 causes loss of Xist-medicated gene silencing (Patil et al. 2016). Additionally, 

YTHDC1, a known m6A reader, was also found to bind to m6A residues within Xist RNA 

(Patil et al. 2016). Knocking down Ythdc1 in mouse ES cells disrupted Xist-mediated 

gene silencing and artificial tethering of YTHDC1 to Xist RNA can rescue Xist-meidated 

transcriptional silencing upon loss of m6A machinery(Patil et al. 2016).  Furthermore, 

although the mechanisms are not clear yet, PRC1 and PRC2 complexes are also recruited 

by Xist RNA for initializing XCI (Figure 1.6C). These recruitments will ultimately result 

in several heterochromatic modifications, such as H3K27, H3K9, and macroH2A, on the 

inactive X chromosome, which further leads to chromosome-wide transcription silencing 

and the formation of a heterochromatic nuclear structure called the Barr body. However, 

currently, the mechanisms for this Xist-mediated structural change of the inactive X 

chromosome remained unknown. 

Because XIST RNA is highly effective in silencing an entire chromosome, the 

idea of applying XIST mediated chromosome silencing to aneuploidy evolves. Although 

the ability of XIST RNA to effectively inactivate an autosome is still unclear, several 

findings support this idea. While unbalanced X;autosome translocations would 

theoretically result in fetal lethality, the fact that individuals with aneuploidy of this type 

(most frequently unbalanced t(9;X) and t(14;X)) are mostly normal suggests that XIST is 

still functional in silencing the translocated autosome.  In addition, our previous study 

showed that human XIST transgene inserted into chromosome 4 in a transformed cell line 
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can induce chromosome silencing (Hall et al. 2002a). Based on these evidence, we 

hypothesize that XIST RNA can silence an autosome. Therefore, in this thesis work, 

instead of trying to decipher mechanisms for XIST mediated chromosome silencing, we 

apply its chromosome silencing capacity to correct the number of active chromosome 21 

in DS cells. Since induced pluripotent stem cells (iPSCs) are capable of differentiating 

into all cell types that are affected in DS and are one of the cell types known to support 

initiation of XIST mediated chromosome silencing, in order to take full advantage of XIST 

RNA and to maximize the value of the DS model being built in this thesis, induced 

pluripotent stem cells  (iPSCs) derived from DS individuals with inducible XIST 

transgene targeted on one chromosome 21 is created and chosen as the cellular model. 

This model not only can demonstrate the effect of trisomy silencing on cellular 

phenotypes of DS but also will provide a correctable “disease in a dish” model to study 

DS pathologies.  

 

Disease modeling using pluripotent stem cells 

Advantages of disease modeling with pluripotent stem cells 

It is necessary to have a comprehensive view of biological processes underlying 

human pathologies in order to devise strategies for disease treatments and even 

prevention. As the causes of most diseases can be narrowed down to specific genomic 

loci, studies performed on these single gene defects in a suitable context has been 

facilitating disease modeling and helping researchers understand more about these 

diseases. Due to some conservation among mammalian genomes, animal models such as 

mice, rats, and non-human primates have been valuable tools for disease modeling. 
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However, due to speciation and genetic differences, these animal models are not always 

applicable for modeling human diseases, and fail to recapitulate some phenotypes seen 

only in human patients. For example, current mouse models of DS, without any 

additional genetic modifications, fail to recapitulate most of the hematopoietic 

abnormalities seen in human DS individuals. Therefore, for these kinds of diseases, it is 

ideal to conduct biomedical research in humans or humane cells. Most of the time this is 

limited to in vitro systems where researchers perform experiments on cultured patient-

derived primary cells. However, diseases that have phenotypes specific to cell types that 

are difficult or impossible to isolate are excluded from this kind of approach. Hence, a 

better human-based model is needed.  

The availability of different types of human pluripotent stem cells (PSCs) such as 

embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide the 

solution for the limitations of aforementioned disease modeling approaches. Human 

pluripotent stem cells outperform those approaches because they are a normal primary 

cell line, have self-renewal capacity that supports in vitro culture, and have the potential 

to differentiate into virtually any cell type found in the human body.  

 

Strategies for generating disease models using human PSCs 

 The first example of using human PSCs for disease modeling came from a 

targeted mutation of the HPRT gene in human ESCs by homologous recombination, used 

to model Lesch-Nyhan syndrome (Urbach et al. 2004). Human embryos carrying specific 

genetic mutations or chromosomal aberrations that can be identified by pre-implantation 

genetic diagnosis (PGD) (Mateizel et al. 2006; Eiges et al. 2007) or pre-implantation 
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genetic screening (PGS) (Biancotti et al. 2010), respectively, are also valuable sources for 

isolating ESCs for disease modeling. However, a crucial limitation for these approaches 

is that it is only applicable for diseases that can be screened by these methods. 

Additionally, in vitro culture of normal ESCs can sometimes spontaneously generate 

aneuploid cells that are useful for modeling aneuploidy diseases such as Turner syndrome 

(monosomy X) (Urbach and Benvenisty 2009).  

Despite the promising potential offered by human ESCs, the availability and 

ethical concerns for human ESCs are still crucial limitations for researchers. The 

revolutionary invention of technique to reprogram somatic cells back to their pluripotent 

state, as known as iPSCs, has opened a new horizon for diseases modeling using human 

PSCs (Takahashi et al. 2007). The ability to generate patient specific iPSCs from somatic 

cells not only avoids the problems mentioned previously for ESCs but also prevent the 

issues of immunocompatibility for developing personalized medicine and stem cell 

treatments. Additionally, recent improvements of nuclease-based genome editing 

techniques, such as zinc finger nucleases and CRIPSR, significantly facilitates the usage 

of human PSCs for creation of various kind of disease models (Kim and Kim 2014). The 

combination of these techniques allows generation of highly controlled modeling system, 

such as isogenic PSC lines that differ only in the mutated genomic locus, for researchers 

to elucidate the underlying pathologies for diseases to be studied.  

 

Concerns for disease modeling with human PSCs 

Although human PSCs outperform other approaches for disease modeling, several 

criteria should be taken into account. The most intuitive approach for disease modeling 
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using human PSCs is to identify phenotypes recapitulated from patients, find ways to 

correct the pathological genetic abnormalities, and compare the phenotypes between 

corrected and non-corrected cells. However, it is well known that clonal or even intra 

clonal variations exist or arise during the process of culturing human PSCs. Therefore, 

comparisons between corrected and non-corrected disease PSCs should be addressed 

more carefully. One way to avoid this is to create an “iso-epigenetic” system. For 

example, in this thesis work, our design that the targeted chromosome 21 can be silenced 

on demand provides us an iso-epigenetic system, a well-controlled system that avoids any 

source of variations that may potentially arise from the process of culturing corrected and 

non-corrected cells separately. 

Human PSCs-based approaches are best for modeling monogenic disorders with 

clear cellular phenotypes. In contrast, it is relatively difficult to model complex diseases 

that are caused by mutations from multiple or undefined genomic loci. In addition, 

diseases with phenotypes that involve structural abnormalities in certain tissues are 

generally very difficult to model using human PSCs due to the requirement for three-

dimensional tissue structures to observe the phenotypes, such as with congenital heart 

disease in DS. Moreover, the availability of an established differentiation protocol for 

particular cell types is also key when disease modeling with iPSCs. It is usually 

extremely time consuming to generate a protocol for differentiation of certain cell types 

from humans PSCs de novo and an animal model, if available, might be a better choice. 

Furthermore, since PSCs are “young” cells, it is more useful for modeling diseases with 

phenotypes in fetal development or early childhood, as it requires more efforts to 
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differentiate PSCs into more mature cell types to model diseases with phenotypes seen 

only in adulthood, or with advanced age. 

Based on our discussion so far, Down syndrome, although being a complex 

disorder caused by abnormalities in hundreds of genes, can be easily modeled and with 

application of XIST-mediated chromosome silencing. Importantly, among several DS-

associated pathologies, DS-AMKL has clear phenotypes  (overproduction of 

megakaryocytes and erythrocytes) that can be observed in fetal development and, 

although being a very complex system, several established protocols for hematopoietic 

differentiation from iPSCs are available. Therefore, DS-AMKL is ideal for disease 

modeling using iPSCs derived from DS individuals.  

 

In vitro hematopoietic differentiation from human PSCs 

 The techniques for growing human PSCs in vitro have made modeling early 

hematopoiesis in vitro feasible. In addition to research applications, the ability to generate 

clinically useful hematopoietic cells will be tremendously beneficial to patients with 

hematological diseases, especially for those caused by genetic abnormalities. Despite 

current success of bone marrow transplantation in curing hematopoietic disorders, limited 

supply of donors and the issues with immunocompatibility are still difficult for the 

patients and their families. Therefore, scientists have spent tremendous efforts trying to 

generate HSCs in vitro, which requires an efficient protocol for hematopoietic 

differentiation from pluripotent stem cells. 

 The most common approach for differentiating hematopoietic cells from human 

PSCs is through the formation of the embryoid body (EB). EBs are three-dimensional cell 
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aggregates of ES/iPSCs formed in suspension culture that mimics the developing embryo 

through enhancing cell-cell interactions to form three germ layers (Doetschman et al. 

1985; Thomson et al. 1998). As hematopoietic stem cells are naturally present in a very 

small amount of population, cytokine cocktails that contains factors essential for 

hematopoietic differentiation in vivo, including BMP4, FGF, VEGF, SCF, IL3, IL6, and 

IL11, are usually contained in the medium in which EBs are differentiating. The first cell 

with hematopoietic capacity can be detected at day 3 to 4 in differentiating EBs (Kennedy 

et al. 2007). Differentiation of human iPSCs throughout 21-day EB formation 

demonstrated a sequential gene expression changes from BRACHYURY (mesodermal 

differentiation) to SCL, GATA-2, and RUNX1 (hematopoietic commitment), followed by 

the emergence of CD34+CD45+ cells that denote hematopoietic lineages (Lengerke et al. 

2009). Other methods including co-culturing ES/iPSCs with feeder cells that support 

hematopoietic differentiation have also been successful, although it requires an additional 

purification step to separate out the differentiated hematopoietic cells from the feeders 

before further analysis.  

 The method to evaluate differentiated hematopoietic cells includes the colony-

forming assay, which uses methylcellulose-based media, a system that supports 

preferentially the growth of cells with hematopoietic capacity, and engraftment into 

irradiated mouse for bone marrow reconstitution. Although generation of different 

lineages of hematopoietic cells has been very successful using various differentiation 

methods, in vitro derived hematopoietic stem cells from human PSCs fail to repopulate 

the bone marrow of irradiated mice, suggesting intrinsic differences are still present 

between hematopoietic stem cells generated in vitro and in vivo. This has been a major 
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obstacle for generating clinically applicable hematopoietic cells in vitro and tremendous 

amount of efforts have been put into this area. Recently, through introduction of seven 

transcription factors including ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, and 

SPI1 into hemogenic endothelium differentiated in vitro, Sugimura et al demonstrated 

success of generating HSCs that are able to engraft irradiated mice (Sugimura et al. 2017). 

Interestingly, two of the five transcription factors they introduced into hemogenic 

endothelium are encoded on chromosome 21. There is no doubt that their research has 

overcome a major obstacle and will be valuable for this field of research.  

 

Concluding Remarks 

 Although decades of efforts have been spent on DS research, due to its 

complexity, pathogeneses in DS is largely unknown except overexpression of 

chromosome 21 genes. Additionally, a better DS model is needed in the field in order to 

provide a more controlled system to compare the effect of trisomy 21 in various cell 

types. This thesis adopts a novel approach to establish a model system for DS where the 

expression of one chromosome 21 can be silenced on demand. This model provides an 

“iso-epigenetic” system, which would minimize any source of variations when 

comparing corrected and non-corrected cells and therefore provide more accurate and 

less confusing results. Additionally, this is the first demonstration of “chromosome 

therapy”, in which the abnormalities associated with a whole chromosome is corrected. I 

also use this approach to demonstrate correction of known hematopoietic abnormalities 

associated with DS individuals and to study the contribution of trisomy 21 along the 

process of hematopoietic differentiation. Furthermore, possible effects of trisomy 21 on 
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angiogenesis, which are potentially related to tumorigenesis in DS individuals, are also 

tested using this model system. To sum up, this work provides the field with a novel tool 

to study DS and demonstrates a proof of principle for developing an innovative 

therapeutic approach for DS individuals in the future. 
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Chapter II: Translating XIST mediated chromosome silencing 

to trisomy 21 in DS induced pluripotent stem cells 

Preface  

 Work presented in this chapter contributes to the larger effort by members of the 

Lawrence lab to demonstrate comprehensive transcriptional repression of one 

chromosome 21 in induced pluripotent stem cells derived from an individual with Down 

syndrome and it resulted in the following publication: 

Jiang, J., Y. Jing, G.J. Cost, J.C. Chiang, H.J. Kolpa, A.M. Cotton, D.M. Carone, B.R. 
Carone, D.A. Shivak, D.Y. Guschin, J.R. Pearl, E.J. Rebar, M. Byron, P.D. Gregory, C.J. 
Brown, F.D. Urnov, L.L. Hall, and J.B. Lawrence (2013) Translating Dosage 
Compensation to Trisomy 21. Nature. 500(7462):296-300. doi: 10.1038/nature12394 
 
 My contribution to this publication involved construction of the vector containing 

a transgene carrying the doxycycline control component (rtTA) targeted to 

the AAVS1 locus on chromosome 19, isolation and characterization of two XIST-

transgenic clones, analysis of allele specific silencing of APP gene on the targeted 

chromosome, SNP analysis for allele specific transgene insertion, cell culture for 

microarray analysis (clone 3), and the proliferation assay. This section includes most 

parts of the cited manuscript, including contributions of my own and others in order to 

keep the flow intact. At the time this work was done, insertion of a very large transgene 

(~21 kb) was novel and made possible by zinc finger nuclease (ZFN) technology. 

Sangamo Biosciences created the chromosome 21 specific ZFNs (for which seven 

authors were included). This work was supported by NIH grants GM053234, GM085548 

and GM096400 RC4 to J.B.L. 
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Introduction 

In the United States, about 1 in 300 live births carry a trisomy, half of which are 

for chromosome 21, which causes Down syndrome. Down syndrome is the leading 

genetic cause of intellectual disabilities and the millions of Down syndrome patients 

across the world also face multiple other health issues, including congenital heart defects, 

haematopoietic disorders and early-onset Alzheimer’s disease (Megarbane et al. 2009; 

Gardiner 2010). Down syndrome researchers have sought to define the genes on 

chromosome 21 most closely associated with Down syndrome, but this has proven 

difficult due to high genetic complexity and phenotypic variability of Down syndrome, 

confounded by normal variation between individuals (Prandini et al. 2007; Megarbane et 

al. 2009; Gardiner 2010). Despite progress with mouse models for Down’s syndrome 

(O'Doherty et al. 2005; Haydar and Reeves 2012), there remains a need for better ways to 

understand the underlying cell and developmental pathology of human Down’s 

syndrome, key to therapeutic design of any kind (Gardiner 2010). 

The last decade has seen great advances in strategies to correct single-gene 

defects of rare monogenic disorders, beginning with cells in vitro and in several cases 

advancing to in vivo and clinical trials (Lee and Davidson 2011). In contrast, genetic 

correction of the over-dosed genes across a whole extra chromosome in trisomic cells has 

remained outside the realm of possibility. Our effort was motivated by the idea that 

functional correction of living trisomic cells may be feasible by inserting a single gene 

that can epigenetically silence a whole chromosome. An inducible system for such 

‘trisomy silencing’ would have immediate translational relevance as a resource to 

investigate the cellular pathology and gene pathways affected in Down’s syndrome, in a 
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setting free from pervasive genetic or epigenetic variation that exists between individuals, 

sub-clones, or even isogenic cell isolates (Prandini et al. 2007; Hall et al. 2008; Nazor et 

al. 2012). 

There is a natural mechanism to compensate the difference in dosage of X-linked 

gene copies between mammalian females (XX) and males (XY). This is driven by a large 

(~17 kilobases (kb) in human), non-coding RNA, XIST, which is produced exclusively 

from the inactive X chromosome (Brown et al. 1992), and ‘paints’ (accumulates across) 

the interphase chromosome structure (Clemson et al. 1996; Heard 2005). During early 

development, the XIST RNA induces numerous heterochromatin modifications and 

architectural changes which transcriptionally silence the inactive X chromosome and 

manifest cytologically as a condensed Barr body (reviewed in (Heard 2005; Hall and 

Lawrence 2010)). There is evidence for some DNA sequence specificity 

to XIST function, as certain human genes escape X-inactivation (Carrel and Willard 

2005); however, autosomal chromatin has substantial capacity to be silenced (Lee et al. 

1996; Hall et al. 2002a; Hall et al. 2002b). Understanding the full potential of an 

autosome to be silenced, however, requires examination under conditions that avoid 

creating a deleterious functional monosomy. The strategy pursued here meets that 

requirement and creates a tractable model to study the distinct biology of human 

chromosome inactivation. 

As outlined in Figure 2.1a, we set out to determine whether the human X-

inactivation gene, XIST, could be inserted into one copy of chromosome 21, and enact a 

chromosome-wide change in its epigenetic state. We pursued zinc finger nuclease (ZFN)-

driven targeted addition (Moehle et al. 2007) of an inducible XIST transgene to the gene-
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rich core of chromosome 21 in induced pluripotent stem (iPS) cells derived from a 

Down’s syndrome patient. If accomplished, this milestone would provide a system to 

study Down’s syndrome cell pathology and the first step towards a potential 

genetic/epigenetic approach to ‘chromosome therapy’. 
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Results 

Insertion of XIST into a trisomic chromosome 21 in DS iPSCs 

Given its large size, neither the XIST gene nor its cDNA has previously been 

integrated in a targeted fashion. Based on our previous success on inserting a ~16-kb and 

a ~21 kb XIST transgenes in a transformed cell line (HT1080), using established ZFNs to 

the AAVS1 locus on chromosome 19 (DeKelver et al. 2010) and to the intron 1 of 

DYRK1A locus on chromosome 21, respectively, we  proceeded to determine whether this 

was achievable in technically challenging iPS cells, which have unique therapeutic and 

developmental potential to form various cell types, and thus would be important for any 

future ex vivo cellular therapy efforts. We used a male Down’s syndrome iPS cell line 

(Park et al. 2008) which we confirmed maintains pluripotency markers and trisomy 21. 

