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ABSTRACT 

Over the last decade there has been a great effort to annotate noncoding 

regions of the genome, particularly those that regulate gene expression. These 

regulatory elements contain binding sites for transcription factors (TF), which 

interact with one another and transcriptional machinery to initiate, enhance, or 

repress gene expression. The Encyclopedia of DNA Elements (ENCODE) 

consortium has generated thousands of epigenomic datasets, such as DNase-seq 

and ChIP-seq experiments, with the goal of defining such regions. By integrating 

these assays, we developed the Registry of candidate Regulatory Elements 

(cREs), a collection of putative regulatory regions across human and mouse. In 

total, we identified over 1.3M human and 400k mouse cREs each annotated with 

cell-type specific signatures (e.g. promoter-like, enhancer-like) in over 400 human 

and 100 mouse biosamples. We then demonstrated the biological utility of these 

regions by analyzing cell type enrichments for genetic variants reported by genome 

wide association studies (GWAS). To search and visualize these cREs, we 

developed the online database SCREEN (search candidate regulatory elements 

by ENCODE). After defining cREs, we next sought to determine their potential 

gene targets. To compare target gene prediction methods, we developed a 

comprehensive benchmark of enhancer-gene links by curating ChIA-PET, Hi-C 

and eQTL datasets. We then used this benchmark to evaluate unsupervised 

linking approaches such as the correlation of epigenomic signal. We determined 

that these methods have low overall performance and do not outperform simply 
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selecting the closest gene. We then developed a supervised Random Forest 

model which had notably better performance than unsupervised methods. We 

demonstrated that this model can be applied across cell types and can be used to 

predict target genes for GWAS associated variants. Finally, we used the registry 

of cREs to annotate variants associated with psychiatric disorders. We found that 

these "psych SNPs" are enriched in cREs active in brain tissue and likely target 

genes involved in neural development pathways. We also demonstrated that psych 

SNPs overlap binding sites for TFs involved in neural and immune pathways. 

Finally, by identifying psych SNPs with allele imbalance in chromatin accessibility, 

we highlighted specific cases of psych SNPs altering TF binding motifs resulting in 

the disruption of TF binding. Overall, we demonstrated our collection of putative 

regulatory regions, the Registry of cREs, can be used to understand the potential 

biological function of noncoding variation and develop hypotheses for future 

testing.  
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CHAPTER I: Introduction  

INTRODUCTION 

The human genome is comprised of three billion base pairs, of which less 

than 2% are protein-coding exons1. The remaining 98% of the genome contains 

introns, noncoding RNAs, pseudogenes, repeat sequences, transposons, and 

regulatory elements1. Properly annotating these regions is difficult and requires the 

integration of multiple genomic, transcriptomic, and epigenomic assays. Accurate 

characterization of these noncoding sequences has important biomedical 

applications. For example, mutations in regulatory elements are linked with 

monogenic disorders such as polydactyly2, cleft palate3, and congenital heart 

disease4,5. Additionally, 80% of common genetic variants associated with human 

disease are in noncoding regions with many overlapping potential regulatory 

elements6. Therefore, to better understand mutations linked with human disease 

and genome regulation as a whole, we aim to produce a comprehensive 

annotation of regulatory elements in the human genome. 

 

PREDICTION AND VALIDATION OF REGULATORY ELEMENTS 

Regulatory elements in the human genome 

Regulatory elements are regions of DNA where proteins known as 

transcription factors (TFs) bind and interact with one another and transcriptional 

machinery to control gene expression1,7. While the genome likely has many 

different types of regulatory elements, with varying degrees of activity, the field 
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often classifies them into four generalized categories: promoters, enhancers, 

repressors, and insulators.  Promoter elements are proximal to transcriptional start 

sites (TSSs) of genes and are responsible for recruiting TFs and polymerase 

machinery to initiate transcription7,8. The core promoter is the minimal set of DNA 

elements required for transcription to occur. In humans, this includes the TSS, 

RNA polymerase binding site and general TF binding sites such as the TATA Box8. 

In addition to the core promoter, there are also proximal promoter elements where 

additional TFs bind to further promoter transcription7.  

Enhancers are regulatory elements that increase gene expression through 

TF interactions with a gene's promoter7,9,10. Initially discovered in viral 

genomes11,12, enhancers were first characterized in a mammalian genome by 

Banerji et al., who identified a lymphocyte specific enhancer within the Ig gene13. 

Enhancers can be located close to their target gene, like the Ig enhancer, or can 

be almost 1 Mb away such as the polydactyly linked ZRS element and its target 

SHH2,14. Generally, enhancers are more cell type specific than promoters and are 

responsible for regulating cell type specific gene expression15.  

Repressors (also referred to as silencers) are elements that suppress 

transcription7,16. Though repressors are not as well characterized as their 

enhancer counterparts, several examples have been identified in the human 

genome. For example, neuron-restrictive silencer elements (NRSEs) are regions 

that repress the transcription of neuronal genes in non-neuronal cells17. These 

elements have been reported near many neuronal genes such as STMN2 
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(SCG10), which is involved in neuronal growth18 and SCN2A, which encodes a 

voltage-gated sodium channel19. NRSEs contain binding sites for the REST 

(NRSF), a repressive TF20.   

Insulators are elements that block transcriptional regulation between two 

genomic regions (often nearby genes)7. A well-studied example of insulator activity 

in the human genome is at the imprinting control region (IRC) located between the 

H19 and IGF2 genes21,22. On the paternal allele, the IRC is methylated, preventing 

TF binding, and IGF2 is expressed. However, on the maternal allele, the IRC is 

unmethylated, allowing the TF CTCF to bind and block IGF2 from interacting with 

its upstream enhancer21,22.  While the exact biochemical mechanism of insulator 

activity is not well understood, it appears that CTCF is an important component of 

insulators23. 

The aforementioned examples of regulatory elements were characterized 

over a period of years using various biochemical and validation assays. The 

majority of these methods are low throughput and attempting to apply these 

methods on a genome wide scale is not practical. With the advent of sequencing 

technology and high throughput genomic assays, we can predict regions of 

regulatory activity in the human genome. The National Human Genome Research 

Institute established The Encyclopedia of DNA Elements (ENCODE) 

Consortium24,25, a large collaborative effort, with the aim of identifying all of the 

functional elements in the human genome. Through technological development 

and collaborative analysis, the ENCODE project, along with other large consortia 
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such as the Roadmap Epigenomics Project26, has generated thousands of high 

throughput sequencing datasets which can be integrated to define an encyclopedia 

of DNA elements. 

 

Assays used to characterize regulatory elements 

The ENCODE and Roadmap Epigenomics projects have generated 

thousands of high throughput sequencing experiments that assay components of 

the genome, transcriptome, and epigenome. Using these datasets, we can identify 

genomic regions bound by TFs and interpret their chromatin context to identify 

putative regulatory elements. 

ENCODE has generated over three thousand TF chromatin 

immunoprecipitation sequencing (ChIP-seq) experiments, identifying binding sites 

for hundreds of TFs in up to hundreds of cell types. By analyzing the binding sites 

of specific TFs, we can identify regions with potential regulatory function. For 

example, POLR2A is a subunit of RNA polymerase II (POLII) and co-localizes with 

regions of transcriptional activity such as promoters27. EP300 (p300), on the other 

hand, is known to bind at enhancers28,29. Other TFs, such as the previously 

mentioned CTCF, have multiple functions and are known to bind at enhancers, 

repressors, and insulators30. In addition to assaying specific TFs, the ENCODE 

and Roadmap projects have generated chromatin accessibility data, such as 

DNase-seq31,32 and ATAC-seq (assay for transposase-accessible chromatin using 

sequencing)33. These assays identify regions of open chromatin (called DNase 
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hypersensitivity sites (DHS) and ATAC peaks) presumably due to TF binding. 

While these methods do not report the specific TFs bound at these regions, they 

produce a genome-wide list of potential regulatory sites.  

We can further annotate TF binding sites and DHSs using histone 

modification ChIP-seq data. Histone proteins are core components of 

nucleosomes, which condense and package DNA into higher order chromatin 

structures34. Chromatin structure is regulated by biochemical modifications to 

histones, particularly to their tails, causing chromatin to relax or tighten. Therefore, 

specific types of histone modifications are enriched at regulatory elements. For 

example, promoters tend to have high levels of H3K4me3 (histone 3, lysine 4, tri-

methylation) and H3K27ac (histone 3, lysine 27, acetylation) and enhancers have 

high levels of H3K4me1 (histone 3, lysine 4, mono-methylation) and H3K27ac15,28.  

Repressed regions tend to have high levels of H3K27me3 (histone 3, lysine 27, tri-

methylation) and H3K9me3 (histone 3, lysine 9, tri-methylation)35. Therefore, by 

integrating these different types of epigenomic datasets, we can begin to define 

regulatory elements in the human genome at a genome-wide scale. 

 

Computational methods for predicting enhancers 

 Because of their association with human disease and estimated abundancy 

in the genome15, labs have primarily focused on identifying enhancers. While 

EP300 binding sites have been shown to successfully predict functional 

enhancers29, ENCODE has only produced EP300 ChIP-seq data for a small set of 
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cell types. Therefore, to identify enhancers, we need to rely on computational 

methods that utilize other types of epigenomic datasets. 

Over the last several years many labs have developed computational 

methods for identifying potential enhancers – a simple literature search for 

"enhancer prediction" generates hundreds of results. Most of these methods 

integrate histone modification ChIP-seq data to predict candidate enhancers, 

sometimes incorporating additional features such as DNA methylation36 or 

conservation37. Most top performing methods use supervised machine learning 

algorithms and require a known set of enhancers for training. Because there are 

few large collections of experimentally validated enhancers, many of these 

methods use complementary epigenomic data (e.g., EP30036,38 or H3K27ac ChIP-

seq37) for their gold standard. For example, both RFECS (Random Forest based 

Enhancer identification from Chromatin States)38 and REPTILE (Regulatory 

Element Prediction Based on Tissue-specific Local Epigenetic Marks)36, two 

random forest based approaches, train on cell type specific EP300 binding sites. 

Therefore, predictions from these methods may be biased; they identify false 

positives due to spurious non-functional EP300 binding or ChIP-seq noise or fail 

to identify classes of enhancers lacking EP300 binding (false negatives). 

Additionally, while RFECS and REPTILE have high performance, they require data 

from many different experiments. For optimal performance, RFECS uses 24 

histone modification ChIP-seq datasets as input; few cell types have this many 

assayed histone modifications. While the method can be modified to use just core 
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marks H3K4me1, H3K27ac, and H3K4me3, this results in decreased performance. 

REPTILE also requires extensive types of data with cell type specific DNA 

methylation and six histone modification ChIP-seq datasets in addition to 

"comparative deviation values" for these assays calculated across multiple cell 

types. Once again, only a small percentage of cell types surveyed by the ENCODE 

and Roadmap Epigenomics projects have all of these assays. While He et al. 

demonstrated that REPTILE can be trained on H1-hESCs and validated on other 

cell types, REPTILEs performance drops dramatically. Therefore, while supervised 

methods have high performance, they do not train and test on functionally 

validated ennhancers and are not applicable to the majority of cell types. 

An alternative approach to supervised enhancer prediction are chromatin 

segmentation methods such as ChromHMM39,40 and Segway41. These methods 

integrate multiple genomic signals and assign every position in the genome to a 

chromatin state (e.g., TSS, enhancer, repressed). For example, ChromHMM takes 

a binarized matrix of histone modification signals for 200 bp bins and using a 

Hidden Markov model, assigns each bin to a state based on the combinations of 

histone modifications and emission probabilities from neighboring regions. 

Because these methods are unsupervised, the user must designate the number of 

states before running the model and then manually label each state using 

complementary data and genetic annotations. Chromatin segmentation methods 

are advantageous because they do not require a gold-standard and they annotate 

regions other than enhancers such as promoters and insulators. They can also 
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identify sub-classes of elements such as strong and weak enhancers based on 

different combinations of signals. However, like some supervised methods, both 

ChromHMM and Segway require a lot of input data (at least eight histone 

modifications) so these methods are not applicable across all cell types. 

In addition to using epigenomic datasets, enhancers can be identified by 

assaying transcriptional activity. In 2010, the Greenberg lab observed bidirectional 

transcription at cortical neuron enhancers that resulted in the production of small 

noncoding RNAs, which they called enhancer RNAs (eRNA)42. They hypothesized 

that these transcripts were the result of interactions between the enhancer and 

target promoter during the transfer of POLII. Because of these findings, groups 

have predicted enhancers by identifying regions of transcription that are distal to 

annotated TSSs. For example, the FANTOM5 consortium used cap analysis of 

gene expression (CAGE) data to identify distal regions of bidirectional transcription 

that they believed were candidate enhancers43. In total, they identified more than 

43 thousand candidate enhancers for over 800 cell and tissue types. Similarly, the 

Siepal lab developed a computation method, discriminative regulatory-element 

detections from GRO-seq (dREG), to identify transcriptional regulatory elements 

(TREs) using GRO-seq data in eight cell types44. Overall, these methods tend to 

identify fewer candidate enhancers than epigenomic based methods, suggesting 

that either we currently only have the resolution to identify a subset of enhancers 

using transcriptional activity or that not all enhancers produce eRNA.  
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Methods for experimentally validating enhancer predictions 

In order to properly validate computation methods for enhancer prediction, 

candidate regions should be experimentally tested for enhancer activity. Reporter 

assays, such as those used by Banerji et al. to identify the Ig enhancers13, test 

enhancer activity by detecting the expression of a reporter gene9. Candidate 

enhancers are cloned into a plasmid upstream of a minimal promoter and a 

reporter gene such as luciferase or GFP. Then, these plasmids are transfected 

into cells; if the candidate region has enhancer activity, the cell will test positive for 

gene expression (e.g., via luminescence). While effective, this method can only 

test one candidate enhancer per experiment, so validating the thousands of 

predictions generated by most methods would be infeasible. 

To solve this problem, researchers have modified these methods to test 

thousands of regions in one experiment45-48. In massively parallel reporter assays 

(MRPAs), each candidate enhancer is assigned a unique bar code. When these 

regions are cloned into the plasmid construct, the enhancer is positioned upstream 

of the TSS and the barcode is downstream of the reporter gene's open reading 

frame. After co-transfection, enhancer activity is quantified by sequencing the 

produced mRNAs and computing the relative abundance of each tag. These 

methods can be used to systematically investigate how genetic variation affects 

enhancer activity45,46 or to identify sequences with enhancer activity from a 

synthetic library47. Similarly, STARR-seq (self-transcribing active regulatory region 

sequencing) developed by the Stark Lab, simultaneously tests thousands of 
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genomic sequences for enhancer activity48. STARR-seq uses a gene construct 

where the candidate enhancer lies between the open reading frame and poly-A 

site of the reporter gene. Therefore, if the tested region has enhancer activity, the 

gene is transcribed and the resulting mRNA contains the enhancer sequence. 

Computationally, this sequence can be isolated and mapped directly to the 

genome. Enhancers are then identified by scanning the genome for peaks of 

mRNA signal.  

While MPRA and STARR-seq methods allow one to test thousands of 

candidate enhancers simultaneously, each experiment is limited to testing in one 

cell type. Mouse transgenic assays, on the other hand, allow researchers to 

determine the tissue specificity of an enhancer29,49,50. In these experiments, a 

candidate enhancer is cloned into a minimal promoter construct containing the lacZ 

reporter gene. This construct is microinjected into a fertilized mouse egg which is 

then implanted in a female mouse. After 11.5 days of embryonic development 

(e11.5) embryos are harvested and stained to assay enhancer activity. Tissues in 

which the enhancer is active will stain blue. With these assays, the Pennacchio 

and Visel labs have tested hundreds of candidate enhancers, the results of which 

are in the VISTA enhancer database51.  

A major pitfall for all of these methods is that they do not assay enhancer 

activity in the candidate region's native chromatin context9. For reporter assays, 

MPRA, and STARR-seq, plasmids are transiently transfected into cells and 

therefore will have no chromatin organization. For the mouse transgenic assays, 
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the constructs are stably transfected and will integrate with the genome. However, 

the location of integration differs from the enhancer's original position, and 

therefore local chromatin context and interactions may vary. 

 In order to study enhancer activity in its native environment, labs have 

utilized CRISPR-Cas9 genome editing methods. Using region specific guide 

RNAs, labs can delete candidate enhancers and perform RNA-seq to determine 

the effect of the deletion on gene expression52-54. Additionally, tiling approaches 

such as MERA (multiplexed editing regulatory assay) and CREST-seq (cis-

regulatory element scan by tiling-deletion and sequencing) allow researchers to 

investigate large stretches of DNA to observe how systematically editing these 

regions effects gene expression55,56. With these methods, enhancer activity is 

measured by the decrease in target gene expression. This may not be a direct 

measure of enhancer activity due to regulatory elements that compensate for the 

deleted enhancer. 

 

LINKING DISTAL ENHANCERS WITH TARGET GENES 

 Though labs have developed experimental and computational methods for 

identifying candidate enhancers, determining the genes they regulate (i.e., target 

genes) still remains a challenge. Some enhancers target their nearest gene, such 

as the intronic Ig enhancers. However other enhancers, such as the ZRS element, 

target genes up to 1 Mb away2. Currently, researchers utilize both experimental 

and computational approaches for predicting target genes. 
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Experimental methods for to assaying three-dimensional chromatin structure 

Capture chromosome conformation, commonly referred to as 3C, is a 

method used to investigate interacting genomic loci57. Briefly, 3C cross-links 

interacting regions of chromatin then digests and ligates the ends of the DNA 

regions. To quantify the amount of ligated product, one performs qPCR using 

region specific primers. Though this method is limited by one knowing ahead of 

time which loci to test, it has been used to successfully characterize interactions 

between regulatory elements. For example, Tolhuis et al. used 3C to characterize 

enhancer-promoter interactions at the mouse Beta Globin Locus, concluding that 

DHSs in the locus control region interact with actively expressed genes58.  

3C has been modified to identify interacting loci without knowing them a 

priori. 4C (circular chromosome conformation capture/chromosome conformation 

capture–on-chip)59,60 for example, allows one to investigate all possible 

interactions with region of interest (referred to as "one to all" approach), while 5C 

reports all interactions within a given region (up to several Mb) (referred to as a 

"many to many" approach)61. Hi-C is the most high-throughput approach reporting 

chromatin interactions on a genome wide scale62. Until recently, the resolution of 

Hi-C was not precise enough to capture the majority of enhancer-promoter 

interactions. However, in 2014, the Aiden lab generated kilobase resolution in situ 

Hi-C data and demonstrated that they could identify CTCF anchored chromatin 

loops with a resolution of up to 5 kb63. In GM12878 they identified almost ten 



 

 

13 

thousand loops and determined they were enriched for promoter-enhancer 

interactions. These loops have subsequently been used to predict enhancer-

promoter interactions and train computational models (such as those mentioned 

below). However, recent preprint data from the Aiden lab suggest that disrupting 

these loops by knocking out a component of the cohesion complex has little effect 

on gene expression64. A variation on the Hi-C method, promoter capture Hi-C (CHi-

C), enriches for promoter interactions by adding a hybridization step before 

sequencing, which enriches for known promoter sequences65. CHi-C results in a 

ten-fold increase for promoter reads and therefore can be used to link candidate 

enhancers with these regions. 

Another widely used method for investigating genomic interactions is 

chromatin interaction analysis by paired-end tag sequencing (ChIA-PET)66. ChIA-

PET follows a similar protocol to Hi-C except an antibody is used to select for 

interactions mediated by a specific protein such as CTCF, RAD21 or POLII.  Using 

ChIA-PET, researchers have discovered distinct biological features associated 

with the interactions mediated by these proteins. For example, the Ruan lab 

reported significant biological differences between interactions generated by 

CTCF ChIA-PET data compared to POLII ChIA-PET data67. Enhancers and 

promoters in the CTCF interactions were much farther apart (as we also report in 

Chapter III) and genes anchored at these CTCF loops were more likely to be 

house-keeping genes, ubiquitously expressed across cell types. In contrast, most 

POLII interactions occurred within CTCF loops and overlapped cell type specific 
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enhancers. From these results, the Ruan lab concluded that CTCF brings together 

distant regulatory elements to form ubiquitous large domains and within these 

domains enhancers and promoters interact to create local, context specific loops. 

 

Computational methods for linking enhancers and genes 

While three-dimensional chromatin assays have been demonstrated to 

successfully identify interacting enhancers and promoters, these experiments (Hi-

C in particular) are extremely expensive and have only been performed in a small 

number of cell types. Therefore, labs have developed computational methods for 

linking enhancers with target genes. In several publications, the members of the 

ENCODE consortium have predicted target genes by correlating epigenomic and 

transcriptomic signals. This method is based on the hypothesis that enhancers are 

active in the same cell types in which their target genes are expressed. To link 

enhancers with genes, groups correlated a range of signals such as DNase6,68,69, 

H3K4me170, POLII70, and RNA-seq69. Each of these studies reported biologically 

relevant enhancer-promoter pairs with high correlation, but these methods have 

yet to be systematically evaluated using a gold standard. These methods are 

attractive because they are unsupervised and do not require cell-type specific 

experiments, but they have several major drawbacks. One, correlation methods 

cannot identify cell type interactions. Enhancers tend to be more cell type specific 

than promoters, and their activity will not correlate with their target gene if the gene 

is regulated by other enhancers in different cell types. Second, correlation based 
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methods are dependent on the breadth of data selected for the analysis. For 

example, performance may change depending on the number and type of samples 

(e.g., tissues, primary cells, cell lines) used for correlation. To determine the 

severity these problems, we need to evaluate correlation based methods 

systematically. 

Like signal correlation, PreSTIGE (Predicting Specific Tissue Interactions of 

Gene and Enhancers), developed by the Scacheri lab, is an unsupervised 

enhancer-gene linking method71. PreSTIGE predicts enhancer-promoter 

interactions by integrating ChIP-seq and RNA-seq data. First, PreSTIGE identifies 

cell type specific enhancers and genes by calculating the Shannon entropy, using 

H3K4me1 and RNA-seq respectively, across 12 cell types. PreSTIGE then links 

these cell type specific enhancers and genes using a linear domain model that 

considers both distance and CTCF binding sites. While this method predicts many 

enhancer-gene pairs with disease relevant applications, it only can identify links 

for cell-type specific genes. Genes that are ubiquitously expressed but are 

regulated by cell-type specific enhancers are not included in this analysis.  

To address some of the problems with unsupervised prediction methods, 

labs have developed supervised learning approaches for linking enhancers with 

their target genes72-74. These methods train on enhancer-gene pairs defined using 

ChIA-PET or Hi-C datasets and use many different types of features (e.g., histone 

modification signal, conservation, distance, correlation, expression) to predict 

pairs. While each of these methods reported high performance in their original 
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results, it is almost impossible to fairly compare them because they each use a 

different gold standard for training and testing. To illustrate this fact, we will 

compare three recently published methods: PETModule73, IM-PET72, and 

TargetFinder74. First, the methods used different definitions for enhancers. 

PETModule used EP300 peaks, IM-PET used the CSI-ANN algorithm with 

H3K4me1, H3K4me3, and H3K27ac data, and TargetFinder used consensus 

enhancer states called by ChromHMM and Segway. Second, each method used 

different three-dimensional chromatin data to generate enhancer-gene pairs. 

PETModule and IM-PET both used ChIA-PET data from Li et al.66 but PETModule 

also included Hi-C data from Jin et al.75 TargetFinder exclusively used Hi-C loop 

data from Rao et al.63. Finally, each method used a different scheme for generating 

negative enhancer-gene pairs. For each enhancer, PETModule labeled all genes 

within a 2 Mb window as negatives if they did not share a ChIA-PET or Hi-C link. 

IM-PET selected negative pairs by matching a contact frequency distribution, 

selecting one non-interacting promoter per enhancer. For its negative set, 

TargetFinder generated 20 non-interacting pairs by randomly selecting gene pairs 

to match the distance distribution between enhancer and promoter. Therefore, to 

accurately compare the performance of these methods, as well as unsupervised 

methods, we need to evaluated them using a consistent benchmark dataset. 

 

NONCODING VARIATION ASSOCIATED WITH PSYCHIATRIC DISORDERS  

Genetics of Psychiatric disorders 



 

 

17 

Schizophrenia, bipolar disorder, and major depressive disorder are 

prevalent, debilitating psychiatry disorders and little is known about their etiologies. 

Schizophrenia (SCZ) is characterized by a series of positive symptoms (e.g. 

delusions, hallucinations, and disorganized speech and behavior) and negative 

symptoms (e.g. diminished emotional expression and avolition)76. It affects 

between 0.3-0.7% of the adult population with age an age of onset between 18 

and 30 years old. Bipolar disorder (BPD) is characterized by patterns of manic and 

depressive episodes in which an individual may experience states of inflated self-

esteem, decreased sleep, and mood changes followed by periods of deep 

depression76. BPD affects about 1.4% of the US population and usually presents 

in patients in their mid-20s. Major depressive disorder is the most common of the 

three disorders affecting 7% of the adult population76. It is marked by a depressed 

mood and loss of interest or pleasure for an extended period. 

Studying these disorders is challenging due to their imprecise diagnoses 

and treatment regimens. The fifth edition of the Diagnostic and Statistical Manual 

of Mental Disorders (DSM 5)76 characterizes each disorder at length, but most 

patients do not present with a clear set of symptoms. Additionally, these disorders 

are part of a spectrum of psychiatric disorders, many of which have overlapping 

symptoms. For example, patients with Schizoaffective disorder experience 

delusions or hallucinations, like patients with schizophrenia, but will also suffer 

from manic or depressive episodes, similar to patients with bipolar disorder76. 

Therefore, depending on the patient's presentation of symptoms, an exact clinical 



 

 

18 

diagnosis is difficult. Treating these disorders is equally challenging. Treatment 

regimens may include therapy, mood stabilizers, antipsychotic drugs and 

electroshock therapy76-79. Finding a successful treatment is often a process of trial 

and error and varies greatly among patients. Therefore, learning more about 

genetic risk factors for these disorders will give the field a better understanding as 

to their etiologies and potential therapeutic targets.  

    Studies suggest that these disorders are highly heritable. With an estimated 

heritability of 60% for SCZ and BPD and 40% for MDD76,80-82. In addition to being 

highly heritable, these disorders share common genetic risk factors. By analyzing 

over 30 years of medical records from the Swedish national registry, Lichtenstein 

et al. estimated that over 50% of the genetic risk for SCZ and BPD is shared83. 

These results are concordant with findings by the Psychiatric Genomics 

Consortium (PGC) which estimated a SNP based correlation of 0.68 between SCZ 

and BPD, 0.47 between BPD and MDD, and 0.43 between SCZ and MDD84. These 

results suggest that these three psychiatric disorders share common genetic risk 

factors.  

During the mid 2000's, groups started to investigate the role of common 

genetic variation in the onset of human disease using genome wide association 

studies (GWAS). GWAS operate under the hypothesis that many common variants 

(greater that 1% frequency in the population) each contribute a small amount to 

disease risk85. These studies analyzed large cohorts of affected and healthy 

individuals to determine if common genetic variants are enriched in the affected 
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population and therefore associated with the disease. While GWAS were 

successful in identifying hundreds of variants associated with many different 

diseases, for psychiatric disorders they were only able to identify a small number 

of associations. For example, of the nine SCZ GWAS published between 2007 and 

2011, only four studies reported variants meeting a genome wide significant 

threshold resulting in only 11 significant loci86. Many regions were just under 

genome-wide significance thresholds, and comparing across studies revealed 

common risk genes between the three disorders. Variants near ANK387-91, 

CACNA1C88-90,92 and the majority histocompatibility complex93-99, were all been 

reported as associated with schizophrenia, bipolar disorder, and major depressive, 

often by multiple studies. Therefore, associations with these regions are 

replicatable across disorders and presumably by increasing sample size, more loci 

will reach genome wide significance. This was the case for the Schizophrenia 

Working Group of Psychiatric Genomics Consortium, who reported over 100 novel 

genomic regions associated with schizophrenia after analyzing over 100 thousand 

individuals. Though this study and subsequent large-scale analyses were 

successful in identifying hundreds of variants associated with psychiatric 

disorders, the majority of these variants lie in noncoding regions of the genome 

and therefore understanding how they may contribute to disease is not well 

understood. 

 

Interpreting GWAS variants with epigenomic data 
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Over the last decade, genome wide association studies (GWAS) have 

identified thousands of genetic variants associated with human disease. However, 

the majority of these variants are in noncoding regions of the genome and 

determining how they contribute to disease remains a challenge. To aid in 

interpreting genetic variants, researchers have integrated epigenomic datasets 

such as DNase-seq, TF ChIP-seq and histone modification ChIP-seq data to 

annotate surrounding noncoding regions. 

One common application is to determine disease relevant cell and tissue 

types. Using epigenomic datasets and subsequent predicted regulatory regions, 

many groups have developed methods for analyzing enriched cell types for GWAS 

variants6,26,39,100,101. Group have repeatedly reported SNPs associated with blood 

cell traits are enriched in regulatory regions active in K562 (an erythroid leukemia 

cell line)39, autoimmune SNPs are enriched in regulatory regions active in T cells 

and B cells26,100,102, and SNPs associated with cholesterol levels are enriched in 

liver regions26. While cell type enrichments from these analyses may seem 

obvious, there are important biological applications. These results can give new 

insights for disease pathology and suggest cell types to consider for therapeutic 

targets. For example, in 2012, the Stamatoyannopoulos lab reported that SNPs 

associated with multiple sclerosis were enriched in DHSs active in CD3+ T cells 

and CD19+/CD20+ B cells6. At the time, the role of T cells in multiple sclerosis was 

well established, but recent evidence also suggested B cells may also play 

important role and have therapeutic applications103. Since, clinical trials have 
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demonstrated that Ocrelizumab, an anti-CD20 antibody, can lower disease activity 

and progression compared to traditional treatments104. Therefore, analyzing cell 

type enrichments can give further insight into biological mechanisms of disease 

and highlight potential therapeutic strategies. 

In the case of schizophrenia, the schizophrenia working group of the PGC 

previously reported that variants were enriched in cell type specific H3K27ac peaks 

from brain tissues and B cells105. While the enrichment in brain was not surprising, 

the enrichment in B cells was intriguing as it remained significant even after 

removing SNPs in the major histocompatibility complex (MHC). As the authors only 

performed this analysis using data from 35 cell types, reanalyzing enrichment for 

these SNPs as well as other psychiatric associated variants using a larger panel 

of cell types is of great interest.  

Epigenomic datasets can also be used to predict the biological function of 

disease associated variants. The Kellis and Snyder labs have summarized 

intersections with epigenomic datasets in their variant annotation databases 

HaploReg106 and RegulomeDB107. For each variant, users can explore overlapping 

histone modification, DHS, and TF peaks and TF motif sites. RegulomeDB even 

supplies a score of how likely the variant is to disrupt TF based on overlapping 

peaks and TF motifs. 

Groups have also annotated the functional consequences of genetic 

variants by correlating changes in gene expression and the epigenomic landscape 

with genotypes. Now with the relatively low cost of RNA-seq, genotyping arrays, 



 

 

22 

and whole genome sequencing, large consortia now have the ability to detect 

expression quantitative trait loci (eQTLs) for thousands of genes in many different 

cell types. One of the largest efforts to date, The Genotype-Tissue Expression 

(GTEx) project, aims to of study the relationship between genetic variation and 

gene expression across different human tissues108. During the second phase of 

the project, the consortium identified over 1 million eQTLs in 44 tissues. eQTL 

methodology can also be applied to correlate changes in histone modification 

signal or chromatin accessibility with genotype. Groups have identified hundreds 

of histone modification QTLs109,110 and DNase QTLs111 using data lymphoblastoid 

cell lines generated by the HapMap112 and 1000 genomes projects113,114. 

While QTL based methods require hundreds of genotyped individuals to 

observe significant trends, we can gather similar types of information at a cell type 

specific level by looking for allelic imbalance at heterozygous loci. By calculating 

the ratio of alleles from high-throughput sequencing reads, one can test whether a 

variant results in an allelic imbalance. Groups have analyzed TF ChIP-seqn115,116, 

DNase-seq102 and RNA-seq data117 for sites of allelic imbalance and in doing so 

have uncovered mapping biases. It has been demonstrated that there are biases 

towards the reference allele118-121. To correct this bias, groups have suggested 

using an allele sensitive mapping tool, such as GSNAP122, or map reads to 

genomes containing the reference and alternative alleles, or masked positions121. 

Ultimately, results from both functional characterization, eQTL, and AS 

analysis can be validated experimentally to test whether the observed correlation 
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or imbalance is directly caused by variant in question. Many groups have tested 

the effect of alleles on enhancer activity using luciferase assays and Vockley et al. 

even pioneered a MPRA version123. However, as previously mentioned, these 

types of assays do not account for local genomic context. Therefore, as CRISPR-

Cas9 technology improves to edit individual nucleotides124,125, more labs will be 

effect of genomic variants using single nucleotide genomic editing.  
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CHAPTER II: Creating a Registry of Candidate 
Regulatory Elements for Human and Mouse Genomes 
 
 
PREFACE 

Results from this chapter were adapted from  

Moore*, Purcaro*, Pratt*, Epstein*, Shoresh*, Adrian*, Kawli*, Davis*, Dobin*, 
Kaul*, Halow*, Van Nostrand*, Freese*, Gorkin*, He*, Mackiewicz*, The 
ENCODE Consortium. Cherry, Myers, Bing Ren, Graveley, Stamatoyannopoulos, 
Gerstein, Pennacchio, Gingeras, Snyder, Bernstein, Wold, Hardison, and Weng. 
"ENCODE Phase III: Building an Encyclopaedia of candidate Regulatory 
Elements for Human and Mouse," 
 
which is currently under review at Nature. 

Len Pennacchio's lab tested candidate enhancers using transgenic mouse 

assays, the results of which are in Figure 2.7 Tables 2.4-6. I performed all 

analysis and generated all the figures in the chapter. Michael Purcaro and Henry 

Pratt designed, engineered and implemented the online visualization tool 

SCREEN (Search Candidate Regulatory Elements by ENCODE). 

 

ABSTRACT 

Here we described the Registry of candidate Regulatory Elements (cREs), 

which we defined using chromatin accessibility, histone modification and 

transcription factor occupancy data. The Registry currently contains 1.31 M human 

and 0.43 M mouse cREs, covering hundreds of biosample types. The cRE 

landscape recapitulates the current understanding of cellular identity, tissue 

composition, developmental progression, and disease-associated genetic 
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variants. Aided by a dedicated visualization engine called SCREEN 

(http://screen.encodeproject.org), the Registry is a resource for exploring 

noncoding DNA elements and their variants. 

 

INTRODUCTION 
 
 Over 98% of the human genome is noncoding; less than 2% composes 

protein coding exons. A portion of these noncoding bases contain regulatory 

elements where transcription factors (TF) interact to control gene expression1,7. 

There are several classes of regulatory elements including promoter, enhancers, 

repressors, and insulators each with their own regulatory roles and epigenomic 

features. Identifying regulatory elements has important biological implications for 

studying gene regulation, cell type differentiation, and human disease. 

Because of their cell-type specificity and long distance from TSSs, many 

groups have aimed to annotate enhancers. Enhancers are genomic elements that 

regulate and increase gene expression through interacting transcription factors.  

Using massively parallel report assays, STARR-seq, and mouse transgenic 

assays labs have generated collections of experimentally validated enhancers. For 

example, The VISTA enhancer browser is a collection mouse and human genomic 

regions that were tested for enhancer activity using transgenic mouse assays 

(Figure 2.2)51. These regions were selected using conservation49, EP300 ChIP-

seq data29, and/or H3K27ac ChIP-seq data50. However, this is still a relative small 
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collection of validated enhancers and it far from annotating every enhancer in the 

human and mouse genomes. 

Over the last few years many labs have developed enhancer prediction 

algorithms that integrate data from the ENCODE and Roadmap Epigenomics 

projects. Histone modifications H3K4me1 and H3K27ac and TF EP300 are 

enriched at enhancers so by integrating these datatypes, along with other 

epigenomic data, lab have generated genome wide lists of predicted enhancers. 

While some of these methods have high performance, the majority do not have 

practical biological applications. Some methods such as RFECS38 and REPTILE36, 

are supervised methods requiring a positive set of enhancers for training. These 

methods also require a large amount of input data in some cases requiring over 

20 histone modifications. Additionally, these prediction methods are designed to 

only identify potential enhancers; they do not predict other types of regulatory 

elements. Unsupervised methods of genome segmentation, such as ChromHMM, 

generate chromatin state maps genome wide40. Using a Hidden Markov Model, 

ChromHMM labels the genome with regions having promoter, enhancer, 

transcription, and repressive features. While powerful, these methods also require 

a lot of input data (up to eight histone modifications) and are only able to segment 

regions at a resolution of 200bp making comparisons across cell types difficult.  

In this chapter, we introduce the Registry of candidate Regulatory Elements 

(cREs), collection of putative regulatory regions in human in mouse. We assigned 

cREs functional annotations (i.e. promoter-like, enhancer-like) based on 
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computational methods that we experimentally validated. We compared the 

Registry with other methods element prediction finding that our method is 

concordant with other epigenomic data based methods. Finally, we demonstrated 

that these cREs have biological implications as cell types cluster based on cRE 

activity and variants reported by genome wide association studies are enriched in 

cREs active in disease relevant cell types. 

 

RESULTS 

Cell Type Specific Enhancer Prediction  

We began by developing a method for tissue-specific enhancer prediction 

that met the following criteria: One, our method needed to be unsupervised. While 

we had a collection of experimentally validated enhancers from reporter assays, 

mouse transgenic assays, and STARR-seq experiments, these data were only 

from a small number of cell types. Therefore, while we developed and tested 

models using these validated regions, our method did not require them. Two, we 

needed to use our method to predict enhancers across hundreds of cell types. 

While the ENCODE consortium generated hundreds of genomic assays in cell 

lines such as K562 and GM12878, the majority of cell types only have a handful of 

experiments such as DNase-seq and histone modification ChIP-seq. Though we 

may be able to develop a more accurate enhancer prediction model using multiple 

data types (e.g., RAMPAGE and TF ChIP-seq), this model could not be applied to 

the majority of cell types.  
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Mindful of these requirements, we decided to develop our enhancer 

prediction model using data and experimentally validated regions from embryonic 

mice. During the third phase of the ENCODE project, production labs generated a 

dense matrix of genomic data surveyed across twelve tissues in up to eight 

embryonic stages. The Ren lab assayed nine histone modifications across 72 

embryonic tissue-time points (Figure 2.1) and the Wold and Ecker labs generated 

matching RNA-seq and whole genome bisulfite sequencing data (WGBS). 

Additionally, the Stamatoyannopoulos lab produced DNase-seq data for 18 of 

these tissue-time points including limb, midbrain, hindbrain, and neural tube at 

embryonic day 11.5 (e11.5). In addition to this expansive collection of genomic 

data, we established collaborations with the Pennacchio and Visel labs who 

maintain the VISTA enhancer browser. As of November 2015, there were 1,994 

tested regions in the VISTA database; 228 were active in limb, 301 were active in 

midbrain, 271 were active in hindbrain, and 193 were active in neural tube. 

Therefore, we decided to develop our enhancer prediction method using genomic 

data and experimentally validated enhancers in mouse limb, midbrain, hindbrain, 

and neural tube tissues at e11.5. 

To develop our unsupervised enhancer prediction method, we went through 

two rounds of testing. First, we tested which data type was best for anchoring 

predictions (i.e., which peaks we should center our predictions on). Second, we 

tested methods for ranking these peaks (i.e., what type of signal or combinations 

of signals are most predictive). To begin, we tested anchoring predictions on 
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H3K27ac, H3K4me3, H3K4me1, and DNase peaks (further referred to as DNase 

hypersensitivity sites – DHSs) (Table 2.2). To fairly compare performance across 

the different data types, we selected the top 20,000 peaks from each dataset and 

then set each peak to a uniform width of 300 bp. On average, we achieved the 

highest performance anchoring on DHSs with an average AUPR of 0.36, followed 

by H3K27ac peaks with an average AUPR of 0.33 (Table 2.2). When we analyzed 

individual tissues, DHSs had the best performance for limb, hindbrain, and neural 

tube whereas H3K27ac peaks had the best performance for midbrain (Figure 2.4, 

Table 2.2). Because DHSs had the highest average AUPR and were the top 

predictor for three of the four tissues, we decided to anchor our enhancer 

predictions on DHSs.  

Our next step was to evaluate different methods of ranking DHSs. We 

tested ranking by different histone modification signals (H3K27ac, H3K4me3, 

H3K4me1, H3K9ac, H3K36me3, and H3K27me3) and DNA methylation signal. 

We also tested combining DNase with histone modification and methylation 

signals. We were unable to simple average these signals, due to differences in 

data processing. Therefore, to combine signals for region, we averaged its DNase 

signal rank and histone modification/methylation rank generating a metric we 

referred to as "average rank." In general, the best performing method was ranking 

DHSs by the average rank of DNase and H3K27ac signals (Figure 2.5, Table 2.3). 

To validate our method, the Pennacchio and Visel labs tested our enhancer 

predictions using transgenic mouse assays. For limb, midbrain, and hindbrain, we 
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curated a ranked list of predictions and selected three tiers of regions to test: ranks 

1-20, ranks 1,500-1,515 and ranks 3,000-3,015 (Tables 2.4-2.6). In general, higher 

ranking regions were more likely to show enhancer activity than lower ranking 

regions in their predicted tissue (Figure 2.6). For example, in limb, 70% of the top 

ranked regions had enhancer activity in limb compared to 40% and 20% in the 

middle and bottom tiers respectively. In addition to the predicted tissues, we also 

observed activity in biologically similar tissues for some of the tested regions. For 

example, mm154, a high-ranking midbrain prediction, was active in midbrain, 

forebrain, hindbrain, neural tube and eye (Figure 2.7a, Table 2.4) and mm1489, a 

high-ranking hindbrain prediction, was active in hindbrain, midbrain and neural 

tube (Figure 2.7b, Table 2.5). High H3K27ac signal in these tissues supported this 

additional enhancer activity (right panels Figure 2.7). In contrast, mm1485, a high-

ranking limb prediction, is only active in limb tissue (Figure 2.7c, Table 2.6) and we 

did not observe high H3K27ac signal in tissues other than limb. These results 

suggested that our unsupervised method of enhancer prediction, which combines 

DNase and H3K27ac data, was capable of successfully identifying tissue-specific 

enhancers. 

 

Developing a Registry of Candidate Regulatory Elements  

Since we developed a computational method that successfully identified 

active enhancers, our next step was to use this model to curate a collection of 

putative enhancers across human and mouse cell-types. Even though our method 
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only required DNase and H3K27ac data, only a small percentage of ENCODE and 

Roadmap cell types had both of these assays. In humans, of the 540 cell types 

surveyed by DNase and H3K27ac, only 58 had both assays while in mouse only 

23 of 131 cell types had both DNase and H3K27ac (Figure 2.8). Additionally, our 

prediction method was limited in that it only identified potential enhancers; it did 

not define other types of regulatory elements such as promoters, insulators, or 

repressors. Using DNase, H3K4me3, and gene expression data, we demonstrated 

that by using a method analogous to our enhancer prediction method, we could 

predict candidate promoters (Figure 2.9, Tables 2.7-2.8). Because of these 

concerns, we decided to adapt our method to make it applicable to more cell and 

tissues types as well as flexible enough to identify other types of regulatory 

elements. With our new method, we aimed to create a collection of putative 

regulatory regions across human and mouse that we called the registry of 

candidate regulatory elements (cREs).  

For both our enhancer and promoter prediction methods, anchoring 

predictions on DHSs consistently resulted in the best overall performance. 

Because the boundaries of DHSs are generally consistent across cell types (Figure 

2.10a), we decided to anchor cREs on a consensus set of DNase accessible 

regions, which we call representative DHSs (rDHSs). To create rDHSs in humans, 

we curated over 48 million high-quality DHSs (FDR < 0.1%) from 449 DNase 

experiments and grouped them into overlapping clusters (Figure 2.10b). For each 

cluster, we selected the DHS with the highest signal as the rDHS and discarded 
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overlapping DHSs (Figure 2.10c). Using the selected rDHSs and the remaining 

non-overlapping DHSs we iteratively repeated the clustering and selection steps 

until all DHSs overlap at least one rDHS. For humans, we defined over 2 million 

rDHSs, and for mouse, with 8.6 million high-quality DHSs from 62 datasets, we 

defined about 1 million rDHSs. 

To classify an rDHS as a cRE, we integrated DNase data with H3K4me3, 

H3K27ac, and CTCF data, adopting similar approaches to our enhancer and 

promoter prediction schemes. However, comparing these datasets and choosing 

consistent cutoffs is complicated due to differences in data processing pipelines, 

sequencing depth, and assay protocols. For example, DNase-seq, CTCF-ChIP-

seq, and histone modification ChIP-seq experiments are all processed using 

different pipelines at the ENCODE data coordination center (DCC). Signal from 

ChIP-seq experiments is normalized using input data while signal from DNase is 

dependent on sequencing depth. Additionally, even for data that has been 

processed using the same pipeline, such as H3K27ac experiments, signal files are 

not comparable across cells types (Figure 2.11a). Therefore, to normalize signal 

across assays and cell types, we took the log of the average signal across an rDHS 

and converted it to a Z-score (Figure 2.11). This resulted in an approximately 

normal distribution of signals for each cell type. For each assay and cell type, we 

assigned an rDHS a signal Z-score. We refer to a max Z-score as the maximum 

Z-score for the rDHS across all cell types for the particular assay (DNase, 

H3K4me3, H3K27ac, or CTCF). While this method may bias against cell types, 
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such as embryonic stem cells that have higher numbers of active cREs, we 

decided error on the side of being more conservative rather than over call 

elements. 

Using this signal normalization scheme, we required rDHSs to meet two 

criteria to be classified as a cRE. One, the rDHS must have a max DNase Z-score 

greater than 1.64 (95 percentile using one-tailed test). This filters out low signal 

rDHSs. Two, the rDHS must also have a max Z-score > 1.64 for either H3K4me3, 

H3K27ac, or CTCF. This step filters out rDHSs that may be due to spurious, 

nonfunctional transcription factor binding. These two requirements (DNase max Z 

> 1.64 and ChIP-seq max Z > 1.64) do not need to occur in the same cell type 

since only 3% of cell types have all four assays. However, cREs that have high 

DNase and one of the three ChIP-seq signals in the same cell-type are given a 

special designation as concordant cREs (approximately 55% of human cREs and 

52% of mouse cREs). Using the classification trees in Figures 2.12 and 2.13, we 

classified cREs into three groups (cREs with promoter-like signatures (PLS), cREs 

with enhancer-like signatures (ELS), and CTCF-only cREs) based on max Z of 

ChIP-seq signals and distance from TSS. We refer to these groups as cell-type 

agnostic classifications. In total, we curated 1.3 million cREs in human, and 432 

thousand cREs in mouse which comprise 20.8% and 8.8% of their respective 

genomes (Figure 2.14). We assigned each of these cREs a unique accession, with 

prefixes EH37E for human and EM10E for mouse. 
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After defining cREs, we next sought to determine the cell-type specific 

activity of each cRE across hundreds of human and mouse cell types. For cell 

types with DNase and all three ChIP-seq assays, there were 16 possible 

combinations of these four signals. Since we only considered a cRE as active in a 

cell type if it has a DNase Z-score > 1.64, we condense these 16 possible states 

into eight active states and one inactive state (2.15a). To simplify this classification 

scheme, we aimed to further condense these states into five groups: PLS-cREs, 

ELS-cREs, CTCF-only cREs, DNase-only cREs, and inactive cREs.  To aid in 

classification, we used GM12878 as a test case (Figures 15,16). We separated 

cREs in each of the nine states based on TSS proximity, resulting in 18 sub-states 

(Figure 15a). For cRES in each of these sub-states, we calculated the average 

POLII (Figure 2.15b), EP300 (Figure 2.15c) and RAD21 ChIP-seq signal using 

experiments in GM12878. We predicted POLII, which is present at active 

transcription start sites, should be highest at PLS elements. EP300, a TF known 

to bind at active ELS elements28, should be the highest at enhancer-like elements, 

and RAD21, part of the cohesion complex that is known to localize with CTCF, 

should be the highest at CTCF-only elements. Using the median signal values for 

each TF, we compared the 18 sub-states and observed that like sub-states formed 

clusters (Figure 16a,b). For example, distal cREs with H3K27ac z-scores > 1.64 

have EP300 high signal and low POLII and RAD21 signals (Figure 16a). Based on 

these plots, we assigned each of the 18 sub-states to one of the five groups (Figure 

16c) which in the case of GM12878 results in 36,022 PLS, 27,739 ELS, 10,913 



 

 

35 

CTCF-only and 16,085 DNase-only cREs (Figure 16d). As groups PLS, ELS, and 

CTCF-only cRES are enriched in POLII, EP300, and RAD21 signals respectively 

(Figure 16e).  Using this method, we classified cREs into cell-type specific groups 

for the 21 cell types with all four assays. For PLS, ELS, and CTCF-only groups, 

we plotted the saturation curve across the 21 cells types (Figure 2.17). There are 

more ELS cREs than PLS cREs, which we would expect since enhancers are more 

likely to be cell-type specific than promoters15. For the majority of cell types, we do 

not have all four genomic assays, but we are still able to combine sub-states into 

simplified groups. We listed all possible state-group classification schemes in 

Figure 2.18. In total, we assigned each human cRE to a group in 620 cell types 

and each mouse cRE to a group in 138 cell types. 

After generating cREs for human and mouse and determining their cell-type 

specificity, we wanted to compare cREs between species. We mapped mouse 

cREs to the human genome using UCSC's liftover tool. 20% of human cREs 

overlapped a mouse cRE (52% of total mouse cREs), which we refer to as 

orthologous cREs. We noticed that larger percentage of orthologous cREs were 

PLS cREs compared to either human or mouse cREs as a whole.  

 

Comprehensiveness of the Registry of cREs 

First, we examined how many GENCODE-annotated TSSs (V19 for 

human and M4 for mouse) were covered by the current version of the Registry of 

cREs. For human, 67% of all annotated TSSs and 72% of protein-coding TSSs 
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overlap a cRE. When we searched +/- 2 kb around each TSS, to account for 

possible misannotation, 92% of all TSSs were proximal to at least one cRE. 

Coverage is similarly high in mouse, despite having far fewer cREs, with 61% of 

all annotated TSSs overlapping a cRE and 80% having at least one proximal 

cRE. 

Second, we analyzed how rapidly the total number of unique rDHSs 

saturated when we increase the number of covered cell types. In ENCODE 

Phase II, Steven Wilder and Ian Dunham modelled DHS saturation using a 

Weibull distribution and estimated that they had discovered around half of the 

total DHSs25. We replicated this analysis using the 460 DNase datasets that we 

used to create the rDHSs. The saturation curves of rDHSs follow Weibull 

distributions, reaching a plateau at 1.66 M rDHSs with FDR < 0.1% and Z-score 

> 1.64 (Figure 2.17). Because only a subset of such rDHSs can be cREs (those 

with a high H3K4me3, H3K27ac, or CTCF Z-score in at least one cell type) we 

estimate that we have identified at least 78.9% of total cREs in human. We 

performed the same saturation analysis for mouse but could not reach a reliable 

estimate due to the smaller number of input tissue types.  

Third, we computed the Registry's coverage of H3K27ac and H3K4me3 

peaks (FDR<0.01) in cell types with ChIP-seq data but no DNase data. The 

Registry covered 90 ± 8% of H3K4me3 peaks (74 cell types), and 87 ± 5% of 

H3K27ac peaks (54 cell types) (Figure 2.20) The coverage was equally high for 

mouse, despite a smaller number of DNase experiments for building the mouse 
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Registry: 88 ± 5% of H3K27ac peaks (69 tissue–time-points) and 96 ± 8% of 

H3K4me3 peaks (74 tissue–time-points) were accounted for (Figure 2.21) The 

coverages for H3K4me3 peaks were low for several human and mouse cell types. 

The average -log(FDR) of the H3K4me3 peaks in these datasets were low (Figure 

2.22)  When we visually inspected the two datasets with the lowest coverage (CD-

1 megakaryocyte and GR1-ER4 in mouse), we confirmed that the peaks that were 

not covered by the Registry had low signals and were likely false positives by the 

peak calling algorithm MACS2. 

Therefore, when judged against gene annotations and epigenomic 

datasets, the human Registry appears to be comprehensive. It covers almost 80% 

of all cREs and 85% of elements marked by H3K4me3 or H3K27ac. The mouse 

Registry is less comprehensive than the human Registry, but we expect that it will 

continue to grow with experiments performed on additional cell types.  

 
Comparison with Previous Defined Regulatory Regions  

To further validate our approach, we compared the cREs to previously 

defined regulatory elements. Like cREs, ChromHMM regions are defined using 

epigenomic datasets generated by the Roadmap and ENCODE projects. Using 

states from a ChromHMM model, which was implemented using eight histone 

modifications and CTCF40, we found that the overlap between the model and our 

cREs was highly concordant. Of the top 10,000 ranked PLS cREs (ranked by 

H3K4me3 Z-scores), 90% overlapped ChromHMM TSS states while 85% of the 

top 10,000 ranked ELS cREs (ranked by H3K27ac Z-scores) overlapped 
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ChromHMM high-signal enhancers states. The overlap decreased for lower 

ranking ELS cREs, but the overlap with ChromHMM low-signal enhancers 

increased; 82% of the ELS cREs ranked above 20,000 overlap with ChromHMM 

enhancers or low-signal enhancers (Figure 2.26a,b). We also compared the cREs 

for five e11.5 and six e14.5 mouse tissues (tissues with DNase data) with the 

ChromHMM states called using eight histone modifications in the corresponding 

tissues. We observed that 95 ± 2% of PLS cREs overlapped ChromHMM TSS 

states and 78 ± 3% of ELS cREs overlapped ChromHMM enhancers states in the 

corresponding tissue and time point (Figure 2.26c,d). This suggests that while our 

method was able to identify similar putative regulatory regions as the ChromHMM 

model using less input data. 

We also compared our ELS cREs with enhancers annotated by transcription 

data and STARR-seq peaks. We intersected our ELS cREs with FANTOM defined 

enhancers in GM12878, astrocyte, hepatocyte and keratinocyte cells43. While the 

overall percentage of overlapping ELS cREs was low (2%), we observed the 

largest percentage of overlap for highly ranked enhancers (Figure 2.27a). When 

we overlapped the FANTOM enhancers with all cREs we found that 74% 

overlapped, with 70% overlapping cREs active in the cell type (Figure 2.28a, Table 

2.10). Of the active cREs the majority were ELS (66%) followed by PLS (28%). We 

observed similar results transcriptional regulatory elements (TREs) defined using 

GRO-seq data44, except that these elements overlapped a higher percentage of 

PLS cREs (57% of active cREs) because they encompass all types of regulator 
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elements (Figure 2.27b, and 2.28b, Table 2.10). STARR-seq peaks in HeLa cells 

overlapped even fewer cREs (31%) (Figure 2.27c and 2.28c, Table 2.10) but even 

by their own internal annotations, they only annotated 20% of their peaks with 

chromHMM enhancer states. 

These results suggest that while the Registry had similar performance to 

other epigenomic data based methods, such as chromHMM, it did not identify all 

potentially functional regions in the human and mouse genomes. 

 

Cell and tissue type clustering using cRE activity 
 

To examine whether the Registry of cREs captured biologically relevant 

regulatory patterns, we clustered primary cells and tissues based on the number 

of overlapping active cREs defined using DNase, H3K27ac, or H3K4me3 signal.  

We first compared the clustering schemes in mouse using the 72 embryonic tissue-

time points with H3K27ac and H3K4me3 data. Using H3K27ac, we observed 

almost perfect clustering of tissues by their organs of origin (Figure 2.23). When 

we clustered by H3K4me3 activity, the tissues do not segregate as cleanly . We 

believe this is because H3K4me3 signal is enriched at promoters, which are more 

consistent across cell types (Figure 2.17). This is reflected in average Jaccard 

coefficients; the average H3K27ac coefficient for mouse is 0.36 while for H3K4me3 

it is 0.79. Higher similarity between cell types will make them more difficult to 

cluster. 
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In humans we decided to cluster primary cells and tissues by cRE DNase 

and H3K27ac activities since these assays cover different tissues (Figure 2.8). 

Using H3K27ac signal, we observed tissues from different regions of the same 

organ cluster together (Figure 2.24a). For example, brain regions form a distinct 

group. In some cases, we also observed fetal and adult tissues clustering such 

fetal and adult adrenal gland tissues. Interestingly, samples from the 

gastrointestinal tract form two clusters, one for smooth muscle tissues (the purple 

and maroon samples at the top) and the other for mucosa tissue (the maroon 

samples at the center). This suggests that while these tissues are located in 

proximity to one another in the human body, they have different regulatory 

landscapes. When we analyzed primary cells, we observed three perfectly 

segregated groups colored by their embryonic origins: blood, non-blood 

mesoderm, and ectoderm (Figure 2.24b). Even the endothelial cells of the 

umbilical vein, which are derived from the extraembryonic mesoderm, clustered 

with the cell types derived from the embryonic mesoderm such as fibroblasts, 

myoblasts, osteoblasts, and astrocytes. 

When we clustered using DNase signal, we observed similar results. For 

DNase, we have multiple donors for the same types of tissues and in the majority 

of cases these donor samples clustered together (e.g., kidney, stomach, lung, and 

muscle tissues) (Figure 2.25a). We did observe some noticeable outliers such as 

one fetal thoracic segment muscle sample clustering with lung fetal lung tissue. 

This could be due to a possible sample swamp (i.e. samples were submitted to the 
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ENCODE DCC with incorrect labels) and therefore should be further analyzed. 

When we clustered primary cells, we observed two large clusters, with the one 

cluster composed entirely of blood cells, subdivided into to the myeloid and 

lymphoid lineages (Figure 2.25b). The second cluster, was comprised of several 

smaller "subclusters". The bottom subcluster contained of four trophoblast 

samples (in black), thus reflecting their extraembryonic fate. The topmost 

subcluster contained mostly fibroblasts, and the middle subcluster contained 

endothelial cells, epithelial cells, keratinocytes, and melanocytes. The fibroblasts 

aggregated together regardless of their anatomical locations, as did most of the 

endothelial cells, in agreement with their common mesodermal origin. Most of the 

epithelial cells also clustered together, despite their different embryonic germ 

layers. Overall, these results demonstrated that like tissues and cell types 

clustered together when we compared their cRE activity, suggesting that the 

registry of cREs is able to capture biologically relevant regulatory patterns. 