Although a constitutively transcribed transgene could be used, we engineered an 

inducible system to maximize utility for investigating Down’s syndrome biology. In one 

step, we integrated both the doxycycline-controlled XIST transgene into chromosome 21 

(Figure 2.1b) and a transgene carrying the doxycycline control component (rtTA) into 

the AAVS1 chromosome 19 safe harbour, disruption of which creates no known adverse 

effects (DeKelver et al. 2010) (Figure 2.1b). 

We analysed 245 colonies from the pooled transformants by interphase 

RNA/DNA fluorescence in situ hybridization (FISH) (Figure 2.1c) to determine 

whether XIST was present and overlapped one of three DYRK1A alleles. Notably, 98.5% 

of XIST RNA-positive colonies carried XIST at this location on chromosome 21. 

Efficiency was sufficiently high that, through modifications to editing conditions, we 

obtained a few sub-clones with XIST integrated into two or even all three alleles of  
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Figure 2.1 Genome editing integrates XIST into chromosome 21 in trisomic iPS cells. 

(a) Concept for translating dosage compensation to trisomy 21. (b) The XIST construct 
(19 kb) contains two homologous arms and 14-kb XIST cDNA with inducible pTRE3G 
promoter. The rtTA-Puro construct contains a puromycin selection gene and rtTA 
cassette that is targeted to the AAVS1 safe harbor locus on Chr19 by ZFNs. (c) 
DNA/RNA FISH in interphase Down’s syndrome iPS cells shows that XIST overlaps one 
of three DYRK1A genes (left panels and insets) in a non-expressing cell (top, arrows), and 
a cell induced to express a large XIST RNA territory over the DYRK1A locus after 3 days 
in doxycycline (bottom, arrows). Right panels show green channel (DYRK1A) alone. 
Nuclear DNA is stained with 4′,6-diamidino-2-phenylindole (DAPI, blue). Scale bar, 
2 µm. (d) OCT4 immunostaining and XIST RNA FISH in a transgenic colony: highly 
consistent XIST expression throughout the colony. Scale bar, 100 µm. (e) Metaphase 
DNA FISH shows one targeted chromosome 21. XIST gene (asterisk and close-up) 
overlaps one of three DYRK1A genes (arrows). 
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DYRK1A. Six independent sub-clones were chosen for further study based on: 

an XIST transgene on one of three chromosome 21 copies, pluripotent colony 

morphology, OCT4 (also called POU5F1) staining (Figure 2.1d) and formation of 

embryoid bodies. FISH to metaphase chromosomes (Figure 2.1e) confirmed the gene 

addition accuracy, with 47 chromosomes, for all six clones.  

 

XIST RNA induces a chromosome 21 Barr body 

 In the panel of six independent genome-edited clones, we induced transgene 

expression and detected XIST RNA by FISH 3 days later. A localized XIST RNA 

‘territory’ over one chromosome 21 (Figure 2.1c) was seen in over 85% of cells in all six 

clones (Figure 2.1d). This mirrored the unique behaviour of endogenous XIST RNA 

which ‘paints’ the inactive X chromosome nuclear territory (Clemson et al. 1996). 

The natural inactivated X chromosome forms a condensed Barr body which carries 

repressive histone marks (Heard 2005). Similarly, 5 days after XIST induction, the edited 

chromosome 21 became markedly enriched in all heterochromatin marks examined, 

including H3K27me3, UbH2A and H4K20me in 90–100% of cells and, later, with 

macroH2A (Figure 2.2a, b and Figure 2.3a). Figure 2.3b illustrates that H3K27me spread 

across the whole metaphase chromosome 21. Moreover, chromosome 21 DNA in many 

nuclei became notably condensed, further evidence that we successfully generated a 

heterochromatic chromosome 21 Barr body (Figure 2.2c). 
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Figure 2.2 XIST induces heterochromatin modifications and condensed chromosome 
21 Barr body. 

(a) XIST RNA recruits heterochromatic epigenetic marks (for example, UbH2A). 
Channels are separated for cell indicated with an arrow. Scale bar, 5 mm. (b) Percentage 
of XIST territories with heterochromatin marks. Mean +/- standard error, 100 nuclei in 
~5 colonies. (c) XIST RNA induces chromosome 21 Barr body visible by DAPI stain 
(arrow). Scale bar, 2 mm.	
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Figure 2.3 XIST RNA mediated recruitment of heterochromatic hallmarks to the 
targeted Chr21 in edited iPSCs. 

(a) XIST RNA recruits a number of heterochromatic epigenetic marks to the inactivating 
chromosome, for example H4K20me (top) and H3K27M3 (bottom). Channels are 
separated for each indicated cell (arrows) at bottom. Scale: 5um. (b) H3K27M3 (green) 
coats the small chromosome 21 (arrows) in a mitotic cell line. Scale: 2 um. (c) XIST RNA 
territory delineates hnRNA (Cot-1) ”hole” (arrow), indicating Chr21 silencing. 
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Allele-specific silencing across chromosome 21 

To measure overall transcription across the XIST-targeted chromosome 21, we 

used an approach that we developed to broadly assay heterogeneous nuclear RNA 

(hnRNA) expression and to distinguish inactive from active X chromosome (Hall et al. 

2002a), on the basis of in situ hybridization to CoT-1 repeat RNA. This showed that the 

chromosome 21 XIST RNA territory was depleted for hnRNA detected by CoT-1 (Figure 

2.3c), similar to the inactive X chromosome (Hall et al. 2002a). 

We next used multi-colour RNA FISH to determine the presence of transcription 

foci at each allele for six specific chromosome 21 genes, an established approach that we 

earlier showed discriminates active versus silenced genes on inactive X chromosome 

(Clemson et al. 1996; Hall et al. 2002b). Without XIST expression, there are three bright 

transcription foci from each DYRK1A allele (Figure 2.1c, top), but after XIST expression, 

the targeted allele becomes weaker or undetectable, indicating repression 

of DYRK1A (Figure 2.1c, bottom). 

The APP gene on chromosome 21 encodes β-amyloid precursor protein; 

mutations in APP which cause accumulation of β-amyloid lead to early-onset familial 

Alzheimer’s disease, and APPoverexpression is linked to the Alzheimer’s disease 

characteristic of Down’s syndrome (Megarbane et al. 2009). Initially, three bright RNA 

transcription foci are apparent (Figure 2.4a, top). Short-term XIST expression resulted in 

incomplete repression of the targeted allele (Figure 2.4a, middle), which after 20 days 

was completely silenced, as shown in two independent clones (Figure 2.4a, bottom, and 

Figure 2.4b). 
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Figure 2.4 XIST induces long-range silencing in targeted iPS cells.  

(a) RNA FISH. APP RNA transcribes from three loci in uninduced cells (day 0), and is 
progressively silenced after induction (targeted chromosome 21, arrows). Scale 
bar, 2 mm. (b) Quantification of APP silencing. Mean +/- standard error, 100 
nuclei. (c) Silencing for four more chromosome-21-linked genes by RNA FISH. 
Mean +/- standard error from 100 nuclei. (d) Long-range silencing of 
chromosome 21 genes by XIST RNA. USP25 is ,21Mb from the XIST 
integration site (black arrow).  
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 We examined four more loci, 3–21 megabases (Mb) 

from XIST: ITSN1, USP25, CXADR and COL18A1. Complete silencing of each allele on 

the edited chromosome 21 was seen in ~100% of cells accumulating XIST RNA (Figure 

2.4c, d and Figure 2.5a). Allele-specific silencing was further validated using single 

nucleotide polymorphism (SNP) analysis. PCR with reverse transcription (RT–PCR) 

products for eight known polymorphic sites (in four genes) were sequenced 

(ADAMTS1, ETS2, TIAM1 and HSPA13) (Figure 2.5b, c). Interestingly, clones 2 and 3 

showed an identical pattern of eight SNP alleles repressed, whereas clone 1 showed an 

alternative pattern of SNPs repressed. As summarized in Figure 2.5c, this chromosome-

wide pattern allows extrapolation of the haplotype for each of the three chromosome 21 

homologues, and indirectly identifies for each clone which chromosome 21 was silenced 

by an XIST transgene. 

We also examined clones carrying XIST on two or all three copies of chromosome 

21 and found that after 20 days in doxycycline, most or all cells lost XIST localization or 

expression, and the targeted chromosomes did not silence the APP gene (Figure 2.6a, b). 

Thus, there is in vitro selection and epigenetic adaptation to circumvent creating a 

functional monosomy or nullisomy, consistent with observations that monosomic cells do 

not persist in mosaic patients. 

 

Genome-wide silencing and methylation 

 Having demonstrated allele-specific repression for the ten genes examined above, 

we extended this to genome-wide expression profiling. We treated three transgenic clones 

and the parental line with doxycycline for 3 weeks, and compared their transcriptomes to  
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Figure 2.5 XIST RNA induces allele-specific gene silencing on the targeted Chr21 in 
all DS iPS clones. 

(a) RNA FISH for four of the six Chr21-linked genes examined. RNA FISH for APP 
(Fig. 2.4a) and DYRK1A (Fig. 2.1c) are shown in other figures. In all no-dox treated cells, 
XIST RNA (red) is not expressed and all three transcription foci (green) of four Chr21 
genes are visible (left panels). In dox treated cells, XIST RNA is expressed (red), paints 
the inactivating Chr21, and silences the transcription focus of that allele (right panels). 
Scale: 2 um. (b) Allele-specific SNP analysis for four Chr21 genes. ADAMTS1 goes from 
TTC to TT, ETS2 from CCA to CA, TIAM1 from TTC to TC, and HSPA13 from TTC to 
TT. (c) Alignment of eight Chr21 SNP alleles repressed in clones 1-3. Both clone 2 and 3 
silence the fart right chromosome and the center chromosome is silenced in clone 1.  
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Figure 2.6 Selection against silencing in double targeted and triple targeted clones, 
and qRT-PCR validation for microarray silencing. 

(a) RNA FISH shows XIST expression is silenced during long-term culture (20 days) in 
double targeted (arrows, left) and triple targeted (arrows, right) iPSCs. The APP gene is 
not silencing by the low level XIST RNA expressed in these cells. (b) Percentage of XIST 
paint on day 3 and 20 after dox induction. Although XIST RNA is robustly expressed in 
early time points (s days) in the double and triple targeted clones, XIST becomes almost 
entirely silenced in later time points (20 days). Mean +/- SE from 100 nuclei. (c) qRT-
PCR for eight Chr21 linked genes for Clone 3. Mean +/- SE from triplicate samples.  
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parallel cultures without XIST transcription, all in triplicate. Only on chromosome 21 is 

there overwhelming change, in all three clones (Figue 2.7a), with ~95% of significantly 

expressed genes becoming repressed (Table 2.1). 

 Dosage compensation corrects chromosome 21 expression to near normal disomic 

levels, based on the change in total output of expressed genes per chromosome 

after XIST is induced. Because evidence suggests that many chromosome 21 genes are 

not increased the theoretical 1.5-fold in trisomy (Ait Yahya-Graison et al. 2007; Biancotti 

et al. 2010), we also directly compared trisomic to disomic cells. This provides a baseline 

for evaluating the degree to which chromosome 21 overexpression is corrected by XIST. 

After XIST induction, overall chromosome 21 expression is reduced by 20%, 15% and 

19% for clones 1, 2 and 3, respectively; this mirrors very well the 22% reduction for 

disomic iPS cells that lack the third chromosome 21 altogether (Figure 2.7a). This 

disomic line is representative, as a similar difference (21%) was seen for an isogenic 

disomic sub-clone that we isolated from the trisomic parental iPS cells (not shown). 

Individual genes repressed by XIST are distributed throughout chromosome 21, as do 

genes overexpressed in trisomic versus disomic cells (Figure 2.7b). In addition, qRT–

PCR confirmed repression for individually examined genes (Figure 2.6c). 

Clearly, XIST induces robust dosage compensation of most chromosome 21 genes 

overexpressed in trisomy. 

Trisomy 21 may have an impact on genome-wide expression pathways, but 

differences attributable to trisomy 21 are confounded by genetic and epigenetic 

variability (Ait Yahya-Graison et al. 2007). This inducible trisomy silencing system 

provides a new foothold into this important question. For example, even the three  
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Figure	2.7	Genomic expression and methylation reveal widespread silencing 
of chromosome 21.  
 
(a) Microarray: expression difference for three transgenic clones in doxycycline (dox) 
versus no doxycycline, compared to disomic line versus trisomic parental line. Total 
change in gene expression (n53) per chromosome shows chromosome 21 ‘correction’ 
near disomic levels, with only limited changes on other chromosomes. The right y axis is 
scaled for per cent gene expression change. Mean +/- standard deviation, in triplicate. (b) 
Distribution of individual gene repression across chromosome 21. 
c, Methylation of CpGisland promoters. In treated clones, 97% of chromosome 
21 genes increased by at least 5% (2-fold greater than average), compared to 
none in the parental line. P, parental line; 1, clone 1; 2, clone 2. 
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Table 2.1 Percentage of down regulated genes (p < 0.01) by microarray 

 

 
Of genes with significant change in expression (p<0.01), ~95% were repressed on Chr21, 
with balanced (~50%) changes (up and down) on other chromosomes in three transgenic 
clones. Repression in dox-treated clones reflects repression seen if the third Chr21 was 
lost (Disomic/Trisomic).  
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isogenic transgenic sub-clones show many expression differences (>1,000), but 

upon XIST induction, ~200 genes throughout the genome change in all three clones (but 

not the doxycycline-treated parental), most probably directly due to chromosome 21 

trisomy. Therefore, ‘trisomy correction in a dish’ has promise as a means to identify 

genome-wide pathways perturbed by trisomy 21. 

In addition to transcriptional silencing, X-inactivation is stabilized by 

hypermethylation of promoter CpG islands (Csankovszki et al. 2001; Cotton et al. 2011), 

which occurs late in the silencing process. Therefore, we also examined the promoter 

methylome in two genome-edited clones 3 weeks after XIST induction and found it 

largely unaltered, with one striking exception, genes on chromosome 21 (P value 

<2.2 × 10−16) (Figure 2.7c(Cotton et al. 2011)). Here, 97% of CpG-island-containing 

genes exhibited a robust increase in promoter DNA methylation, within the range of that 

seen for the inactive X chromosome (Cotton et al. 2011) (adjusted for active/inactive 

chromosomes; see Methods). This change swept the entire chromosome, with the 

interesting exception of a few genes that ‘escape’ methylation in both clones. 

In summary, data from eight different approaches demonstrate impressive competence of 

most chromosome 21 genes to undergo epigenetic modification and silencing in response 

to an RNA that evolved to silence the X chromosome. 

 

Phenotypic correction in vitro 

 Dosage compensation of chromosome imbalance presents a new paradigm, with 

opportunities to advance Down’s syndrome research in multiple directions, including a 

new means to investigate human Down’s syndrome cellular pathologies, which are 
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largely unknown. Inducing trisomy silencing in parallel cultures of otherwise identical 

cells may reveal cellular pathologies due to trisomy 21, which could be obscured by 

differences between cell isolates. We examined cell proliferation and neural rosette 

formation to look for an impact on cell phenotype. 

There is some evidence of proliferative impairment in Down’s syndrome brains 

(Guidi et al. 2011; Haydar and Reeves 2012); however, we observed that this varied in 

vitro between our Down’s syndrome fibroblast samples, and this would be highly 

sensitive to culture history. A clear answer emerged from comparing identical cell 

cultures, grown with or without doxycycline for 1 week. XIST induction in six 

independent transgenic sub-clones rapidly and consistently resulted in larger, more 

numerous and tightly packed colonies in just 7 days (Figure 2.8a), with 18–34% more 

cells (Figure 2.8b). Doxycycline did not enhance growth of the parental Down’s 

syndrome cells or sub-clone (Figure 2.8b). Thus, a proliferative impairment linked to 

chromosome 21 overexpression can be rapidly ameliorated by dosage compensation. 

 We next examined differentiation of targeted Down’s syndrome iPS cells into 

neural progenitor cells. In 11–12 days after neural induction of already confluent cultures, 

all three XIST-expressing cultures began to form neural rosettes, and in 1–2 days were 

replete with neural rosettes (Figure 2.8c), a signature of neural progenitors. Notably, even 

at day 14, parallel uninduced cultures remained devoid of rosettes (Figure 2.8c). 

Uncorrected cultures required 4–5 more days in neural-induction media to fill with neural 

rosettes of similar size and number, which they did on day 17 (Figure 2.8d). There was 

no effect of doxycycline on neurogenesis in the parental line (Figure 2.8c). This marked 

delay in neural differentiation seems to be primarily independent of cell proliferation  
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Figure	2.8	‘Trisomy correction’ affects cell proliferation and neurogenesis. 
  

(a) One week of XIST expression resulted in larger, more numerous colonies 
(representative sample). (b) Changes in cell number for parental line (PL), 
parental line subclone (PL-s), and six transgenic clones (C1–C6). Mean +/- s.e. 
(n=4–6). (c) Corrected cultures formed neural rosettes by day 14; trisomic 
(parental and non-induced) cultures took longer (17 days). Scale bar, 100 mm. 
(d) Number of rosettes formed on day 14 and day 17. Mean +/- standard error, 
10–12 random fields in triplicate. P, parental; C1, clone 1; C3, clone 3. 
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(Methods). Variability in the kinetics of neural differentiation between various iPS cell 

lines can obscure differences due to trisomy 21 (Shi et al. 2012). We circumvented this 

using parallel cultures and on-demand chromosome 21 silencing, which made clear these 

important phenotypic differences. This highlights the potential of this new experimental 

model to illuminate cellular pathologies directly attributable to chromosome 21 

overexpression in iPS cells and their differentiated progeny. 