 

Applications to Genome Wide Association Studies (GWAS)  
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Previous studies have repeatedly demonstrated that most GWAS variants 

reside in noncoding regions of the genome. Annotation of these noncoding regions 

can be used to guide the interpretation of GWAS variants by predicting disease-

relevant cell types and regulatory factors6,26,39,100,101. With the broad coverage of 

cell types and rich epigenetic and transcription factor binding data associated with 

the cREs, the Registry can be particularly useful for annotating GWAS SNPs. 

We curated variants from over 50 studies in the NHGRI-EBI GWAS. For 

each phenotype-cell type comparison, we tested whether active cREs (H3K27ac 

or DNase z-score > 1.64) were significantly enriched in the GWAS SNPs. Overall, 

we observed enrichment in disease related cell types. Like previous 

studies6,26,39,100,101, we observed enrichments in immune cells such T and B cells for 

autoimmune disorders multiple sclerosis, type 1 diabetes, inflammatory bowel 

disease and Crohn's disease (Figure 26). Additionally, in blood cells we observed 

an enrichment for platelet count, platelet volume and red blood cell traits. We also 

observed enrichment for variants linked with cholesterols, metabolite, and 

fibrinogen levels in liver cREs. Finally, thyroid hormone level variants were 

enriched in thyroid tissue cREs, schizophrenia variants were enriched in brain 

cREs, and breast cancer variants were enriched in cREs active in MCF-7, a breast 

cancer cell line. 

 

SCREEN: A Web Based Visualization Tool for the Registry of cRES 
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To search and visualize the Registry of cREs, we built a web-based tool 

called SCREEN (Search Candidate Regulatory Elements by ENCODE). SCREEN 

hosts the 1.3 million human and 430 thousand mouse cREs and connects them 

with underlying ENCODE data and annotations. The first version of SCREEN is 

divided into three “apps”, each of which provide a different perspective on the 

cREs. The core app is a cRE-centric search, where users can retrieve a subset of 

cREs using genomic coordinates, a gene name, or SNP accession (Figure 2.27a). 

SCREEN returns a list cREs, annotated with their location, nearest genes, and 

max Z-scores for H3K4me3, H3K27ac, and CTCF signals (Figure 2.27b). Users 

can filter this list by selecting a cell type interest; SCREEN will then filter out cREs 

that are not active in that cell type. Users can also filter results using Z-score cutoffs 

by choosing stricter or more permissive thresholds compared to the default (Z-

scores > 1.64). If a user selects a cRE, SCREEN brings him to a cREs details 

page. Here the user can browse the cRE's H3K4me3, H3K27ac, CTCF, and 

DNase Z-scores in every cell type (Figure 2.30c), search for overlapping genomic 

datasets and genetic features such as topologically associated domains and 

SNPs.  

The gene-centric app, which opens when a user searches for a gene 

name, plots RNA-seq and RAMPAGE TSS expression data. Within this app, we 

developed a differential gene expression tool to analyze the relationship between 

changes in cRE activity and gene expression across mouse embryonic 

development. Users can selected two tissue-time point combinations and a 
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region of interest. SCREEN will display differentially expressed genes in this 

region and ELS and PLS cREs in this region. For example, we observed that 

Ogn, a protein involved in bone formation, dramatically increases in expression 

between e11.5 and e15.5 in limb tissue. This increase in gene expression 

corresponds to bone development which occurs around e12.041. SCREEN's 

differential gene expression tool displays the expression fold change of Ogn and 

nearby differentially expressed genes as bars (Figure 2.31a). PLS and ELS cREs 

are shown as red and yellow dots with the y-axis indicated difference in 

H3K4me3 and H3K27ac Z-scores between the time points. This large-scale view 

helps users identify cREs that might account for the increase in Ogn expression 

by looking for corresponding changes in cRE activity and gene expression. Using 

this approach, we identified an ELS cRE (EM10E0113220) that increases in 

activity between e11.5 and e15.5. When we analyzed EM10E0113220's 

H3K27ac activity across limb development (Figure 2.31b,c), we found that it is 

highly correlated with PLS cRE H3K4me3 activity and Ogn expression. Therefore 

we hypothesize that increase in EM10E0113220 activity leads to increased Ogn 

expression during limb development. 

Finally, the SNP-centric GWAS app intersects cREs with SNPs we 

curated from the aforementioned GWAS studies. Users can selected a study of 

interest and SCREEN will return a list of cell types and cREs that are enriched for 

GWAS SNPs. All three apps show links to the UCSC genome browser, thus 

facilitating visualization of the epigenetic signals at a cRE’s or a gene’s locus, 
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such as the Ogn example describe above. We have also set up a trackhub for 

visualizing all available signal tracks at the UCSC browser, organized by cell 

type. 

 

DISCUSSION 

By integrating DNase-seq and ChIP-seq datasets, we generated a 

collection of putative regulatory regions in human and mouse, which we referred 

to as the Registry of cREs. Adapting our unsupervised approach for enhancer 

prediction, which we used to successfully predict enhancers active in embryonic 

mouse tissues, we developed a cRE identification and classification scheme. We 

classified cREs into groups (PLS, ELS, CTCF-only, DNase-only, inactive) across 

600 human and 100 mouse cell types, generating the most comprehensive 

collection of cell-type specific regulatory elements. We demonstrated that the 

registry covers the majority of H3K4me3 and H3K27ac peaks in cell types without 

DNase data and that its classifications were concordant with ChromHMM genome 

segmentations.  

We also determined that our registry is biologically consistent with our 

current biological understanding of cell type relationships. With our clustering 

analysis, we determined that these cREs have biologically relevant activity 

patterns. While human tissues and primary cells generally clustered by their organ 

and embryonic tissues of origin, the clustering was not nearly as clean as it was in 

mouse. This could be due to a number of reasons. The human samples were 
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collected from a number of individuals who had different genetic backgrounds and 

had experienced different environmental effects. These samples also may have 

been collected using different collection methods depending the on if the samples 

were biopsies or postmortem tissues. Finally, in some cases the ChIP-seq 

experiments were run by different production labs during different phases of the 

ENCODE and Roadmap projects. The means that this experiments were run with 

different quality control standards, on different sequencing machines, and 

analyzing using different analysis pipeline. For, mouse, the embryonic tissues were 

collected from mice with identical genetic backgrounds using identical tissue 

collection procedures. The assays were all conducted during the third phase of the 

ENCODE project by the same production labs. While experimental biases may still 

exist, the nature of these datasets controls for many common sources of bias. This 

also presents one of the advantageous of using mouse data such as the 

application of mouse cREs to (see Chapter IV). 

While we have identified over 1 million cREs in human and 400 thousand in 

mouse, we are aware that our registry is far from complete. Currently, in order for 

an rDHS to be classified as a cRE, it must have high DNase signal and high 

H3K4me3, H3K27ac or CTCF signal. Therefore, we are filtering our elements such 

as poised/weak enhancers, which have high H3K4me1 and H3K27me3 signals 

and low H3K27ac signal39. Additionally, our current classification scheme only 

identifies three types of elements.  Realistically, the human genome is composed 

of many types of cREs with a spectrum of activity patterns. For example, recent 
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studies have reported promoters having enhancer-like activity and regulating the 

activity of distal genes56,126. By analyzing additional histone modifications, we may 

be able to identify PLS cREs with these long-range activities. Additionally, CTCF 

has many roles in the genome: It is associated with the cohesion complex, 

insulators, and repressors30. Therefore, we maybe be able to further separate 

CTCF-only cREs into different sub-classifications. During phase IV of the 

ENCODE project, we hope to not only increase the number of cell types for these 

assays, but continue to analyze different combinations of signal patterns, binding 

of transcription factors and transcription data play a role, particularly in cell types 

such as K562 and GM12878 that have a large number of datasets. We also hope 

to integrate in publicly available datasets, from databases such as CISTROME127 

to cover a wider range of cell types and further annotate cREs. 

Finally, while the registry of cREs had high coverage across the epigenomic 

landscape, its overlap with regulatory elements defined by other methods such as 

GRO-seq, CAGE and STARR-seq was far less. One possibility for the poor overlap 

is that our method is filtering out low signal enhancer that test positive in these 

assays or have strong transcriptional activity. For transcription based methods, 

such as CAGE and GRO-seq, this poor overlap could also be due to random 

transcription events in the genome. These regions, despite not having hallmark 

histone modifications, may have sequences with transcription initiation potential. 

These regions may have no biological function, so transcription is a result of the 

noise of genomic regulation, or they could be a different class of regulatory 
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elements. In the future, it will be worth investigating the transcriptionally active loci 

to see what features are predictive of these regions. 

For methods that test specific genomic regions for enhancer activity, such 

as STARR-seq, MPRA, and transgenic mouse assays, this poor overlap could be 

due to differences in genomic context. For example, the Stark lab reported in their 

original STARR-seq paper that 31% of STARR-seq peaks did not overlap DHSs in 

the same cell type128. They hypothesized that this is due genomic context of the 

region. For example, a sequence may innately have enhancer-like activity causing 

it to test positive in STARR-seq, luciferase, or transgenic mouse assays. However, 

in the genome, the region may be silenced and inaccessible to transcription factors 

and therefore will not overlap a DHS. Moving forward, we can isolate these cases 

to learn more about how sequence features contribute to enhancer activity. We 

can apply the same analysis to analyze human regulatory elements and use these 

features to further refine our enhancer prediction models. 
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Figure 2.1 | Protocol used to validate enhancers included in the VISTA database. 
Regions were selected based on conservation, EP300 ChIP-seq, or H3K27ac ChIP-seq 
signals. These regions were then cloned and then injected into mouse embryos. Embryos 
were harvested and enhancer activity was measured using lacZ staining (blue regions). 
This figure was adapted from the home page figure on https://enhancer.lbl.gov/. 
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Figure 2.2 | ENCODE3 mouse embryonic time series data. During phase III of the 
ENCODE project the Ren lab generated histone modification ChIP-seq data for twelve 
tissues across eight embryonic time points (orange and green boxes, 72 unique tissue-
time point combinations). The Stamatoyannopoulos lab generated DNase-seq data for 
18 of these tissue-time points (green boxes). 
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Figure 2.3 | Unsupervised enhancer prediction methods. a, Testing which peaks to 
anchor predictions. To control for genome coverage, all peaks are set to a uniform 
300bp in width. For DHSs, we use signal across the 300bp region. For histone peaks we 
use +/- 1kb from the summit of each peak. b, After we determined anchoring on DHSs 
result in the best performance, we tested ranking schemes using signal. For DHSs, we 
use signal across the 300bp region. For histone peaks we use +/- 1kb from the summit 
of each DHS. 
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Figure 2.4 | Precision-Recall (PR) curves for VISTA Enhancer prediction. PR curves 
for a, limb, b, midbrain, c, hindbrain, c, midbrain, and d, neural tube enhancers at e11.5. 
Colors indicate peaks and signals used for anchoring and ranking the enhancer 
predictions. All peaks were set to 300 bp centered on their summits and the 20k top-
ranked peaks were used for each tissue to ensure consistent genome coverage. 
 



 

 

53 

 
Figure 2.5 | PR curves for VISTA Enhancer prediction anchored on DHSs. PR 
curves for a, limb, b, hindbrain, c, midbrain, and d, neural tube enhancers at e11.5. All 
predictions were anchored on DHSs in the respective tissue. Colors indicate signals 
used for ranking predictions; black indicates the average of DNase and H3K27ac 
signals. 
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Figure 2.6 | Validation rates of predicted enhancer-like regions using transgenic 
mouse assays. Bars indicated the percent of tested regions that were positive in the 
transgenic mouse enhancer assay. Dark colors indicate the region is active in the 
predicted tissue (blue for midbrain, green for hindbrain, and orange for limb). The lighter 
color indicates a lack of activity in the predicted tissue with activity in other tissues. 
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Figure 2.7 | Examples of predicted enhancer-like regions which tested positive in 
the transgenic mouse assays. Enhancer-like regions predicted using DNase signal 
(green) and H3K27ac signal (orange) in a, midbrain, b, hindbrain and c, limb. H3K27ac 
signal on accurately predicts additional observe activity in midbrain (MB), hindbrain (HB), 
neural tube (NT), limb (LM), heart (HT), and/or liver (LV)  
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Figure 2.8 | Overlap of cell types with epigenomic datasets. Venn diagrams indicate 
the number of cell types that have either DNase-seq, H3K4me3 ChIP-seq, and/or 
H3K27ac ChIP-seq data in a, human and b, mouse. 
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Figure 2.9 | Correlation of gene expression with epigenomic signals to predict 
promoter-like regions in mouse hindbrain e11.5. Scatterplots demonstrating 
correlation of expression with a) DHSs ranked by DNase signal (r = 0.34), b) DHSs 
ranked by H3K4me3 signal (r = 0.73), c) H3K4me3 peaks ranked by DNase signal (r = 
0.24), and d) H3K4me3 peaks ranked by H3K4me3 signal (r = 0.56). 
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Figure 2.10 | Method for creating representative DNase hypersensitivity sites 
(rDHSs). a, DHSs across cell types tend to have similar boundaries. b, Method for 
generating rDHSs. We cluster DHSs if they overlap and then for each cluster select the 
DHS with the highest signal Z-score. This DHS serves as the representative DHS 
(rDHS) for the cluster. We iteratively repeat this process until all DHS overlap at least 
one rDHS. 
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Figure 2.11 | Method for normalizing genomic signals. a, Distribution of the H3K27ac 
signals at rDHSs from five cell types (B cell, Liver, K562, T cell, and GM12878; shown in 
different colors). b, Distributions of the log of the H3K27ac signals in a. Individually, 
log(signal) values of the rDHSs in each cell type roughly follow a normal distribution. c, 
Distribution of the Z-scores corresponding to the log(signal) values in b. Signal values of 
zero are assigned a Z-score of –10.  
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Figure 2.12 | Classification scheme for human cRES (hg19). We begin by clustering 
high-quality DHSs (FDR > 0.1%) to create representative DHSs (rDHSs). For each 
assay (DNase, H3K4me3, H3K27ac or CTCF), we calculate a Z-score for every rDHS in 
a particular cell or tissue type. We then obtain the maximum Z-score across all cell types 
which we denote the Max-Z. We use the decision tree to classify cREs into three cell-
type-agnostic groups according to their Max-Z and proximity to the nearest TSS, 
including cREs with promoter-like signatures (cREs-PLS, n = 254,880), cREs with 
enhancer-like signatures (cREs-ELS, n = 991,173), and cREs bound by CTCF only (n = 
64,099). The three groups comprise 1,310,152 cREs 
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Figure 2.13 | Classification scheme for mouse cRES (mm10). We begin by clustering 
high quality DHSs (FDR > 0.1%) to create representative DHSs (rDHSs). For each 
assay (DNase, H3K4me3, H3K27ac or CTCF), we calculate a Z-score for every rDHS in 
a particular cell or tissue type. We then obtain the maximum Z-score across all cell 
types, known as the Max-Z. Using the Max-Z as well as the distance to the nearest TSS, 
we classify cREs into three cell-type agnostic groups using the decision tree: cREs with 
promoter-like signatures (n = 87,119), cREs with enhancer-like signatures (n = 310,472), 
and cREs bound by CTCF only (n = 33,611). The total number of cREs is the sum of the 
three groups: 431,202. 
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Figure 2.14 | Coverage of the registry of cREs. Percent of the DNase-mappable (36 
nt, single-end reads) genome covered by each group of cREs in a, human and b, 
mouse. 
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Figure 2.15 | Nine states of cell-type specific cREs in GM12878 a, Number of 
GM12878 cREs in each group b, Violin plots show the average POLII signal for cREs 
belonging to each of the nine cRE states. cREs proximal and distal to the nearest TSSs 
are displayed separately. Median values are displayed along with the number of cREs in 
each state. c, Violin plots show the average EP300 signal for cREs belonging to each of 
the nine cRE states. cREs proximal and distal to the nearest TSSs are displayed 
separately. Median values are displayed along with the number of cREs in each state. 
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Figure 2.16 | Overview of 5 group classification method. Scatterplots of a, median 
EP300 signal or b, median RAD21 signal vs. median POLII signal for each cRE state in 
GM12878. The size of an icon is proportional to the number of cREs in that state except 
for the inactive state. Proximal cREs are represented by square icons. Distal cREs are 
represented by circular icons. c, Assignment of cRE states to the five following groups: 
with promoter-like signatures, with enhancer-like signatures, CTCF-only, DNase-only, 
and inactive. d, Number of GM12878 cREs in each group. e, Median ChIP-seq signal for 
POLII, EP300 and RAD21 in GM12878 for the cREs in each group. 
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Figure 2.17 | Saturation of cREs across 21 cell types with all four datatypes. Total 
numbers of cREs with Promoter-like, Enhancer-like, or CTCF-only signatures grow when 
more cell types are considered. Enhancer-like cREs are more cell-type-restrictive than 
promotor-like cREs or CTCF-only cREs.  
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Figure 2.18 | Cell-type specific annotations of the Registry of cREs. Scheme for 
translating cell type specific state classifications into group classifications for cell types 
with different combinations of datasets.  
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Figure 2.19 | Groups of orthologous cREs. Percentage of cREs with promoter-like 
(red), enhancer-like (yellow), or CTCF-only (blue) signatures for human and mouse 
cREs as well as orthologous human and mouse cREs. 
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Figure 2.20 | Coverage of histone modification peaks by the current human 
Registry of cREs. Overlap of cREs with a, H3K4me3 peaks and b, H3K27ac peaks and 
c, CTCF peaks from cell types without DNase data. On average 89.7% and 86.8%, 
H3K4me3 and H3K27ac peaks overlap a cRE, respectively. 
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Figure 2.21 | Coverage of histone modification peaks by the current mouse 
Registry of cREs. Overlap of cREs with a, H3K4me3 peaks and b, H3K27ac peaks 
from cell types without DNase data. On average 95.8% and 87.6% of H3K4me3 and 
H3K27ac peaks overlap a cRE, respectively. 
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Figure 2.22 | Coverage of the H3K4me3 peaks by the current Registry of cREs is 
plotted against the average -log(FDR) of the H3K4me3 peaks. In a, human and b, 
mouse, cell-types with peaks that have a lower average -log(FDR) across all peaks tend 
to have a lower percentage of peaks covered. Manual inspection reveals that this lower 
coverage is due to lower-signal, false-positive peaks called by the algorithm for these 
datasets. 
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Figure 2.23 | Clustering of mouse cell types on the basis of cRE histone 
modification activity. Mouse embryonic tissues were hierarchically clustered according 
to the Jaccard similarity coefficient of cREs with high a, H3K27ac and b, H3K4me3 Z-
scores. Colors indicate the organs of origin of the tissues. When clustered according to 
H3K27ac signals at cREs (panel a), the tissues segregate completely according to their 
organs of origin.  
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Figure 2.24 | Clustering of human cell and tissue types on the basis of cRE 
H3K27ac signal. Human a, primary cells and b, tissues were hierarchically clustered 
according to the Jaccard similarity coefficient of cREs with a high H3K27ac signal (Z-
score > 1.64). The tissue samples in a are colored by their organ of origin and the 
primary cells in b are colored according to their lineages. 
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Figure 2.25 | Clustering of human cell and tissue types on the basis of cRE DNase 
signal. Human a, tissues and b, primary cells hierarchically clustered according to the 
Jaccard similarity coefficient of cREs with a high DNase signal (Z-score > 1.64). The 
tissue samples in a are colored by their organ of origin and the primary cells in b are 
colored according to their lineages.   
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Figure 2.26 | Overlap of cREs with chromHMM states. In GM12878, we ranked cREs 
with a, promoter-like signatures and b, enhancer-signatures on the basis of H3K4me3 
and H3K27ac Z-scores respectively. For each bin of 1 k cREs, we calculated the 
percentage of cREs overlapping each chromHMM state. In mouse, we selected all cREs 
with c, promoter-like and d, enhancer-like signatures from tissue–time-point 
combinations with both DNase and histone data. We then calculated the percent of 
cREs that overlapped each chromHMM state. In all panels, high- and low-signal 
enhancers denote chromHMM enhancer states with high or low H3K27ac signals. 
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Figure 2.27 | Overlap of ELS cREs with previously predicted enhancers. The 
percentage of ELS cREs that overlap enhancers predicted by a, the FANTOM5 
consortium, b, GRO-seq data, c, and STARR-seq. ELS cREs are ranked based on cell 
type specific H3K27ac Z-scores. 
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Figure 2.28 | Overlap of previously predicted enhancers with cREs. The percentage 
of enhancers predicted by a, the FANTOM5 consortium, b, GRO-seq data, c, and 
STARR-seq that overlap with cREs. Colors indicate groups of cREs active in each cell 
type: red for PLS, yellow of ELS, blue for CTCF-only, green for DNase-only and gray for 
inactive. Predicted enhancers that do not overlap any cREs are shown in white. 
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Figure 2.29 | Top cell type enrichments for variants reported by genome wide 
association studies (GWAS). For each GWAS we report the cell or tissue type of which 
active cREs are significantly enriched in the disease variants. Cell types that do not meet 
the FDR threshold of 0.05 are in grey. Most studies have multiple significantly enriched 
cell types but only the top hit is reported here. Traits listed multiple times are from 
different studies. 
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Figure 2.30 | Overview of SCREEN. a, Landing page of SCREEN where user can enter 
a gene, SNP, or locus of interest to investigate cREs. Alternatively, users can select the 
GWAS app to analyze cREs overlapping disease associated genetic variants. b, 
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Example results page from searching in the main query box. SCREEN lists cREs with 
accession, location, nearby genes, and overview of activity. c, cRE details page 
displaying additional information about each cRE such as its activity across cell types 
and overlapping TF peaks 



 

 

81 

 
 
Figure 2.31 | Analyzing differential gene expression and cRE activity across 
developmental time-points. a, Comparison between limb e11.5 and e15.5 gene 
expression and cRE activity. Blue bars indicate differentially expressed genes, and red 
and yellow dots indicate cREs with promoter-like and enhancer-like signatures. The 
heights of bars or dots indicate changes (Log2 FC or difference in Z-score) between 
time-points. b, Genome browser view of the Ogn locus with H3K27ac, H3K4me4, 
DNase, and RNA-seq signals for the limb across all surveyed time-points. Promoter-like 
cREs are designated by red bars and enhancer-like cREs are designated by orange 
bars. c, Ogn gene expression and nearby cRE activity increase coordinately across 
time-points. The increase in gene expression lags behind the increases in cRE-PLS and 
cRE-ELS activities.  
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Table 2.1 | ENCODE mouse experiments used for enhancer prediction  
 Midbrain Hindbrain Neural Tube Limb 

DNase ENCSR292QBA ENCSR358ESL ENCSR312QVY ENCSR661HDP 

H3K27ac ENCSR088UKA ENCSR129LAP ENCSR531RZS ENCSR897WBY 

H3K4me3 ENCSR283RFW ENCSR928CYU ENCSR427OZM ENCSR654VMK 

H3K4me1 ENCSR450ITF ENCSR695FPP ENCSR448TTC ENCSR548BCO 

H3K9ac ENCSR502WUI ENCSR734IEL ENCSR547PLI ENCSR286IGS 

H3K36me3 ENCSR535NVF ENCSR175QZX ENCSR445UYH ENCSR871YCT 

H3K27me3 ENCSR545BRW ENCSR375GSG ENCSR240OUM ENCSR085EYQ 

WGBS ENCSR091VFX ENCSR398UCM ENCSR613BMI ENCSR916GKL 
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Table 2.2 | Area under PR curves for VISTA Enhancer prediction 
Peak Space Signal Limb Midbrain Hindbrain Neural Tube Average 

DNase DNase 0.4108 0.3725 0.3862 0.2958 0.3562 

H3K27ac H3K27ac 0.3375 0.4320 0.3311 0.2712 0.3310 

H3K4me3 H3K4me3 0.1228 0.2397 0.1994 0.1334 0.1749 

H3K4me1 H3K4me1 0.2589 0.3227 0.2124 0.1601 0.2280 
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Table 2.3 | AUPR for VISTA Enhancer prediction anchored on DHSs 

Peak Space Signal Hindbrain Limb Midbrain Neural 
Tube Average 

DNase Peak DNase Signal 0.3788 0.4159 0.3797 0.2951 0.3673 

DNase Peak H3K27ac Signal 0.3113 0.3265 0.3959 0.2526 0.3216 

DNase Peak Average Rank DNase-
H3K27ac Signal 0.3764 0.3948 0.4148 0.3050 0.3727 

DNase Peak H3K4me3 Signal 0.2276 0.1828 0.2602 0.1615 0.2080 

DNase Peak Average Rank DNase-
H3K4me3 Signal 0.2584 0.2392 0.2933 0.1751 0.2415 

DNase Peak H3K4me1 Signal 0.2442 0.2799 0.3122 0.1762 0.2531 

DNase Peak Average Rank DNase-
H3K4me1 Signal 0.2527 0.2647 0.2901 0.1740 0.2454 

DNase Peak H3K9ac 0.2367 0.1977 0.2756 0.1721 0.2205 

DNase Peaks Average Rank DNase-
H3K9ac Signal 0.2831 0.2574 0.3250 0.2147 0.2700 

DNase Peak H3K36me3 Signal 0.1910 0.1776 0.1911 0.1265 0.1715 

DNase Peak Average Rank DNase-
H3K36me3 Signal 0.2280 0.2262 0.2212 0.1548 0.2075 

DNase Peak WGBS methylation 0.2470 0.2151 0.2663 0.1550 0.2208 

DNase Peak Average Rank DNase-
WGBS Signal 0.3127 0.3031 0.3278 0.1981 0.2854 

DNase Peak H3K27me3 Signal 0.2187 0.1964 0.1853 0.1285 0.1822 

DNase Peak Average Rank DNase-
H3K27me3 Signal 0.2700 0.2750 0.2325 0.1664 0.2360 
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Table 2.4 | Tested enhancer-like regions for midbrain e11.5 

 VISTA 
ID mm10 Coordinates 

Result Summary: 
predicted tissue (Hb, 
Mb, Lb pos or neg) 

Additional Tissue Activity 
Observed 

Top 
Tier 

mm1502 chr14:76253890-
76257212 Mb positive (3/3)  

mm1471 chr16:35584523-
35589773 Mb positive (3/3) Fb (3/3), Hb (3/3), neural tube 

(3/3) 

mm1461 chr2:154425426-
154428462 Mb positive (3/3) 

Fb (3/3), Hb (3/3), neural tube 
(3/3), nose (3/3), facial 

mesenchyme (3/3) 

mm1454 chr2:25124845-
25128090 Mb positive (3/4) Fb (3/4), Hb (3/4), neural 

tube (4/4), eye (3/4) 

mm1480 chr6:112808528-
112813000 Mb positive (4/5) Fb (5/5) 

mm1504 chr16:44528746-
44534514 Mb positive (4/5) Hb (4/5), Fb (4/5), neural tube 

(4/5) 

mm1503 chr14:40955282-
40959325 Mb positive (4/8) 

Hb (5/8), cranial nerve (5/8), 
trigeminal V (8/8), DRG (8/8), 

Lb (6/8) 

mm1469 chr12:80059965-
80065110 Mb positive (5/5) 

Fb (4/5), Hb (5/5), neural tube 
(5/5), Ht (5/5), branchial arch 

(3/5) 

mm1460 chr1:133185980-
133189493 Mb positive (5/5) Fb (5/5), Hb (5/5), neural tube 

(4/5), eye (5/5) 

mm1458 chr8:93916782-
93919741 Mb positive (5/7) Fb (5/7), Hb (5/7), neural tube 

(5/7) 

mm1456 chr12:109946504-
109950294 Mb positive (6/6) Fb (6/6), Hb (6/6), neural tube 

(5/6) 

mm1462 chr11:113783367-
113787793 Mb positive (8/12) 

Fb (7/12), Hb (9/12), neural 
tube (9/12), trigeminal V 

(7/12), DRG (7/12), Lb (7/12) 

mm1479 chr17:29354850-
29357878 neg  

mm1472 chr11:20654380-
20657594 neg  

mm1459 chr3:65973873-
65976364 neg  

mm1482 chr17:37028041-
37029979 neg  

mm1470 chr6:90780495-
90784241 other positive Hb (6/8), neural tube (5/8), 

trigeminal V (6/8), DRG (7/8) 

mm1481 chr11:120314873-
120317426 other positive DRG (3/4), other (3/4) 

mm1457 chr18:38378941-
38381638 other positive Fb (6/6), Lb (6/6), cranial 

nerve (4/6), DRG (4/6) 
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mm1463 chr5:21731579-
21734432 other positive Fb (4/4) 

Middle 
Tier 

mm1553 chr9:86186309-
86188376 Mb positive (3/5) Hb (3/5) , Fb (3/5), neural 

tube (3/5) 

mm1557 chr6:65309702-
65311689 Mb positive (3/6) Fb (4/6), neural tube (4/6) 

mm1552 chr19:41715402-
41718238 Mb positive (5/6) Fb (6/6), Hb (6/6), DRG (4/6) 

mm1555 chr11:26772020-
26774013 Mb positive (5/6) Hb (3/6) 

mm1558 chr7:117685707-
117687616 Mb positive (6/12) Hb (8/12), Lb (9/12), Fb 

(9/12), neural tube (6/12) 

mm1546 chr1:9648223-
9650965 Mb positive (6/8) 

Hb (7/8), trigeminal V (6/8), 
neural tube (5/8), DRG (4/8), 

cranial nerve (5/8) 

mm1544 chr16:94723154-
94725386 neg  

mm1545 chr18:54759740-
54761758 neg  

mm1547 chr9:50451431-
50453445 neg  

mm1550 chr5:140767048-
140769052 neg  

mm1551 chr6:144165683-
144167703 neg  

mm1554 chr9:121359503-
121361504 neg  

mm1549 chr3:127705248-
127707248 other positive Fb (7/7), neural tube (6/7) 

mm1556 chr13:76809879-
76811879 other positive Fb (3/3), Hb (3/3) 

mm1548 chr6:145855046-
145857046 other positive Fb (4/4) 

Bottom 
Tier 

mm1524 chr6:52365164-
52368224 Mb positive (4/4)  

mm1583 chr11:85857229-
85860254 Mb positive (4/7)  

mm1526 chr11:113307639-
113310548 Mb positive (4/7) Hb (4/7), neural tube (4/7) 

mm1522 chr5:114298723-
114301210 Mb positive (6/7)  

mm1520 chr8:124313443-
124316007 neg  

mm1580 chr13:113913477-
113916032 neg  
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mm1521 chr12:111161954-
111163777 neg  

mm1582 chr9:107644011-
107645376 neg  

mm1523 chr14:100374296-
100376562 neg  

mm1585 chr6:83434774-
83436371 neg  

mm1587 chr15:84259559-
84261268 neg  

mm1581 chr18:55784854-
55787217 other positive Hb (4/4) 

mm1584 chr15:74155467-
74158454 other positive 

Lb (4/4), other (4/4), eye 
(4/4), neural tube (4/4), 

branchial arch (4/4) 

mm1525 chr17:28105717-
28108643 other positive Fb (3/4), Hb (3/4) 

mm1586 chr7:48749001-
48750980 other positive trigeminal V (9/12), Hb (6/12) 
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Table 2.5 | Tested enhancer-like regions for hindbrain e11.5 

 VISTA 
ID mm10 Coordinates 

Result Summary: 
predicted tissue (Hb, 
Mb, Lb pos or neg) 

Additional Tissue Activity 
Observed 

Top 
Tier 

mm1444 chr12:86822930-
86827112 Hb positive (7/8) Mb (3/8) 

mm1496 chr11:94158655-
94162177 Hb positive (3/4) Fb (3/4) 

mm1494 chr4:136754322-
136758801 other positive Mb (3/3), nose (3/3) 

mm1445 chr1:134060554-
134066172 Hb positive (4/4) 

Fb (4/4), Mb (4/4), DRG (4/4), 
cranial nerve (4/4), neural tube (4/4), 

other (4/4), trigeminal V (4/4) 

mm1446 chr14:25107155-
25110736 Hb positive (3/3) Fb (3/3), Mb (3/3), neural tube (3/3), 

eye (3/3) 

mm1488 chr17:10333563-
10337174 Hb positive (4/4) Mb (4/4) neural tube (4/4) 

mm1447 chr2:21008806-
21012242 Hb positive (6/6) Mb (5/6) 

mm1448 chr7:111121648-
111123424 neg  

mm1449 chr15:98967479-
98972541 Hb positive (5/7) Fb (6/7), Mb (6/7), neural tube (4/7) 

mm1450 chr19:45057481-
45059842 neg  

mm1497 chr7:145204877-
145207696 Hb positive (5/6) Mb (6/6), Fb (6/6), neural tube (5/6), 

Ht (4/6), Lb (4/6) 

mm1498 chr14:19984462-
19988065 Hb positive (3/4) Mb (4/4) 

mm1499 chr17:66478396-
66482145 Hb positive (6/6) Fb (4/6), Mb (6/6), neural tube (6/6) 

mm1451 chr5:112236129-
112240520 Hb positive (10/10) Fb (9/10), Mb (10/10), neural tube 

(10/10), cranial nerve (5/10) 

mm1489 chr7:140056813-
140059080 Hb positive (5/5) Mb (5/5), neural tube (5/5) 

mm1452 chr3:51787852-
51791869 Hb positive (4/6) Mb (3/6), neural tube (5/6) 

mm1453 chr5:125140066-
125142757 neg  

mm1500 chr14:66492741-
66497119 Hb positive (3/4) Fb (3/4), Mb (3/4), neural tube (3/4) 

mm1501 chr13:84344551-
84350110 neg  

mm1478 chr15:91016522-
91020048 Hb positive (3/4) Fb (3/4), Mb (3/4), neural tube (3/4) 
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Middle 
Tier 

mm1540 chr8:108243823-
108246831 Hb positive (3/5)  

mm1534 chr7:93060869-
93063626 Hb positive (4/5) Fb (5/5), neural tube (5/5), Lb (4/5) 

mm1532 chr4:148859471-
148860956 Hb positive (5/5) cranial nerve (3/5) 

mm1542 chr14:63585329-
63587537 Hb positive (8/9) neural tube (9/9), Mb (8/9), Fb (7/9), 

cranial nerve (6/9) 

mm1535 chr18:54610385-
54613247 neg  

mm1536 chr12:86798248-
86799852 neg  

mm1560 chr4:154593394-
154596395 neg  

mm1539 chr7:70329472-
70332465 neg  

mm1543 chr15:77335353-
77337280 neg  

mm1537 chr3:104540534-
104542671 other positive neural tube (5/6) 

mm1538 chr17:62851927-
62854939 other positive Mb (5/6) 

mm1603 chr2:93277888-
93280895 other positive Lb (3/4) 

mm1561 chr2:163188663-
163191536 other positive Fb (3/6), eye (3/6), Lb (4/6) 

mm1541 chr3:5386841-
5389926 other positive Fb (6/7), neural tube (6/7) 

mm1562 chr19:21164417-
21167450 other positive tail (5/6) 

mm1533 chr5:125214963-
125216753 other positive Fb (3/4) 

Bottom 
Tier 

mm1515 chr2:166215189-
166217391 Hb positive (4/5) neural tube (6/5) 

mm1604 chr12:105972686-
105975121 Hb positive (7/9) other/abdomen (6/9) 

mm1577 chr3:5348379-
5351461 Hb positive (8/10) branchial arch (4/10) 

mm1510 chr16:33593467-
33596065 neg  

mm1511 chr2:70559085-
70560255 neg  

mm1512 chr12:16854925-
16857237 neg  

mm1578 chr16:72690693-
72694735 neg  
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mm1513 chr6:95173859-
95175593 neg  

mm1579 chr18:15173064-
15176000 neg  

mm1517 chr1:182981864-
182984314 neg  

mm1519 chr7:46452307-
46455505 neg  

mm1509 chr9:63058010-
63060489 other positive Mb (4/4), Fb (4/4) 

mm1516 chr6:89241345-
89243919 other positive Mb (5/11), facial mesenchyme (8/11) 

mm1514 chr7:82713868-
82717092 other positive Lb (6/6) 

mm1518 chr9:63958315-
63961551 other positive Lb (6/8) 

 
  



 

 

91 

Table 2.6 | Tested enhancer-like regions for limb e11.5 

 VISTA 
ID mm10 Coordinates 

Result Summary: 
predicted tissue 

(Hb, Mb, Lb pos or 
neg) 

Additional Tissue Activity 
Observed 

Top 
Tier 

mm1473 chr9:72639094-
72641466 Lb positive (11/11) eye (5/11) 

mm1505 chr3:101394801-
101399299 Lb positive (12/12) somite (10/12), branchial arch 

(10/12), facial mesenchyme (9/12) 

mm1464 chr8:126825533-
126828569 Lb positive (3/3)  

mm1476 chr2:128712175-
128715819 Lb positive (3/4) facial mesenchyme (3/4), 

branchial arch (3/4), DRG (3/4) 

mm1486 chr9:41227902-
41230545 Lb positive (3/5)  

mm1474 chr6:72710179-
72712952 Lb positive (4/4) branchial arch (3/4) 

mm1485 chr14:24261692-
24264509 Lb positive (4/4)  

mm1493 chr9:41949140-
41954525 Lb positive (4/7) eye (5/7) 

mm1475 chr9:106354104-
106358319 Lb positive (4/7) facial mesenchyme (6/7) 

mm1492 chr4:154707415-
154711162 Lb positive (5/5) facial mesenchyme (5/5) 

mm1506 chr4:139597441-
139601336 Lb positive (5/8) blood vessels (5/8) 

mm1484 chr7:123096694-
123099867 Lb positive (6/6) Ht (6/6), eye (6/6), facial 

mesenchyme (5/6) 

mm1490 chr4:108361018-
108364528 Lb positive (7/7) 

Mb (7/7), neural tube (7/7), facial 
mesenchyme (7/7), Hb (7/7), nose 
(7/7), branchial arch (6/7), somite 

(5/7), genital tubercle (7/7) 

mm1483 chr8:90860971-
90863490 Lb positive (8/8) 

Fb (6/8), Hb (6/8), Mb (6/8), 
cranial nerve (6/8), trigeminal V 

(7/8), DRG (7/8) 

mm1507 chr8:11584424-
11587803 neg  

mm1491 chr9:41934743-
41936889 neg  

mm1477 chr13:51312386-
51316734 neg  

mm1508 chr10:91179718-
91183751 neg  

mm1495 chr14:65342605-
65345502 neg  
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mm1487 chr10:59919229-
59922102 neg  

Middle 
Tier 

mm1574 chr7:136389300-
136391216 Lb positive (3/4)  

mm1567 chr8:87659116-
87661534 Lb positive (4/5) tail (4/5) 

mm1564 chr2:60785660-
60787563 Lb positive (5/5) branchial arch (4/5) 

mm1576 chr5:16778223-
16779671 Lb positive (5/5)  

mm1571 chr15:95638744-
95641449 Lb positive (5/6) Hb (6/6), neural tube (6/6) 

mm1570 chr14:49121140-
49122633 Lb positive (7/8)  

mm1563 chr9:32823262-
32824682 neg  

mm1559 chr6:5801484-
5804011 neg  

mm1568 chr11:104288616-
104290675 neg  

mm1572 chr3:81782584-
81784020 neg  

mm1573 chr10:38972079-
38974105 neg  

mm1565 chr13:51919913-
51922132 other positive Fb (3/3), Mb (3/3), Hb (3/3), neural 

tube (3/3) 

mm1566 chr4:148984734-
148987251 other positive nose (4/4) 

mm1575 chr1:59333923-
59335433 other positive tail (4/6), somites (4/6) 

mm1569 chr5:65414975-
65416572 other positive Unidentifiable structures in chest 

and abdomen (9/10) 

Bottom 
Tier 

mm1597 chr6:89613039-
89615855 Lb positive (10/11) 

branchial arch (8/11), somites 
(7/11), Mb (6/11), facial 

mesenchyme (5/11) 

mm1598 chr8:26832486-
26834858 Lb positive (3/4) 

Mb (3/4), Fb (3/4), Hb (3/4), 
somites (3/4), nose (3/4), other 

(3/4) 

mm1599 chr3:37934422-
37937092 Lb positive (8/9) Hb (7/9), Fb (7/9), eye (5/9) 

mm1588 chr11:60365089-
60367681 neg  

mm1589 chr12:107951151-
107953994 neg  

mm1590 chr7:135888196-
135890453 neg  
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mm1591 chr8:108018634-
108020810 neg  

mm1592 chr12:108913631-
108917155 neg  

mm1593 chr11:118083180-
118085181 neg  

mm1594 chr6:85022961-
85025939 neg  

mm1595 chr12:73510499-
73513049 neg  

mm1596 chr7:112867931-
112870363 neg  

mm1602 chr7:132203278-
132205205 neg  

mm1600 chr14:21673440-
21675700 other positive tail (3/3) 

mm1601 chr1:61202202-
61204582 other positive facial mesenchyme (3/5) 
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Table 2.7 | Correlation of ranked peaks with ranked gene expression in mouse 
tissues 

Peak Space Signal Hindbrain Limb Midbrain Neural Tube Average 

DNase DNase 0.3454 0.3643 0.3973 0.4714 0.3946 

DNase H3K4me3 0.7332 0.7472 0.7507 0.7488 0.7450 

H3K4me3 DNase 0.2364 0.2603 0.2239 0.1055 0.2065 

H3K4me3 H3K4me3 0.5551 0.6112 0.5691 0.5555 0.5727 
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Table 2.8 | Correlation of ranked peaks with ranked gene expression in human 
cells 

Peak Space Signal GM12878 K562 HepG2 Average 

DNase DNase 0.4904 0.3848 0.4024 0.4258 

DNase H3K4me3 0.7152 0.7310 0.7084 0.7182 

H3K4me3 DNase 0.4122 0.3016 0.2469 0.3202 

H3K4me3 H3K4me3 0.5833 0.6012 0.5484 0.5777 
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Table 2.9 | Combined ChromHMM States 
Combined 

State State 1 State 2 State 3 State 4 

TSS 1 Active 
Promoter 

2 Weak 
Promoter   

TSS Bivalent 3 Poised 
Promoter    

High Signal 
Enhancer 

4 Strong 
Enhancer 

5 Strong 
Enhancer   

Low Signal 
Enhancer 

6 Weak 
Enhancer 

7 Weak 
Enhancer   

Insulator 8 Insulator    

Transcription 9 Txn 
Transition 

10 Txn 
Elongation 11 Weak Txn  

Repressed 12 Repressed 13 
Heterochrom/lo 

14 
Repetitive/CNV 

15 
Repetitive/CNV 
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Table 2.10 | Overlap of previous enhancer predictions with cREs 
Assay Cell Type PLS ELS CTCF DNase Inactive No Overlap 

FANTOM5 GM12878 274 646 5 64 342 1,135 

FANTOM5 hepatocyte 36 118 2 24 127 266 

FANTOM5 keratinocyte 139 380 1 2 111 546 

FANTOM5 astrocyte 256 427 0 30 182 786 

GRO-seq GM12878 27,771 15,312 612 1,601 34,030 34,703 

GRO-seq K562 26,815 20,206 1,193 4,230 32,206 33,233 

GRO-seq IMR-90 15,993 11,020 293 1,852 25,177 26,343 

GRO-seq MCF-7 21,283 10,124 320 1,493 34,150 28,876 

GRO-seq HeLa 21,738 16,463 353 1,127 17,143 26,807 

STARR-seq HeLa 687 2,800 67 1,035 10,447 7,809 
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Table 2.11 | GWAS studies included in analysis 
First Author PMID Phenotype 

Anderson 21297633 Ulcerative colitis 

Anttila 23793025 Migraine 

Arking 24952745 QT Interval 

Barrett 19430480 Type 1 Diabetes 

Baurecht 25574825 Inflammatory skin disease 

Baurecht 25574825 Psoriasis 

Bentham 26502338 Systemic lupus erythematosus 

Berndt 23563607 Height 

Berndt 23563607 Obesity 

Cai 25130324 Heschl's gyrus morphology 

Chasman 19936222 Lipid metabolism phenotypes 

deVries 26561523 Fibrinogen levels 

Dubois 20190752 Celiac disease 

Dupuis 20081858 Fasting glucose-related traits 

Fox 22589738 Subcutaneous adipose tissue 

Fox 22589738 Visceral adipose tissue adjusted for BMI 

Fox 22589738 Visceral adipose tissue/subcutaneous adipose tissue ratio 

Fox 22589738 Visceral fat 

Franke 21102463 Crohn's disease 

Gieger 22139419 Platelet count 

Gieger 22139419 Mean platelet volume 

Gudbjartsson 18391951 Height 

Hromatka 25628336 Motion sickness 

Imboden 22424883 Pulmonary function decline 

Jostins 23128233 Inflammatory bowel disease 

Kaplan 21216879 Insulin-like growth factors 

Kapoor 24962325 Alcohol dependence (age at onset) 

Kottgen 23263486 Urate levels 

Lango 20881960 Height 

Lemaitre 21829377 Phospholipid levels (plasma) 
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Lesch 18839057 Attention deficit hyperactivity disorder 

Li 26252872 Cognitive decline rate in late mild cognitive impairment 

Li 26301688 Pediatric autoimmune diseases 

Liu 26192919 Crohn's disease 

Liu 26192919 Inflammatory bowel disease 

Liu 26192919 Ulcerative colitis 

Michailidou 23535729 Breast cancer 

Mozaffarian 25646338 Trans fatty acid levels 

Patsopoulos 22190364 Multiple sclerosis 

Perry 25231870 Menarche (age at onset) 

Porcu 23408906 Thyroid hormone levels 

Rietveld 25201988 Educational attainment 

Ripke 25056061 Schizophrenia 

Sawcer 21833088 Multiple sclerosis 

Shin 24816252 Blood metabolite levels 

Shin 24816252 Blood metabolite ratios 

Speedy 24292274 Chronic lymphocytic leukemia 

Suhre 21886157 Metabolic traits 

Surakka 25961943 Cholesterol, total 

Surakka 25961943 HDL cholesterol 

Surakka 25961943 LDL cholesterol 

Surakka 25961943 Triglycerides 

Teslovich 20686565 Cholesterol, total 

Teslovich 20686565 HDL cholesterol 

Teslovich 20686565 LDL cholesterol 

Teslovich 20686565 Triglycerides 

vanderHarst 23222517 Red blood cell traits 

Wain 21909110 Blood pressure 

Wang 20889312 Bipolar disorder and schizophrenia 

Willer 24097068 Cholesterol, total 

Willer 24097068 HDL cholesterol 
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Willer 24097068 LDL cholesterol 

Willer 24097068 Triglycerides 

Wood 25282103 Height 

Yucesoy 25918132 Diisocyanate-induced asthma 
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METHODS 
 
Mouse Transgenic Assays 
 

To test for enhancer activity, each region was cloned into a construct 

containing the Hsp68 promoter, which lacks activity in embryonic mice, and the 

LacZ reporter gene. Individually, these constructs were injected into fertilized 

mouse eggs which were then implanted into pseudopregnant female mice. At 

e11.5, the embryos were harvested and stained for LacZ reporter gene activity. If 

the tested genomic region has tissue specific enhancer activity, the tissue will 

stain blue. For a tissue to have enhancer activity, at least three embryos were 

required to test positive.  

 
 
Cell type specific enhancer prediction  

In November 2015, we downloaded regions from the VISTA database. We 

lifted these regions from the mm9 to the mm10 genome and merged overlapping 

regions, generating 1,994 unique regions. To test anchoring schemes on different 

datatypes, we selected the top 20,000 peaks ranked by p-value and shrank the 

size of the peak to 300 bp. For histone modifications, we used peaks call by 

MACS2 which were in both biological replicates. To modify the width of these 

peaks, we used +/- 150 bp around the peak summit. For DHS, we used peaks call 

by HOTSPOT2 for the first biological replicate. To modify the width of these peaks, 

we used +/- 150 bp around the peak center. To rank peaks, we used signal from 

each experiment. For histone modifications, we used "fold-change over control" 
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signal from the combined biological replicates and calculated signal over a +/- 1 

kb window around the peak summit. For DHSs, we used raw signal from replicate 

one and calculated signal over the 300 bp DHS.  

To evaluate performance, we intersected peaks with all tested VISTA 

regions. If more than one peak overlapped a region we selected the peak with the 

highest signal. VISTA regions were then ranked by the signal of their overlapping 

peak. VISTA regions that did not overlap peaks were assigned a signal of 0. We 

plotted the PR curves using the R package ROCR and calculated the area under 

the curves using custom R scripts. 

To compare ranking schemes, we ran the same pipeline except we 

anchored all predictions on the 300 bp DHSs. For histone modification and 

methylation (WGBS) signals we used a +/- 1 kb window centered at each DHS. 

For H3K27me3 and methylation signals we reversed the order of ranking when 

making our PR curves as high H3K27me3 and methylation correlate with 

repressed regions. 

 

Cell type specific promoter prediction  

To evaluate the performance of promoter prediction methods, we 

downloaded transcript expression quantifications from the ENCODE DCC 

produced from the ENCODE RNA-seq uniform processing pipeline. Using TSS-

proximal (± 2 kb) DHSs or H3K4me3 peaks, we computed the Pearson correlation 

between the ranks of these peaks and the ranks of the expression (TPM) of 
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transcripts within 2 kb. We tested four combinations of ranking schemes: DHSs 

ranked by DNase signal, H3K4me3 peaks ranked by DNase signal, DHSs ranked 

by H3K4me3 signal, and H3K4me3 peaks ranked by H3K4me3 signal. Overall, the 

method with the high correlation was anchoring predictions on DHSs and ranking 

by H3K4me3 signal. 

 
 
Creating representative DHSs (rDHSs) 

As of February 1, 2017 there were 449 hg19 DNase experiments and 62 

mm10 DNase experiments on the ENCODE data portal with HOTSPOT2 calls. As 

a preprocessing step, we normalized the signal at these DHSs so that we can 

compare relative signals across datasets. For each experiment, we calculated the 

Z-score of the log of the DNase signals across the DHSs (see below for an 

explanation of Z-score of log(signal)). We then selected for all DHSs passing an 

FDR threshold of <0.1%. Using a script adapted from the Stamatoyannopoulos 

lab, we clustered these high quality DHSs and we selected the DHS with the 

highest signal (normalized as a Z-score to enable the comparison of signal levels 

across samples) as the representative DHS for each cluster. All the DHSs that 

overlapped with this rDHS by at least one bp were removed. We iteratively 

repeated this process until we obtained a list of non-overlapping rDHSs 

representing all DHSs.  

 

Normalizing epigenomic signals 
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To normalize DNase, H3K4me3, H3K27ac, and CTCF signal for each 

rDHS, we transformed average signals into Z-scores.For each experiment, we 

used the UCSC tool bigWigAverageOverBed to compute the average signal 

across each cRE. For H3K4me3 and H3K27ac we added +/- 500 to both ends of 

the rDHS when computing the signal. Using a custom Python script, we calculated 

the log of these signals and computed a Z-score for each rDHS compared with all 

other rDHS signals within the cell type. rDHSs with a raw signal of 0 were assigned 

a Z-score of -10 due to inconsistencies with pseudocounts.  

 

Classification of cREs 
 

To classify rDHSs as cREs we used the classifications trees in Figures 

2.12 and 2.13. Based on maximum DNase, H3K4me3, H3K27ac, and CTCF Z-

scores across all cell types as well as distance from GENCODEV19 annotated 

TSS, rDHSs can be classified as PLS, ELS, or CTCF-only cREs. Because both 

promoters and enhancers can have high levels of H3K4me3 and H3K27ac, the 

classification tree first splits based on whether a rDHS is proximal (+/- 2 kb) to a 

TSS. rDHSs that are not classified as cREs are discarded. To classify cRE 

activity in a particular cell type we used the classification scheme in Figure 2.18 

relying on the Z-scores of genomic signals in the cell type of interest. 
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Saturation of cREs within each group with increasing numbers of cell types 

To determine the relative saturation of cREs with promoter-like, enhancer-

like or CTCF-only signatures, we used 21 cell types with all four core genomic 

marks (DNase, H3K4me3, H3K27ac, and CTCF). For X in the range of 1–21, we 

randomly selected X cell types 100 times. For each selection, we calculated the 

number of unique cREs in each of the three groups—promoter-like, enhancer-

like, and CTCF-only signatures. Then, using the R script adapted from Steven 

Wilder and Ian Dunham25, we calculated the cREs in each group to be at 95% 

saturation for each curve using a Weibull distribution. 

 

Overlap of cREs with ChromHMM states 

To compared PLS and ELS cREs with chromatin states called by 

chromHMM, we first combined similar chromHMM states to generate seven 

broad states (Table 2.9). For human, we analyzed chromHMM regions for 

GM12878 cells from the ENCODE 2012 paper (ENCODE experiment accession 

ENCFF001TDH). We selected all PLS or ELS cREs and ranked them by 

H3K4me3 and H3K27ac Z-scores, respectively. Then, we calculated the 

percentage of cREs in each 1 k bin that overlapped regions with each 

chromHMM state. Each cRE was assigned to only one chromHMM state—the 

state that overlapped the largest number of basepairs. For mouse, we analyzed 

11 tissue–time-point combinations (from e11.5 and e14.5) for which we had 

DNase, H3K4me3, and H3K27ac data. We overlapped cREs with promoter-like 
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or enhancer-like signatures with chromHMM states derived from eight histone 

modifications in the same tissue–time-point. 

 

Clustering cell types on the basis of their cRE activities 

We performed hierarchical clustering on all primary cells and tissues with 

DNase-seq data by classifying the DNase Z-score at each cRE as either high (Z-

score > 1.64) or low within each cell type. We also performed the same analysis 

using the Z-scores of H3K27ac and H3K4me3. We clustered tissues and primary 

cells separately because each tissue comprises multiple types of primary cells 

with different embryonic origins. For each cell or tissue type, we selected all 

cREs with a Z-score > 1.64 for each epigenomic mark and then calculated the 

Jaccard index for pairwise tissue or cell type comparisons. We clustered the 

tissues according to the pairwise Jaccard index using the hclust function in R. 

 

Enrichment of GWAS variants in cREs 

We curated studies from the NHGRI-EBI Catalog (Table 2.11) that were 

performed on European populations and used minor allele frequencies (MAF) 

and linkage disequilibrium (LD) of these populations to generate control SNPs. 

Because MAF and LD differ across populations, we limited the scope of our initial 

analysis to the populations with the most data. We used CEU-specific data of 

linkage disequilibrium (LD; correlation coefficient r2>0.7) to perform statistical 

tests. For each study, we generated a matching set of control SNPs as follows: 
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for each SNP in the study (p < 1E-6) we selected a SNP on Illumina and 

Affymetrix SNP ChIPs that fell within the same MAF quartile and the same 

distance to TSS quartile. We repeated this process 100 times, generating 100 

random control SNPs for each GWAS SNP. Then, for both GWAS and control 

SNPs, we retrieved all SNPs in high linkage disequilibrium (LD r2 > 0.7), creating 

LD groups. To assess whether the cREs in a cell type were enriched in the 

GWAS SNPs, we intersected GWAS and control LD groups with cREs with an 

H3K27ac Z-score > 1.64 in the cell type. To avoid over counting, we pruned the 

overlaps, counting each LD group once per cell type. We modified the 

Uncovering Enrichment through Simulation (UES) method101 with Fisher's exact 

tests for performing statistical testing. We calculated enrichment for overlapping 

cREs, comparing the GWAS LD groups with the 100 matched controls. Finally, 

we applied an FDR of 5% to each study. 

 

SCREEN 

SCREEN was engineered by Michael Purcaro and Henry Pratt of Zhiping Weng's 

lab. Their code is available at https://github.com/weng-lab/SCREEN. 

 

Scripts 

Scripts for this analysis can be found on GitHub: https://github.com/Jill-

Moore/Dissertation/tree/master/Chapter-II/  
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CHAPTER III: Systematic evaluation of enhancer target 

gene prediction methods  

 

PREFACE 

Results from this chapter were adapted from  

Moore*, Purcaro*, Pratt*, Epstein*, Shoresh*, Adrian*, Kawli*, Davis*, Dobin*, 
Kaul*, Halow*, Van Nostrand*, Freese*, Gorkin*, He*, Mackiewicz*, The 
ENCODE Consortium. Cherry, Myers, Bing Ren, Graveley, Stamatoyannopoulos, 
Gerstein, Pennacchio, Gingeras, Snyder, Bernstein, Wold, Hardison, and Weng. 
"ENCODE Phase III: Building an Encyclopaedia of candidate Regulatory 
Elements for Human and Mouse," 
 
which is currently under review at Nature and from  

Moore, Garnick, and Weng. "A Systematic Evaluation of Enhancer Target Gene 
Prediction Methods using the ENCODE Encyclopedia." 
 
which is currently in preparation. I performed all analysis and generated all the 

figures that were used in the chapter. 

 

ABSTRACT 

To interpret the biological function of an enhancer, we need to determine 

the genes it regulates. While many enhancers target nearby genes, there are 

examples of enhancers regulating genes up to 1 Mb away. Many groups have 

developed computational methods for linking enhancers with target genes, yet 

these methods are trained and tested on different enhancer-gene links, making 

comparisons between methods difficult. To systematically and accurately evaluate 

enhancer-gene linking methods, we developed a benchmark of chromatin and 
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genetic interaction datasets. In this benchmark, we used Hi-C, ChIA-PET and 

eQTL links to generate positive and negative ELS-gene pairs that can be used for 

training, validating and testing computational methods. Using this benchmark, we 

evaluated correlation based methods and found that they had low overall 

performance and did not outperform ranking genes by distance. We then 

developed a Random Forest model which outperformed unsupervised methods 

and was applicable across cell types. We used our Random Forest model to 

predict genes linked with a variant associated with multiple sclerosis identifying a 

novel GWAS risk gene. Our results establish a pipeline for generating a benchmark 

of ELS-gene pairs, which can be used to evaluate published target gene methods. 