 

Towards future applications 

 
There are two significant points relevant to potential applications and therapeutic 

strategies. First, we show that heterochromatic silencing is stably maintained, even upon 

removal of doxycycline and XIST expression (Figure 2.9a, b), consistent with previous 

studies (Csankovszki et al. 2001). Second, although not investigated extensively, we 

targeted XIST in non-immortalized fibroblasts from a female Down’s syndrome patient, 

which generated many cells carrying XIST (and some heterochromatin marks) on 

chromosome 21 (Figure 2.9c, d). Finally, we note that our XIST transgene lacks X-

chromosome ‘counting’ sequences, and thus is compatible with natural female X 

inactivation. 

Discussion 

 We set out to bridge the basic biology of X-chromosome dosage compensation 

with the pathology of chromosomal dosage disorders, particularly Down’s syndrome. In 

so doing, the present work yields advances that have an impact on three important areas: 

one basic and two translational. 
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Figure 2.9 Stable silencing in cortical neurons and targeted addition in primary 
fibroblasts. 

(a) RNA FISH in differentiated cortical neurons. The left cell shows the third APP 
transcript locus (green) remains silenced after the cells was treated with dox for 70 days 
and then dox was removed for 30 days, as similarly shown in the cell (middle and right) 
that was treated with dox 100 days. This is consistent with other evidence that multi-
layered chromatin modifications triggered by XIST maintain a largely irreversible silent 
state. (b) Quantification of APP silencing by RNA FISH. APP silencing is stable upon 
withdraw of XIST RNA. Mean +/- SE from 100 nuclei. (c) Metaphase DNA FISH in 
human DS primary fibroblasts. Long arrows indicate three Chr21s, and asterisk indicates 
XIST targeted Chr21 that is enlarged at the bottom panel. Arrowheads indicate 
endogenous XIST genes on the two X-chromosomes in the female cell. Scale: 5um. (d) 
Immunostaining for targeted primary fibroblasts indicates enrichment of H3K27me3, 
UbH2A, and H4K20me on both the targeted Chr21 and endogenous Xi in many cells 
(percentages shown on figures). Scale: 2um. This is consistent with evidence from our 
lab and the Wutz lab that chromosome silencing does not necessarily require the optimal 
pluripotent cell context. Future studies will be required to assess the ability of various 
somatic cell contexts to support chromosome silencing.  
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Although not our primary focus here, a significant impact of this work is that we 

have created a tractable, inducible system to study human chromosome silencing. 

Importantly, unlike random integration into a diploid cell, silencing a trisomic autosome 

avoids selection against full autosomal silencing, and this demonstrated remarkably 

robust competence of chromosome 21 to be silenced. Thus, XIST RNA evolved for the X 

chromosome uses epigenome-wide mechanisms (Hall and Lawrence 2010). The ability to 

insert a single XIST transgene in any locus provides a more powerful tool to 

study XIST function, and our effort also almost triples the size of transgenes that can be 

thus targeted for a host of other applications. 

From a translational perspective, trisomy silencing has immediate impact as a new 

means to define the poorly understood cellular pathways deregulated in Down’s 

syndrome, and creates the opportunity to derive and study various patient-compatible cell 

types potentially relevant to Down’s syndrome therapeutics. Inducible trisomy 

silencing in vitro compares otherwise identical cultures, allowing greater discrimination 

of differences directly due to chromosome 21 overexpression distinct from genetic and 

epigenetic variation between transgenic sub-clones, or potentially even rare disomic sub-

clones isolated from a trisomic population ((Lavon et al. 2008; Li et al. 2012) and this 

study). XIST expression triggers not only chromosome 21 repression, but a defined effect 

on the genomic expression profile, and reverses deficits in cell proliferation and neural 

progenitors, which has implications for hypocellularity in the Down’s syndrome brain 

(Guidi et al. 2011; Haydar and Reeves 2012). This new approach can illuminate the 

cohort of genes and cognate pathways most consistently impacted in Down’s syndrome, 

to inform the search for drugs that may rebalance those pathways and cell pathologies. 
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This general strategy could be extended to study other chromosomal disorders, such as 

trisomy 13 and 18, often fatal in the first 1–2 years. 

Finally, the more forward-looking implication of this work is to bring Down’s 

syndrome into the realm of consideration for future gene therapy research. Although 

development of any clinical gene therapy is a multi-step process, any prospect requires 

that the first step, functional correction of the underlying genetic defect in living cells, is 

achievable. We have demonstrated that this step is no longer insurmountable for 

chromosomal imbalance in Down’s syndrome. Our hope is that for individuals and 

families living with Down’s syndrome, the proof-of-principle demonstrated here initiates 

multiple new avenues of translational relevance for the 50 years of advances in basic X-

chromosome biology. 
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Materials and methods 

Cell culture 

HT1080 TetR cells (Invitrogen) and female Down’s syndrome human primary fibroblast 

line (Coriell) (AG13902) were cultured as recommended by the supplier. Down’s 

syndrome iPS cell parental line  (DS1-iPS4) was provided by G. Q. Daley  (Children’s 

Hospital Boston)(Park et al. 2008) and maintained on irradiated mouse embryonic 

fibroblasts  (iMEFs)  (R&D Systems, PSC001) in hiPSC medium containing DMEM/F12 

supplemented with 20% knockout serum replacement  (Invitrogen), 1 mM glutamine  

(Invitrogen), 100 µM non-essential amino acids  (Invitrogen), 100 µM β-mercaptoethanol  

(Sigma) and 10 ng ml−1 FGF-β  (Invitrogen, PHG0024). Cultures were passaged every 5–

7 days with 1 mg ml−1 of collagenase type IV (Invitrogen). 

 

ZFN design 

ZFNs against the human AAVS1 locus on chromosome 19 have been previously described 

(DeKelver et al. 2010). ZFNs against the DYRK1A locus were designed using an archive 

of pre-validated zinc finger modules (Urnov et al. 2010; Doyon et al. 2011), and 

validated for genome editing activity by transfection into K562 cells and Surveyor 

endonuclease-based measurement of endogenous locus disruption  (‘Cel1’ (Miller et al. 

2007; Guschin et al. 2010)) exactly as described (Doyon et al. 2011). Southern blotting 

for targeted gene addition was performed exactly as described (Urnov et al. 2005; Moehle 

et al. 2007) on SphI-digested genomic DNA probed with a fragment corresponding to 

positions Chr21:38825803+38826056 (hg19). 
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XIST and rtTA/puro plasmid construction 

Fourteen-kilobase human XIST cDNA, a splicing isoform of full-length XIST cDNA, was 

subcloned into pTRE3G (Clontech, catalogue no. 631167). Two homologous arms (left 

arm, 690 bp; right arm, 508 bp) of DYRK1A gene on chromosome 21 were amplified by 

PCR from primary Down’s syndrome fibroblasts (AG13902) (Coriell) and cloned into 

the pTRE3G vector (human chromosome 21 DYRK1A left arm primers: forward 5′-

GCCGTATACCATTAACTCTTTACTGTTC-3′, reverse 5′-

TCTGTATACGTAAACTGGCAAAGGGGTGG-3′; human chromosome 

21 DYRK1Aright arm primers: forward 5′-

ATTTCGCGAACGGGTGATGAGCAGGCTGT-3′, reverse 5′-

CCGTCGCGAAAACCAGAAAGTATTCTCAG-3′). The pEF1α-3G rtTA-pA cassette 

from pEF1α-Tet3G vector (Clontech) was subcloned into a plasmid for targeted gene 

addition to the PPP1R12C/AAVS1 locus (DeKelver, 2010), which contains a unique 

HindIII site flanked by two 800-bp stretches of homology to the ZFN-specified position 

in the genome. 

 

Dual-targeted addition of human Down’s syndrome iPS cells and generation of 

stable targeted clones 

The Down’s syndrome iPS cell line was cultured in 10 µM of Rho-associated protein 

kinases (ROCK) inhibitor (Calbiochem; Y27632) 24 h before electroporation. Single 

cells (1 × 107) were collected using TryPLE select (Invitrogen), re-suspended in 1× PBS 

and electroporated with a total of 55 µg DNA including five plasmids 

(XIST, DYRK1A ZFN1, DYRK1A ZFN2, rtTA/puro and AAVS1 ZFN) with both 3:1 and 
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5:1 ratios of XIST:rtTA/puro. The electroporation conditions were 220 V and 750 µF 

(BioRad Gene Pulser II System). Cells were subsequently plated on puromycin-resistant 

DR4 MEF feeders (Open Biosystems, catalogue no. MES3948) in hiPSC medium 

supplemented with ROCK inhibitor for the first 24 h. Over 300 colonies remained after 

12 days of 0.4 µg ml−1 puromycin selection and 245 randomly chosen individual colonies 

across 36 pooled wells were examined by interphase DNA/RNA FISH for the presence 

and expression of XIST, correct targeting and retention of trisomy (because some 

subclones lacked XIST or showed just two DYRK1A DNA signals). Over 100 individual 

clones were isolated and characterized, and those of interest, containing targeted XIST on 

one of three DYRK1A loci, were frozen. Six single target clones with good pluripotent 

morphology, OCT4 positive staining, correct targeting to one trisomic chromosome, and 

good XIST RNA paint were expanded for further characterization. One double and one 

triple target line, two non-target clones, and one disomic clone were also isolated and 

frozen. Targeting and correct chromosome number (47) was confirmed by interphase and 

metaphase FISH and genome integrity was confirmed by high-resolution G-band 

karyotype and CGH array. 

Chromosome preparation 

iPS cells were treated with 100 ng ml−1 KaryoMAX colcemid (Invitrogen) for 2–4 h at 37 

°C in a 5% CO2 incubator. Cells were trypsinized, treated with hypotonic solution, and 

fixed with methanol:acetic acid (3:1). Metaphases were spread on microscope slides, and 

at least 20 analysed per clone. Karyotype analysis was done on pro-metaphase 

chromosomes using Standard Giemsa-trypsin G band methods. 
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CGH array 

CGH was performed in the Cytogenetics Laboratory at University of Massachusetts 

Medical School. Genomic Microarray analysis using University of Massachusetts 

Genomic Microarray platform (Human Genome Build hg19) was performed with 1 µg of 

DNA. The array contains approximately 180,000 oligonucleotides (60-mers) that 

represent coding and non-coding human sequences and high-density coverage for 

clinically relevant deletion/duplication syndromes and the telomeric and pericentromeric 

regions of the genome. Data were analysed by BlueFuse Multi, v3.1 (BlueGnome, Ltd). 

DNA/RNA FISH and immunostaining 

DNA and RNA FISH were carried out as previously described(Clemson et al. 1996; Hall 

et al. 2002a; Hall et al. 2002b; Byron et al. 2013). The XIST probe is a cloned 14-

kb XIST cDNA (the same sequence as the XIST transgene) in pGEM-7Zf(+) (Promega). 

Six chromosome 21 gene probes are BACs from BACPAC Resources (DYRK1A, Rp11-

105O24; APP, RP11-910G8; USP25, RP11-840D8; CXADR, RP11-1150I14; ITSN1, 

RP11-1033C16; COL18A1, RP11-867O18). DNA probes were labelled by nick 

translation with either biotin-11-dUTP or digoxigenin-16-dUTP (Roche). In simultaneous 

DNA/RNA FISH (interphase targeting assay), cellular DNA was denatured and 

hybridization performed without eliminating RNA and also treated with 2 U µl−1 of 

RNasin Plus RNase inhibitor (Promega). For immunostaining with RNA FISH, cells 

were immunostained first with RNasin Plus and fixed in 4% paraformaldehyde before 

RNA FISH. Antibodies were as follows: H3K27me3 (Millipore, 07-449), UbH2A (Cell 
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Signaling, 8240), H4K20me (Abcam, ab9051), macroH2A (Millipore, 07-219), OCT4 

(Santa Cruz, sc-9081), PAX6 (Stemgent, 09-0075), SOX1 (R&D Systems, AF3369). 

Allele-specific SNP analysis 

Primers were designed to amplify 3′ untranslated regions of chromosome 21 genes 

reported to contain SNPs (Table 2.1). Total cDNA was used from three transgenic clones 

with and without XIST induction for 22 days. RT–PCR products were sequenced by 

GENEWIZ. Of ~10 genes examined, four were heterozygous and informative in the 

patient Down’s syndrome iPS cell line used here. 

Microarray analysis 

Three independently targeted subclones plus the parental chromosome 21 trisomic (non-

targeted) iPS cell line were grown with or without doxycycline (2 µg ml−1) for 22 d. 

Normal male iPS cell and disomic isogenic lines were also cultured for 22 d and total 

RNA was extracted with a High Pure RNA extraction kit (Roche) in triplicate for each, 

processed with a Gene Chip 3′ IVT express kit (Affymetrix), and hybridized to 

Affymetrix human gene expression PrimeView arrays. Array normalization was 

performed with Affymetrix Expression Console Software with Robust Multichip 

Analysis (RMA)(Irizarry et al. 2003). Probe sets with the top 60% of signal values were 

considered present and ‘expressed’ and were used for all further analysis. Data in Fig. 

4 has no other threshold applied. When designated, a gene expression change significance 

threshold was applied using a two-tailed t-test comparing samples with or without 

doxycycline in triplicate (n = 3) (Table 2.1, P < 0.01). For the ~200 genes found to 

significantly change in all three clones (in text), a t-test with P < 0.001 was applied. 
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Table 2.2 Primers for Chr21 gene amplification (allele-specific SNP silencing 
analysis) 
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Microarray data interpretation 

Using extraction-based methods, changes on just one of three alleles (from the XIST-

bearing chromosome) will be diluted by the other two. If all three chromosomes are fully 

expressed, this would predict a 33% reduction in chromosome 21 expression levels per 

cell when one chromosome 21 is fully silenced. However, 33% would apply only if 

chromosome 21 genes are fully overexpressed to start, and previous evidence and results 

in this study show this is not the case for many genes. Previous microarray studies have 

analysed expression levels of chromosome 21 in Down’s syndrome patient cells, 

although such analyses are hampered by the extensive genetic and epigenetic differences 

between any two individuals (Prandini et al. 2007). The fraction of chromosome 21 genes 

detected as overexpressed varies with the study and tissue, but generally is in the 19–36% 

range(Prandini et al. 2007; Biancotti et al. 2010), with individual gene increases often in 

the ~1.2–1.4 range (less than the theoretical 1.5). For example, one study of Down’s 

syndrome embryoid bodies showed that only 6–15% of genes appeared significantly 

upregulated, but this was comparing non-isogenic samples of different ES cell isolates 

(Biancotti et al. 2010). 

Our trisomy correction system allows direct comparison of the same cells grown in 

identical parallel cultures, with and without XIST-mediated chromosome silencing. Our 

data show a ~20% reduction in chromosome 21 expression overall; importantly, this level 

of reduction is seen either when the third chromosome is silenced in trisomic cells, or 

when disomic and trisomic cells are compared. This 20% reduction represents an average 
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per cell for all three chromosomes, but corresponds to a 60% reduction in expression for 

just one chromosome 21 (the one silenced by XIST RNA, as shown here). 

Apart from our goal here of trisomy dosage compensation, these results add significantly 

to understanding the extent of chromosome 21 overexpression in Down’s syndrome, by 

providing a more comprehensive analysis that shows that expression of most genes is 

increased, but less than the theoretical 1.5-fold. 

 

qRT–PCR 

qRT–PCR was performed for eight downregulated chromosome 21 genes determined by 

microarray on a Bio-Rad MyiQ real-time PCR detection system in triplicate for clone 3 

with/without doxycycline treatment for 22 d. The β-actin gene was used as an internal 

standard for calculation of expression levels. Primers for eight chromosome 21 genes and 

β-actin were described in Table 2.3. 

DNA methylation analysis 

The parental line and two independent targeted lines were grown with and without 

doxycycline for 22 d, in duplicate cultures. Genomic DNA was extracted using PureLink 

Genomic DNA mini kit (Invitrogen) and 750 ng bisulphite modified with the Alternative 

Incubation Conditions from the EZ DNA methylation kit (Zymo Research). 160 ng of 

bisulphite DNA was amplified, fragmented and hybridized to Illumina Infinium 

HumanMethylation450 array following the standard protocol as outlined in the user 

guide. CpG islands were defined as high and intermediate CpG densities using the CpG 
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density classifications based on those used previously (Weber et al. 2007). The program 

CpGIE was used to locate HC and IC islands on the X chromosome and chromosomes 21 

and 22. When multiple probes in CpG islands were associated with the same TSS, an 

average genic methylation value was calculated. These average genic values were 

compared before and after doxycycline induction using the Mann–Whitney U-test. 

Analysis was based on CpG islands within promoters of 143 chromosome 21 genes 

(Figure 2.7c). 

The average methylation value was 6% on chromosome 21 before XIST induction, and 

increased to 20–21% in both subclones after induction. Because any methylation increase 

on the transgenic chromosome would be diluted by the presence of three chromosome 21 

copies, this suggests the range of 60% methylation on the one XIST-coated chromosome, 

which is within the range seen for the inactive X chromosome (Weber et al. 2007). 

 

Cell proliferation analysis 

Eight different iPS cell lines (parental line, one non-targeted subclone, and six 

independent targeted subclones) were passaged onto 6-well plates at equal cell densities 

per well of each line and grown with or without doxycycline for 7 d. At least four 

replicates of each line were analysed in two independent experiments. Rigorous measures 

were taken to minimize and control for any minor variations in seeding densities of iPS 

cells, which cannot be plated as single cell suspensions. First, the analysis was done twice 

for six different transgenic clones, in each case comparing triplicate plates of corrected 

versus not corrected (doxycycline versus no doxycycline). To avoid differences in plating 
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efficiencies of doxycycline and no doxycycline cells, we performed the experiments over 

a time course that did not require passage. For each of the six transgenic clones, the 

parental line and one negative control (non-targeted) subclone, a single well of Down’s 

syndrome iPS cells (without doxycycline) was used to generate a cell suspension (cells 

and small disaggregated clumps). Next, equal aliquots of the cell suspension were plated 

into each of six wells four times (not relying on one measurement but the average of four 

for seeding each well). After plating, doxycycline was added to three of the six wells, and 

the cultures were maintained for 7 d. For images, plates were fixed, stained with 1 mg ml–

1 crystal violet (Sigma) in 70% ethanol for 30 min and scanned to generate TIFF images. 

For cell counts, single cells were collected by TryPLE select and counted using Beckman 

Coulter Z1 Particle Counter. 