 

INTRODUCTION 

Chapter II of this thesis detailed the Registry of candidate Regulatory 

elements (cREs), a collection of putative regulatory regions in human and mouse. 

The majority, 75%, of these cREs have enhancer-like signatures (i.e. high DNase 

and H3K27ac signals) and are distal from TSSs. To interpret the biological function 

of these cREs, we need to determine the genes they regulate. While many 

enhancers target nearby genes, there are examples of enhancers regulating genes 

up to 1 Mb away2 so simply assigning an enhancer to its nearest gene may not be 

an ideal method. Therefore, labs have developed experimental and computational 

methods for investigating enhancer-gene interactions. 



 

 

110 

Experimental assays such as Hi-C and ChIA-PET survey physical 

interactions between genomic regions62,66. By overlapping the anchors of these 

interactions with annotated enhancers and promoters, we can infer regulatory 

connections. However, these assays are expensive to perform and have only been 

conducted with high resolution in a small number of cell types. Therefore, we need 

to rely on computational methods to more broadly predict enhancer-gene 

interactions. 

Previous work by members of the ENCODE consortium demonstrated that 

they could identify the target genes of enhancers by correlating enhancer activity 

with transcriptional activity. Correlation based methods rely on the hypothesis that 

enhancers are active in the same cell types in which their target gene is expressed. 

These labs used DNase signal6  or H3K4me170 signal to estimate enhancer activity 

and DNase signal6,68, POLII70  signal or gene expression69 to estimate 

transcriptional activity. While these methods identified biologically relevant 

enhancer-gene links, they have yet to be systematically analyzed to evaluate their 

overall precision and recall. 

Other target gene prediction methods such as, IM-PET72, PETmodule73 and 

TargetFinder74, use supervised machine learning algorithms to predict enhancer-

gene links utilizing features such as epigenomic signal72-74, gene ontology terms73, 

and conservation72. While these methods have overall high performance they 

require known enhancer-gene pairs for training. These methods use Hi-C and 

ChIA-PET data as their gold standards but since each method uses data from 
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different studies, as well as different collections of enhancers, it is difficult to 

compare the performance of each model.  

In order to determine the best method for linking ELS cREs with potential 

target genes, we developed a collection of benchmark datasets using the Registry 

of cREs and experimentally derived enhancer-gene interactions. We then tested 

common methods of linking enhancers with genes such as using distance and 

signal correlation. Ultimately, we developed a high performing Random Forest 

approach that can be applied across cell types to predict target genes. Using this 

Random Forest model, we predicted targets genes for a SNP associated with 

multiple sclerosis and identified a novel GWAS risk gene. Our analysis lays the 

groundwork for future comparisons of gene-enhancer linking methods and a push 

towards standardizing the comparison of computational models. 

 

RESULTS 

Curating Benchmark Datasets 

In order to compare methods of predicting target genes, we curated a 

collection of potential enhancer-gene interactions. We focused on two types of 

data: three-dimensional chromatin interactions (e.g. ChIA-PET and Hi-C data) and 

genetic interactions (e.g. eQTLs). We chose to use both types of data because 

they complement each other's limitations. For example, ChIA-PET reports 

proximal physical interactions between two genomic regions, but does not imply 

regulation of one region by another. eQTLs, on the other hand, suggest a 
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functional relationship between a SNP and gene, but do not imply direct regulation 

by the SNP. Therefore, by testing methods on both types of data we can 

investigate what features are more indicative of physical interactions versus 

genetic interactions. 

We decided to create our initial benchmark using interaction data surveyed 

in GM12878 and lymphoblastoid cell lines due to the large amount of genomic data 

that has been generated by the ENCODE project and the biological community. 

For chromatin interaction data, we selected ChIA-PET and Hi-C datasets from the 

ENCODE DCC and the gene expression omnibus (GEO). During the second 

phase of the ENCODE project, the Snyder lab generated ChIA-PET data in 

GM12878 targeting RAD21, a component of the cohesion complex129. We 

supplemented this data with ChIA-PET datasets generated by the Ruan lab 

targeting POLII and CTCF67. For Hi-C, we included links from promoter capture Hi-

C (CHi-C) data generated by the Osborne lab65 and high resolution Hi-C loops 

generated by the Aiden lab63. For genetic interaction data, we included eQTLs 

reported by the Dermitzakis lab114 and the GTEx consortium108 in lymphoblastoid 

cell lines.  

To generate candidate ELS-gene pairs from these datasets, we required 

one end of a link to overlap an ELS cRE and the other end to fall within 2 kb of a 

GENCODE annotated TSS (Figure 3.1). To correctly identify the target gene, we 

excluded ambiguous links that connected to multiple gene TSSs. For eQTLs, we 

linked a cRE to a gene if it directly overlapped the eQTL SNP. To create our 
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negative set, for cREs with positive links, we selected all genes with TSSs within 

a window that were not a part of a positive or ambiguous pair. For each dataset, 

we determined the size of this window by calculating the 95th percentile of distance 

between positive ELS-gene pairs (Figure 3.2). This window ranged from +/- 170 

kb for POLII ChIA-PET to +/- 983 kb for Aiden Hi-C links (Table 3.1). Using this 

method, we generated thousands of GM12878 specific ELS-gene pairs. For each 

dataset, we split pairs into three groups with 50% of pairs forming the training set, 

25% forming the validation set, and the remaining 25% forming the test set. 

Therefore, this benchmark can be used to train, validate, and test any target gene 

prediction method. 

 

Comparing Benchmark Datasets 

To determine the similarity of the benchmark datasets, we calculated the 

overlap coefficient for the number of positive ELS-gene pairs between each 

dataset. When we clustered the datasets, we observed two large groups, one for 

genetic interaction data and the second for chromatin interaction data (Figure 3.3). 

Within the second cluster, we observed two sub-clusters with ChIA-pet and Hi-C 

datasets aggregating together. We also observed that POLII ChIA-PET and 

Osborne CHi-C data had a higher overlap with eQTL datasets compared to Aiden 

Hi-C, CTCF ChIA-PET or RAD21 ChIA-PET (max overlap coefficient = 0.14 vs. 

max overlap coefficient = 0.03) though the overall overlap was still very low. 
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 For each benchmark dataset, we also analyzed the activity and expression 

levels of the ELS-gene pairs. POLII ChIA-PET cREs tended to have higher levels 

of H3K27ac and H3K4me3 signals (p<4.2E-8, p<8.1E-8) compared to the other 

benchmarks, while RAD21 ChIA-PET cREs had lower levels (p<3.6E-9, p<2.9E-

3) (Figure 3.4a,b). We did not observe notable differences for these signals 

between the other datasets. For CTCF, however, there were differences in the 

distributions of signal for ELS cREs. For RAD21 ChIA-PET, CTCF ChIA-PET and 

Aiden Hi-C pairs, there were populations of ELS cREs with very high levels of 

CTCF signal (Figure 3.4c). For RAD21 ChIA-PET this was a large group of about 

79% of total cREs; for CTCF ChIA-PET and Aiden Hi-C, these groups were 

smaller, containing 35% and 20% of cREs respectively. This enrichment for CTCF 

signal is biologically consistent with these chromatin interaction experiments. 

CTCF was the target for the CTCF ChIA-PET experiment, RAD21 is known to co-

localize with CTCF and the Aiden lab reported that their links are anchored at 

CTCF binding sites. When we analyzed gene expression, we found that genes in 

the POLII ChIA-PET pairs had higher expression levels than other datasets 

(median 15.3 TPM) while genes in the Osborne CHi-C pairs had low expression 

levels (median of 0.2 TPM) (Figure 3.4d). This suggests that some of these CHi-C 

pairs may be false positives or are links for ELS cREs that have yet to regulate 

gene expression. 

Overall, these results suggest that these benchmark datasets capture 

different types of genomic interactions and that to accurately determine the 
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performance of a target gene method, we should test it using all of these 

benchmark datasets. 

 

Ranking by Distance Outperforms Correlation Based Methods  

We began by evaluating the simplest method of enhancer target gene 

prediction: selecting the closest gene by linear distance. We tested this method 

using TSSs for all annotated genes and only TSSs from protein coding genes by 

calculating the precision and recall for each benchmark dataset. For all datasets 

except RAD21 ChIA-PET, we observed higher performance using TSSs for protein 

coding genes, rather than all genes. POLII ChIA-PET links had the highest 

performance with a precision of 0.66 and recall of 0.46 for protein coding gene 

TSSs (Figure 3.5). eQTLs and other ChIA-PET links had moderate performance 

and the Hi-C datasets had the lowest performance. We then tested whether we 

could predict links simply by ranking genes by their linear distance from the ELS 

cRE. Since this method was independent of cell type and did not require any 

genomic data, we considered it our baseline method. For each benchmark dataset, 

we evaluated performance by calculating the areas under the receiver operating 

characteristic (ROC) and precision recall (PR) curves focusing primarily on the 

area under PR (AUPR) curves due to class imbalance in the benchmark datasets 

(Table 3.2). As expected POLII ChIA-pet pairs had the highest AUPR (0.41) and 

Aiden Hi-C pairs had the lowest (0.06) (Figure 3.6 and 3.7, Table 3.2b). We 

compared all subsequent methods to these baseline results. 
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Our next step was to evaluate correlation based approaches. Adapting 

methods from Thurman et al.68, we calculated the correlation coefficient for 

average signal across the ELS cRE and the TSS across hundreds of cell types 

(462 for DNase and 136 for H3K27ac). We tested this method using different 

epigenomic signals (e.g. DNase vs H3K27ac), signal normalization techniques 

(e.g. Raw vs Z-score) and correlation methods (e.g. Pearson vs Spearman). For 

all benchmark datasets, the best performing method was calculating the Spearman 

correlation of Z-score normalized DNase signals (Table 3.2). However, for all of 

the benchmark datasets except RAD21 ChIA-PET, this method did not outperform 

our baseline model (Figure 3.6 and 3.7). For RAD21 ChIA-PET links, though we 

achieved a 57% improvement using correlation over the baseline method (AUPR 

0.18 vs 0.11), the overall performance was still poor. To understand why the 

correlation methods had such low AUPR values, we analyzed specific ELS-gene 

pairs. We found that there were some pairs that did have high correlation 

coefficients. For example, the highest ranked POLII ChIA-PET ELS-gene pair was 

EH37E0572541-WNT10A, which had a Spearman correlation coefficient of 0.82 

(Figure 3.8a,b). Both WNT10A's promoter and EH37E0572541 have high DNase 

signal in over a hundred of DNase experiments suggesting that EH37E0572541 

regulates WNT10A in many types of cells. This example, however, is in the 

minority. There are many other cases where the DNase correlation for the ELS-

gene pair is low. For example, ELS cRE EH37E0853090 is paired with AKIRIN2 

by both a POLII ChIA-PET link and a GTEx eQTL. However, EH37E0438944 and 
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AKIRIN2 have low DNase correlation (ρ=0.06) (Figure 3.8c,d). AKIRIN2 is 

expressed across many cell types and has high DNase activity (PLS cRE DNase 

Z-score > 1.64) in all of the 462 surveyed cell types. EH37E0365491, on the other 

hand, only has high DNase signal (Z-score > 1.64) in six cell types, four of which 

are lymphoblastoid or lymphoma cell lines. Therefore, we predict that AKIRIN2 is 

only regulated by EH37E0853090 in B cell related cell types and that because of 

this cell type specific regulation, we are unable to identify this ELS-gene pair using 

correlation. In general, we hypothesized that the low overall performance for 

correlation based methods is because enhancers are much more likely to be cell 

type specific than promoters (Chapter II, Figure 2.17). Therefore, while correlation 

methods are simple to implement because they do not require cell-type specific 

data, they cannot identify cell-type specific ELS-gene pairs, such as 

EH37E0853090-AKIRIN2, which results in worse performance compared to our 

baseline method.  

When we compared the shape of the PR curves for correlation with our 

baseline method, we observed that correlation methods tended to have higher 

AUPR for the top ranked ELS-gene pairs whereas distance had better 

performance with the lower ranked pairs. We decided to combine the methods by 

taking the averaging rank of the two different schemes. For all benchmark datasets 

except eQTLs, this resulted in an average increased AUPR of 38% (Figures 3.6 & 

3.7, Table 3.3). Our baseline method remained the best performing method for 

both GTEx and Dermitzakis eQTL pairs. In conclusion, while correlation based 



 

 

118 

methods did not outperform selecting genes using distance, we observed an 

increase in performance when we combined the two features. 

 

Random Forest Models Outperform Unsupervised Methods 

Because simply combining distance and DNase correlation resulted in 

higher performance than our baseline model, we sought to develop a more 

sophisticated computational method that could combine multiple features to 

predict ELS-gene links. We decided to utilize the Random Forest algorithm130, a 

supervised machine learning approach that is able to handle class imbalanced 

datasets (i.e. different number of positive and negatives), and used two 

approaches for developing models (Figure 3.9). First, we focused on developing 

models that can be applied across many cell and tissue types. These models 

would only require cell type specific DNase and/or H3K27ac data along with cell 

type independent features such as signal correlation, sequence features (k-mers), 

and distance (see methods for full feature list). Second, we focused on developing 

the best performing model in GM12878 using all available data. For this model, we 

included gene expression, TF and histone modification ChIP-seq, and RAMPAGE 

data. This model may only be able to be applied across a few cell types (e.g. 

GM12878, K562, H1-hESC) but may indicate which types of experiments we 

should prioritize in the future. 

Starting with the DNase and H3K27ac only models, we found these 

relatively simple models had higher AUROC and AUPR compared to our average 
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rank method for all benchmarks (Figure 3.10 and 3.11, Table 3.4). Including both 

signals as features resulted in the best performance, but models using only one of 

the signals (for cell types with just one datatype) still had comparable performance. 

We analyzed feature importance for each model and found that distance was 

consistently ranked the most important feature (Table 3.4). The next most 

important features were average DNase and H3K27ac signal around the gene's 

TSS suggesting that activity at the gene's promoter is indicative of ELS-gene links. 

We then decided to expand on this basic model by adding in other features 

such as expression, TF ChIP-seq signal and other histone modifications (Table 

3.3). We found that expression universally improved performance, with AUPR for 

the eQTL benchmarks having the highest increases (13% and 9%) (Figures 3.10 

and 3.11). This is consistent with the methodology of defining eQTLs as the gene 

must be expressed in LCLs to be detected (Table 3.5). When we added CTCF 

signal to this expression model, considering both signal at the ELS cRE and TSS, 

AUPR increase 13% for CTCF ChIA-PET and 18% for RAD21 ChIA-PET. When 

we analyzed feature importance for this model, TSS CTCF signal was the top 

ranked feature for RAD21 ChIA-PET and the second ranked feature for CTCF 

ChIA-PET after distance (Table 3.6). For Aiden Hi-C, we only observed an 

increase of 2% for including CTCF and TSS CTCF was the fifth most important 

feature after distance and TSS DNase, H3K27ac, and conservation signals. For 

all three benchmarks, CTCF-signal at the enhancers was not even one of the top 

ten most important features. When we added POLII, EP300, RAMPAGE, or 
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additional histone modification signals to our expression model, we did not observe 

dramatic increases in performance (Table 3.7). Our comprehensive model, which 

includes all of these features only had an average improvement of 0.5% over the 

expression + CTCF model.  

  

Our Random Forest Model Can be Applied Across Cell Types 

As we do not have chromatin or genetic interaction data for the majority of 

cell types covered by the Registry of cREs, if we were to apply our method to 

predict cell type specific ELS-gene pairs, we would need to train our model in a 

cell type with benchmark data. In order to evaluate the versatility of our models 

across different cell types, we tested our basic RF model using POLII and CTCF 

ChIA-PET data from HeLa cells generated by the Ruan Lab67. We compared 

performance of models trained and validated with data from the cell type versus 

models trained and validated in different cell types. We also compared 

performance to our best performing unsupervised method: taking the average rank 

of distance and DNase correlation. We found that while the cross-cell type models 

had lower AUPR than the same cell type models, they outperformed the average 

rank method with an average increase in AUPR of 25% (Figure 3.12, Table 3.10). 

The POLII ChIA-PET datasets retained higher performance across cell types 

compared to the CTCF ChIA-PET datasets. We hypothesize this is because 

distance is a more important feature in the POLII ChIA-PET models and is truly 

cell type independent. DNase and H3K27ac data quality can vary between cell 
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types and though we normalized the signals, these biases can lower performance. 

Therefore, while we aim to improve the cross cell type application of our model, 

our random forest model still outperformed our best unsupervised approach. 

 

Our Random Forest Model Identifies a New GWAS Gene for Multiple 

Sclerosis 

Since our expression random forest model had high performance across all 

benchmark datasets without requiring multiple features, we used this model to 

predict ELS-gene pairs in GM12878 cells. Our previous GWAS enrichment 

analysis (Chapter II) demonstrated that variants associated with multiple sclerosis 

are enriched in cREs active in GM12878, which is in agreement with previously 

findings by the Stamatoyannopoulos lab102. Multiple sclerosis is an disease in 

which the body's immune system attacks the myelin sheaths of axons, resulting in 

in neurological deficits and deterioration131. The role for B cells in the pathology of 

multiple sclerosis has recently been recognized103 with clinical trials targeting B cell 

antigens reporting success for slowing disease progression104. Therefore, 

identifying potential target genes in GM12878 may present new therapeutic 

targets. 

One SNP of particular interest was rs1250568, which is in LD with two SNPs 

associated with multiple sclerosis132,133. Rs1250568 overlaps ELS cRE 

EH37E0182314 which has high H3K27ac and DNase signal in blood cells like 

GM12878. Rs1250568 also overlaps both a ChIP-seq peak and motif site for ELF1 
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(Figure 3.13a). ELF1 is primarily expressed in lymphoid cells and is involved in the 

IL-2 and IL-23 immune response pathways, both of which have previously been 

implicated in multiple sclerosis134,135. Additionally deltaSVM, a computational 

method that predicts the functional impact of variants using DNA sequence k-mers, 

predicted that rs1250568 is likely a casual SNP136. Because rs1250568 may 

disrupt ELF1 binding, thus affecting gene regulation, we aimed to identify genes 

that interact with  EH37E0182314. 

Using our expression Random Forest model trained on POLII ChIA-PET 

pairs, we predicted genes links using a probability cutoff of 0.5 (precision=0.80, 

recall=0.59). Our model reported two linked genes: ZMIZ1 and PPIF (Figure 

3.13b). These predictions are also supported by POLII ChIA-PET links that were 

not a part of our training set (Figure 3.13c). ZMIZ1 is involved with androgen 

receptor signaling pathway and is expressed at lower levels in patients with 

multiple sclerosis137. Due to its proximity to the GWAS lead SNPs, ZMIZ1 was 

reported as the risk gene in both GWAS132,133. The other linked gene, PPIF 

(Cyclophilin D), is located downstream of EH37E0182314 and encodes a 

mitochondrial permeability transition pore protein. While PPIF was not previously 

reported as a MS susceptibility gene by GWAS, evidence demonstrates that its 

dysregulation likely plays a role in the onset of multiple sclerosis. For example 

Forte et al. demonstrated that knocking out Ppif in mice with experimental 

autoimmune encephalomyelitis (EAE, a mouse disease model for multiple 

sclerosis) protected spinal cord axons, enabling the knock out mice to partially 
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recover from EAE138. These findings are supported by recent work from Warne et 

al. who demonstrated that treating EAE mice with a Ppif inhibitor protects axons 

and improves motor ability139. Therefore, our comprehensive Random Forest 

model is able to predict biologically significant enhancer-gene links which can be 

used to better understand disease etiology and identify potential therapeutic 

targets. 

 

DISCUSSION 

 In this chapter, we evaluated methods for linking enhancers with putative 

target genes. We curated a benchmark of ELS-gene pairs using chromatin and 

genetic interaction datasets and then used this benchmark to test common 

methods of target gene prediction. We found that overall, correlation of epigenomic 

signal across cell types is not an ideal method for predicting ELS-gene pairs. 

Though we observed that some ELS-gene pairs such as EH37E0572541-

WNT10A have high correlation, the overall performance of these methods are low. 

We demonstrated that one reason for low performance is that with correlation 

methods we are unable to detect cell type specific regulation, which is the case for 

EH37E0853090-AKIRIN2. Another possible reason for poor performance is we 

survey signal across a biased set of cell and tissues types. For example, we have 

many more types of blood cells than lung or heart tissue samples. This imbalance 

could dramatically alter the results depending on the gene's expression patterns. 

In the future, we could curate a set of recommended cell types to use for correlation 
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based methods (e.g., equal representation from different tissues of origin) but this 

still does address the problem of cell type specificity. Our results, however, do not 

discredit all correlation based methods. For example, correlation may be a much 

more powerful tool when analyzing activity and expression across differentiation 

or development. For example, in Chapter IV we link cREs with target genes using 

correlation of signal activity and gene expression within the same tissues across 

embryonic development. Our results simply suggest that using correlation across 

a wide range of different cell and tissue types is less than ideal. 

We also demonstrated that even basic Random Forest Models, with few cell 

type specific features had a considerable improvement in performance over 

unsupervised methods. Adding other features such as expression and CTCF 

signal improved performance for specific benchmarks, but a comprehensive model 

including all features did not result in a much higher AUPR. Since simply adding 

more types of epigenomic signal did not drastically improve performance, moving 

forward we will integrate different types of features. For example, the Aiden lab 

reported enrichment for CTCF motifs at the anchors of their Hi-C loops63 so we 

plan to include distance to nearest CTCF motif site in our model. While our 

Random Forest model had high performance when trained and validated on the 

same cell type, we were surprised of its lower performance when validated across 

cell types. With models dependent on cell type specific signals, we need to be 

aware of differences in data quality and biases in signal. For our analysis used Z-

score normalized signals to try and alleviate this problem but we may need to 
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investigate alternative methods of normalization. It is also possible fundamental 

differences between cell types may causing this lower performance. For example, 

GM12878 and HeLa cells are histologically very different from one another and 

may have different numbers of ubiquitous or cell type specific cREs. We plan on 

continuing to modify our models so that they are applicable across cell types 

perhaps implementing new normalization methods or using a ranking metric. Our 

next step will be to compare our Random Forest model with other target gene 

prediction methods such as PET-Module, IM-PET and Target Finder. These 

models have all been trained and evaluated using different enhancer-gene links 

so our benchmark will allow for an unbiased comparison between the methods. 

Finally, our analysis also revealed key differences between the benchmark 

interaction datasets. In general, there is little overlap between these datasets and 

the ELS-genes pairs have different features. For example, CTCF ChIA-PET, 

RAD21-ChIA-PET and Aiden Hi-C ELS cREs have higher CTCF signal and their 

links are better predicted when CTCF is included in the Random Forest model. 

Additionally, the Osborne CHi-C data link ELS cREs with genes with low 

expression. This suggests that either many of these interactions are random noise 

or CHi-C captures new interactions that have yet to result in gene expression. Both 

cases warrant further investigation. In the future, we can also investigate features 

that differentiate between types of links. For example, the Ruan lab reported 

differences between the gene expression patterns of genes at the anchors of their 

CTCF and POLII ChIA-PET with the CTCF genes having ubiquitous expression 
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and POLII genes having cell type specific expression. We can incorporate these 

features into our model to predict what types of interactions link the ELS-gene pair. 

 During the next phase of the ENCODE project, the Ruan labs and Aiden 

labs plan on generating new ChIA-PET and Hi-C datasets in cell types relevant to 

the Registry of cREs. Therefore, establishing these methods for creating 

benchmarks will aid in the future evaluation of target gene methods. 
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Figure 3.1 | Method for curating ELS-Gene pairs. To include a link in one of our 
benchmark datasets, it must overlap a ELS cRE active GM12878 (yellow) and the 
proximal region surrounding a TSS (+/- 2 kb). Links that overlap multiple TSSs are not 
included in either the positive or negative set of links (black listed). For the negative set 
we included all genes with a TSS within a +/- distance based on the 95th percentile.  
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Figure 3.2 | Distance distributions for benchmark datasets. a, Distribution of 
distances between ELS cREs and gene TSSs in benchmark links. b, Lines indicating 
95th percentile of distance for each benchmark dataset.  
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Figure 3.3 | Overlap of benchmark datasets. Heatmap displaying overlap coefficients 
for each pairwise comparison of benchmark datasets. Benchmark datasets cluster by 
type of dataset (i.e. ChIA-pET, Hi-C, and eQTLs). 
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Figure 3.4 | Activity of ELS cREs and expression of genes in benchmark datasets. 
a, H3K27ac b, H3K4me3 and c, CTCF Z-scores in GM12878 for ELS cREs in 
benchmark datasets. d, Gene expression in TPM for genes in benchmark datasets 
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Figure 3.5 | Performance for closest gene method. Precision (X-axis) and recall (Y-
axis) for each benchmark dataset using the closest gen method. Results from using all 
genes are indicated by circles. Results from using protein coding genes are indicated by 
triangles. 
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Figure 3.6 | PR curves for unsupervised target gene prediction methods: ChIA-
PET datasets. Precision recall curves for enhancer gene pairs ranked by distance, 
DNase and H3K27ac Z-score Spearman correlation, and the average rank of DNase 
correlation and distance for a, POLII, b, CTCF, and c, RAD21 ChIA-PET datasets 
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Figure 3.7 | PR curves for unsupervised target gene prediction methods: eQTL 
and Hi-C datasets. Precision recall curves for enhancer gene pairs ranked by distance, 
DNase and H3K27ac Z-score Spearman correlation, and the average rank of DNase 
correlation and distance for a) GTEx eQTLs, b) Dermitazkis lab eQTL, c) Aiden lab Hi-C 
and d, Osborne lab CHi-C datasets 
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Figure 3.8 | Correlation of DNase signal between of ELS-gene pairs. a, ELS cRE 
EH37E0572541 WNT10A are paired by a POLII ChIA-PET link. EH37E0572541and the 
promoter of WNT10A DNase signal correlation coefficient of 0.82. b, ELS cRE 
EH37E0853090 and AKIRIN2 are paired by a POLII ChIA-PET link and GTEx eQTL. 
EH37E0853090 and the promoter of AKIRIN2 DNase signal correlation coefficient of 
0.06. 
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Figure 3.9 | Proposed random forest models for predicting ELS-gene pairs. We 
propose developing two models. The minimal model will only cell type specific DNase 
and H3K27ac as well as cell type agnostic features such as conservation and distance. 
With the comprehensive model, we will integrate as many data types as possible to 
generate the best performing model. 
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Figure 3.10 | PR curves for Random Forest model predicting ELS-Gene links: 
ChIA-PET datasets. Precision recall curves for the average rank of DNase correlation 
and distance, and basic, expression, CTCF, and comprehensive Random Forest models 
for a, POLII, b, CTCF, and c, RAD21 ChIA-PET datasets 
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Figure 3.11 | PR curves for Random Forest model predicting ELS-Gene links: 
eQTL and Hi-C datasets. Precision recall curves for the average rank of DNase 
correlation and distance, and basic, expression, CTCF, and comprehensive Random 
Forest models for a) GTEx eQTLs, b) Dermitazkis lab eQTL, c) Aiden lab Hi-C and d, 
Osborne lab CHi-C datasets 
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Figure 3.12 | PR curves for Random Forest models trained and validated in 
different cell types. Precision recall curves for the average rank of DNase correlation 
and distance, and Random Forest models trained using GM12878 data or HeLa data for 
ELS-gene pairs from a, POLII ChIA-PET from GM12878, b, POLII ChIA-PET from HeLa, 
c, CTCF ChIA-PET from GM12878, and d, CTCF ChIA-PET from HeLa 
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Figure 3.13 | Predicting genes linked with MS variant rs1250568. a, MS variant 
rs1250568 overlaps ELS cRE EH37E0182314 which has high DNase (green) and 
H3K27ac (yellow) signal in GM12878. Rs1250568 overlaps a ELF1 ChIP-seq peak 
(blue) and ELF motif site. b, Results from comprehensive Random Forest model where 
bars indicated the probability of each gene being linked with EH37E0182314. c, 
Genome browser view of the locus showing POLII ChIA-PET links validating the 
predicting links between rs1250568 and ZMIZ1 and PPIF 
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Table 3.1 | Benchmark Datasets 
 Number of Enhancer-Gene Pairs  

Dataset Positive Set Negative Set % Positive 95th Percentile 
Distance 

POLII ChIA-PET67 12,118 75,380 13.85% 170,163 
CTCF ChIA-PET67 4,354 72,070 5.70% 426,155 
RAD21 ChIA-PET 198 3,979 4.74% 365,097 

Promoter Capture Hi-C65 48,638 328,724 12.89% 667,267 
High Resolution Hi-C63 1,132 43,472 2.54% 983,020 

GTEX eQTLs 1,162 24,082 4.60% 493,764 
Dermitazakis (2013) 
eQTLs114 2,145 30,223 6.63% 298,777 

 

 

  



 

 

141 

Table 3.2a | AUROC for unsupervised methods 
 H3K27ac DNase   

 Pearson Spearman Pearson Spearman   

 Raw Z-score Raw Z-score Raw Z-score Raw Z-score Distance Average 
Rank 

POLII 
ChIA-PET 0.5837 0.6234 0.6159 0.6220 0.6225 0.6969 0.6424 0.7070 0.8339 0.8327 

CTCF 
ChIA-PET 0.6082 0.6149 0.6202 0.6197 0.6520 0.6859 0.6835 0.6904 0.8044 0.8065 

RAD21 
ChIA-PET 0.5897 0.6328 0.6358 0.6044 0.6486 0.7220 0.7143 0.7253 0.7466 0.7954 

GTEx 
eQTLs 0.5511 0.5919 0.6159 0.6010 0.5945 0.6223 0.6053 0.6346 0.8764 0.8170 

Dermitzakis 
eQTL 0.5920 0.6346 0.6363 0.6487 0.5829 0.6388 0.5960 0.6442 0.7436 0.7594 

Osborne 
CHi-C 0.5799 0.5838 0.5832 0.5898 0.5704 0.5868 0.5732 0.6003 0.7633 0.7257 

Aiden  
HiC 0.5706 0.5994 0.5956 0.6008 0.6265 0.6795 0.6188 0.6855 0.7767 0.7823 

Average 0.5849 0.6195 0.6248 0.6192 0.6294 0.6818 0.6614 0.6893 0.8153 0.8129 
 
 
Table 3.2b | AUPR for unsupervised methods 

 H3K27ac DNase   

 Pearson Spearman Pearson Spearman   

 Raw Z-score Raw Z-score Raw Z-score Raw Z-score Distance Average 
Rank 

POLII 
ChIA-PET 0.1761 0.1891 0.1894 0.1898 0.2152 0.2700 0.2285 0.2911 0.4119 0.4553 

CTCF 
ChIA-PET 0.0833 0.0806 0.0847 0.0846 0.1012 0.1234 0.1097 0.1300 0.2066 0.2399 

RAD21 
ChIA-PET 0.0641 0.0657 0.0683 0.0819 0.0853 0.1544 0.0995 0.1800 0.1145 0.2507 

GTEx 
eQTLs 0.0597 0.0630 0.0710 0.0674 0.0802 0.0822 0.0810 0.0939 0.2667 0.2049 

Dermitzakis 
eQTL 0.0969 0.1053 0.0999 0.1044 0.0928 0.1142 0.0944 0.1256 0.2252 0.2158 

Osborne 
CHi-C 0.1579 0.1590 0.1588 0.1614 0.1643 0.1662 0.1635 0.1740 0.2481 0.2595 

Aiden  
HiC 0.0321 0.0342 0.0345 0.0345 0.0393 0.0517 0.0396 0.0564 0.0624 0.0875 

Average 0.0960 0.1007 0.1027 0.1056 0.1149 0.1488 0.1226 0.1641 0.2450 0.2877 
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Table 3.3a | AUROC for Random Forest models 
    Gene Expression  

 DNase H3K27ac Basic Basic CTCF POLII p300 RAMPAGE His Mods All 
POLII 

 ChIA-PET 0.9285 0.9327 0.9348 0.9396 0.9409 0.9415 0.9417 0.9411 0.9464 0.9487 

CTCF  
ChIA-PET 0.8930 0.8934 0.8967 0.9022 0.9158 0.9064 0.9046 0.9039 0.9111 0.9227 

RAD21  
ChIA-PET 0.7798 0.7847 0.7841 0.7762 0.8184 0.7777 0.7748 0.7797 0.7676 0.8037 

GTEx  
eQTLs 0.9289 0.9292 0.9297 0.9401 0.9416 0.9419 0.9401 0.9405 0.9432 0.9447 

Dermitzakis 
eQTL 0.8970 0.8984 0.9043 0.9221 0.9232 0.9241 0.9251 0.9238 0.9312 0.9337 

Osborne  
CHiC  0.8263 0.8330 0.8488 0.8521 0.8536 0.8522 0.8507 0.8731 0.8736 

Aiden  
HiC 0.9216 0.9218 0.9220 0.9270 0.9285 0.9263 0.9247 0.9256 0.9310 0.9302 

Average 0.8915 0.8838 0.8864 0.8937 0.9029 0.8959 0.8948 0.8950 0.9005 0.9082 
 
Table 3.3b | AUPR for Random Forest models 

    Gene Expression  

 DNase H3K27ac Basic Basic CTCF POLII p300 RAMPAGE His Mods All 
POLII 

 ChIA-PET 0.7353 0.7466 0.7557 0.7718 0.7761 0.7778 0.7803 0.7773 0.7985 0.8065 

CTCF  
ChIA-PET 0.4342 0.4387 0.4488 0.4712 0.5342 0.4861 0.4819 0.4826 0.5306 0.5857 

RAD21  
ChIA-PET 0.2594 0.2546 0.2532 0.2651 0.3137 0.3026 0.2812 0.2874 0.3041 0.3569 

GTEx  
eQTLs 0.5301 0.5392 0.5484 0.5982 0.6040 0.6051 0.6030 0.6041 0.6260 0.6320 

Dermitzakis 
eQTL 0.4950 0.4917 0.5184 0.5872 0.5938 0.6008 0.6017 0.5991 0.6465 0.6617 

Osborne  
CHiC  0.4753 0.4930 0.5329 0.5453 0.5446 0.5408 0.5408 0.6071 0.6074 

Aiden  
HiC 0.4949 0.5405 0.5583 0.5963 0.6139 0.6104 0.6350 0.6082 0.6823 0.6825 

Average 0.4915 0.4981 0.5108 0.5461 0.5687 0.5610 0.5606 0.5571 0.5993 0.6190 
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Table 3.4 | Feature importance for basic Random Forest Model 

 POLII 
ChIA-PET 

CTCF 
ChIA-PET 

RAD21 
ChIA-PET 

GTEx 
eQTLs 

Dermitzakis 
eQTL 

Osborne 
CHi-C 

Aiden 
Hi-C Average 

Distance 0.2578 0.1667 0.1074 0.1777 0.1486 0.1532 0.1030 0.1592 

Promoter 
DNase 0.0706 0.0611 0.0723 0.0602 0.0611 0.0636 0.0674 0.0652 

Enhancer 
H3K27ac 

Mean 
0.0446 0.0528 0.0602 0.0553 0.0618 0.0615 0.0655 0.0574 

Promoter 
Conservation 0.0395 0.0515 0.0605 0.0601 0.0581 0.0611 0.0676 0.0569 

Promoter 
H3K27ac 0.1027 0.0578 0.0666 0.0633 0.0630 0.0597 0.0715 0.0692 

Enhancer 
H3K27ac SD 0.0418 0.0516 0.0547 0.0571 0.0578 0.0579 0.0640 0.0550 

Promoter 
H3K27ac 

Mean 
0.0339 0.0466 0.0506 0.0495 0.0486 0.0554 0.0575 0.0489 

Promoter 
H3K27ac SD 0.0352 0.0456 0.0543 0.0487 0.0487 0.0553 0.0509 0.0484 

H3K27ac 
Correlation 0.0416 0.0536 0.0656 0.0511 0.0611 0.0525 0.0557 0.0545 

DNase 
Correlation 0.0564 0.0703 0.0853 0.0536 0.0515 0.0474 0.0593 0.0605 

K-mer 
Correlation 0.0413 0.0508 0.0705 0.0542 0.0527 0.0461 0.0565 0.0532 

Enhancer 
H3K27ac 0.0376 0.0432 0.0369 0.0440 0.0415 0.0427 0.0398 0.0408 

Promoter 
DNase Mean 0.0344 0.0436 0.0373 0.0377 0.0440 0.0424 0.0406 0.0400 

Enhancer 
Conservation 0.0323 0.0417 0.0381 0.0371 0.0408 0.0421 0.0437 0.0394 

Promoter 
DNase SD 0.0331 0.0404 0.0309 0.0451 0.0454 0.0420 0.0413 0.0397 

Enhancer 
DNase 0.0357 0.0405 0.0378 0.0386 0.0385 0.0412 0.0397 0.0388 

Enhancer 
DNase SD 0.0313 0.0424 0.0392 0.0336 0.0385 0.0387 0.0380 0.0374 
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Enhancer 
DNase Mean 0.0302 0.0397 0.0320 0.0333 0.0383 0.0373 0.0380 0.0355 
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Table 3.5 | Feature importance for expression Random Forest model  

 POLII 
ChIA-PET 

CTCF 
ChIA-PET 

RAD21 
ChIA-PET 

GTEx 
eQTLs 

Dermitzakis 
eQTL 

Osborne 
CHi-C 

Aiden 
Hi-C Average 

Distance 0.2512 0.1633 0.1016 0.1765 0.1470 0.1521 0.0999 0.1559 

Expression 0.0759 0.0518 0.0620 0.0713 0.0828 0.0530 0.0571 0.0648 

Promoter 
H3K27ac 0.0875 0.0522 0.0580 0.0554 0.0552 0.0542 0.0655 0.0611 

Promoter 
DNase 0.0583 0.0561 0.0664 0.0535 0.0540 0.0547 0.0624 0.0579 

DNase 
Correlation 0.0507 0.0658 0.0814 0.0478 0.0453 0.0485 0.0546 0.0563 

Promoter 
Conservation 0.0365 0.0490 0.0572 0.0596 0.0549 0.0529 0.0647 0.0535 

Promoter 
DNase Mean 0.0399 0.0496 0.0556 0.0498 0.0542 0.0536 0.0600 0.0518 

Promoter 
DNase SD 0.0389 0.0492 0.0522 0.0517 0.0531 0.0506 0.0596 0.0508 

K-mer 
Correlation 0.0383 0.0477 0.0657 0.0488 0.0474 0.0474 0.0527 0.0497 

H3K27ac 
Correlation 0.0372 0.0491 0.0592 0.0444 0.0518 0.0504 0.0532 0.0494 

Promoter 
H3K27ac 

Mean 
0.0322 0.0439 0.0480 0.0472 0.0454 0.0481 0.0556 0.0458 

Promoter 
H3K27ac SD 0.0325 0.0428 0.0520 0.0450 0.0453 0.0474 0.0485 0.0448 

Enhancer 
H3K27ac 0.0353 0.0418 0.0340 0.0401 0.0382 0.0415 0.0376 0.0384 

Enhancer 
H3K27ac 

Mean 
0.0325 0.0423 0.0362 0.0350 0.0404 0.0416 0.0388 0.0381 

Enhancer 
H3K27ac SD 0.0309 0.0387 0.0299 0.0416 0.0415 0.0414 0.0386 0.0375 

Enhancer 
Conservation 0.0302 0.0394 0.0371 0.0341 0.0373 0.0428 0.0414 0.0375 

Enhancer 
DNase 0.0340 0.0386 0.0357 0.0360 0.0351 0.0415 0.0375 0.0369 

Enhancer 
DNase SD 0.0295 0.0407 0.0367 0.0312 0.0359 0.0395 0.0362 0.0357 

Enhancer 
DNase Mean 0.0286 0.0381 0.0313 0.0308 0.0352 0.0388 0.0361 0.0341 
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Table 3.6 | Feature importance for CTCF Random Forest model  

 POLII 
ChIA-PET 

CTCF 
ChIA-PET 

RAD21 
ChIA-PET 

GTEx 
eQTLs 

Dermitzakis 
eQTL 

Osborne 
CHi-C 

Aiden 
Hi-C Average 

Distance 0.2436 0.1559 0.0934 0.1699 0.1409 0.1460 0.0934 0.1490 

Promoter 
CTCF 0.0346 0.0745 0.1057 0.0462 0.0521 0.0481 0.0562 0.0596 

Expression 0.0709 0.0451 0.0512 0.0660 0.0765 0.0489 0.0521 0.0587 
Promoter 
H3K27ac 0.0820 0.0464 0.0499 0.0503 0.0502 0.0496 0.0603 0.0555 

Promoter 
DNase 0.0559 0.0490 0.0560 0.0501 0.0490 0.0496 0.0567 0.0523 

DNase 
Correlation 0.0477 0.0589 0.0692 0.0438 0.0418 0.0440 0.0500 0.0508 

Promoter 
Conservation 0.0333 0.0426 0.0508 0.0546 0.0493 0.0479 0.0591 0.0482 

Promoter 
DNase Mean 0.0377 0.0439 0.0460 0.0458 0.0489 0.0485 0.0542 0.0464 

K-mer 
Correlation 0.0354 0.0418 0.0583 0.0459 0.0431 0.0430 0.0484 0.0451 

Promoter 
DNase SD 0.0357 0.0429 0.0420 0.0471 0.0491 0.0457 0.0528 0.0450 

H3K27ac 
Correlation 0.0343 0.0431 0.0518 0.0410 0.0475 0.0461 0.0485 0.0446 

Promoter 
H3K27ac 

Mean 
0.0295 0.0379 0.0420 0.0431 0.0407 0.0437 0.0495 0.0409 

Promoter 
H3K27ac SD 0.0299 0.0374 0.0438 0.0414 0.0411 0.0431 0.0431 0.0400 

Enhancer 
H3K27ac 0.0328 0.0361 0.0291 0.0370 0.0350 0.0377 0.0337 0.0345 

Enhancer 
H3K27ac 

Mean 
0.0298 0.0356 0.0313 0.0318 0.0367 0.0377 0.0351 0.0340 

Enhancer 
H3K27ac SD 0.0280 0.0340 0.0261 0.0379 0.0375 0.0375 0.0349 0.0337 

Enhancer 
Conservation 0.0277 0.0344 0.0318 0.0313 0.0342 0.0387 0.0373 0.0336 

Enhancer 
CTCF 0.0272 0.0405 0.0328 0.0284 0.0317 0.0362 0.0368 0.0334 

Enhancer 
DNase 0.0313 0.0337 0.0310 0.0324 0.0320 0.0376 0.0337 0.0331 

Enhancer 
DNase SD 0.0268 0.0344 0.0306 0.0283 0.0317 0.0354 0.0325 0.0314 
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Table 3.7 | Feature importance for comprehensive Random Forest model 

 POLII 
ChIA-PET 

CTCF 
ChIA-PET 

RAD21 
ChIA-PET 

GTEx 
eQTLs 

Dermitzakis 
eQTL 

Osborne 
CHi-C 

Aiden 
Hi-C Average 

Distance 0.1903 0.1212 0.0597 0.1307 0.1080 0.1114 0.0600 0.1116 

Promoter 
CTCF 0.0152 0.0471 0.0714 0.0239 0.0250 0.0227 0.0272 0.0332 

Expression 0.0392 0.0233 0.0260 0.0371 0.0433 0.0281 0.0252 0.0317 

DNase 
Correlation 0.0261 0.0359 0.0426 0.0236 0.0216 0.0218 0.0255 0.0282 

Promoter 
H2AFZ 0.0284 0.0249 0.0278 0.0231 0.0275 0.0240 0.0281 0.0262 

Promoter 
H3K4me1 0.0222 0.0244 0.0297 0.0211 0.0241 0.0230 0.0331 0.0254 

Promoter 
H3K27ac 0.0393 0.0208 0.0219 0.0223 0.0214 0.0222 0.0266 0.0249 

K-mer 
Correlation 0.0191 0.0223 0.0347 0.0251 0.0217 0.0212 0.0249 0.0241 

Promoter 
Conservation 0.0154 0.0205 0.0257 0.0297 0.0233 0.0237 0.0281 0.0238 

Promoter 
DNase 0.0242 0.0221 0.0273 0.0225 0.0214 0.0224 0.0246 0.0235 

Promoter 
H3K9ac 0.0297 0.0202 0.0226 0.0221 0.0226 0.0227 0.0236 0.0234 

H3K27ac 
Correlation 0.0163 0.0221 0.0284 0.0206 0.0250 0.0228 0.0245 0.0228 

Promoter 
EP300 0.0237 0.0194 0.0220 0.0213 0.0215 0.0233 0.0282 0.0228 

Promoter 
POLII 0.0235 0.0194 0.0224 0.0248 0.0228 0.0210 0.0233 0.0224 

Promoter 
H3K27me3 0.0146 0.0199 0.0245 0.0220 0.0268 0.0224 0.0256 0.0223 

Promoter 
H3K4me2 0.0198 0.0196 0.0276 0.0203 0.0236 0.0215 0.0229 0.0222 

Promoter 
H3K4me3 0.0227 0.0198 0.0226 0.0212 0.0215 0.0227 0.0238 0.0220 

Promoter 
DNase SD 0.0165 0.0205 0.0198 0.0246 0.0247 0.0211 0.0243 0.0217 

Promoter 
H3K79me2 0.0247 0.0177 0.0196 0.0224 0.0211 0.0208 0.0244 0.0215 

Promoter 
H3K9me3 0.0155 0.0198 0.0233 0.0212 0.0191 0.0209 0.0288 0.0212 

Promoter 
H4K20me1 0.0148 0.0196 0.0214 0.0213 0.0235 0.0212 0.0257 0.0211 

Promoter 
H3K36me3 0.0164 0.0208 0.0222 0.0205 0.0217 0.0215 0.0222 0.0208 
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Promoter 
DNase Mean 0.0148 0.0195 0.0211 0.0217 0.0225 0.0215 0.0236 0.0207 

Promoter 
H3K27ac 

Mean 
0.0132 0.0181 0.0212 0.0214 0.0195 0.0209 0.0220 0.0195 

Promoter 
RAMPAGE 0.0220 0.0164 0.0204 0.0184 0.0223 0.0147 0.0203 0.0192 

Promoter 
H3K27ac SD 0.0133 0.0177 0.0223 0.0197 0.0193 0.0206 0.0195 0.0189 

Enhancer 
H3K79me2 0.0141 0.0152 0.0146 0.0158 0.0171 0.0177 0.0186 0.0162 

Enhancer 
CTCF 0.0128 0.0204 0.0157 0.0126 0.0146 0.0162 0.0177 0.0157 

Enhancer 
H3K27ac SD 0.0131 0.0156 0.0118 0.0178 0.0179 0.0169 0.0154 0.0155 

Enhancer 
H3K9me3 0.0141 0.0174 0.0138 0.0142 0.0154 0.0176 0.0156 0.0154 

Enhancer 
Conservation 0.0127 0.0161 0.0144 0.0140 0.0158 0.0175 0.0175 0.0154 

Enhancer 
H3K27ac 

Mean 
0.0134 0.0157 0.0142 0.0142 0.0171 0.0165 0.0156 0.0152 

Enhancer 
H3K36me3 0.0144 0.0159 0.0134 0.0152 0.0150 0.0173 0.0151 0.0152 

Enhancer 
H2AFZ 0.0146 0.0170 0.0131 0.0137 0.0142 0.0159 0.0168 0.0151 

Enhancer 
POLII 0.0137 0.0160 0.0127 0.0168 0.0143 0.0173 0.0140 0.0150 

Enhancer 
EP300 0.0162 0.0151 0.0142 0.0139 0.0138 0.0168 0.0144 0.0149 

Enhancer 
H4K20me1 0.0134 0.0161 0.0117 0.0154 0.0143 0.0177 0.0156 0.0149 

Enhancer 
H3K4me1 0.0138 0.0156 0.0117 0.0149 0.0155 0.0168 0.0159 0.0149 

Enhancer 
H3K27me3 0.0131 0.0158 0.0124 0.0172 0.0146 0.0173 0.0137 0.0149 

Enhancer 
DNase 0.0145 0.0148 0.0139 0.0141 0.0137 0.0165 0.0146 0.0146 

Enhancer 
H3K27ac 0.0145 0.0153 0.0120 0.0156 0.0141 0.0158 0.0145 0.0145 

Enhancer 
DNase SD 0.0126 0.0166 0.0144 0.0130 0.0150 0.0157 0.0141 0.0145 

Enhancer 
DNase Mean 0.0122 0.0151 0.0125 0.0128 0.0144 0.0153 0.0146 0.0138 

Enhancer 
H3K4me3 0.0126 0.0147 0.0128 0.0126 0.0133 0.0159 0.0135 0.0136 
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Enhancer 
H3K9ac 0.0122 0.0145 0.0117 0.0123 0.0134 0.0151 0.0145 0.0134 

Enhancer 
H3K4me2 0.0117 0.0147 0.0120 0.0130 0.0128 0.0151 0.0124 0.0131 

Enhancer 
RAMPAGE 0.0094 0.0094 0.0084 0.0083 0.0090 0.0091 0.0100 0.0091 
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Table 3.8a | AUROC for cross cell type comparisons 

Cell Type ChIA-PET 
Target 

Average Rank Distance & 
DNase Correlation 

GM12878 
Trained RF 

Model 
HeLa Trained 

RF Model 

GM12878 POLII  0.8327 0.9316 0.8654 

HeLa POLII 0.8072 0.8801 0.9193 

GM12878 CTCF 0.8065 0.8936 0.8055 

HeLa CTCF 0.8346 0.8611 0.9047 
 
Table 3.8.b | AUPR for cross cell type comparisons 

Cell Type ChIA-PET 
Target 

Average Rank Distance & 
DNase Correlation 

GM12878 
Trained RF 

Model 
HeLa Trained 

RF Model 

GM12878 POLII 0.4553 0.7458 0.5465 

HeLa POLII 0.2658 0.3845 0.5663 

GM12878 CTCF 0.2399 0.4380 0.2681 

HeLa CTCF 0.2259 0.2827 0.4074 
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METHODS 
 
 
Creating Our Benchmark of ELS-Gene Pairs 

Defining ELS cREs 

We selected all cREs as defined as having enhancer-like signatures in 

GM12878 per own registry of regulatory elements pipeline. To be classified as an 

ELS cRE in GM12878, the cRE must have a DNase and H3K27ac Z-scores > 

1.64 in GM12878 and either be 1) distal from an annotated TSS or 2) not have a 

H3K4me3 Z-score > 1.64 in GM12878. In total, there are 27,739 ELS cREs in 

GM12878. 

 

Processing ChIA-PET Data 

We downloaded Ruan lab ChIA-PET data from NCBI's Gene Expression 

Omnibus (GEO) under the accession GSE72816. We used links from 

GSM1872886_GM12878_CTCF_PET_clusters.txt for CTCF and 

GSM1872887_GM12878_RNAPII_PET_clusters.txt for POLII. We also 

downloaded ChIA-PET data produced by the Snyder from the ENCODE DCC 

(experiment ENCSR752QCX). We used links called from both replicates in 

ENCFF002EMO and ENCFF002EMQ. 

To generate ELS-Gene pairs, we intersected the ends of the ChIA-PET links 

with GM12878 ELS cREs and TSSs from GENCODE 19 genes. We selected all 

links for which one end of the link overlapped an ELS-cRE and the other end fell 
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within 2 kb of an annotated TSS. We classified links that overlapped an ELS-cRE 

but linked to more than one TSS as "ambiguous" and added them to a blacklist. 

 
Processing Hi-C Data 

We downloaded Hi-C loops generated by the Aiden lab from GEO under 

the accession GSE63525. We used the lab's called loops from 

GSE63525_GM12878_primary+replicate_HiCCUPS_looplist.txt. We also 

downloaded CHi-C links generated by the Osborne lab from ArrayExpress under 

the accession E-MTAB-2323. We used the lab's called links from 

TS5_GM12878_promoter-other_significant_interactions.txt 

To generate ELS-Gene pairs, we intersected the ends of the (C)Hi-C links 

with GM12878 ELS cREs and TSSs from GENCODE 19 genes. We selected all 

links for which one end of the link overlapped an ELS-cRE and the other end fell 

within 2 kb of an annotated TSS. We classified links that overlapped an ELS-cRE 

but linked to more than one TSS as "ambiguous" and added them to a blacklist. 

 

Processing eQTLs 

We downloaded eQTLs curated from HaploReg, a database curated by the 

Kellis lab. To generate the GTEx eQTL pairs, we intersected ELS-cREs with 

eQTLs from lymphoblastoid cell lines. To generate the Derm eQTL pairs we 

intersected ELS-cREs with eQTLs from lymphoblastoic cell liens. For each overlap 

generated an ELS-cRE pair using the overlapping ELS and the gene reported by 

the eQTL. 
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Generating negative pairs 

For each of the seven datasets, we calculated the 95th percentile of distance 

between the ELS-gene pairs. We defined distance and the minimum linear 

distance between a ELS-cRE and any TSS of the linked gene. We then selected 

all ELS-gene pairs that fell within this distance. For each ELS cRE in this pool, we 

generated a list of all genes within the 95th percentile distance. For datasets with 

blacklisted links (ChIA-PET and (C)Hi-C) we removed all genes that appeared on 

the black list connected to the ELS cRE. We considered all remaining genes 

negatives. 

 

Generating training, validation, and test sets 

After generating positive and negative ELS-gene pairs, we assigned them 

to training, validation and test sets. For training sets, we randomly selected half of 

the ELS-cREs and assigned all of their positive and negative paris to the training 

sets. For the validation and test sets we split the remaining cREs in half and assign 

the pairs of each to validation and test sets respectively. This results in training, 

validation and test sets containing roughly 50%, 25%, and 25% of the total number 

of ELS-gene pairs respectively. All of our analysis was currently evaluated using 

the validation datasets. We plan on using the test dataset for final comparisons of 

models. 
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Predicting Target Genes Using Distance 

To identify the closest gene to each ELS cRE, we used the Bedtools 

command closest with ELS cREs as file a and GENCODE V19 TSSs as file b. We 

repeated this process using a filtered set of TSSs to identify the closest protein 

coding genes. We calculated the overall precision (TP/(TP+FP)) and recall 

(TP/(TP+FN)) for each dataset using both sets of TSSs. 

To test using distance as a ranking scheme, for each ELS-gene pair we 

calculated the minimum linear distance between the ELS cRE and every annotated 

TSS for the gene. We used a custom python script. We calculated the AUROC 

and AUPR using custom the ROCR package and custom R scripts. Because 

prediction with larger values are considered a higher rank by the ROCR package, 

we used the inverse of distance to generated the ROC and PR curves 

 

Correlation Methods 

For correlation based methods we tested DNase vs. H3K27ac signal, using 

raw signal (reported directly from ENCODE bigwig files) vs. Z-score normalized 

signal (see Chapter II for explanation), and Pearson vs Spearman correlation 

coefficients. To determine signal at each cRE, we used Z-score and raw signals 

generated during the creation of the Registry of cREs. For these cREs, Z-score 

signals were calculated across all rDHSs. For TSSs, we used 

bigwigaverageoverbed to calculate the average signal in a +/- 500bp window 

around each TSS. We converted this signal to a Z-score relative to all other TSSs. 
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Note – these Z-scores are different from PLS-cRE Z-scores. Then using custom 

python scripts we calculated the correlation between each ELS-gene pair. If a gene 

had multiple TSSs, we selected the highest correlation coefficient for the pair. We 

calculated the AUROC and AUPR using custom the ROCR package and custom 

R scripts.  

 

Random Forest Model 

We implemented the Random Forest algorithm using the python package 

scikit learn. For each test, we ran the algorithm 25 times, generating 100 trees 

each run. For each ELS-gene pair we reported the average class probability across 

the 25 runs.  

 We included the following features in our Random Forest model: 

1. Distance = the minimum linear distance between ELS cRE and any of 

the genes TSSs 

2. Expression = expression of gene in GM12878 measured in transcripts 

per million 

3. DNase correlation = Spearman correlation of DNase Z-score normalized 

signal across 460 cell types 

4. H3K27ac correlation = Spearman correlation of DNase Z-score 

normalized signal across 136 cell types 
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5. Kmer correlation = Pearson correlation of k-mer correlation (default is 3-

mer) for k-mer counts across 1 kb sequences centered at gene TSS and 

ELS cRE 

6. Enhancer DNase Mean = the average DNase Z-score for ELS cRE 

across all cell types 

7. Enhancer DNase SD = the standard deviation of ELS DNase Z-scores 

across all cell types 

8. Enhancer H3K27ac Mean = the average H3K27ac Z-score for ELS cRE 

across all cell types 

9. Enhancer H3K27ac SD = the standard deviation of ELS H3K27ac Z-

scores across all cell type Enhancer DNase Mean = the average DNase 

Z-score for ELS cRE across all cell types 

10.  Promoter DNase Mean = the average DNase Z-score for +/- 500 bp 

around surrounding the TSS across all cell types 

11.  Promoter DNase SD = the standard deviation of ELS DNase Z-score 

for +/- 500 bp around surrounding the TSS across all cell types 

12.  Promoter H3K27ac Mean = the average H3K27ac Z-score for +/- 500 

bp around surrounding the TSS across all cell types 

13.  Promoter H3K27ac SD = the standard deviation of ELS H3K27ac Z-

score for +/- 500 bp around surrounding the TSS across all cell types 
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14.  Enhancer signal = Signal at ELS cREs including DNase, H3K27ac, 

POLII, CTCF, EP300, RAMPAGE, histone modifications, and 

conservation 

15.  Promoter signal = Signal at ELS cREs including DNase, H3K27ac, 

POLII, CTCF, EP300, RAMPAGE, histone modifications, and 

conservation for +/- 500 bp around surrounding the TSS across all cell 

types 

For each benchmark, we generated a model from the training data and 

validated using the benchmark validation sets. We calculated the AUROC and 

AUPR using custom the ROCR package and custom R scripts. 

 

Scripts 

Scripts for this analysis can be found on GitHub: https://github.com/Jill-

Moore/Dissertation/tree/master/Chapter-III/ 

 

 

 

 
 

 
 
  



 

 

158 

CHAPTER IV: Functional annotation of noncoding 
variants reveals role of neural and immune pathways in 
psychiatric disorders 
 

PREFACE 

Results from this chapter were adapted from  

Moore and Weng. "Functional annotation of noncoding variants reveals role of 
neural and immune pathways in psychiatric disorders." 
 
which is currently in preparation. I performed all analysis and generated all the 

figures that were used in the chapter. 