Differentiation of neural progenitors and irreversibility in cortical neurons 

For differentiation, independent XIST-transgenic iPS cell clones and the parental Down’s 

syndrome iPS cell line were dissociated with Accutase (Innovative Cell Technologies) 

and 4 × 105single cells were plated on Matrigel-coated 6-well plates in mTeSR1 medium 

(Stemcell technologies). Once the cell culture reached 90–100% confluence, neural 

induction was initiated by changing the culture medium to neural induction medium, a 

1:1 mixture of N2- and B27-containing media supplemented with 500 ng ml–1 noggin 

(R&D Systems), 10 µM SB431542 (Tocris Bioscience), and 1 µM retinoic acid (Sigma, 

catalogue no. R2625), with/without treatment of doxycycline for the specified times. The 

neural rosettes were counted and their diameter measured for at least 300 rosettes 

(sampled in random areas from triplicate dishes). At day 14, the doxycycline-induced 
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culture had an average rosette diameter of 142 µm ± 0.55 µm in clone 1 and 

141 µm ± 3.49 µm in clone 3. Rosettes could not be measured at the same time point in 

the uncorrected culture, as they had not formed. At day 17, the uncorrected culture had 

neural rosettes of similar number and size for both clones 1 (140 µm ± 0.87 µm) and 3 

(140 µm ± 1.09 µm). The corrected culture could not be accurately compared for day 17 

because the rosettes had become so mature and often had merged. After 17 d, neural 

rosettes were collected by dissociation with dispase and replated on poly-ornithine and 

laminin-coated plastic dishes in N2- and B27-containing media including 

20 ng ml−1 FGF2. After a further 2 d, FGF2 was withdrawn to promote differentiation of 

cortical neurons. To test for the irreversibility of silencing, two independent clones were 

differentiated to cortical neurons in the presence of doxycycline for 70 days to initiate 

silencing. They were then split into parallel cultures grown with and without doxycycline 

for another 30 days, and XIST and APP expression analysed by RNA FISH. 
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Chapter III: Trisomy Silencing by XIST normalizes known 

Down Syndrome cell pathogenesis as demonstrated for 

hematopoietic defects in vitro 

Preface 

Work described in this chapter was submitted to Nature Communications (as 

shown below) and is currently under revision. I essentially did all the experiments except 

the neural differentiation which was done by Jun Jiang. 

Jen-Chieh Chiang, Jun Jiang, Peter E. Newburger, and Jeanne B. Lawrence, 
Dosage compensating trisomy 21 in DS iPS cells mitigates abnormalities associated 
with hematopoietic differentiation. Submitted to Nature Communications. 
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Introduction 

Down syndrome (DS), caused by trisomy 21, is the most common human 

chromosomal disorder, occurring in about one in every 750 newborns in the United States, 

and bringing enormous medical and social costs to millions worldwide.  Children with 

DS consistently have mild to moderate cognitive disability which often progresses in 

adulthood, and it is now recognized that 80% develop early-onset Alzheimer Disease. 

Trisomy 21 also confers high risk of congenital heart disease, metabolic changes, and 

hematopoietic abnormalities. This study focuses on the common hematopoietic 

abnormalities seen in DS neonates which confer high-risk of transient myeloproliferative 

disorder (TMD) and 500-fold greater incidence of AMKL, in addition to a 20-fold greater 

risk for ALL. Many or most DS individuals, even as adults, also show less acute 

hematological abnormalities, including immune system defects and extreme 

susceptibility to viral infections, a prominent cause of morbidity and death in this 

population  (Kusters et al. 2009; Megarbane et al. 2009; Gardiner 2010; Ram and Chinen 

2011; Bruwier and Chantrain 2012; Sullivan et al. 2016).    

Children with Down Syndrome are typically sociable, happy and valued members 

of families, but biomedical research for DS has lagged that of less common monogenetic 

disorders, and better experimental and therapeutic strategies are needed. Work here tests 

the feasibility that a novel approach involving chromosome silencing with an XIST 

transgene can normalize an established DS cell pathogenesis in vitro, a question that has 

not been previously addressed for any system.   We test the phenotypic effects of induced 

chromosome repression in an in vitro model of human fetal hematopoiesis, the system for 

which cellular phenotypes of Trisomy 21 are best established from clinical studies, and 
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studies of fetal liver cells (Chou et al. 2008; Tunstall-Pedoe et al. 2008; Roy et al. 2012).  

Several aspects of DS hematopathogenesis have been shown recapitulated in studies 

comparing human trisomic and disomic iPS cells, particularly those using protocols that 

mirror fetal hematopoiesis (Maclean et al. 2012; Banno et al. 2016), as we utilize here. 

Our first priority was to address the extent to which expression of a single gene, XIST, 

can normalize hematopoietic phenotypes associated with Trisomy 21, including whether 

chromosome silencing impacts particular steps of hematopoiesis consistent with 

predictions of other studies (Lancrin et al. 2012; Maclean et al. 2012; Banno et al. 2016). 

In addition, the tightly-controlled inducible experimental system used allowed us to not 

only corroborate but extend certain important points regarding the specific effects of 

trisomy 21 on hematopoiesis, notably the unconfirmed hypothesis that overactive IGF 

signaling is present and important in trisomy 21-associated myeloid disorders (Klusmann 

et al. 2010a; Bhatnagar et al. 2016).  

For single-gene disorders it is more straightforward to identify a gene mutation 

and determine the specific cells and pathways that underlie a phenotype, as is essential 

for the development of targeted drug therapies.  For most major systems impacted in 

Down syndrome, however, it is not even clear what specific cell-types underlie various 

phenotypes, nor is it known how many of the ~300 genes on chromosome 21 have any 

effect when expressed just 50% more. Inbred mouse models of DS have been valuable 

and a number of candidate genes identified (reviewed in (Herault et al. 2017)), but, with 

the exception of the known role of APP in Alzheimer Disease, genes and pathways that 

underlie major DS phenotypes have yet to be established. In fact, alternative concepts of 

DS hold that much of the pathology is not due to specific chromosome 21 genes but to 
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the physical presence of an extra chromosome causing general stress or mitotic/cell-cycle 

defects that negatively impact cell function and stability (Sheltzer et al. 2017).  Studies in 

yeast and cultured mouse cells show that an additional copy of any chromosome causes a 

proliferative disadvantage, due to the proteomic stress of collective low level over-

expression of many genes, rather than a few specific “dosage-sensitive” genes 

(Oromendia et al. 2012; Blank et al. 2015).      

Understanding pathogenesis is needed for traditional drug therapeutics, but 

identification of specific gene targets is required for gene-therapy strategies which have 

been progressing rapidly for mono-genic disorders, bolstered by an ongoing revolution in 

development of powerful in vivo gene editing and delivery technologies (Naldini 2015). 

Such hopeful progress, however, has not even been a consideration for chromosomal 

imbalances, given the insurmountable obstacle of correcting many genes across a 

chromosome. However, gene-based therapy for DS could become more thinkable, even 

without identification of one or a few target genes, if insertion of a single “epigenetic 

switch” to suppress chromosome-wide transcription can effectively mitigate cell 

pathogenesis and normalize phenotypic outcome.    

Our laboratory has demonstrated an innovated approach for targeted regulation of 

the epigenome by insertion of a single gene, XIST, into one of three chromosome 21s in 

iPS cells derived from a DS patient (Jiang et al. 2013). The X-linked XIST naturally 

controls X-chromosome inactivation in human female cells, producing a long non-coding 

RNA that coats the X-chromosome in cis to induce a series of chromatin modifications 

that stably silence transcription across that X chromosome (Brown et al. 1992; Clemson 

et al. 1996).  Insertion of XIST into a trisomic autosome allowed Jiang et al. to 
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demonstrate that in absence of selection against silencing (of a disomic autosome), XIST 

has a remarkably comprehensive capacity to epigenetically silence genes across the 

autosome(Jiang et al. 2013). The focus of this prior study was to demonstrate that a 

targeted XIST transgene could indeed induce chromosome-wide transcriptional silencing 

of a trisomic chromosome, which was shown in undifferentiated iPS cells by eight 

different methods, including CpG promoter methylation and reduction of chromosome 21 

transcriptional output to near normal disomic levels.   

Here we address for the first time the critical next question: can “trisomy 

silencing” effectively normalize or mitigate defects in cell function and pathogenesis 

which underlie DS phenotypes?  A priori, it cannot be assumed that XIST-mediated 

transcriptional repression would be sufficiently robust to correct cell pathogenesis, even 

in cells that still carry the physical presence of the extra chromosome 21.   Hence, direct 

determination of this is critical to any future prospect of “chromosome therapy”, and for 

the utility of this experimental approach to investigate trisomy 21 effects in different cell 

systems. Inducible expression of XIST, as used here, provides a powerful test system and 

was applied to the hematopoietic system as our priority for several reasons. First, 

hematopoietic cell pathologies are the most clearly defined and established, allowing a 

rigorous test of this key point. Moreover, hematopoietic abnormalities are important 

clinically, most acutely for 20-30% of infants that develop TMD, a pre-cursor to 

leukemia.  However, less severe hematopoietic abnormalities are widely present in DS 

patients that have broader impacts on health, ranging from high susceptibility to 

infections to potentially inflammation that may even impact cognition or Alzheimer 

pathology (Roizen and Amarose 1993; David et al. 1996; de Hingh et al. 2005; Bloemers 
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et al. 2010).   There is also greater accessibility of hematopoietic cells by established 

bone marrow or cord blood procedures.  

Finally, because DS hematopoiesis involves over-production of certain cell types, 

this system allows us to address a key question: whether silencing a trisomic 

chromosome in any cultured cells might enhance cell proliferation/fitness in a non-

specific manner due to relief of “aneuploidy stress”, not necessarily by correcting specific 

defects in a developmental program.  A priori, silencing trisomy 21 in the hematopoietic 

system might actually increase the over-proliferation of the trisomic hematopoietic cell-

types.  Alternatively, silencing trisomy may normalize over-production of these blood 

cell types, indicating successful correction of a specific defect in hematopoiesis.   

Therefore, in this study, we determined the effects of induced XIST expression 

during differentiation along the hematopoietic pathway, to mimic DS fetal liver 

hematopoiesis which other evidence indicates is the pathogenic source of TMD and 

AMKL in DS children.  Mutations of GATA1 are consistently present in both TMD and 

AMKL leukemic blasts (Ahmed et al. 2004; Ge et al. 2006), however excessive 

production of erythroid and megakaryocytic cells can be observed as early as in second 

trimester DS fetal liver.  This and other evidence (Chou et al. 2008; Tunstall-Pedoe et al. 

2008) indicates that trisomy 21 generally causes overproduction of hematopoietic cells in 

fetal hematopoiesis, which is a precursor in many infants to acquisition of GATA1s 

mutation, further promoting the clinical morbidity or mortality of TMD and AMKL. 
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Results 

Trisomy 21 silencing mitigates excessive production of megakaryocytes and 

erythrocytes 

Figure 3.1a summarizes the experimental design in which a dox-inducible full-

length XIST cDNA was inserted into one of three chromosome 21s in iPS cells derived 

from a male DS patient, as previously described (Jiang et al. 2013). This prior study 

focused on establishing that the RNA properly localized to one chromosome 21 and 

comprehensively silenced genes across that chromosome in cis, using numerous methods 

to demonstrate chromosome-wide “trisomy silencing” in undifferentiated cells.   Here we 

investigate the ability of trisomy silencing to normalize the well-established 

hematopoietic cell pathologies using a previously characterized all-isogenic panel of DS 

iPS cell subclones, including four independent XIST-transgenic clones as well as the 

non-transgenic parental trisomic cells and an isogenic disomic subclone (from a cell 

which spontaneously lost one chromosome 21).  A strength of this system is the ability to 

induce silencing of one chromosome 21 in parallel cultures of otherwise identical cell 

populations, thus minimizing other sources of variation that can arise between even 

isogenic iPSC clones (Prandini et al. 2007; Hall et al. 2008; Nazor et al. 2012).  

For perspective in investigating effects of induced-XIST expression on 

hematopoiesis, it is instructive to consider that expression of transgenic XIST for just a 

few days was shown to strongly enhance proliferation of undifferentiated iPS cells (Jiang 

et al. 2013).  Furthermore, in cells differentiated down the neural lineage, proliferation of 

cells and formation of neural rosettes (neural progenitors) was enhanced by XIST-

induced silencing, as illustrated in Figure 3.1b and previously reported (Jiang et al. 2013).  
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Figure 3.1 System to study the effect of trisomy 21 expression on DS related 
pathologies. 

(a) Schematic of the inducible XIST RNA-mediated silencing system in male Down 
Syndrome iPSCs. (b) Neural stem cell formation after 15 days neural differentiation. The 
samples treated with dox have significant more neural stem cells. (c) Quantification of 
the number of rosettes at day 15 for 2 of the isogenic subclones. 
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These findings affirm that expression of XIST RNA is not toxic, but rather has 

beneficial effects on cell proliferation and viability, as shown for undifferentiated and 

early neural cells.   Comparing effects of XIST-induced trisomy silencing on production 

of neural and hematopoietic cells is informative because the clinical impact on these two 

systems suggests contrasting effects on hematopoiesis versus neurogenesis. Although 

gross brain structure and size are similar in DS, there appears to be hypocellularity with 

fewer neurons in some brain regions (Lott 2012). The enhanced kinetics of cell 

proliferation and neural stem cell formation upon chromosome 21 silencing suggests that 

chromosome 21 over-expression may cause developmental delay in an early step of 

neural development, however a deficit in formation of neural stem cells is not an 

established phenotype of DS, and was not apparent in comparison of non-isogenic 

trisomic and disomic iPS cells (which showed general variability between lines) (Shi et al. 

2012).  Therefore, it remained possible that trisomy silencing would enhance 

proliferation and production of any or most cells, especially if this relieves a general 

“aneuploidy stress” as reported in cultured cells (see Introduction). Hence, it was of 

interest to determine if XIST expression would accentuate, have no-effect, or actually 

decrease (correct) over-production of hematopoietic cell-types seen in DS children.   

The elevated risk of developing TMD and AMKL in DS is characterized by 

markedly increased proliferation of megakaryocytes, usually accompanied by increased 

erythrocytes. This property was affirmed in studies of DS fetal liver cells in vitro (Chou 

et al. 2008; Tunstall-Pedoe et al. 2008; Roy et al. 2012) and in two DS iPS cell studies 

that mirror fetal hematopoiesis (Maclean et al. 2012; Banno et al. 2016), but not another 

that reflected primitive hematopoiesis, an earlier stage of hematopoiesis (Chou et al. 
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2012).  Therefore, we adopted a protocol that mimics fetal hematopoiesis from iPS cells 

differentiated through embryoid bodies with a cytokine cocktail, as shown by Maclean et 

al. (2012), and in Figure 3.2a.   

Our prior study extensively demonstrated XIST induces chromosome silencing 

that is largely complete within 3-5 days of induction (Jiang et al. 2013), but we confirmed 

chromosome silencing in our hematopoietic differentiation system, by examining XIST 

RNA for proper localization to the chromosome, H3K27me3, an epigenetic hallmark of 

heterochromatin silencing, and gene silencing based on loss of one of three APP 

transcriptional foci, specifically from the XIST coated chromosome. After 9 days of 

hematopoietic differentiation, more than 90% of XIST-positive cells exhibited a well 

localized XIST RNA “paint”, H3K27me3 spread across the chromosome (with XIST 

RNA) (Figure 3.2b) and transcriptional silencing of the APP locus on the targeted 

chromosome (Figure 3.2c). 

 These experiments were examined using parallel cultures (with and without dox-

induced XIST) for four independent transgenic subclones (termed clones 1, 3, 4, and 5), 

as well as the non-transgenic trisomic parental line and the disomic subclone (also 

plus/minus doxycycline). Our first goal was to address the central question of whether 

induction of the XIST transgene can rebalance over-production of hematopoietic cell-

types examined for the differentiation “end state”, in colony forming assays. EBs at day 

14, which contain hematopoietic progenitor cells, were dissociated and equal amounts of 

cells for each sample were plated for colony forming assay or examined by FACS 

analysis (Figure 3.2a). The experiment was done at least three times, and for some 

comparisons four times. The morphology of colonies and the quantitative results from  
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Figure 3.2 Trisomy silencing during hematopoietic differentiation. 

(a) Schematic of hematopoietic differentiation from DS iPSCs. (b) Association of 
H3K27me3 heterochromatic mark with XIST RNA in day 9 differentiated cells treated 
with dox. Quantification shows over 90% of cells have H3K27me3 marker associated 
with XIST paints. (c) RNA FISH of APP and XIST on day 9 differentiating cells. APP 
RNA is transcribed from all three foci in untreated cells (top). In treated cells (bottom), 
only two APP transcription foci are detected, indicating transcriptional silencing induced 
by XIST expression. Quantification shows over 90% of XIST expressing cells have only 
two APP transcription loci (which are not from XIST expressing chromosome). Error bars 
for (b, c) represent SEM from three independent scorings.  
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multiple experiments are shown and summarized in Figure 3.3 and Figure 3.4, 

respectively. 

 The first point to note is that doxycycline treatment of the non-transgenic 

parental or disomic lines had no significant effect on the production of the four different 

types of hematopoietic cell colonies, affirming that the effect of dox on the transgenic 

clones is due to XIST expression to induce chromosome silencing. Comparison of the 

trisomic parental and disomic subclone is included for reference, although this is based 

on just one comparison of separate subclones, our overall findings are compared and 

consistent with other studies showing that DS trisomic iPS cells generate more 

megakaryocyte and erythrocyte colonies than euploid cells (Figure 3.4a,b) (Maclean et al. 

2012; Roy et al. 2012; Banno et al. 2016). Most importantly, data in Figure 3.4 shows 

that a marked, statistically significant reduction in megakaryocyte and erythrocyte 

colonies is consistently seen with doxycycline treatment to induce XIST RNA, in all four 

transgenic clones in multiple experiments.  Of the four colony types examined, 

megakaryocytic colonies (CFU-Mk) and erythroid colonies (CFU-E) were by far the 

most abundant, and they dropped by 50% or more when comparing parallel samples with 

and without XIST-RNA and chromosome silencing (Figure 3.4a, b). The observations for 

CFU-MK and CFU-E are consistent with laboratory observations that DS newborns 

overproduce erythrocytes and megakaryocytes, and therefore demonstrate that these 

phenotypes are normalized or greatly mitigated by XIST RNA mediated chromosome 

silencing. 
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Figure 3.3 Morphology of hematopoietic colonies. 

Morphologies of CFU-M, CFU-G, CFU-E, and CFU-Mk is shown here. For CFU-E, the 
left and right parts of the diagram are before and after DAB staining, respectively. 
CFU-M: Monocyte; CFU-G: Granulocytes; CFU-E: Erythrocytes; CFU-Mk: 
Megakaryocytes. 
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Figure 3.4 Colony-forming potential of DS iPSCs with and without XIST-induced 
chromosome 21 silencing. 

Colony forming potential of multiple isogenic transgenic DS iPS lines with and without 
XIST-induced chromosome 21 silencing for (a) megakaryocytes, (b) erythrocytes, (c) 
granulocytes, and (d) monocytes. Error bars represent SEM from three independent 
experiments and p values were calculated by Student t test; *P < 0.05, **P < 0.01, ***P < 
0.001. 
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The effect of trisomy 21 on CFU-MK and CFU-E is the greatest and has been 

firmly established, however it is much less clear, from both clinical and experimental 

observations, whether trisomy 21 affects the production of granulocytes and monocytes 

(Chou et al. 2012; Maclean et al. 2012; Roy et al. 2012; Banno et al. 2016). Our cell 

panel provides an opportunity to test this question as this all-isogenic and inducible 

system may detect more subtle differences. As shown in Figure 3.4c, results suggest there 

is a modest but reproducible decrease in the reductions of granulocyte colonies (CFU-G) 

as a function of chromosome 21 silencing. While the low numbers of CFU-G (in all 

samples) makes this comparison more difficult, it was statistically significant in some 

pair-wise comparisons, and some reduction was seen consistently in all four transgenic 

clones (and the disomic subclone compared to parental). Therefore, these results strongly 

suggest some impact on granulocyte production of trisomy 21 over-expression. Monocyte 

colonies (CFU-M) showed a very small effect, statistically significant for some 

comparisons. Again, while smaller less significant differences were seen for comparisons 

of each individual transgenic clone, when analyzed collectively, results indicate treated 

samples (and disomic cells) showed significant reduction for both colony types. 

Therefore, these results of colony forming assays demonstrate that applying XIST-

mediated silencing of one chromosome 21 can normalize the abnormal over-production 

of differentiated hematopoietic cells in colony forming assays, in vitro. 
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Trisomy silencing identifies endothelial-to-hematopoietic transition (EHT) as key to 

the overproduction of hematopoietic progenitors 

The above results demonstrate that chromosome 21 silencing successfully 

normalized known defects in the ultimate production of differentiated hematopoietic cell 

types, by markedly reducing the over-production of megakaryocyte and erythrocyte 

colonies.   This alone is a major milestone demonstrating feasibility to correct imbalance 

in the end-product of hematopoiesis.  However, this also supports that this system 

provides a means to study the basic steps in pathogenesis that are impacted by dosage 

effects of trisomy 21. Thus we next investigated: at what step(s) during development of 

hematopoietic cells does trisomy silencing have an effect, and does that coincide with 

what is known from other studies, or advance what is currently known? Hematopoiesis is 

a complex, multi-step process that involves formation and differentiation of many 

different types of progenitors.  Studies using human iPSC/ESC cell systems suggest that 

in vitro differentiation mimics most developmental events in embryonic hematopoiesis 

and thus can be valuable to model early human hematopoiesis (Vodyanik et al. 2006; 

Kennedy et al. 2007; Nostro et al. 2008; Choi et al. 2009; Grigoriadis et al. 2010; Choi et 

al. 2012; Kennedy et al. 2012; Elcheva et al. 2014; Sturgeon et al. 2014; Ditadi et al. 

2015).  Several major stages in the complex process of hematopoiesis are outlined in 

Figure 3.5a, and the markers used for flow sorting to isolate and study distinct cell 

populations are indicated.   During embryogenesis in different model organisms, 

hematopoietic stem cells (HSC) arise from a specialized endothelium population called 

hemogenic endothelium (HE). HE cells are present only transiently during development 

and difficult to identify due to dual expression of markers for hematopoietic and 
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endothelial cells (Figure 3.5a) (Swiers et al. 2013). The formation of hematopoietic stem 

cells from HE is known as the endothelial-to-hematopoietic transition (EHT). HSCs are 

capable of self-renewal and have potential to differentiate into progenitor cells of all 

hematopoietic lineages. Prior work comparing normal and DS fetal liver found increased 

numbers of hematopoietic progenitor cells (Chou et al. 2008; Tunstall-Pedoe et al. 2008), 

and studies using iPS cell systems have also reported increased production of 

hematopoietic progenitor cells indicating that trisomy 21 has its effect at an early step in 

hematopoietic differentiation (Chou et al. 2012; Maclean et al. 2012; Banno et al. 2016).  

Hematopoietic differentiation through embryoid bodies was induced from XIST-

transgenic DS iPS cells with and without dox-induced trisomy silencing, and cells were 

examined at different times in the process and for different cell populations, as indicated 

in Figure 3.5a. CD34 has been widely used to broadly identify cell populations 

containing hematopoietic stem and progenitor cells; however, the CD34+ population is 

very heterogeneous and another marker, CD43, has been shown the earliest expressed 

after hematopoietic commitment during in vitro hematopoietic differentiation from 

pluripotent cells (Vodyanik et al. 2006). Therefore, we examined both CD34 and CD43 

simultaneously to maximize coverage of early hematopoietic precursors.  As shown in 

Figure 3.5b, based on expression of these two markers, three populations (CD34+/CD43-, 

CD34+/CD43+, CD34-/CD43+) are detected at day 11 and day 14 EBs.  As CD43 is the 

earliest marker of full hematopoietic commitment following EHT, the two CD43+ 

populations (CD34+CD43+ and CD34-CD43+) most closely represent committed 

hematopoietic progenitors, within the differentiating embryoid bodies.   
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Figure 3.5 Impact of chromosome 21 silencing on hematopoietic populations during 
hematopoietic differentiation from DS iPSCs 

(a) A simplified schematic of the hematopoietic differentiation process. EHT: Endothelial 
to hematopoietic transition. (b) Early hematopoietic progenitor populations detected at 
day 11 and 14 differentiation for clone 5. Quantifications are represented as the ratio of 
doxcycycline-treated cells to untreated cells. Transgenic cells which XIST is induced have 
less CD43+ early hematopoietic progenitor cells at both day 11 and 14 of differentiation 
(c,d) Hemogenic-like populations identified during hematopoietic differentiation for 
clone 5. Quantifications are represented as the ratio of treated cells to untreated cells. 
Chromosome 21 silencing does not affect the formation of hemogenic endothelium-like 
populations at day 8 of differentiation, using either of the two sets of markers to define 
this population. Error bars represent SEM from 5 independent experiments and p values 
were calculated by Student t test; *P < 0.05, **P < 0.01, ***P < 0.001. 
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Consistent with results from other studies, induced chromosome silencing 

successfully resulted in significant reduction in CD43+ hematopoietic progenitor cells, for 

both the CD34- and CD34+ subpopulations.  Importantly, there is only marginal if any 

effect of trisomy 21expression on the formation of the CD34+CD43- population, which 

lacks the CD43+ marker indicative of full hematopoietic commitment.  Notably, as 

differentiation continues from day 11 to day 14, the two CD43+ populations are 

expanding while the CD34+CD43- population shrinks, consistent with CD34+CD43- 

being the earlier precursor of the two CD43+ populations. 

These findings support prior evidence that the over-production of differentiated 

hematopoietic colonies is preceded developmentally by an over-production of 

hematopoietic progenitor cells.  However, it is not known at what earlier step the excess 

progenitors arise. The ability of the inducible chromosome 21 silencing system to 

recapitulate hematopoietic abnormalities seen in clinic and laboratory drove our interest 

to use this inducible system (isogenic and iso-epigenetic) to further define when during 

hematopoietic differentiation defects arise due to trisomy 21. Given that trisomy 21 status 

strongly impacted the CD43+ committed hematopoietic progenitors (but not the likely 

earlier CD34+/CD43- cells), we wanted to ask if the earlier population of the bipotential 

hemogenic endothelium (HE) is also over-produced in trisomic cells, indicating an even 

earlier progenitor is impacted.   Alternatively, if the HE population numbers were 

unaffected, this would indicate a defect involving excess EHT, the process known as 

endothelial to hematopoietic transition, which produces cells fully committed as 

hematopoietic progenitors (from bipotential HE cells). KDR+CD31+ cell populations at 

day 8 of in vitro differentiation have been reported to contain some HE-like cells 
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(Kennedy et al. 2007).  Consistent with earlier observations, we found no significant 

difference in the formation of KDR+CD31+ cells (Figure 3.5c), however this is not clearly 

established to reflect the HE (Maclean et al. 2012; Banno et al. 2016). Therefore, we 

adapted recent improvements in identification of HE using other markers to more closely 

examine and identify the HE-like cell population. A more recent study showed that HE 

can be further enriched by using four markers, in the CD34+CD43-CD73-CD184- 

population (Ditadi et al. 2015). Hence, we analyze this population at day 8 post-

differentiation, with and without chromosome silencing. As shown in Figure 3.5d, results 

further support that there was no significant difference in formation of the HE-enriched 

population.  Results using analysis of two different sets of markers for the HE-enriched 

population indicate trisomy 21 does not affect earlier steps leading to HE formation, but 

rather enhances EHT and the over-production of CD43+ hematopoietic progenitors. 

In sum, results show that trisomy silencing reduces the over-production of 

undifferentiated hematopoietic progenitors reported in other studies, but the analysis here 

goes further to indicate that overproduction of hematopoietic progenitor cells is not 

evidenced in the HE population, but arises due to an overactive EHT process. 

 

Trisomic CD43+ hematopoietic progenitors have increased colony forming potential 

for megakaryocyte and erythrocyte 

Based on the results of our own and others (Maclean et al. 2012; Banno et al. 

2016), the increased production of hematopoietic colonies is due to increased 

representation of hematopoietic progenitors plated into the colony forming assay. 

However, studies on DS fetal liver cells demonstrated more numerous hematopoietic 
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colonies generated from the same number of starting progenitor cells (Chou et al. 2008; 

Tunstall-Pedoe et al. 2008; Roy et al. 2012), suggesting increased colony forming 

potential in trisomic hematopoietic progenitor cells. To further examine and confirm this 

in the in vitro hematopoietic differentiation system, which hasn’t been done, we 

investigated whether trisomy 21 also affects formation of various colony types from 

CD43+ early hematopoietic progenitors within EBs. Therefore, we purified CD43+ cells 

from day 14 EBs and then plated the same number of CD43+ cells from each sample in 

colony forming assays. As shown in Figure 3.6, we observed marked decreases in CFU-

Mk and CFU-E, a marginally significant difference in CFU-G, and slight reduction in 

CFU-M formation in silenced samples of transgenic subclones.  In addition, the CFU-Mk 

colonies in treated samples were usually smaller than those in untreated samples, which is 

reflective of enhanced megakaryocyte proliferation in DS. To summarize, by utilizing our 

inducible trisomy silencing system, we affirm that trisomic hematopoietic progenitor 

cells generated in vitro show increased colony forming potential (shown previously for 

DS fetal liver studies); trisomy silencing of CD43+ progenitors reduces the number of 

colonies generated, especially for megakaryocytes and erythrocytes. Therefore, our 

results indicate that trisomy 21 not only promotes excess production of CD43+ 

hematopoietic progenitors, but also increases these progenitors’ colony forming potential 

for megakaryocytic and erythroid colonies, likely through excess production of 

megakaryocyte-erythroid progenitors (MEP) within CD43+ hematopoietic progenitors.  
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Figure	3.6	Colony-forming potential of purified day 14 CD43+ hematopoietic 
progenitors with and without XIST-induced chromosome 21 silencing. 
 
Colony forming potential from equal numbers of purified day 14 differentiated CD43+ 
hematopoietic progenitor cells for (a) megakaryocytes, (b) erythrocytes, (c) granulocytes, 
and (d) monocytes. Error bars represent SEM from three independent experiments and p 
values were calculated by Student t test; *P < 0.05, **P < 0.01, ***P < 0.001. 
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Chromosome silencing indicates Trisomy 21 causes overactive IGF signaling that 

promotes over-production of CD43+ hematopoietic progenitors  

Finally, having demonstrated that trisomy silencing corrects developmental 

defects in Trisomy 21 hematopoiesis, we investigated the utility of this inducible 

experimental system to examine gene expression changes as a function of silencing the 

third chromosome 21. The heterogeneous nature of hematopoietic cell populations (even 

as defined by specific markers) and the rapidly changing levels of hematopoietic 

regulators during hematopoiesis likely contribute to the observations in other studies that 

consistent changes in gene expression due to trisomy 21, even for known hematopoietic 

regulators encoded on chromosome 21, have alluded identification (Maclean et al. 2012; 

Roy et al. 2012). Since some of the expression variability between samples will also be 

due to comparison of different stem cell clones, we tested whether inducible chromosome 

silencing might be able to discern consistent changes, focusing on a small panel of genes 

of interest, as previously examined by Maclean et al (2012).    

As referenced by Maclean et al. (2012) we were particularly interested in an 

important mechanistic hypothesis that excessive insulin growth factor (IGF) signaling in 

fetal hematopoiesis drives over-production of myeloid cells in TMD and AMKL. The 

IGF pathway is well-established to broadly impact cell proliferation, has been linked to a 

number of other types of cancers (Denduluri et al. 2015), and was implicated by one 

study as specifically elevated in fetal hematopoiesis and DS-associated TMD and DS-

AMKL. Klusmann et al. (2010) found that genes in the IGF signaling pathway were 

substantially over-expressed specifically in AMKL associated with trisomy 21.  They 

showed that fetal liver but not adult hematopoiesis depends upon IGF signaling, 
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suggesting that differences in IGF signaling may explain why DS-related leukemia arises 

specifically from fetal liver hematopoiesis in neonates and infants, but not in adults.   

Elevated mRNA levels for several IGF signaling genes were observed in DS-AMKL 

cancer lines but not in non-DS AMKL lines, and DS blasts were especially sensitive to 

inhibition of IGF signaling.  While they showed GATA1s mutation contributes to this 

(through effects on E2F target genes), they also speculated that Trisomy 21 itself may 

cause overactive IGF signaling.  However, this was not tested in this study focused on 

TMD and AMKL cells (which have a GATA1s mutation). Maclean et al. (2012) did not 

detect consistent differences in any genes examined, including IGF signaling genes, 

comparing hematopoiesis of trisomic and euploid iPS cells (without GATA1s).  However, 

as stated by Roberts and colleagues in a recent review, the mechanism whereby Trisomy 

21 itself leads to over-production of megakaryocytes and erythrocytes remains an 

important unknown question, but “differences in the expression or responsiveness to the 

developmentally regulated IGF signaling pathway remain an attractive 

candidate”(Bhatnagar et al. 2016). 

We performed RT-qPCR on RNA from purified day 14 CD43+ cells, examined in 

three independent experiments comparing parallel cultures with and without XIST-

induced chromosome silencing.  As shown in Figure 3.7a and b, for many genes, most of 

which are highly dynamic and cell-type specific hematopoietic regulators, no significant 

patterns were evident, similar to the findings of Maclean et al. (2010).  In contrast to 

Maclean et al., however, we did detect consistent, statistically significant differences in 

five of these same genes, all five of which have been discussed as potentially involved as 

contributing to trisomy 21 hematopathology (Figure 3.7a). For chromosome 21 genes  
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Figure 3.7 Effects of trisomy 21 silencing on gene expression in CD43+ early 
hematopoietic progenitor cells. 

Gene expression analysis on (a) three IGF signaling related genes and two chromosome 
21 genes in purified day 14 CD43+ hematopoietic progenitors, and on (b) a panel of 
hematopoietic regulators, which are dynamically changing in different hematopoietic 
sub-populations. Expression levels were normalized to GAPDH and represented as the 
ratio of treated cells to untreated cells. Error bars represent SEM from three independent 
experiments. 
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DYRK1A and GABPA, a reduction in mRNA levels approaching the 1/3 level expected 

(due to silencing one of three chromosome 21s) was evident.   The sensitivity of our 

inducible system to detect such modest changes likely also reflects wide expression of 

these two broad regulators in much of the heterogeneous CD43+ hematopoietic cell 

population.  We note that GABPA and DYRK1A are expressed early even in 

undifferentiated iPS cells (Jiang et al. 2013 and unpublished). Most importantly, results 

in Figure 3.7a demonstrate that indeed there is an increase in expression of IGF signaling 

genes (not on chromosome 21) in the trisomic versus disomic state. All three IGF 

signaling genes examined, IGF2, IGF1R, and IGF2R, were each markedly down-

regulated by about 60% in trisomic CD43+ cells when one chromosome 21 is silenced by 

induced XIST expression. These genes changed with greater magnitude and significance 

than did genes encoded on chromosome 21. As shown in Figure 3.7a, GABPA and 

DYRK1A mRNA levels were reduced to about 70%, consistent with their upregulation in 

trisomy silencing one of three alleles. Since none of the IGF-related genes examined here 

are on chromosome 21, results indicate they are mis-regulated by trisomic expression of 

one or more chromosome 21 genes. We note that GABPA is known to be involved in cell 

cycle progression (Yang et al. 2007) and that regulatory elements of IGF2 and IGF2R 

have binding sites recognized by GABPA.   

Klusman et al. (2010) also showed that fetal but not embryonic or adult 

hematopoiesis was dependent on IGF signaling and sensitive to IGF signaling inhibition, 

and that AMKL and TMD cells from DS patients (which carry both trisomy 21 and a 

GATA1s mutation) were more sensitive than non-DS AMKL at a given concentration.  