 

ABSTRACT 

Schizophrenia, bipolar disorder, and major depressive disorder are 

debilitating psychiatric disorders that affect a significant percentage of the 

population. While the etiologies of these psychiatric disorders are unknown, each 

have strong hereditary components and studies have demonstrated that they 

share common genetic risk factors.  Genome wide association studies (GWAS) 

have associated over one hundred single nucleotide polymorphisms (SNPs) with 

these disorders and a majority of the associated SNPs lie in noncoding regions of 

the genome. Our aim was to functionally characterize these noncoding psych 

SNPs.  We determined psych SNPs were enriched in ELS cREs in active in brain 

tissues as well as immune related tissues such as T-cells and the thymus. We also 

determined that these SNPs regulate genes expressed in brain tissue with roles in 
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neural pathways. Under the hypothesis that psych SNPs alter gene expression by 

disrupting transcription factor (TF) binding, we analyzed TF ChIP-seq data and 

observed the SNPs are enriched in SP4 motifs and binding sites for TFs with 

enriched expression in developing brain tissue. Finally, we characterized four 

cases of allele specific binding, demonstrating that specific psych SNPs disrupt TF 

binding sites. Our findings demonstrate that common genetic variants affect both 

neural and immune pathways. 

 

INTRODUCTION  

Schizophrenia (SCZ), bipolar disorder (BPD), and major depressive 

disorder (MDD) are three prevalent and debilitating psychiatric disorders that affect 

millions of people every year.  While the causes of these disorders are unknown, 

studies demonstrate both genetic and environmental factors contribute to their 

onset. SCZ and BPD are highly heritable (~60% estimated heritability)76,80,140 and 

through large scale analyses of national medical records and correlation of genetic 

risk variants studies have reported that these disorders share common genetic risk 

factors83,84. Though MDD has a lower estimated heritability (30-40%)82, studies 

demonstrated that it also shares common genetic risks with SCZ and BPD84. 

Genome wide association studies (GWAS) have successfully identified 

hundreds of single nucleotide polymorphisms (SNPs) associated with SCZ, BPD, 

and MDD. The majority of these SNPs are in noncoding regions of the genome, 

and our understanding of how these variants contribute to disease onset is limited. 
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There have been efforts to characterize noncoding variants associated with SCZ 

but their scope was limited to characterizing individual variants, resulting in only a 

handful of annotated variants141.  

During the third phase of the Encyclopedia of DNA Elements (ENCODE) 

project we generated the ENCODE Encyclopedia, a collection of high throughput 

experiments (e.g. DNase-seq, RNA-seq, histone modification and transcription 

factor ChIP-seq) and higher-level analyses aimed at annotating the human and 

mouse genomes. In addition to assembling this resource, we also integrated 

DNase-seq data with ChIP-seq data to create the Registry of candidate Regulatory 

Elements (cREs), a collection of putative regulatory regions across human and 

mouse (described in Chapter II). In total, we identified over 1.3M human and 400k 

mouse cREs each annotated with cell-type specific signatures (e.g., promoter-like, 

enhancer-like) in over 400 human and 100 mouse cell types. Our goal was to use 

the Registry of cREs and supporting data from the ENCODE Encyclopedia to 

functionally characterize noncoding SNPs associated with SCZ, BPD, and MDD. 

By analyzing enrichments in cRE activity in over 500 cell types and integrating 

RNA-seq, TF-ChIP-seq data, we hoped to learn more about the genetic 

contributions of these diseases. 

Here we report that SNPs associated with psychiatric diseases (psych 

SNPs) are enriched in candidate regulatory elements active in brain tissues and 

neural cells. We also curated lists of potential target genes for these SNPs and 

determined that these genes are enriched for expression in brain tissue. Using 
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orthologous cREs in mouse, we analyzed temporal patterns of cRE activity during 

brain development and found specific examples of psych cREs active during brain 

development. We also determined that psych SNPs are enriched in motifs for 

neural TFs, particularly SP4, as well as immune related TFs such as IRF1. 

Additionally, we discovered specific instances of psych SNPs in regulatory 

elements that alter TF binding by disrupting TF motifs. Our analysis supports a 

genetic foundation for neural pathways in psychiatric disorders and also suggests 

a role for immune pathways. 

 

RESULTS 

The majority of GWAS signal for psych SNPs is explained by cREs  

As of July 2017, there were 139 studies in the NHGRI-EBI GWAS catalog 

tagged with the terms "schizophrenia," "bipolar disorder," or "major depressive 

disorder." Due to variations in methodology and sampled populations, we selected 

one representative study for each disorder, prioritizing studies with the largest 

number of associated variants (Table 4.1). We also considered variants reported 

by the Cross-Disorder Group of the Psychiatric Genomics Consortium (PGC) who 

analyzed a mixed cohort of SCZ, BPD, MDD, autism spectrum disorder (ASD) and 

attention deficit hyperactivity disorder (ADHD) patients. In total, we curated 96 

variants for SCZ, 23 for BPD, 43 for MDD, and 73 for cross-disorders (CD). These 

235 associations, along with 6,479 SNPs in high (r2 > 0.7) linkage disequilibrium 
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(LD), amount to 6,714 SNPs associated with psychiatric disorders (psych SNPs) 

in 233 regions of high LD, which we refer to as LD blocks. 

`We began by determining the genetic context of psych SNPs using 

GENCODE V19 gene annotations. As expected, the majority of psych SNPs (99%) 

are in noncoding regions of the genome; only ~1% overlap coding exons (Table 

4.2). Of these, only two variants (rs4584886 and rs678) are predicted by 

PROVEAN and SWIFT to be deleterious and damaging to the resulting protein 

(Table 4.3). While these two SNPs are likely causal, the majority of GWAS signal 

for psych SNPs is from noncoding regions of the genome. 

To annotate these noncoding regions, we overlapped psych SNPs with 

human and mouse cREs. On average, 20% of psych SNPs overlapped a human 

cRE accounting for 79% of LD blocks (Table 4.4a,b). Of these, the majority, 76%, 

overlap cREs with enhancer-like signatures (ELS), while 20% overlap cREs with 

promoter-like signatures (PLS) and 4% overlap CTCF-only cREs (Table 4.5). An 

average of 7% of SNPs overlapped orthologous mouse cREs accounting for 46% 

of LD blocks (Table 4.4c,d). Individually, psych SNPs were slightly more enriched 

at cREs compared to controls (~1.2 and 1.4 fold enrichment for human and mouse 

cREs respectively), but there was no significant difference when we performed this 

analysis with the LD blocks. These results suggest the majority of signal (~79%) 

from these GWAS can be explained by variants in cREs and that additional 

annotation of these regions will give us further insight into the mechanisms that 

underlie these disorders. 
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Psych SNPs are enriched in cREs active in brain regions 

Previous work has demonstrated that variants associated with human 

disease are enriched in regulatory elements active in disease-relevant cell and 

tissue types. For example, SNPs associated with Crohn’s disease were enriched 

in T-helper cell DNase peaks6, and SNPs associated with cholesterol levels are 

enriched in liver H3K27ac peaks26. The Schizophrenia Working Group of the PGC 

reported their SCZ associated loci were enriched in brain-specific and B cell-

specific H3K27ac peaks when looking across 35 tissues from the Roadmap 

epigenomics project105  

We wanted to extend this work by analyzing DNase and H3K27ac signals 

at cREs overlapping psych SNPs. Using data from the Registry of cREs, we 

calculated activity enrichments using 540 cell and tissue types (462 DNase and 

136 H3K27ac). Additionally, during the third phase of the ENCODE project, 

production labs generated H3K27ac, DNase and RNA-seq data for twelve tissues 

across mouse embryonic development (eight surveyed time points). These 

experiments enabled us to analyze enrichment for specific temporal patterns of 

activity in mouse across development. To calculate enrichment, we counted the 

number of overlapping cREs with a signal (DNase or H3K27ac) Z-score greater 

than 2, indicating high signal in that cell type. To prevent over counting of SNPs in 

LD, we pruned our results by only reporting one hit per LD block for each cell type 

(see methods). We calculated enrichment using Fisher's exact test. Additionally, 
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differing number of SNPs between the studies makes using a uniform p-value 

cutoff difficult. P-values from Fisher's exact test inflate as sample size increases, 

and therefore it is ideal to use more stringent cutoffs for studies with more reported 

SNPs. We also used a more conservative method for calculating our FDR than 

previous studies26 (see methods). Therefore, for our analysis, we focused the top 

5 most enriched tissues with at least p<0.05 for each study, noting those that meet 

our FDR threshold of 5%.  

Overall, we detected significant enrichments for SCZ and CD SNPs in cREs 

active in neural cells and brain tissues (Figures 4.1 and 4.2, External Table 4.1). 

For SCZ SNPs, when we filtered cREs using H3K27ac Z-scores, the five most 

significantly enriched cell types were temporal lobe, angular gyrus, middle frontal 

area, iPS DF 19.11, and caudate nucleus (Figure 4.1a). The enrichment in neural 

tissues was so pronounced that when we expanded our search to the top ten most 

significantly enriched cell types, seven were from brain tissues or neural cells. Of 

the remaining three, two were iPSCs, and one was from fetal thymus (External 

Table 4.1). Even after removing variants on chromosome 6 to account for SNPs in 

the major histocompatibility complex (MHC), we still observed enrichment in fetal 

thymus (External Table 4.1). When we filtered cREs using DNase Z-scores, we 

also observed enrichment in brain tissues (fetal brain and superior temporal gyrus) 

and neural cells (neuronal progenitor and stem cells) (External Table 4.2). 

Interestingly, the most significant enrichment was for NCI-H226, a lung cancer cell 

line. When we clustered DNase cell types by their activity in cREs overlapping SCZ 
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SNPs, we observed that NCI-H226 did not cluster with lung tissue but rather in a 

large block consisting of various primary cells and cell lines suggesting that the 

enrichment is not due to lung-related factors but rather properties unique to the 

immortalized cell NCI-H226 (External Figure 4.1). For CD SNPs, when we filtered 

using H3K27ac, the top five most enriched tissues were brain (middle frontal area), 

neural cells, OCI-LY7 (lymphoma cell line), neural progenitor cells, and iPS-20b. 

When we excluded cREs on chromosome 6, OCI-LY7 dropped in ranked from third 

most enriched tissue to tenth and was replaced by temporal lobe tissue (External 

Table 4.1). When we filtered by DNase four of the top five most enriched tissues 

were from the brain (occipital lobe, superior temporal gyrus, middle frontal gyrus 

and the cerebellar cortex) with other being L1-S8R, an iPS cell line (External Table 

4.2). 

When we analyzed H3K27ac signal orthologous mouse cREs, we also 

observed enrichment in brain tissues for SCZ and CD SNPs. SCZ SNPs were 

enriched in midbrain, forebrain, and hindbrain regions particularly at later 

developmental time points (Figure 4.1b, External Table 4.3). CD SNPs were 

enriched primarily in forebrain. These tissues were also highly ranked when filtered 

cREs using DNase signal but none of the tissues met our FDR threshold of 5%. 

With BPD and MDD SNPs we did not observe any enrichments that met our 

FDR threshold of 0.05, however, due to the small number of SNPs reported in each 

study we still analyzed top-ranked tissues to look for general patterns of 

enrichment (External Tables 4.1-4.4). In the case of MDD, there were no 
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enrichments for human cell types (p < 0.05) thresholding by either H3K27ac or 

DNase. However, when we filtered with H3K27ac in mouse, we observed 

enrichments in hindbrain and neural tube tissue at time points e13.5 and e14.5 

(Figure 4.1b, External Table 4.3). When we used DNase for filtering, we observed 

enrichment in CD-1 mesoderm tissue (External Table 4.4). For BPD SNPs, we only 

observed enrichment for human cell types with H3K27ac data. Four of the top five 

most enriched tissues were from blood (T cell subtypes and mononuclear blood 

cells) while the fifth was iPS cell line 20b (External Table 4.1). We repeated the 

analysis filtering out variants on chromosome 6 to account for SNPs in the MHC. 

We still observed enrichments in T helper cells and iPSCs but now observed 

enrichments in SK-N-MC, a neuroblast cell line, HUES64 ESCs and fetal adrenal 

gland (External Table 4.1). In mouse, the only tissue with p<0.05 for CD SNPs was 

bone marrow (External Table 4.3). 

Overall, psych SNPs, particularly SCZ and CPD SNPs, are enriched in 

cREs that are active in brain tissue and neural cells in both human and mouse. We 

also observed enrichment of cREs in immune-related tissues such as fetal thymus 

for SCZ SNPs, T cells for BPD SNPs, and lymphoma cell line for CD SNPs. While 

these enrichments became less significant when we removed cRES on 

chromosome 6, they were still some of the top-ranked tissues.  

 

SCZ and CD SNPs regulate genes expressed in the brain involved in neural 

pathways 
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Since we determined that the majority of signals for the psych GWAS can 

be explained by SNPs in cREs, we wanted to determine the genes regulated by 

these regions. We began by analyzing expression quantitative trait loci (eQTLs) 

generated by the Genotype-Tissue Expression (GTEx) project. In their 2015 

release, the GTEx project reported over one milion eQTLs surveyed across 44 

tissues, ten of which are from the brain. We intersected our psych SNPs with a list 

of GTEx tissue specific eQTLs curated by HaploReg106. LD blocks containing SCZ 

and CD SNPs were enriched for eQTLs with about 43% of LD blocks overlapping 

at least one eQTL (p=4.5E-3, p=8.5E-3, fisher's exact test) (Table 4.6). BPD and 

MDD LD blocks were neither enriched nor depleted.  

When we analyzed the tissue specificity of these eQTLs we did not observe 

any enrichments with an FDR < 5% (External Table 4.5). Unlike cRE enrichments, 

most of the top ranked tissues for SCZ and CD genes were not from the brain. For 

SCZ only two of the top five tissues were from the brain (cerebellum and frontal 

cortex) with the others from thyroid, whole blood, and testis. For CD eQTLs, there 

were no brain regions in the top five tissues. BPD and MDD eQTLs did not have 

any tissues with p< 0.05. In order to further investigate these eQTL genes, we first 

looked for enrichment of gene ontology (GO terms) using PantherDB142. For all 

four eQTL genes sets, we did not observe any significant enrichments for GO 

terms. Using GTEx expression data we compared the expression of these eQTL 

linked genes to those linked with control SNPs. When we analyzed the top ten 

most enriched tissues, we only observed three brain regions for SCZ SNPs; the 
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other tissues were testis, female reproductive tissues and colon (Figure 4.3, 

External Tables 4.6). CD eQTL genes were enriched for expression in immune 

tissues such as EBV lymphocytes, spleen and whole blood. MDD and BPD eQTLs 

genes did not have enrichments with p < 0.05. 

These results lead us to believe that many of these eQTL links were tissue 

specific and LD may prevent us from identifying the direct target of the cRE. For 

example, rs9936474 overlaps cRE EH37E1142914 which has high H3K4me3, 

H3K27ac, and DNase signal in human brain tissues (External Table 4.13). While 

this cRE overlaps a noncoding RNA (CTD-2574D22.4), its closest protein coding 

gene (1.6 kb away) is KCTD13, a gene which encodes a potassium channel 

tetramerization domain protein. KCTD13 is highly expressed in developing brain 

and neural cells (External Table 4.9) and has previously been linked with 

psychiatric disorders and brain development pathways143,144. If we only consider 

genes linked via eQTLs as potential target genes, KCTD13 is not one of the 16 

genes on the list. This example highlights two major problems with solely using 

eQTLs to predict target genes. First, none of the eQTL links for rs9936474 are in 

brain; some of the eQTLs may be tissue specific and therefore are not relevant to 

SCZ. If we restrict ourselves to only using eQTLs from brain tissue, however, we 

cover less than 20% of GWAS LD blocks. Second, of these 16 potential gene 

targets, only five are within 100kb of EH37E1142914. The majority of these links 

are likely due to indirect regulatory effects or SNPs in LD with rs9936474 rather 

than direct regulation by EH37E1142914. Because of these two issues, we believe 
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using only eQTL genes for target gene prediction results in a gene list full of false 

positives and negatives. Therefore, we decided to curate our own lists of putative 

target genes for further 

analysis.                                                                                                                             

   In chapter III, we demonstrated that 61% of high resolution GM12878 

POLII ChIA-PET data links connected ELS cREs with the promoter of the closest 

protein coding gene; additionally, 86% of ELS-promoter links are with 100kb 

(Figure 4.4a). As we did not have POLII ChIA-PET in human or mouse brain 

tissues, we curated potential target genes based the observed ranges in 

GM12878. For each study, we generated two lists of genes: 1) all protein coding 

genes with a TSS within 100kb of the SNP, 2) the closest protein coding gene 

using linear distance from TSS for each SNP.  These gene lists have limited 

overlap with eQTL genes (Figure 4.4b); in fact, approximately 41% of eQTL genes 

are unique. 

We began by analyzing the expression of each of the genes sets comparing 

them to gene sets generated using control SNPs. For SCZ and CD, both the 

closest gene set and 100kb gene sets were enriched for expression in brain tissues 

surveyed by GTEx and ENCODE (Figure 4.3b,c, External Tables 4.7-4.8). 

Specifically, the closest genes for SCZ (N=157) had the most significant 

enrichment in the frontal cortex, cortex and anterior cingulate cortex. When we 

compared the expression of these genes using ENCODE RNA-seq data, we also 

observed enrichment in brain tissue, such as the parietal, occipital and temporal 
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lobes of fetal brain (Figure 4.3d). We also analyzed the expression of orthologous 

mouse genes using gene expression data from the developmental time series. 

SCZ genes were enriched for expression in brain tissue (forebrain, midbrain, and 

hindbrain) particularly at later time points (Figure 4.3e). CD genes also were 

enriched for expression in brain tissues for both human GTEx and ENCODE 

samples, but these enrichments did not meet our FDR threshold of 5% (External 

Tables 4.7 and 4.8). We did not observe any significant (p<0.05) tissue-specific 

enrichments in expression for the BPD and MDD gene lists (External Tables 4.7 

and 4.8). This is not surprising since we were also unable to detect strong tissue-

specific enrichments in cRE activity for these disorders. 

We also performed gene ontology analysis using these genes lists. For SCZ 

genes, we observed overwhelming enrichment in neural pathway terms (Figure 

4.4f, Table 4.7, External Table 4.10) such as neuron components, synaptic 

transmission and gated channel activity. This suggests that these SCZ genes have 

primary roles in neural pathways. For the other disorders, there were not many 

enriched terms (External Table 4.10). For CD genes, we observed significant 

enrichments in immune related terms such as T-cell activation and MHC Class II 

receptor activity. However, these terms were no longer significant after removing 

genes on chromosome 6; therefore, these enrichments were only driven by SNPs 

in the MHC. The one enrichment that did remain significant was for genes in the 

Alzheimer disease-amyloid secretase pathway. For MDD, there were two genes, 
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IL12A and IL12B, that were components of the interleukin-12 complex. Finally, 

there were three BPD genes involved with mannose metabolic processes.  

Overall, we determined that potential target genes of SCZ SNPs have 

enriched expression in brain tissues and have roles in neural pathways. We also 

determined that solely using eQTLs to predict target genes results in enrichments 

for unrelated cell and tissues types possibly due to tissue specificity and LD. 

 

Temporal activity of cREs containing psych SNPs reveals biological role  

Since psych SNPs are enriched in orthologous mouse cRES active in 

developing brain tissues and are near genes expressed during these timepoints, 

we wanted to know if there was a temporal dependence on this enrichment. Using 

K-means clustering (K=4), we grouped cREs using H3K27ac signal across 

embryonic development in mouse forebrain, midbrain, and hindbrain. The resulting 

four clusters had nearly identical temporal patterns across the three brain 

subregions: cluster 1 cREs increased in activity overtime, cluster 2 cREs 

decreased in activity over time, cluster 3 cREs increased in activity until ~e12.5 

then decrease in activity, and cluster 4 cREs increased in activity and tapered 

off/slightly decreased just before birth (Figure 4.5a). Comparing across the tissues, 

we determined that cREs tended to belong to the same clusters in all three tissues 

(Figure 4.5b). For each cRE group, we generated a list of linked genes by selecting 

the nearest protein coding gene defined using linear distance to the closest TSS. 

We observed the gene expression patterns of these linked genes followed the 
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same trends as H3K27ac signal patterns across forebrain, midbrain, and hindbrain 

demonstrating that trends we observed in cREs hold for gene expression (Figure 

4.5c). We then performed GO analysis with these gene lists and selected all 

enriched terms with a bonferroni corrected p-value > 0.05 (Figure 4.5d, External 

Table 4.11). Cluster 1 cREs were near genes involved with basic cellular 

processes such as translation, nuclear transport and metabolism. Cluster 2 cREs 

were near genes involved with embryonic development including neural crest cell 

differentiation, regulation of cell cycle arrest and embryonic pattern specification. 

Cluster 3 cREs, were enriched in terms related to CNS development such as 

neuron fate specification, cranial nerve development, and pallium development. 

Cluster 4 cREs, were enriched GTPase signaling, axon development, and neuron 

projection morphogenesis. 

Using these clusters, we tested whether psych SNPs were enriched in cREs 

with a specific temporal activity pattern. To account for LD structure for both psych 

SNPs and controls, we randomly selected one representative cRE per LD block 

and averaged the results over 500 trials. In general, psych SNPs were not enriched 

for cREs with a specific temporal pattern.  SCZ, MDD, and CD SNPs were evenly 

distributed across cREs clusters in the three brain regions (External Table 4.12). 

BPD SNPs on the other hand were enriched in cREs in cluster 2 cREs in midbrain 

and hindbrain (Chi-Square test p=2.83E-02, 5.47E-03). While only a small number 

of LD blocks overlap mouse cREs, on average 71 and 91% of the cREs are in 

cluster 2 in midbrain and hindbrain compared to 20 and 21% in controls. 
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While the majority of psych SNPs were not enriched in a particular temporal 

cluster, this type of analysis leads to new biological insights of how these SNPs 

contribute to disease. For example, CD SNP rs12424245 overlaps an ELS cRE in 

both human and mouse (EH37E0250841 and EM10E0283811). EH37E0250841 

lies within CACNA1C, a well-documented SCZ and BPD associated gene88-90,92. 

CACNA1C encodes a calcium voltage-gated channel subunit and expressed in 

many tissues such as heart, muscle, and brain (External Table 4.9). In humans, 

EH37E0250841 has high H3K27ac signal (z-score > 1.64) in 28 cell types including 

adult brain, heart, and GI tissues and high DNase activity in 168 cell types including 

fetal brain, spinal cord, and kidney (External Table 4.13). Interestingly, the 

orthologous mouse cRE, EM10E0283811, only has high H3K27ac signal in neural 

tissues: forebrain, midbrain, hindbrain and neural tube (Figure 4.6a). In these 

tissues, EM10E0283811's H3K27ac z-score increases over time, plateauing just 

before birth; therefore, the K-means algorithm classified EM10E0283811 as a 

group 4 cRE in forebrain, midbrain, and hindbrain. This pattern of H3K27ac activity 

also correlates with CACNA1C expression these brain tissues (r=0.79) (Figure 

4.6b). Though CACNA1C is also highly expressed in heart and lung tissue during 

embryonic development, EM10E0283811 is a neural specific enhancer and 

therefore would only control CACNA1C in developing brain tissue. Because of this 

temporal pattern and EH37E0250841's high H3K27ac signal in human adult brain 

tissue and high DNase signal in fetal brain tissue, we predict that this ELS cRE 

turns on during brain development and remains active throughout adulthood. 
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Therefore, we predict rs12424245 may contributes to the onset of psychiatric 

disorders by altering the regulation of CACNA1C expression. 

Additionally, this temporal analysis enables us to more preciously determine 

target genes of SNPs. For example, rs7959408, a SCZ SNP, overlaps human cRE 

EH37E1112284 and mouse cRE EM10E0066315. EH37E1112284 is classified as 

a distal PLS cRE because it only has high H3K4me3 signal in two cell types: WERI-

Rb-1 and bipolar spindle neurons. However, it does have high DNase signal in 

fetal brain tissue (External Table 4.13). In mice, EM10E0066315 has high DNase 

and H3K27ac signals across brain tissues (External Table 4.13). Because, 

EM10E0066315 H3K27ac z-score increases then decreases in forebrain and 

midbrain (Figure 4.6c), the K-means algorithm classified EM10E0066315 as a 

group 3 cRE; because of the steady decrease of H3K27ac signal in hindbrain, 

the K-means algorithm classified EM10E0066315 as a group 2 cRE. These 

temporal patterns in mouse embryonic brain and the complementary DNase data 

from human fetal brain suggests that this ELS cRE in only active during brain 

development. In humans, the closest protein coding gene (GENCODE V19 

annotations) to EH37E1112284 is RP11-552I14.1, which has no mouse ortholog 

and is only expressed in the testis and prostate gland (External Table 4.9). More 

recent annotations of GENCODE genes (on hg38 genome) reclassify RP11-

552I14.1 as a lincRNA gene. Therefore, we sought to identify the potential gene 

target of this ELS cRE. Using a +/- 300 kb window we analyzed expression levels 

of all protein coding, human-mouse orthologous genes. The two next closest 
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protein coding genes, C12orf42 and PAH are not expressed in brain tissue or 

neural cells. C12orf42 overall has very low expression except in testis and PAH is 

almost exclusively expressed in the liver tissues (Figure 4.6d, External Table 4.9). 

ASCL1, a gene involved with neuronal commitment and differentiation, is highly 

expressed in developing brain and has correlated gene expression with 

EM10E0066315 H3K27ac signal (r=0.78) (Figure 4.6e, External Table 4.9). 

Therefore, we predict the target gene of EH37E1112284 and rs7959408 is ASCL1. 

This analysis demonstrates how analyzing temporal patterns of activity during 

embryonic development can lead to new biological insights for SCZ and CD. 

 

Psych SNPs overlap putative binding sites for TFs involved in neural and 

immune pathways 

Since we determined psych SNPs are in cREs active in neural and brain 

tissues and likely regulate genes expressed in these tissues, we wanted to 

determine the mechanism by which these SNPs alter gene expression. One 

possibility is that psych SNPs disrupt transcription factor (TF) binding sites, thus 

altering the regulation of target genes. To test this hypothesis, we analyzed TF 

binding motifs and ChIP-seq peaks that overlap psych SNPs. 

We began by searching for TF sequence motifs overlapping each SNP 

using experimentally derived motifs from Cis-BP145 and FIMO, a motif search 

software146. In general, SCZ, MDD, and CD SNPs were enriched for TF motifs but 

this enrichment was only significant for individual SNPs, not LD blocks as a whole 
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(External Table 4.14). Conversely, while individual BPD SNPs were not enriched 

for TF motifs, BPD LD blocks were with 22 of 23 LD blocks (95%) containing a 

SNP that overlaps a motif instance. We then tested for enrichment for specific TFs 

using fisher's exact test. After selecting all enrichments with FDR < 5%, we 

clustered TFs with similar motifs (e.g. GC rich SP family motifs) using overlap 

coefficients and selected one representative TF per group based on the most 

significant p-value (Figure 4.7). 

For SCZ, MDD and CD SNPs, we observed enrichments in motifs 

corresponding to TFs with important roles in neural differentiation and brain 

development. For both SCZ SNPs and CD SNPs, SP4 was the most significantly 

enriched motif (Figure 4.8a). SP4 is primarily expressed in the brain (External 

Table 4.9) and is thought to play a role in central nervous system development147-

149. SP4 has also been previously reported as a disease susceptibility gene in 

schizophrenia150 and major depressive disorder151,152. In addition to SP4, SCZ 

SNPs were also enriched in motifs for FOXJ3, NR2F2, and LHX9 all of which are 

highly expressed in embryonic mouse brain tissue and human neural cells 

(External Table 4.9) and have roles in CNS (central nervous system) function 

development153-156. MDD SNPs were enriched for neural related transcription 

factors HOXA1 and TCF4. HOXA1 is involved with hindbrain and neural tube 

development and subsequently is highly expressed in these tissues during 

embryonic development (External Table 4.9). TCF4 is involved in initiating 
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neuronal differentiation and is primarily expressed in the brain (External Table 4.9). 

It is also a well-established SCZ susceptibility risk gene89,93-96,105,150,157-159. 

In addition to neural related TFs, psych SNPs were enriched for motifs 

related to immune response and blood cell development (Figure 4.8a). SCZ SNPs 

were enriched for MGA motifs. MGA is highly expressed in hematopoietic stem 

cells (External Table 4.9) and is linked with development cell proliferation and 

development160. CD SNPs were enriched for IRF1 motifs. IRF1, encodes an 

interferon regulatory factor, which is primarily expressed in blood cells and immune 

related tissues such as the thymus (External Table 4.9). BPD SNPs were 

significantly enriched for the SPI1 motif, a transcription factor known to regulate 

blood cell development161. MDD SNPs were enriched in motifs for RREB1, which 

is involved with cell differentiation and is a negative regulator of HLA complex162 

as well as MEIS1, which regulates hematopoietic development163. 