Since changes in IGF signaling have not yet been corroborated, it would be important 
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first to corroborate that in any system, but also to address whether and when this 

sensitivity is present in steps prior to acquisition of the GATA1s mutation.   Using the 

same inhibitor (PPP) as Klusman et al. (2010), we examined effects on the same three 

flow-sorted hematopoietic populations studied above, as summarized in Figure 3.8 

(CD34+/CD43-, CD34-/CD43+ and CD34-/CD43-).  Treatment of trisomic cells began on 

Day 8 and then cells were evaluated on Day 14 of differentiation.  The first experiment 

used the same PPP concentration as Klusman et al. on trisomic cells and served to reveal 

that production of CD43+ hematopoietic progenitor cells specifically was almost 

completely eliminated by inhibition of IGF signaling (Figure 3.8a).  In contrast, there was 

very little effect on the earliest hematopoietic population of CD34+/CD43- cells 

(corresponding to hemogenic endothelium-enriched population prior to HET), affirming 

that the drug was not generally toxic to cell proliferation and that IGF impacted a specific 

point in hematopoiesis (Figure 3.8a).    

Since the evidence indicates that IGF signaling would be required for fetal 

hematopoiesis for normal or trisomy 21 samples, any greater effect of IGF signaling on 

trisomy 21 cells would only be evident within a certain concentration window of IGF 

inhibitor, as indicated by Klusman et al. (2010).   Therefore, we next tested three 

different inhibitor concentrations on both the untreated trisomic cultures, and the parallel 

culture with XIST-induced chromosome silencing.  Once again results affirm marked 

effects on the production of CD34+/CD43+ and CD34-/CD43+ cells, much more than the 

earliest CD34+ population (Figure 3.8b). Notably, these results coincide nicely with the 

cell populations and developmental step (involving the hemogenic-to-endothelial 

transition) identified above to be most affected by silencing trisomy 21. Further, a very  
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Figure 3.8 Trisomy 21 contributes to increased sensitivity of CD43+ hematopoietic 
progenitor production to IGF inhibition. 

(a) Inhibition of IGF signaling by 1 uM PPP, an IGF inhibitor, has distinct effects on the 
CD34+ and CD43+ populations. Production of CD43+ early hematopoietic progenitor 
populations are more sensitive to IGF inhibition whereas CD34+CD43- hemogenic 
endothelium enriched population is only slightly affected.  (b) Analysis of the effects of 
IGF inhibition at three lower concentrations identifies the window of sensitivity for the 
CD43+ cells. (c) Trisomy silencing reduces the sensitivity of CD43+ cell production to 
IGF signaling inhibition, suggesting greater reliance of trisomic CD43+ progenitors on 
IGF signaling.   
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close link between IGF signaling and over-expression of chromosome 21 is further 

evidenced by the finding that silencing of one chromosome 21 substantially reduced the 

sensitivity to IGF inhibition of the CD43+ population in parallel cultures induced to 

silence one chromosome 21 (Figure 3.8c).    

Therefore, both gene expression analysis and the IGF inhibitor studies support the 

conclusion that trisomy 21 itself (prior to GATA1s mutation) increases IGF signaling, 

which in turn promotes excessive production of CD43+ hematopoietic progenitor cells in 

Down Syndrome (Figure 3.9). Results further demonstrate the potential of that expression 

of one gene, XIST, can sufficiently rebalance chromosome 21 gene expression levels to 

reduce excess IGF signaling and normalize the pathological over-production of specific 

hematopoietic cell populations that underlie Down Syndrome-associated myeloid defects.   

Figure 3.9 provides a summary of findings and model regarding the effect of trisomy 21 

on distinct steps in the hematopoietic process.  

 

  



	

	

119	

	

 

Figure 3.9 Schematic of how trisomy 21 affects hematopoietic differentiation. 

Trisomy 21 increases the production of early hematopoietic progenitor cells by enhancing 
the endothelial-to-hematopoietic transition, accompanied by increased IGF signaling. 
Trisomy 21 also increases the colony forming potential of these hematopoietic progenitor 
cells.  
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Discussion  

Previously, we demonstrated that an inducible XIST cDNA could spread 

heterochromatin and transcriptionally repress most genes across one chromosome 21 in 

DS iPS cells. However, it was the first priority of this study to address the critical next 

question: is XIST-mediated “trisomy silencing” sufficiently effective to normalize cell 

physiology and mitigate pathogenesis of known DS-cellular phenotype(s). Here we 

address whether this approach involving expression of transgenic XIST could correct the 

complex regulatory mechanisms that give rise to hematopoietic cell pathologies in DS. 

In-depth analysis of well-established hematopoietic cell phenotypes consistently shows 

that trisomy silencing indeed effectively corrects cell pathogenesis and phenotypes. 

Following XIST-expression to induce heterochromatin formation across one chromosome 

21, the over-proliferation of megakaryocyte and erythrocyte colonies is sharply reduced, 

in all four transgenic iPS clones in multiple experiments. Similarly, this also corrects an 

excess production of earlier hematopoietic progenitors. This reduction in cell 

proliferation is not due to negative effects of doxycycline or XIST since no such effect 

was seen in doxycycline-treated control cells. Importantly, we highlight that XIST 

expression has opposite effects on proliferation of hematopoietic versus neural cells;  if 

these same trisomic iPS cells are directed down the neural lineage they proliferate more 

rapidly with XIST expression, as do undifferentiated iPS cells (Jiang et al. 2013). These 

findings are consistent with differences in the clinical features of trisomy 21 for the 

neural and hematopoietic systems in DS patients.  This cell-type specificity, and the 

specificity of effects on distinct hematopoietic precursor populations, supports the 

conclusion that silencing one chromosome 21 does not just relieve general “aneuploidy 
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stress” but it corrects specific changes in developmental programs impacted by dosage-

sensitive genes on chromosome 21.    

The clear demonstration that XIST expression alone can correct cell development 

and function to normalize a major DS cellular phenotype, in cells which still carry the 

extra chromosome, is itself novel and significant. However, the results go further to 

demonstrate the utility of the inducible XIST strategy to investigate steps in cell 

pathogenesis, as further discussed below.   

Inducible chromosome silencing as a strategy to illuminate steps in cell pathogenesis 

due to trisomy 21  

The implications of our results for longer-term prospects of “chromosome therapy” 

will be discussed below, but we first consider the extent to which these results confirm 

and extend understanding the underlying biology of hematopoietic pathogenesis in DS. 

The consistency between our results and findings from others that compared 

hematopoiesis for trisomic and disomic cells (Chou et al. 2012; Maclean et al. 2012; Roy 

et al. 2012; Banno et al. 2016) validates the trisomy silencing approach as a means to 

analyze the underlying biology by which trisomy 21 contributes to hematopoietic 

abnormalities.  In fact, use of this experimental approach allowed us to advance what is 

known by providing evidence for certain important hypotheses. By making the 

chromosome 21 silencing event inducible, we exclude inter-clonal variations that 

commonly exist among different iPS lines. Our results affirm prior evidence that 

hematopoietic progenitors (as well as differentiated cells) are produced in excess, but 

further found no increase in the formation of the hemogenic endothelium(HE)-enriched 

population with and without trisomy silencing, by using multiple markers. CD43+ 
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committed early hematopoietic progenitor cells were consistently higher with trisomy 21 

expression; since these cells derive from the bi-potential HE by the developmental step 

know as endothelial to hematopoietic transition (EHT), our study points to a defect in the 

HET as a key to the overproduction of hematopoietic cells in DS. Based on our results, 

RUNX1, an essential chromosome 21 gene involved in differentiation of committed 

hematopoietic progenitor cells (Chen et al. 2009), is highly likely involved in enhancing 

EHT in the context of trisomy 21. Banno et al. (2016) recently reported that an extra copy 

of RUNX1 was indispensable for excessive production of hematopoietic progenitor cells 

during the differentiation of trisomic iPS cells. However, there are multiple 

hematopoietic regulators, including miRNAs, on chromosome 21 that may also 

contribute, and genes encoded on other chromosomes and impacted by even non-

hematopoietic chromosome 21 genes may be important as well, as further suggested in 

our results.  

IGF signaling as a major contributor to Trisomy 21 Pathogenesis  

Our findings show that specific non-chromosome 21 genes involved in IGF 

signaling are reproducibly impacted by trisomy 21 expression and support the hypothesis 

that this is a major driver of excessive hematopoietic cell proliferation. We show for the 

first time that cells expressing three chromosome 21s have consistently higher expression 

of three IGF genes examined relative to the same cells with one chromosome 21 silenced. 

Importantly, this impact on IGF signaling is evident in trisomic cells prior to any 

leukemic (or pre-leukemic) state and without GATA1s mutation.  Our results provide 

important corroboration for the hypothesis of Klusman et al. (2010) that IGF signaling is 

important in fetal megakaryopoiesis and contributes to leukemogenesis in DS. While 
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their results indicated the mutant GATA1s no longer sufficiently inhibits IGF signaling, 

our findings show that increased IGF signaling (and sensitivity of growth to IGF 

inhibition) can be observed in trisomic CD43+ early hematopoietic progenitors. However, 

our results do not counter the conclusion of Klusman et al. that GATA1s mutation 

impacts IGF signaling, as these authors also speculate that trisomy 21 itself may also 

impact IGF signaling.  If the combined action of trisomy 21 and GATA1s cooperates to 

enhance IGF signaling to more critical levels, this would explain why neither trisomy 21 

nor GATA1s alone leads to TMD or leukemia.  Hence, we suggest these two types of 

mutation operate together during fetal hematopoiesis to push the same proliferation-

promoting pathway to dangerous levels.  

In sum, use of the tightly-controlled inducible system to study effects of trisomy 

21 allowed us to not only confirm but substantially extend evidence that overactive IGF 

signaling is a key component of trisomy 21 that promotes development of hematopoietic 

abnormalities.  This system will also be useful to further investigate gene expression 

changes at different stages of hematopoietic differentiation as a function of trisomy, and 

we currently have RNA sequencing on multiple time points of in vitro hematopoiesis in 

progress.  This may better define changes in dynamic regulators, such as RUNX1, but will 

also determine if there are basal changes in non-hematopoietic genes.  For example, it 

will be interesting to determine if certain chromosome 21 genes, such as DYRK1A and 

GABPA, are expressed (at one-third increased levels) prior to elevation of IGF signaling, 

since both GABPA and DYRK1A have been suggested to have a role in DS myeloid 

defects (Chou et al. 2012; Malinge et al. 2012). Certain chromosome 21 genes that are 

widely expressed could have wide impacts on basic cellular pathways, such as IGF 
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signaling. In fact, it is interesting to speculate that changes in the insulin-based signaling 

pathways might be widely present in Down Syndrome patient cells which could underlie 

the almost universal metabolic changes that make individuals with DS prone to obesity 

and more frequent diabetes. Additionally, potential linkage between RUNX1 

overexpression and increased IGF signaling in the context of trisomy 21 has not been 

shown, but since IGF signaling is essential for supporting the growth of fetal live HSCs 

(Zhang and Lodish 2004), it is interesting to consider whether RUNX1 regulates IGF 

signaling or vice versa, in both euploid and trisomic 21 conditions.  

Implications for longer-term prospects of “chromosome therapy” 

The first step in development of any gene therapy approach is to demonstrate that 

the genetic abnormality can be corrected in vitro.  Since XIST-mediated chromosome 

silencing is not a traditional “correction” of a genetic mutation, it was essential to show 

that this “translational epigenetics” strategy could improve cellular or molecular 

phenotypes. This study demonstrates that autosomal expression of a single gene, XIST, 

can mitigate DS hematopoietic abnormalities in vitro. Importantly, this correction can be 

achieved even without knowing which or how many specific genes are involved in 

controlling these abnormalities. Given that many research groups are making progress on 

developing human HSCs from iPS cells for therapeutic purposes (Wahlster and Daley 

2016), findings here have direct applicability for such approaches.  Though challenges 

remain, it has been shown that Xist can initiate chromosome silencing in hematopoietic 

progenitor cells (Savarese et al. 2006), and bone marrow transplantation of genetically 

modified HSC has also been tested on patients with hematopoietic diseases in several 

clinical trials. Therefore, the present study provides a proof-of-principle for the potential 
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future development of ex vivo gene therapy for certain circumstances for DS children. 

Children with trisomy 21 who develop TMD are at particularly high risk to acquire DS-

AMKL, which could lead to harsh treatments and severe outcomes. Although children 

with DS-AMKL generally have higher survival rates after chemotherapy when compared 

to non-DS children, the toxicity is also often even greater for DS children and the disease 

is still life-threatening (Bhatnagar et al. 2016). Since GATA1s mutation alone does not 

lead to leukemia, it is now possible to consider that dosage-compensating chromosome 

21 expression in DS-TMD children might eventually become a viable alternative to 

preempt the development of DS-AMKL in the substantial subset of DS children who 

have TMD.  

Finally, it is important to note that the experimental strategy demonstrated here, 

and phenotypic benefits of chromosome silencing in the hematopoietic system, are 

potentially relevant to all the bodily systems and functions impacted by changes to blood 

due to trisomy 21.  For example, these results have relevance to hematopoietic cells of 

the lymphoid system, which are impacted by trisomy 21 to increase the risk for ALL, a 

more commonly seen leukemia for which the success of chemotherapy is substantially 

less than for DS-AMKL. Since the hematopoietic progenitor cells studied here (and 

corrected by trisomy silencing) could also give rise to cells of the lymphoid system more 

broadly, and this might mitigate immune defects that impact many people with DS 

(Kusters et al. 2009; Ram and Chinen 2011; Sullivan et al. 2016).  For example, high 

susceptibility to infections is one of the most significant health problems for individuals 

with DS. Furthermore, many recent studies suggest a link between immune system and 

progression of neurodegenerative diseases. Therefore, being able to correct DS 
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hematopoietic abnormalities could bring broader potential benefits beyond leukemia to 

immune or even cognitive functions, or possibly the early-onset Alzheimer disease so 

prevalent in DS.  

To summarize, this study demonstrates the feasibility of mitigating a major 

pathology in DS by induced silencing of the third chromosome 21 through ectopic XIST 

expression. In addition, the inducible system for chromosome silencing provides a new 

tool to study DS hematopoiesis, as well as other aspects of DS pathologies. Lastly, these 

results further highlight the longer-term clinical prospects for development of this 

innovative approach, which should be further explored for hematological and other 

aspects of the Down Syndrome.  
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Materials and Methods 

iPS Cell culture 

iPS lines were maintained as previously described(Jiang et al. 2013). Briefly, iPS cells 

were maintained on irradiated mouse embryonic fibroblasts (R&D Systems) in iPSC 

medium containing KnockOut-DMEM/F12 supplemented with 20% KnockOut serum 

replacement (ThermoFisher), 1X GlutaMax (ThermoFisher),  100 µM non-essential 

amino acids (ThermoFisher), 100 µM β-mercaptoethanol (Sigma) and 10 ng ml−1 FGF-β 

(ThermoFisher). Cultures were passaged with 1 mg/ml collagenase type IV 

(ThermoFisher) every week. 

 

Neural differentiation 

Differentiation of neural stem cell was carried out as previously described (Jiang et al. 

2013) and chapter II. 

 

RNA fluorescence in situ hybrization and immunostaining 

Immunostaining for H3K27me3 and RNA fluorescence in situ hybrization for XIST 

and APP were performed as described previously(Byron et al. 2013; Jiang et al. 2013).  

 

Hematopoietic differentiation 

iPS cells were differentiated as previously described(Maclean et al. 2012). Briefly, iPSCs 

were passaged from feeders to growth factor reduced matrigel (Corning). After 24 – 48 

hours, iPSCs were lifted by collagenase B (Roche) and cultured in suspension in low 

attachment plate (Corning) to form embryoid bodies (EB). This is considered as day 0 of 
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differentiation and XIST expression was turned on by doxycycline treatment (500 ng/ml). 

Cytokines were added according to protocol shown by Maclean et al(Maclean et al. 2012). 

After 14 days of differentiation, EBs were dissociated and single cells were plated in 

MegaCult medium for generating megakaryocytic colonies and MethoCult medium for 

erythroid, monocyte, and granulocyte colonies (Stem Cell Technologies). After 10 days, 

colonies were fixed and scored according to the manufacturer’s instructions. All 

cytokines were purchased from Pepro Tech except Erythropoietin (R&D Systems). 

 

Flow cytometry 

Cells from dissociated embryoid bodies were filtered through 50 µm filter (Partec) before 

stained for FACS analysis. All antibodies were purchased from BD Bioscience, including 

anti-CD34-APC, anti-CD43-FITC anti-CD31-PE, anti-CD31-FITC, anti-CD73-PE, anti-

CD184- PE-Cy7, and anti-CD309- Alexa Flour 647. Cells were stained for 30 minutes at 

4 degree in the dark then washed twice with PBS supplemented with 2% FBS before flow 

cytometry. 4',6-diamidino-2-phenylindole (DAPI) was used for selection of live cells.  

 

qRT-PCR 

RNA was isolated from purified CD43+ hematopoietic progenitor cells using RNeasy kit 

(Qiagen). cDNA was generated by iScript cDNA kit (BioRad). IQ SYBR Green supermix 

(BioRad) was used for qPCR reactions. All reactions were done in triplicate and the 

expression levels were normalized by expression of GAPDH. 
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Statistical analysis 

All experiments were done at least in triplicate and repeated independently. For cell 

counting, at least three random regions on the slides were scored for 100 cells for each 

experiment. For colony forming assays, three independent plates (for MethoCult) and 

three independent slides (for MegaCult) were scored for the number of colonies of each 

type. For flow cytometry analysis, five independent experiments were performed. For 

qPCR, reactions were performed in triplicate in three independent experiments. One-

tailed Student t test was used to determine the significant level of differences between 

treated and untreated samples. Differences were considered to be significant when P < 

0.05. Error bars represent standard error of the mean.  
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Chapter IV: Initial investigation of effect of trisomy 21 on angiogenesis 

Introduction 

 Individuals with Down syndrome (DS) have elevated risk for various defects and 

abnormalities associated with multiple compartments of the body, including leukemia, as 

described in previous chapters. Additionally, DS patients have features that are 

traditionally thought to be cancer-prone. For example, increased levels of reactive oxygen 

species (ROS) are detected in various cell types from DS patients and mouse models, 

including neurons, fibroblasts, and lymphocytes (Busciglio and Yankner 1995; Komatsu 

et al. 2006; Zana et al. 2006). High levels of ROS may partly result from an additional 

copy of chromosome 21 genes involved in oxidative metabolism, such as SOD1 and CBS. 

This often leads to higher rate of DNA damage and mitochondria dysfunction (Del Bo et 

al. 2001; Coskun et al. 2010), both are highly correlated with cancer progression (Boland 

et al. 2013; Hsu et al. 2016). In addition, defective DNA repair mechanisms have also 

been reported to be a feature of DS cells (Morawiec et al. 2008), which may contribute to 

the GATA1s mutations consistently seen in DS-TMD and DS-AMKL cells, as described 

in previous chapters (Cabelof et al. 2009). Despite these changes that might be expected 

to increase susceptibility to cancer, multiple studies have shown a decreased incidence of 

most tumor types in DS individuals compared to age matched euploid individuals, with 

the exception for leukemia and germ cell cancers (Hasle et al. 2000; Nizetic and Groet 

2012). This observation presents a paradox for what researchers would have predicted 

based on multiple cancer-prone cellular conditions caused by trisomy 21. Interestingly, 

the malignant cells for the two types of cancer for which DS individuals are more prone, 

childhood leukemia and germ cell cancers, are restricted to cell types of fetal origin and 
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the increased risk does not extend to other types of cancer of typically adult onset (Hasle 

et al. 2000; Yang et al. 2002).  Therefore, how trisomy 21 protects DS individuals from 

most types of solid tumors is of interest broadly for the field of cancer research. 

 Some properties of DS cells may potentially be less favorable for cancer 

progression. For instance, fibroblasts from DS individuals and mouse models have been 

reported to exhibit reduced ability for proliferation and migration (Kimura et al. 2005; 

Delom et al. 2009). Hence, this suggests that certain genes on chromosome 21 may have 

inhibitory effects on cell cycle and mobility. Notably, our result in chapter II that showed 

increased proliferation rate in iPSCs after trisomy silencing further supports this 

hypothesis. Additionally, certain genes on chromosome 21 are suggested to be tumor 

suppressive. For example, ETS2 was implicated protective from colon cancer in a mouse 

model of DS (Sussan et al. 2008) and the biological functions of DYRK1A also thought 

to be cancer suppressive. (Canzonetta et al. 2008; Laguna et al. 2008; Park et al. 2010; 

Litovchick et al. 2011). However, the tumor suppressive properties of these genes may be 

cell context dependent, as they may also be oncogenic in other cell types (Xu et al. 2008; 

Birger and Izraeli 2012; Malinge et al. 2012).  

 Another plausible hypothesis for solid tumor protection in DS individuals is the 

reduced angiogenesis theory. Although not involved in tumor initiation, angiogenesis is 

crucial for tumor progression, as rapid tumor growth requires sufficient vasculature to 

support nutrient supply and circulation. High levels of serum endostatin, an endogenous 

inhibitor of angiogenesis produced from cleavage of collagen XVIII, encoded by the 

COL18A1 gene on chromosome 21, are seen in DS individuals (Zorick et al. 2001). 

Notably, clinical trials using endostatin as a potent anti-angiogenic drug have been 
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conducted in non-DS patients (Herbst et al. 2002; Thomas et al. 2003). Additionally, two 

mouse models of DS, Ts65Dn and Tc1, showed reduced support for growth of 

transplanted melanoma cells and these inhibitory effects on tumor growth were attribute 

to the dosage of the Rcan1 gene (Baek et al. 2009; Reynolds et al. 2010). A possible 

mechanism is that the combined effect of increased DYRK1A and RCAN1 dosage (on 

chromosome 21) causes dysregulation of NFAT signaling, which reduces responsiveness 

to VGEF, an important angiogenic signal (Arron et al. 2006). However, a contradictory 

result (also shown in Ts65Dn mice) was that the increased survival rate for aggressive 

tumors is not related to attenuated angiogenesis (Yang and Reeves 2011). Therefore, 

more studies are needed to examine whether there is indeed an effect of trisomy 21 on 

angiogenesis.  

In this chapter, we extend the use of our system for investigating hematopoiesis to 

examining the capacity of trisomic cells for angiogenesis, as a function of trisomy 

silencing. Preliminary results of multiple experiments investigating the effect of trisomy 

21 on angiogneisis will be described. 
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Preliminary results 

To address the question of whether or not trisomy 21 reduces angiogenesis, an 

advantageous approach is to compare the aniogenic capacity of two endothelial 

populations that differ only in the number of active chromosome 21s (3 versus 2). 

Therefore, I worked to adopt a differentiation protocol for differentiation of iPSCs to 

endothelial progenitors (Lian et al. 2014). Differentiation was triggered by inhibition of 

GSK3 in a specialized medium that promotes the generation of CD31+CD34+ endothelial 

progenitor cells from iPSCs. After 5 days of differentiation, I was able to acquire 

CD31+CD34+ endothelial progenitor cells that constitute approximately 10% of the 

differentiation culture (Figure 4.1a, b). Isolation of these endothelial progenitor cells by 

positive selection of CD34+ cells was performed through FACS sorting. Isolated CD34+ 

cells were then expanded in culture condition favoring growth of endothelial cells and 

these cells were positive for VE-Cadherin, an endothelial marker (Figure 4.1c, d). 

Therefore, I was able to effectively differentiate endothelial cells from DS iPSCs. 

To assess the effects of trisomy 21 on the first process of endothelial 

differentiation then subsequently on the angiogenic capacity of iPSC-derived endothelial 

cells, I conducted differentiation experiments using our transgenic DS iPSCs with and 

without silencing the targeted chromosome 21 to generate endothelial cells. As shown in 

figure 4.1, in three independent experiments there was no significant difference in the 

amount of CD34+CD31+ endothelial progenitor cells generated from cells with and 

without trisomy silencing, suggesting trisomy silencing does not affect the differentiation 

efficiency of CD34+CD31+ endothelial progenitor cells, at least not at the level that can 

be detected in my approach. In addition, culturing these isolated endothelial progenitor  
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Figure 4.1 Endothelial differentiation from XIST targeted DS iPSCs 

(a) Simple schematic of endothelial differentiation process. iPSCs were cultured with 
GSK3 inhibition to induce formation of CD34+CD31+ endothelial progenitor cells. 
Endothelial progenitor cells were isolated and cultured in conditions promotes growth of 
CD31+ endothelial. After expansion, equal amounts of cells from the endothelial cultures 
of trisomy silenced and non-silenced samples were plated for tube forming assay. (b) The 
formation of CD34+CD31+ endothelial progenitor cells in trisomy silenced and non-
silenced samples. The quantification was calculated as the percentage of CD34+CD31+ 
endothelial progenitor cells from trisomy silenced sample divided by the percentage of 
CD34+CD31+ endothelial progenitor cells from non-silenced sample. There is no 
significant difference in the formation of CD34+CD31+ endothelial progenitor cells after 
trisomy silencing. (c) Morphology of cultured CD31+ endothelial cells. (d) Trisomy 
silenced CD31+ cells were stained positive for VE-Cadherin, an endothelial marker, and 
XIST RNA paint. (e) The result of the first tube-forming assay performed. Trisomy 
silenced endothelial cells generated significantly more tube-like structures than non-
silenced cells. However, two subsequent experiments were not able to reproduce this 
result.  
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cells did not show observable differences in proliferation rate between trisomy corrected 

and non-corrected populations. Notably, consistent with results in previous chapters 

showing the effects of trisomy 21 correction are cell type specific (increased and 

decreased the formation of neural stem cells and hematopoietic progenitor cells, 

respectively), endothelial progenitor cells proved to be a cell type whose differentiation is 

not affected by trisomy 21 correction. Hence, we conclude that trisomy 21 does not affect 

the formation of endothelial progenitor cells, at least not as discernible in these 

differentiation experiments in vitro.  

To examine if trisomy 21 affects angiogenesis, a tube forming assay was 

performed to access the ability of trisomy corrected and non-corrected endothelial cells to 

form tube-like structures in response to VEGF, an angiogenic cytokine. This process is 

thought of as an in vitro mimic of capillary formation under angiogenic stimulus in vivo. 

The first experiment showed significant differences in the number of tubes formed, with 

strikingly more tubes generated from endothelial cells in which XIST-mediated trisomy 

correction was induced (Figure 4.1e). However, two subsequent experiments did not 

reproduce this result, since no difference in the amount of tubes formed was observed. 

However, in the latter two experiments (where no differences in tube formation were seen) 

are unreliable in that neither cell population (with or without trisomy silencing) formed 

tubes well. 

We conclude from these experiments that trisomy 21 does not cause defective 

formation of the endothelial progenitor cells, since all three experiments were consistent 

on that part. However, to determine if there is a difference in angiogenic competence of 

these endothelial cells will require more experiments with optimal conditions for 
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performing tube-forming assay. Whether or not trisomy 21 can reduce angiogenesis, 

remains an interesting and important biological question related to the unexpected 

reduction in risk for solid tumor development in DS individuals.  
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Discussion and future directions 

 Despite the promising result showed in my first tube-forming assay experiment, 

the inconsistent and questionable results shown in subsequent experiments prevent us 

from drawing a conclusion on the effect of trisomy 21 on angiogenesis. Since these 

experiments were not performed in the context of the cancer environment, if an inhibitory 

effect on angiogenesis is truly present, the results would indicate intrinsic defects of 

endothelial cells in tube formation due to trisomy 21. However, our results do provide 

solid evidence that endothelial cells form at the same rate, irrespective of trisomy 21. 

It should be considered that the differentiation protocol we conducted here 

produced endothelial progenitor cells of fetal origin. However, cancer protection in DS 

individuals only occurs in adulthood and cells of adult type may behave differently from 

cells with fetal orgin. For example, fetal liver hematopoietic stem cells (HSCs) and adult 

bone marrow HSCs differ in their capacity for self-renewal and differentiation. Similarly, 

fetal and adult types of red blood cells express different sets of hemoglobins with 

different affinities for oxygen. Therefore, the endothelial cells we differentiated from 

iPSCs do not fully resemble adult type endothelial cells, which may have reduced 

angiogenic capacity in the presence of trisomy 21. Additionally, tumor angiogenesis is a 

complex mechanism with many angiogenic factors involved. In our experiment, the only 

angiogenic factor we used to induce tube formation is VEGF and it is possible that a 

difference in angiogenesis may reflect the differences in responsiveness to other types of 

angiogenic factors (not present in this system).  

 Interestingly, the pathogenesis of Alzheimer’s disease (AD) has also been linked 

to dys-regulated angiogenesis. However, in contrast to the reduced angiogenesis theory 
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for tumor protection in DS individuals, increasing evidence suggested that the 

pathogenesis of AD involves hyperactive angiogenesis in response to neural 

inflammation in the brain (Vagnucci and Li 2003; Desai et al. 2009). Defective blood 

brain barrier function was identified as a prominent clinical feature of AD patients 

(Farrall and Wardlaw 2009) and findings from AD mouse models suggested that 

overproduction of amyloid plaques, a key feature of AD and DS brains, causes extensive 

angiogenesis that disrupts the permeability of blood brain barrier, which contribute 

significantly to the disease progression (Biron et al. 2011). Notably, in the cancer 

protection hypothesis, reduced angiogenesis is likely due to an intrinsic characteristic of 

trisomic endothelial cells, but in AD brains, hyperactive angiogenesis is hypothesized to 

result from excessive production of extrinsic factors from the trisoimc environment, such 

as amyloid plaques, that directly or indirectly promote angiogenesis.  Endothelial cells 

that form the blood brain barrier have properties distinct from endothelial cells in other 

parts of the body. Although a differentiation protocol for producing endothelial cells with 

blood brain barrier properties has been described (Lippmann et al. 2012), modeling and 

testing this hypothesis involve multiple cell types in the brain and therefore in this case, 

an in vivo model might be preferable. 

 In sum, given the links between angiogenesis and DS phenotypes, elucidating 

properties of angiogenesis in DS is an important task in the field and the research 

findings may not only benefit DS individuals but also AD and cancer patients. 
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Materials and methods 

iPSC culture 

XIST targeted DS iPSCs were maintained on vitronectin-coated plate in Essential 8 (E8) 

medium (Thermo Fisher Scientific). 6-well plates were pre-coated with 5ug/ml 

vitronectin (1 ml/well) for 1 hour at room temperature before plating iPSCs. To passage, 

iPSCs were treated with 0.5 mM EDTA (in PBS) at room temperature for 5 minutes. 

After removing EDTA, E8 medium were then added and iPSCs were broken into small 

clumps before distributed into new wells. Medium were changed every day and cells 

were passaged every 3 to 4 days. 

 

Endothelial differentiation 

As noted in the main text, endothelial differentiation protocol was based on a published 

method (Lian et al. 2014). Briefly, iPSCs were dissociated into single cells with Accutase 

(Thermo Fisher Scientific) then seeded into 6 well plate pre-coated with vitronectin with 

concentration 40000 cells/well in E8 medium supplemented with 5 uM ROCK inhibitor 

Y-27632 (Selleckchem) for 24 hours (day -3). At day 0, cells were treated with 6 mM 

CHIR99021 (Selleckchem) for 2 days in LaSR basal medium, which consists of 

Advanced DMEM/F12 (Thermo Fisher Scientific) supplemented with 2.5 mM 

GlutaMAX (Thermo Fisher Scientific) and 60 mg/ml ascorbic acid (Sigma, A8960). At 

day 2, cells were treated with fresh LaSR medium (without CHIR99021) for 3 to 4 days, 

followed by FACS analysis and isolation for CD34+ cells.  
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Endothelial cell culture 

Day 5 differentiation cultures was isolated for CD34+ endothelial progenitor cells using 

CD34 MicroBead Kit (Miltenyi Biotec). Plates were pre-coated with 0.1% Fibronectin 

(Sigma) before seeded with isolated CD34+ cells. Cells were cultured in Human 

Endothelial-SFM supplemented with bFGF (20 ng/ml) and EGF (10 ng/ml). Cytokines 

were purchased from PeproTech.  

 

Flow cytometry 

All antibodies were purchased from BD Bioscience, including anti-CD34-APC, anti-

CD43-FITC and anti-CD31-PE. CD34+ cells isolated from day 5 differentiation were 

filtered through 50 µm filter (Partec) before stained for FACS analysis. Cells were stained 

for 30 minutes at 4 degree in the dark then washed twice with PBS supplemented with 

2% FBS before flow cytometry. 4',6-diamidino-2-phenylindole (DAPI) was used for 

selection of live cells.  

 

Tube forming assay 

Endothelial cells were seeded into one well of 24 well plate (pre-coated with 250 ml 

Matrigel from BD Bioscience) in 0.4 ml EGM-2 medium (Lonza) (~100,000 cells/well).  

50 ng/ml VEGF (PeproTech) was added to induce vesicular tube formation. Tube 

formation was observed by light microscopy after 16 to 24 hours of incubation. 

 

 

 



	

	

142	

in situ hybridization and immunostaining 

Methods for in situ hybridization and immunostaining are described in chapter II. Rabbit 

anti-human CD144 (VE-Cadherin) was purchased from eBioscience. 
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Chapter V: Final Summary and Discussions 

 In its broadest sense, this thesis work demonstrated the notion of “translational 

epigenetics”. Instead of trying to directly correct specific genes on chromosome 21 in DS, 

which is not feasible due to the number of genes involved, we took an alternative 

approach to epigenetically rebalance the transcriptome of DS cells. By inducible 

inactivation of one chromosome 21 via XIST mediated chromosome inactivation, we 

showed chromosome wide transcriptional silencing of the targeted chromosome. Further, 

we show in cells that still carry the extra chromosome that this rebalancing of the 

transcriptome effectively normalized cellular defects associated with DS, demonstrated 

for the hematopoietic system for which cell phenotypes are best known. This 

demonstration of the effectiveness for DS phenotypes at the cellular level makes more 

conceivable potential development of a novel therapeutic strategy of “chromosome 

therapy” for DS. However, it also immediately provides a well-controlled human cellular 

model system for studying the basic biology of trisomy 21 pathogenesis in cell, which 

could also advance development of traditional therapies. The implications of these two 

aspects of DS will be the focus of the discussion below, but first I will briefly summarize 

the importance of this work for basic research in chromosome regulation.   

 

XIST RNA has a remarkable capacity to silence an autosomal chromosome 

 While the ability of XIST RNA to initiate X chromosome silencing in cis has 

been known for decades, scientists have been focusing on studying the mechanism 

behind this biological process. In this thesis work, we instead tested the feasibility of 

silencing a problematic extra autosome that impacts many children and adults. Results 
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showed a very comprehensive and efficient ability of XIST RNA to silence an autosome, 

in trisomic cells where there is no selection against silencing this chromosome. Hence, 

XIST mediated chromosome silencing is not specific to X chromosome sequences, but 

rather to the chromosome structure into which XIST is integrated. Several hypotheses 

have been proposed for how XIST RNA localizes and silences the X chromosome and 

our results clearly establish that XIST localization and silencing shows little if any 

specificity to the genomic sequence or topological structure of X chromosome. While not 

our focus here, we note that the robust ability of XIST to inactivate an autosome indicates 

that the strategy developed here would be applicable to other trisomies, such as trisomy 

13 and 18, which lead to death in early years of life. 

 

XIST-engineered DS iPSCs provides a needed model system to study initiation of 

human chromosome silencing by XIST 

 Given that X chromosome inactivation (XCI) normally occurs early in 

embryogenesis and human embryos are not accessible, current knowledge of the X 

chromosome inactivation process largely depends on experimental results from mouse 

models. Even with the invention of techniques for ESC isolation and iPSC 

reprogramming, in vitro human female PSCs tend to already have one X chromosome 

silenced precociously or have other epigenetic anomalies (Hall et al. 2008), thus a human 

cell model for studying the process of XCI from its initiation is still lacking. Although 

our trisomy silencing system is for chromosome 21, characteristics of XCI are shared 

with chromosome 21 silencing, such as XIST RNA coating, recruitment of various 

heterochromatic hallmarks, DNA methylation, and formation a DNA-dense of Barr body. 
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Therefore, besides being a valuable tool for DS research, our XIST-engineered DS iPSCs 

provide the field with the first human cell model for studying the process of XIST 

mediated chromosome silencing.  

 

Inducible chromosome silencing provides an isogenic and iso-epigenetic system to 

model human Down Syndrome cell pathologies 

 One of the biggest challenges for researchers to identify dosage sensitive genes or 

pathways responsible for DS symptoms is the genetic variations among DS individuals. 

Although trisomy 21 is the consistent chromosomal abnormality of DS, the clinical 

symptoms vary significantly among DS individuals. While some DS individuals are able 

to speak well and function close to more normal levels, others need lifelong help even for 

performing daily tasks. Notably, a significant proportion of DS pregnancies cannot even 

survive and end in miscarriage or stillbirth. Thus, trisomy 21 has both consistent and 

variable impacts on different DS individuals, but investigating this is thwarted by the 

broad genetic variation that exists between all individuals. This natural variation, and the 

genetic complexity of DS has made it difficult to clearly determine the direct effects of 

trisomy 21 on cells and different systems of the body. 

 An obvious approach to identify pathogenic genes or pathways is to compare cell 

phenotypes and transcriptome datasets from normal and disease individuals. However, 

due to the variation in symptoms seen between DS individuals and the genetic variability 

among all people (control and disease populations), it is difficult to establish which 

pathology is caused by specific trisomy 21 genes, or even the particular cell types and 

pathways impacted. Although mouse models of DS have been created to compare mice 
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with identical genetic backgrounds (except the presence of an extra chromosome), the 

species differences between human and mouse and certain weaknesses of available 

mouse models still make it difficult to extrapolate experimental findings, and some 

phenotypes are seen only in human or only in mice with DS.  

 Since the invention of iPSC reprogramming techniques, these pluripotent cells 

became a popular choice for modeling development of human diseases at the cellular 

level, allowing study of how defects arise in patients. However, significant genetic 

variations exist among iPS lines made from different individuals. Therefore, comparing 

iPS lines derived from different individuals is less useful than comparison of “isogenic” 

iPS lines derived from the same individual. However, even with this improvement, there 

are often still significant variations between isogenic iPS cell clones. Epigenetic variation 

can come from heterogeneity of the cell population reprogrammed, differences in 

reprograming of each cell clone, or epigenetic “drift” that is common during stem cell 

culture. Additionally, the process of reprogramming can be mutagenic and thus introduce 

genetic variations between iPSC lines from different reprogramming events or methods. 

Furthermore, the genome and epigenome of iPSCs is known to be unstable and prolonged 

culture of iPSCs may select for cells harboring alterations that promote faster growth. 

Therefore, direct comparisons between two different iPSC lines, even from the same 

individual, are often less informative, necessitating comparison of many distinct iPSC 

lines/clones before drawing strong conclusions.  

 For this work we generated an isogenic disomic subclone by isolating DS iPSCs 

that randomly lost the extra chromosome 21 during the process of culturing. This 

provides an isogenic disomic (normal euploid) line that is genetically identical except for 
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one chromosome 21 being lost. While this comparison is useful to include and can be 

informative, separately cloned and cultured isogenic iPSC sub-clones can accumulate 

epigenetic changes that influence their behaviors or phenotypes. In contrast, in our 

inducible chromosome silencing system, we compare essentially the same cell 

populations in parallel with the only difference being expression of two versus three 

active chromosome 21s. While there is a need to correct for any potential effect of 

doxycycline itself, this design minimizes other potential sources of variation which likely 

made it plausible for our results to reveal certain effects of trisomy 21, such as enhanced 

IGF gene expression and signaling in early hematopoietic progenitor cells (chapter III). 

 

Other regulators on chromosome 21 could play important roles in hematopoietic 

abnormalities 

 While transcriptional regulators are heavily involved in the control of the 

hematopoietic system, there is growing evidence to indicate that posttranslational 

regulation by miRNAs is also very important. Five miRNAs have been identified on 

chromosome 21, including miR-let-7c, miR-99a, miR-125b, miR-155, and miR-802. 

While several hematopoietic regulators on chromosome 21, including RUNX1, ERG, 

ETS2, are potential contributors for development of DS-AMKL, they are not highly 

expressed in DS-TMD or DS-AMKL cells. In contrast, Klusmann et al. showed increased 

expression of miR-125b in DS-TMD and DS-AMKL cells and inhibition of miR-125b 

expression inhibits their proliferation (Klusmann et al. 2010b). They also demonstrated 

that overexpression of miR-125b increases proliferation and self-renewal of MEPs, the 

precursor cells for megakaryocytes and erythrocytes. This is inline with our results 
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showing the overproduction of these two types of hematopoietic colonies occurs due to 

trisomy 21 (without GATA1s or other mutations), consistent with this as the initial 

driving event for DS-AMKL. Their finding suggests an oncogenic role of miR-125b in 

DS-AMKL. Additionally, miR99a, miR125b, and miR155 have been shown enriched in 

HSCs and, moreover, enforced expression of miR125b and miR155 in HSCs causes 

myeloproliferative disorder which progresses to acute myeloid leukemia (O'Connell et al. 

2010). All of these findings suggest a possible role of chromosome 21 encoded miRNAs 

in the pathogenesis of DS associated hematopoietic abnormalies. This is therefore an 

exciting area which could be further investigated in our well-controlled experimental 

system to study hematopoietic pathogenesis associated with DS. 

 

Altered chromatin states may contribute to hematopoietic abnormalities associated 

with DS individuals 

The process of hematopoietic differentiation is very complicated and tightly 

controlled by transcriptional programs that activate lineage specific and repress non-

lineage specific genes. As discussed in the introduction (chapter I), hematopoietic 

transcription regulators encoded on chromosome 21, such as RUNX1, ERG, and ETS2, 

are likely to contribute to hematopoietic abnormalities in trisomy 21. In particular, our 

findings implicating EHT as key to trisomy 21 effects fits well with other evidence that 

RUNX1 dosage impacts the production of hematopoietic progenitors (Banno et al. 2016) 

and that RUNX1 is involved in regulation of EHT. However, for lineage specification, to 

ensure appropriate maintenance of the transcription program, precise coordination 

between hematopoietic transcription factors and chromatin states is also required. Two 
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chromosome 21 genes, USP16 and HMGN1, known to be broadly involved in chromatin 

modifications and remodeling, have also been suggested to participate in pathogenesis of 

other common hematopoietic deficits associated with DS (although not necessarily the 

DS-TMD and DS-AMKL). 

USP16 encodes a deubiquitinase that counteracts the ubiquitination function of 

Polycomb repressive complex (PRC1), which is essential for self-renewal of multiple 

types of stem cells. A 1.5-fold increase in expression of Usp16 in HSCs isolated from 

Ts65Dn mice was reported to significantly reduce the global level of H2AK119 

ubiquitination and cause defective self-renewal capacity, suggested by failed bone 

marrow engraftment in secondary transplantation (Adorno et al. 2013). Notably, this 

defective self-renewal of HSCs due to Usp16 overexpression has been linked to aging 

(Souroullas and Sharpless 2013). Interestingly, certain phenotypes of aged HSCs from 

normal individuals mimic other types of hematopoietic abnormalities broadly implicated 

in DS, such as reduced self-renewal, myeloid-biased differentiation, and impaired 

lymphoid differentiation that may contribute to defective immune functions.  

Another recent study using Ts1Rhr mice, a mouse model of DS with triplication 

of 31 genes orthologous to human chromosome 21 genes, implicated chromatin changes 

due to the HMGN1 gene in etiology of DS-ALL. Lane et al. reported defective 

differentiation of progenitor B cells in the bone marrow and these cells exhibited 

increased self-renewal capacity in vitro, and upon introduction of common mutations 

found in DS-ALL these progenitor B cells promoted development of ALL (Lane et al. 

2014). Transcriptional profiling of these progenitor B cells revealed global reduction of 

H3K27me3 level on genes whose promoter is marked with both H3K27me3 and 
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H3K4me3, suggesting overexpression of these genes in Ts1Rhr progenitor B cells (Lane 

et al. 2014). Moreover, pharmacological restoration of H3K27me3 rescued the 

phenotypes observed in Ts1Rhr progenitor B cells, suggesting the involvement of these 

overexpressed genes in the pathogenesis of DS-ALL (Lane et al. 2014). Among the 31 

genes triplicated in Ts1Rhr mice, HMGN1 encodes nucleosome-binding proteins capable 

of promoting chromatin decompaction and modulating gene transcription. 

Overexpression of Hmgn1 in mouse B progenitor cells recapitulates transcription 

profiling and many phenotypes of progenitor B cells in Ts1Rhr mice (Lane et al. 2014). 

Therefore, HMGN1 triplication may underlie the development of DS-ALL. However, 

whether HMGN1 dosage effects may contribute to development of DS-AMKL is 

unknown. 

In sum, overexpression of certain genes on chromosome 21, such as USP16 and 

HMGN1, may have broader effects on the global chromatin states, which could influence 

many genes and pathways that contribute to development of leukemia. 

 

The long-term prospects that XIST-mediated chromosome silencing can potentially 

be developed as a treatment for DS children associated with leukemia 

In this thesis work we introduced a novel approach to epigenetically correct the 

chromosomal imbalance in DS cells “on demand”, and demonstrates for the first time that 

insertion of one gene can normalize a DS developmental defect at the cellular level, 

which we show the utility of this as an experimental strategy to examine DS pathogenesis 

and a potential strategy of developing “chromosome therapy” for DS patients in the 

future. 
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The accessibility of the cell type of interest is one key to the potential feasibility 

for chromosome therapy for the various medical challenges DS patients encounter. 

Currently, the hematopoietic stem cells (HSCs) are the only adult stem cell type in 

routine clinical use because they are easier to acquire (through isolating bone marrow 

cells, which are enriched for hematopoietic stem and progenitor cells), and they are able 

to reconstitute the damaged hematopoietic system after transplantation. Consistent with 

other findings (Maclean et al. 2012), our results clearly show that trisomy 21 increases 

production of hematopoietic progenitors, and thus trisomy 21 alone can cause this initial 

step towards the acquisition of DS-TMD and DS-AMKL. It is known that DS-AMKL is a 

multistep disease and DS children with TMD can have severe clinical effects, and are at 

high risk to acquire DS-AMKL before they reach the age of 4 (whether the DS-TMD 

appears clinically to be resolved or not) (Bhatnagar et al. 2016). Hence, theoretically it 

would be possible to correct bone marrow cells isolated from DS-TMD patients by XIST-

mediated trisomy silencing and then transplant back into the patient. This can 

theoretically prevent DS-TMD children from further acquiring DS-AMKL, which is 

more severe and requires chemotherapy. Although DS-AMKL patients have higher 5-

year survival of cytarabine-based chemotherapy when compared to non-DS-AMKL 

patients, they suffer with harsh side effects and toxicity, and the overall mortality rate is 

around 20% (Bhatnagar et al. 2016). While DS-TMD blasts already harbor the GATA1s 

mutations essential for further leukemia progression, it has been established that the 

GATA1s mutation alone (without trisomy 21) is not sufficient to drive the development 

DS-AMKL. In addition, this autologous transplantation would prevent the adverse effects 

due to immunocompatiability issues (of allogenic transplantations) and would avoid the 
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need for the time-consuming process to acquire a matched bone marrow donor. Moreover, 

although we did not examine the effect of trisomy silencing on the lymphoid 

compartment of the hematopoietic system, lymphoid cells can be derived from the 

hematopoietic progenitor cells studied here. Hence, this approach can potentially have 

applicability to DS-ALL as well, since DS-ALL patients have significantly worse 

prognosis and lowered overall survival rate in response to chemotherapy. Since cord 

blood is also enriched for Hematopoietic stem and progenitor cells (HSPCs) and could be 

an alternative source for stem cells and chromosome therapy for the greater 

hematopoietic risks for DS children, cord blood should be more routinely saved for DS 

newborns.  

 Despite these prospects, there are still several obstacles to any therapeutic 

application remain to be overcome. Genetic manipulation has been thought difficult in 

primary cells, especially for HSCs. HSCs are characterized by self-renewal capacity and 

multipotency, however, an ideal condition for culturing HSCs has been lacking and in 

vitro culture of HSCs often results in loss of these two critical properties. This has 

significantly limited the process of gene editing in hematopoietic stem cells in vitro. 

Initiation of XIST mediated chromosome silencing has been shown in mouse HSCs 

(Savarese et al. 2006), although not directly demonstrated in human HSCs. This can be 

tested in our system by turning on XIST expression at the stage where HSCs emerge. An 

alternative strategy to avoid any uncertainties about genetic engineering in HSCs is to 

produce them from patient derived iPSCs. This strategy has been sought for many blood 

disorders but was not demonstrated as feasible, because in vitro generated HSCs failed to 

engraft in bone marrow. However, a very recent study now describes the first 
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breakthrough, successful production of engraftable HSCs from human pluripotent stem 

cells in vitro (Sugimura et al. 2017). Although the efficiency for engraftment is low, this 

demonstrates the promise to further develop therapeutic strategies for DS associated 

hematopoietic disorders. Therefore, despite the challenges ahead, the possibility for 

XIST-based chromosome therapy merits further testing and development for select DS 

patients. 

 

Correction of DS hematopoietic abnormalities by XIST mediated trisomy silencing 

has implications beyond the hematopoietic system 

 Although this thesis work demonstrated the correction of cellular phenotypes 

mainly in the myeloid compartment of the hematopoietic system, it has implications 

beyond DS associated leukemia. One example is the defective immune system. Detailed 

mechanisms for the defective immune response and increased rate of respiratory 

infections in most DS individuals are still largely unknown and not extensively studied. 

However immune cells, such as B and T cells, belong to the hematopoietic system, 

making correction of hematopoietic abnormalities a potential path to improve the 

immunological system. Future work could investigate this by comparing the behavior of 

immune cells, using the inducible trisomy silencing shown here. One example, defective 

chemotaxis of neutrophils seen in DS could be tested using this system. 

 Another intriguing implication is that “normalizing” hematopoiesis may even 

have potential to improve some aspects of neurological deficits in DS individuals. 

Increasing evidence point to the interplay between the immune and neural systems and 

the involvement of immune and inflammatory responses in the development of 
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complicated neurodegenerative disorders, including Alzheimer’s Disease. Brain tissues 

are constantly under immunosurveillence to prevent damage, and several myeloid cells 

have been recognized to play essential roles in both health and diseases. For example, 

microglia are macrophages (member of the hematopoietic system) which reside in the 

central nervous system (CNS), participating in the development of neural circuits, 

maintenance of synapses, and neurogenesis (Gomez Perdiguero et al. 2015). Microglia 

are also responsible for defending the CNS against various types of pathogenic factors, 

and produce various inflammatory cytokines that may compromise the function and 

survival of neurons. Notably, emerging evidence suggests neuroinflammation is an 

important component of Alzheimer’s disease pathologies, a hallmark of which is 

accumulation of Aβ peptides in brain tissues, Aβ produced by cleavage of APP. In 

normal brain tissues, microglia recognize Aβ peptides and participate in the clearance of 

Aβ peptides through phagocytosis. One hypothesis for Alzheimer’s disease pathogenesis 

is the impairment of microglial clearance of Aβ peptides, and the production of 

inflammatory cytokines that may damage brain tissues. Whether microglia, a type of 

hematopoietic cell, are defective in DS brain tissues has not been established, however 

this serves as one example of how correcting components of the hematopoietic system 

could have unexplored broader benefits on the health and well-being of individuals with 

DS. 

 

Concluding remarks and future directions 

 Collective results presented in this thesis work demonstrate a novel approach to 

dosage compensate chromosome 21 genes in DS cells without complete elimination of 
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the extra chromosome 21, and establish that this improves several phenotypes commonly 

seen in DS hematopoietic cells. While an alternative concept holds that much of the DS 

pathologies are due to the physical presence of an extra chromosome that impacts cell 

function and fitness but not to the expression of genes on that chromosome (Sheltzer et al. 

2017), our results suggested the improved phenotypes were not caused by the physical 

presence of an extra chromosome 21, but by the specific developmental program 

controlled by genes on chromosome 21. Because trisomy silencing affected different DS 

cell types in opposite ways (increased proliferation on iPSCs, increased formation of 

neural stem cells, and decreased formation of hematopoietic progenitor cells), this ruled 

out the possibility that decreased hematopoietic differentiation might be due to an adverse 

effect of expressing a large non-coding RNA in the cells. The consistency between our 

results (comparing trisomy silenced cells to non-silenced cells) and results from other 

studies (comparing disomic to trisomic cells) provides a proof-of-principle for 

“chromosome therapy” for DS patients and validates the usefulness of our system for 

modeling and studying DS pathogenesis. Further, the iso-epigenetic feature of our system 

allows us to compare cells in a more controlled manner, with less variability, and identify 

pathogenic genes or pathways that might otherwise be obscured or difficult to detect. An 

example is the increased IGF signaling in trisomic hematopoietic progenitor cells 

(chapter III), which was not found by comparing disomic to trisomic cells (Maclean et al. 

2012).  

As described in previous sections, to better understand the pathogenesis of DS 

hematopoietic defects, the transcriptome profiling analysis on hemogenic endothelium–

like populations will help identify more dysregulated gene networks associated with the 
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defects. One candidate gene to look for is RUNX1, as its involvement in both normal and 

DS hematopoiesis has been reported (Chen et al. 2009; Banno et al. 2016). Additionally, 

miRNAs and chromatin modifiers are also of interest based on their broader effects on 

the whole genome and their dysregulations in DS leukemic cells (Klusmann et al. 2010b; 

Adorno et al. 2013; Lane et al. 2014). 

A key to successful chromosome therapy is the effectiveness of XIST-mediated 

chromosome silencing in the pathogenic cell types. Although iPSCs can theoretically 

differentiate into all cell types in the body, the process can be difficult and inefficient. 

Therefore, determining whether XIST RNA can silence a chromosome in differentiated 

cells (by inducing XIST expression later in the differentiation process) can significantly 

increase the potential of applying chromosome therapy clinically, especially for easily 

accessible cell types such as hematopoietic cells. Additionally, DS mouse models have 

well-characterized phenotypes throughout the body that can be tested for correction after 

targeted expression of Xist RNA from the extra chromosome. This will allow a more 

complete examination of XIST-mediated chromosome therapy on a living organism, 

which will be the key to the future development of chromosome therapy for DS patients. 
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