We then compared these enrichments with TF ChIP-seq data by 

intersecting psych SNPs with ChIP-seq peaks from 914 ENCODE experiments. 

We calculated enrichment for general TF peak overlap as well as for individual TFs 

(N=303) and cell types (N=85) using fisher's exact test, removing SNPs on 

chromosome 6 due to the overwhelming enrichment of RNA POLIII machinery at 

the MHC. Overall, all SNPs were enriched for overlapping TF peaks but only SCZ 

SNPs were enriched for specific TFs and cell types. SCZ SNPs were enriched for 

ChIP-seq peaks for 21 TFs and 14 cells types (Table 4.8). Six of the top ten most 

enriched cell types were lymphoblastoid cell lines (LCLs); only one, SK-N-SH, was 
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neural related. While this enrichment for TFs in LCLs may have biological 

significance, such as the enrichment Ripke et al. observed for SCZ SNPs in B cell 

H3K27ac peaks105, it is most likely due to fact that ENCODE TF ChIP-seq 

experiments were performed in a different subset of cell types. For example, 22 

(25%) of the cell types surveyed for TF ChIP-seq are LCLs, which is significantly 

higher compared to DNase (0.6%) and H3K27ac (0.7%) experiments. Additionally, 

unlike DNase and H3K27ac experiments, there are no ENCODE TF ChIP-seq 

experiments in human brain tissue. 

Therefore, in order to gain a better of understanding of the role of cell type 

specificity with TFs, we decided to compare the expression patterns of the 21 

enriched TFs against the other 282 TFs. While we did not observe an enrichment 

in human cell types, we observed significantly enriched expression in mouse 

embryonic brain tissues and blood cells (Figure 4C, Table 4.12). In mouse brain, 

we observed the most significant enrichments in hindbrain and midbrain at 

timepoints e11.5 and e13.5. In addition to brain, we observed enrichment for 

expression in mouse B cell and megakaryocytes (Table 4.10). This enrichment in 

both neural and immune cells compliments both the enrichments we observed in 

motifs for both neural and immune related TFs.  

One possibility for the connection between neural and immune enrichments 

is due to the dual role of some transcription factors in immune and neural 

pathways. For example, SCZ SNPs are enriched 2.5-fold in POU2F2 ChIP-seq 

peaks in lymphoblastoid cell lines GM12878 and GM12891. POU2F2 has well 
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documented roles in the immune system164 but has also been identified as a 

regulator of neuronal differentiation165. In humans, POU2F2 is highly expressed 

(30-40 tpm) in lymphoblastoid cells and bipolar spindle neurons (External Table 

4.9) and in mouse, Pou2f2 is highly expressed (30-50 tpm) during brain 

development. Therefore, the dual roles of POU2F2 and other enriched TFs in both 

neural and immune pathways may explain the enrichment that we observe for 

neural and immune system factors. Overall, psych SNPs are enriched in regions 

bound by TFs involved in neural and immune pathways. 

 

Psych SNPs disrupt sequence motifs resulting in the disruption of TF 

binding   

After identifying global enrichment patterns for psych SNPs, we wanted to 

identify specific psych SNPs that are likely to be causal. We decided to analyze 

SNPs that result in allele specific binding of TFs. Using mapped reads directly from 

the ENCODE processing DNase pipeline, we performed in silico genotyping using 

a method adapted from Maurano et al.102. We classified a SNP as heterozygous 

in a given cell-type if there were at least 15 non-redundant DNase reads at the 

locus and a ratio of minor allele reads to major allele reads greater than 0.05. 

Similar to Maurano et al, we evaluated our method using SNPs which were 

genotyped using Illumina Human 1M-Duo arrays during phase 2 of the ENCODE 

project. Though only 4.7% of the psych SNPs had more than 15 reads, our method 

had perfect sensitivity (100%) and specificity (100%). To test for allelic imbalance 
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of DNase reads at heterozygous SNPs, we used a binomial test with an FDR 

threshold of 5%. In total, we identified 263 allele specific SNPs: 129 for SCZ, 38 

for BPD, 24 for MDD and 78 for CD (External Table 4.15). We further annotated 

these psych SNPs filtering for those that also overlap TF motifs (21%) (External 

Table 4.15). Within these lists there were several examples of allelic imbalance 

with interesting biological implications -- four of which we describe in detail below.  

MDD SNP rs12552369 overlaps ELS cRE EH37E1025241, which lies in 

AK8, which encodes an adenylate kinase. AK8 is expressed in human adult 

hepatocytes and mouse developing lung and brain and has also been reported as 

a susceptibility genes for ADHD166. EH37E1025241 has high H3K27ac signal in 

endodermal cells and high DNase signal in fetal brain tissues. We observed allelic 

imbalance for DNase reads in fetal brain tissue (day 58) with reads favoring the 

alternative allele A over the reference allele G (Figure 4.9a). Rs12552369 overlaps 

a RFX2 motif site, and the reference allele results in lower log odds score 

compared to the alternative allele (Figure 4.9a). We hypothesize rs12552369 

disrupts RFX2 binding resulting in altered expression of AK8. 

SCZ SNP rs12895055 overlaps ELS cRE EH37E0354132, which lies within 

BCL11B (Figure 4.9b).  BCL11B is a transcriptional repressor that has been linked 

to T cell and neuronal development167. BCL11B is expressed in skin and brain 

tissue and its murine ortholog, Bcl11b, is highly expressed in embryonic thymus 

and brain tissue (External Table 4.9). EH37E0354132 has high DNase signal and 

H3K27ac across many different cell and tissue types (T-cells, neural cells, and 
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fetal brain) as does its orthologous mouse cRE EM10E0105028 (External Table 

4.13). We observed allelic imbalance at rs12895055 in both fetal arm muscle and 

eye tissues. DNase reads favored the reference allele, C (72%), over the 

alternative allele T (Figure 4.9b). Rs12895055 overlaps a SP4 motif, and the 

alternative allele results in lower log odds score compared to the reference allele 

(Figure 4.9b). We hypothesize rs12895055 disrupts SP4 binding therefore altering 

expression of BCL11B during brain development. 

BPD SNP rs2861405 overlaps PLS cRE EH37E1171401, which overlaps 

the TSSs of two genes ZNF490 and ZNF791 (Figure 4.9c). Rs2861405 overlaps 

a motif for IKZF1, a tumor suppressor TF linked with lymphocyte differentitation168. 

We observed allelic imbalance at rs2861405 in kidney, blood vessel and cerebellar 

cortex DNase reads all favoring the reference allele C. Interestingly, we also 

observed allelic imbalance favoring the alternative allele A in fetal muscle. While 

both ZNF490 and ZNF791 are highly expressed in many tissues, they genes are 

not expressed equally across all cell types suggesting differing regulation between 

the genes. Rs2861405 overlaps a motif site for a IKZF1 motif site that slightly 

favors reference allele C which is reflected in the observed allelic imbalance. We 

also observe binding of IKZF1 in five of the eight surveyed cell types. Therefore, 

we hypothesize that rs2861405 disrupts the binding of IKZF1 resulting changes in 

expression of ZNF490 and/or ZNF791. 

Finally, CD SNP rs73048919 overlaps EH37E0884523 a ELS cRE in 22 cell 

types and a CTCF-only cRE in 18 cell types. We detected significant allelic 
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imbalance across rs73048919 in 14 cell types with 80% of DNase reads favoring 

the reference allele, C, over the alternative allele, A (Figure 4.9d). Rs73048919 

overlaps CTCF ChIP-seq peaks in 81 ENCODE experiments including the brain 

cancer cell line SK-N-SH (Figure 4.9d). After confirming our in silico genotyping of 

rs73048919 in SK-N-SH using array genotyped SNPs in LD (rs12666575 and 

rs6461049), we observe almost complete imbalance of CTCF reads favoring the 

reference allele (Figure 4.9d). We believe this is because the minor allele of 

rs73048919 disrupts a CTCF motif site reducing the log odds score of matching 

the motif. Unlike the previous examples it is difficult to determine the biological 

consequence of this imbalance. CTCF-only cREs may have different biological 

functions such as insulators, repressors or anchors of three-dimensional chromatin 

loops. Since we also observed allelic imbalance of RAD21, a component of the 

cohesion complex, we propose that in SK-N-SH EH37E0884523 may be an anchor 

for chromatin loops mediate by cohesion. However, in order to truly elucidate the 

function of EH37E0884523 we need to perform additional experiments such as 

CRISPR-CAS9. 

 

DISCUSSION 

In this chapter, we used the Registry of cREs and data from the ENCODE, 

Roadmap and GTEx consortia to annotate noncoding variants associated with 

psychiatric disorders. We observed overwhelming evidence for the role of psych 

SNPs in neuronal development and function. We demonstrated that SCZ and CD 
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SNPs are enriched in cREs active in brain tissue and neuronal precursor cells and 

that these cREs likely target genes expressed in these tissues. While these results 

are not surprising, they do reaffirm the role for neural development pathways in the 

onset of psychiatric disorders. 

 
The most significantly enriched TF motif for both SCZ and CD SNPs was 

for SP4, which we demonstrated has high expression in human neural cells and 

mouse developing brain. We were also able to identify a potential SP4 binding site 

within a ELS cRE that we believe is disrupted by the alternative allele ultimately 

affecting the expression of BCL11B. This strong enrichment for SP4 is of particular 

interest due to previously established link between SP4 and psychiatric disorders. 

SP4 has previously been reported as a disease susceptibility gene for BPD152,169 

and groups have reported altered SP4 levels in the brain of patients with SCZ and 

BPD170,171 However, some of the most striking evidence for the role of SP4 in 

neural development is from Zhou et al who demonstrated hypomorphic SP4 mice 

undergo changes in behavior and memory formation analogous to symptoms of 

psychiatric disorders172,173. 

Additionally, we demonstrated that we can gain additional insight into the 

temporal dynamics of cRE activity during brain development. In order to properly 

study the developing human brain, we would need to collect fetal brain samples 

for DNase and ChIP-seq experiments at uniform time intervals. Even if we could 

accomplish this very difficult task there are many factors that may bias results such 

as gender, genetic background, and gestational conditions. During ENCODE3, 
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production groups were about to precisely harvest brain regions at specific time 

points from genetically identical mice. Because of this, we are able to clearly see 

patterns of activity over time for cREs and identity potential therapeutic targets. 

For example, EM10E0066315 and ASCL1 are only active during brain 

development and therefore would not likely be a therapeutic target for an adult 

presenting with SCZ. However, EH37E0250841 and CACNA1C are active 

throughout adulthood and may present a better potential target. Our findings also 

enable us to use mouse models in the future to understand the global response of 

these variants. Since we demonstrated that psych SNPs are enriched in cREs that 

are active in mouse brain tissues, we can further investigate the role of these cREs 

through mouse transgenic assays and CRISPR-Cas9 experiments.  

While our analysis supports a strong link between psych SNPs and neural 

development, our data also suggests that factors linked with the immune system 

have a role in the genetic risk for psychiatric disorders. We observed enrichments 

for cREs active in immune tissues, fetal thymus for SCZ, T-cells for BPD SNPs, 

and lymphoma cells for CD SNPs. We also observed enrichment of motifs for TFs 

with strong links to the immune system such as IRF1, RREB1, and MEIS1.  

There have been several studies suggesting that dysregulation in the 

immune system has a role in the onset of psychiatric disorders. Smith was one of 

the first to propose the involvement of the immune system with his macrophage 

theory of depression174 and macrophage-T-lymphocyte theory of 

schizophrenia175,176. Additionally, Schwarz and colleagues proposed the Th2-
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hypothesis of schizophrenia in which certain subgroups of schizophrenia patients 

had altered ratio of Th1 cells vs. Th2 cells resulting in differing ratios of cell specific 

cytokines177,178. There have been numerous studies looking at the levels of 

cytokines in blood samples of patients with psychiatric disorders. Results from 

some of these studies are inconsistent with one another due to complexity of 

psychiatric disorders. For example, difference in results have been attributed to 

the psychiatric state of the patient during sample collection (e.g. manic episode, 

first psychotic episode, latent period)179,180. However, there is a general pattern of 

dysregulation of many different cytokines. Imbalances in cytokines could directly 

lead to the onset of psychiatric disorders or could be the results of the 

dysregulation of immune pathways that have roles in regulating the CNS. Recently, 

Filiano et al. demonstrated that reducing the number of meningeal T cells in mice 

resulted in a decrease of social behaviors analogous to autism and 

schizophrenia181.  

One hypothesis is that genes involved with the onset of psychiatric disorders 

have duels roles in both immune and neural development pathways. For example, 

BCL11B and POU2F2, two genes we report as potential psych risk genes, have 

important roles in both the immune system and neural development. Therefore, it 

is possible that the dysregulation of these genes during embryonic development 

alters brain structure and connections leaving the patient more susceptible to 

developing a psychiatric disorder. These genes are also dysregulated in the adult 

immune system, but this is not causal towards developing a psychiatric disorder. 
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We hope to test this hypothesis by analyzing cell type specific activity patterns and 

integrating results from additional GWAS. 

Even though the signal for the majority of LD blocks can be explained by 

SNPs in cREs, we currently cannot explain the signal for 21% of the LD blocks. 

This could be for a variety of reasons. First, SNPs in these LD blocks may overlap 

cREs that we have yet to annotate. While we have surveyed over 500 biosamples, 

we have not covered every type of cell in the human body. Additionally, even if we 

have surveyed the cell type, our current method of curating cREs requires a cRE 

to have both high DNase signal (Z-score > 1.64) and high H3K4me, H3K27ac, or 

CTCF signal in at least one cell type. Some cell types such as fetal brain tissue 

only have DNase signal and therefore we are unable to curate cREs specific to 

these tissues without additional experiments. Also, psych SNPs may overlap cREs 

specific to a particular neural cell type such as neurons or glial cells; tissues 

collected from different brain regions are comprised of many different cell types so 

signals from a particular cell type may become diluted. Second, the signal for some 

of these LD blocks may be explained by SNPs that function at the level of 

transcriptomic regulation versus genomic regulation. These variants may disrupt 

RNA binding proteins sites, splicing sites or microRNA target sites, altering final 

protein production. In the future, we can consider these option by analyzing eCLIP 

and RNA-seq data to further annotate these variants. 

Overall our results suggest that genetic variants associated with psychiatric 

disorders effect the regulation of genes involved in neural development pathways 
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and that while components of the immune system may also play a role, the nature 

of their contribution remains unknown. 
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FIGURES 

 

Figure 4.1 | Top tissues with enhancer-like cREs enriched for psych SNPs. 
Enrichment for a, Human cell types with cREs enriched for psych SNPs. Pie charts 
indicated the number of LD blocks that overlap cREs. Bars indicapte Z-score of –log(p) 
for each enrichment. MDD SNPs did not have any enrichments with p<0.05. b, 
Embryonic mouse tissues with orthologous cREs enriched for psych SNPs. Pie charts 
indicated the number of LD blocks that overlap orthologous mouse cREs. Colors indicate 
Z-score of –log(p) for each enrichment. BPD SNPs did not have any enrichments with 
p<0.05. 
   



 

 

189 

 

 

Figure 4.2 | Enrichment for Psych SNPs in cREs with high H3K27ac signal. 
Enrichment for a, schizophrenia, b, bipolar disorder, c, major depressive disorder, and d, 
cross disorder SNPs in cREs with H3K27ac activity. X axis indicates –log(p). Color 
indicates tissue of origin with purple representing brain tissue and neural cells and red 
indicating immune tissue and blood cells 
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Figure 4.3 | SCZ SNP genes are enriched for brain expression and neural pathway 
terms. Enrichment for expression of a, eQTLs genes, b, closest genes, and c, genes 
within 100 kb for SCZ SNPs in GTEx tissues. Color indicates tissue of origin with purple 
representing brain tissue and neural cells. d, Enrichment for expression of SCZ closest 
genes in ENCODE d, human cell types and e, mouse embryonic tissues. f, Enriched 
gene ontology terms for SCZ closest genes. 
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Figure 4.4 | Determining genes associated with psych SNPs. a, Distribution of 
distances between ELS-genein POLII ChIA-PET dataset. 86% of pairs occur within 100 
kb.  b, Overlap of genes called by three different methods: green = eQTLs, red=closest 
gene, blue= all genes within 100 kb. 
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Figure 4.5 | Analysis of cRE activity across brain development. a, H3K27ac Kmeans 
clustering of H3K27ac signal across embryonic time points results in four clusters. b, 
Overlap of cREs in each group between brain subregions. cREs tend to be in the same 
activity group in all three brain subregions. Color indicates overlap coefficient. c, 
Expression of closest protein coding genes linked with cREs in each group. d, Enriched 
gene ontology terms for genes linked with cREs in each group. 
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Figure 4.6 | Psych SNPs overlap orthologous mouse cREs active throughout brain 
development. a, H3K27ac Z-score signal at EM10E0283811, whose orthologous cRE 
overlaps CD SNP rs12424245. Color in heatmap indicates H3K27ac Z-score. b, 
Expression of Cacna1c across embryonic development with focus on brain subregions. 
Color in heatmap indicates Log(TPM). c, H3K27ac Z-score signal at EM10E00066315, 
whose orthologous cRE overlaps SCZ SNP rs7959408. Color in heatmap indicates 
H3K27ac Z-score. d, Expression of Ascl1 across embryonic development with focus on 
brain subregions. Color in heatmap indicates Log(TPM). e, Expression of protein coding 
genes near EM10E00066315 across mouse embryonic development. Noncoding genes 
are shown in gray. Color in heatmap indicates Log(TPM). 
  



 

 

194 

 

 

 

 

Figure 4.7 | Clustering of enriched transcription factor motifs. We connected motifs 
if they overlapped the same SNP with the thickness of the line indicating the number of 
common SNPs. Size of each motif is relative to its -log(FDR). For each cluster, we 
reported the most significant motif. 
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Figure 4.8 | Psych SNPs are enriched for motifs and binding sites of TFs involved 
in neural and immune pathways. a, Enriched TF motifs at psych SNPs. b, Enriched 
expression in mouse tissues and cell types for TF peaks enriched at SCZ SNPs. Colors 
indicate tissue of origin with purple for brain tissue and red for blood. 
  



 

 

196 

 
 
 
Figure 4.9 | Examples of allele specific chromatin accessibility and TF binding at 
psych SNPs. Allele specific chromatin accessibility at a, MDD SNP rs12552369, b, SCZ 
SNP rs12895055, c, BPD SNP rs2861405  and d, CD SNP rs73048919. Pie charts 
indicate percentage of reads with each allele. Numbers next to motif sequences indicate 
FIMO score for the TF motif at each sequence. 
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TABLES 

 
Table 4.1 | GWAS studies included in analysis 

Disorder Authors PMID Publication 
Date 

# Reported 
Variants 

Schizophrenia 
(SCZ) 

Schizophrenia Working 
Group of the Psychiatric 
Genomics Consortium 

25056061 July 2014 98 

Bipolar Disorder 
(BPD) Jiang and Zhang 21254220 Feb 2011 24 

Major Depressive 
Disorder (MDD) GENDEP 23377640 Feb 2013 49 

Cross-disorders 
Cross-Disorder Group of the 

Psychiatric Genomics 
Consortium. 

23453885 April 2013 74 
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Table 4.2 | Genetic context of psych SNPs 
 
 Psychiatric Disorders 

 Schizophrenia Bipolar Disorder Major Depressive 
Disorder Cross-Disorder 

 # SNPs % SNPs # SNPs % SNPs # SNPs % SNPs # SNPs % SNPs 

Coding Exon 38  1.11% 3  0.41% 1 0.13% 24  1.35% 

UTR 88  2.57% 18  2.45% 7 0.90% 34  1.91% 

Intron 2,226  65.13% 450  61.22% 268 34.49% 1,274  71.41% 

Intergenic 1,066  31.19% 264  35.92% 501 64.48% 452  25.34% 

         

Proximal 505  14.77% 76  10.34% 50 6.44% 285  15.98% 

Distal 2,913  85.23% 659  89.66% 727 93.56% 1,499  84.02% 
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Table 4.3 | Deleterious predictions for psych SNPs overlapping coding exons 

Study SNP Protein Reference 
AA 

Alternative 
AA 

PROVEAN 
Prediction 

SIFT 
Prediction 

SCZ rs4584886 ENSP00000326870 R W Deleterious Damaging 

SCZ rs2955365 ENSP00000205890 A T Neutral Damaging 

SCZ rs2955367 ENSP00000205890 W G Neutral Damaging 

SCZ rs12596883 ENSP00000457441 E D Neutral Tolerated 

SCZ rs13107325 ENSP00000349174 A T Neutral Tolerated 

SCZ rs20551 ENSP00000263253 I V Neutral Tolerated 

SCZ rs3176443 ENSP00000354481 L V Neutral Tolerated 

SCZ rs3617 ENSP00000415769 Q K Neutral Tolerated 

SCZ rs950169 ENSP00000286744 T I Neutral Tolerated 

SCZ rs10117 ENSP00000297185 L L Neutral Tolerated 

SCZ rs10414643 ENSP00000394510 L L Neutral Tolerated 

SCZ rs1047361 ENSP00000384899 S S Neutral Tolerated 

SCZ rs1051431 ENSP00000445859 Y Y Neutral Tolerated 

SCZ rs1143702 ENSP00000353030 Y Y Neutral Tolerated 

SCZ rs13189822 ENSP00000261483 Q Q Neutral Tolerated 

SCZ rs2074090 ENSP00000262815 S S Neutral Tolerated 

SCZ rs216193 ENSP00000263073 A A Neutral Tolerated 

SCZ rs2229193 ENSP00000332549 L L Neutral Tolerated 

SCZ rs2274267 ENSP00000439065 T T Neutral Tolerated 

SCZ rs2955355 ENSP00000268719 G G Neutral Tolerated 

SCZ rs2955366 ENSP00000205890 P P Neutral Tolerated 

SCZ rs3743739 ENSP00000219345 G G Neutral Tolerated 

SCZ rs3745474 ENSP00000246794 F F Neutral Tolerated 

SCZ rs3745475 ENSP00000394510 P P Neutral Tolerated 

SCZ rs4368210 ENSP00000326870 L L Neutral Tolerated 

SCZ rs4685 ENSP00000335321 V V Neutral Tolerated 

SCZ rs5629 ENSP00000244043 R R Neutral Tolerated 

SCZ rs6163 ENSP00000358903 S S Neutral Tolerated 

SCZ rs62021888 ENSP00000260402 R R Neutral Tolerated 
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SCZ rs7148456 ENSP00000338814 P P Neutral Tolerated 

SCZ rs749240 ENSP00000263073 Q Q Neutral Tolerated 

SCZ rs769267 ENSP00000262815 P P Neutral Tolerated 

SCZ rs788018 ENSP00000335321 G G Neutral Tolerated 

SCZ rs788023 ENSP00000335321 K K Neutral Tolerated 

SCZ rs8539 ENSP00000340019 K K Neutral Tolerated 

SCZ rs9611519 ENSP00000216237 P P Neutral Tolerated 

SCZ rs9806806 ENSP00000332549 R R Neutral Tolerated 

SCZ rs4072738 record not found     

BPD rs10458896 ENSP00000263181 I V Neutral Tolerated 

BPD rs2297815 ENSP00000354623 V V Neutral Tolerated 

BPD rs4804725 record not found     

MDD rs4777035 ENSP00000403392 P L Neutral Damaging 

CD rs678 ENSP00000273283 E V Deleterious Damaging 

CD rs214967 ENSP00000341887 S L Neutral Damaging 

CD rs3132580 ENSP00000417182 E K Neutral NA 

CD rs1042779 ENSP00000273283 Q R Neutral Tolerated 

CD rs41273537 ENSP00000358064 M V Neutral Tolerated 

CD rs3094086 ENSP00000417182 S S Neutral NA 

CD rs1058766 ENSP00000338629 R R Neutral Tolerated 

CD rs11121172 ENSP00000338629 R R Neutral Tolerated 

CD rs13596 ENSP00000338629 P P Neutral Tolerated 

CD rs2071702 ENSP00000436786 N N Neutral Tolerated 

CD rs2229193 ENSP00000332549 L L Neutral Tolerated 

CD rs2230534 ENSP00000233027 P P Neutral Tolerated 

CD rs2230535 ENSP00000233027 L L Neutral Tolerated 

CD rs2275271 ENSP00000402831 S S Neutral Tolerated 

CD rs2523721 ENSP00000391879 R R Neutral Tolerated 

CD rs3740387 ENSP00000339479 D D Neutral Tolerated 

CD rs6951493 ENSP00000265854 H H Neutral Tolerated 

CD rs7107305 ENSP00000436786 L L Neutral Tolerated 
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CD rs72696841 ENSP00000358064 S S Neutral Tolerated 

CD rs748002 ENSP00000264051 A A Neutral Tolerated 

CD rs9324 ENSP00000273283 S S Neutral Tolerated 

CD rs9332801 ENSP00000436786 I I Neutral Tolerated 

CD rs943037 ENSP00000402831 A A Neutral Tolerated 

CD rs9806806 ENSP00000332549 R R Neutral Tolerated 
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Table 4.4a | Overlap of psych SNPs with cREs 
 GWAS Control   

Study Total # 
SNPs 

# Overlap 
cREs Percent Total # 

SNPs 
# Overlap 

cREs Percent Enrichment P-value 

SCZ 3418 687 20.10% 1635798 298134 18.23% 1.10 5.19E-03 

BPD 735 150 20.41% 371792 67310 18.10% 1.13 1.13E-01 

MDD 777 159 20.46% 715619 114342 15.98% 1.28 1.01E-03 

CD 1784 409 22.93% 1198932 211708 17.66% 1.30 1.76E-08 
 
Table 4.4b | Overlap of LD Blocks with cREs 

 GWAS Control   
Internal 

ID 
Total # LD 

Blocks 
# Overlap 

cREs Percent Total # LD 
Blocks 

# Overlap 
cREs Percent Enrichment P-value 

SCZ 96 78 81.25% 47408 37518 79.14% 1.03 7.06E-
01 

BPD 23 20 86.96% 11221 8901 79.32% 1.10 4.51E-
01 

MDD 43 34 79.07% 21276 16002 75.21% 1.05 7.24E-
01 

CD 71 49 69.01% 36298 27849 76.72% 0.90 1.24E-
01 
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Table 4.5 | Type of overlapping cREs 
 

 PLS cREs ELS cREs CTCF-only cREs 

Disorder # % # % # % 

Schizophrenia 150 26.83% 387 69.23% 22 3.94% 

Bipolar Disorder 21 19.63% 78 72.90% 8 7.48% 

Major Depressive Disorder 15 12.82% 98 83.76% 4 3.42% 

Cross-Disorder 68 20.86% 253 77.61% 5 1.53% 
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Table 4.6 | Overlap of eQTLs and psych SNPs 
 

 GWAS Control  

Disorder # eQTL SNPs % Total SNPs # eQTL SNPs % Total SNPs P-value 

SCZ 2171 63.52% 757632 46.32% 1.87E-90 

BPD 189 25.71% 142694 38.38% 5.24E-13 

MDD 217 27.93% 223867 31.28% 4.41E-02 

CD 868 48.65% 495409 41.32% 4.34E-10 

      

Disorder # eQTL LD 
Blocks 

% Total LD 
Blocks 

# eQTL LD 
Blocks 

% Total LD 
Blocks P-value 

SCZ 52 54.17% 18707 39.46% 4.52E-03 

BPD 10 43.48% 3641 32.45% 2.70E-01 

MDD 11 25.58% 5600 26.32% 1.00E+00 

CD 35 49.30% 12403 34.17% 8.52E-03 
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Table 4.7 | Enriched gene ontology terms for SCZ closest genes 

Category Term Fold 
Enrichment P-Value 

GO Cellular Component postsynapse (GO:0098794) 5.81 3.82E-06 

GO Cellular Component neuron projection (GO:0043005) 3.44 1.43E-05 

GO Cellular Component somatodendritic compartment (GO:0036477) 4.16 5.46E-05 

GO Cellular Component neuron part (GO:0097458) 3.01 7.47E-05 

GO Cellular Component dendrite (GO:0030425) 4.71 2.13E-04 

GO Cellular Component postsynaptic density of dendrite 
(GO:0014069) 7.45 4.79E-04 

GO Cellular Component postsynaptic specialization (GO:0099572) 7.42 5.02E-04 

GO Cellular Component asymmetric synapse (GO:0032279) 7.31 5.80E-04 

GO Cellular Component neuron to neuron synapse (GO:0098984) 7.24 6.38E-04 

GO Biological Process modulation of chemical synaptic 
transmission (GO:0050804) 6.14 7.96E-04 

PANTHER Pathways Nicotine pharmacodynamics pathway 
(P06587) 19.93 1.02E-03 

GO Cellular Component synapse part (GO:0044456) 3.73 1.29E-03 

GO Cellular Component synapse (GO:0045202) 3.42 1.30E-03 

GO Cellular Component neuronal cell body (GO:0043025) 4.63 1.47E-03 

GO Cellular Component cell projection (GO:0042995) 2.36 3.80E-03 

GO Cellular Component plasma membrane bounded cell projection 
(GO:0120025) 2.37 5.10E-03 

GO Cellular Component cell body (GO:0044297) 4.06 7.20E-03 

GO Cellular Component postsynaptic membrane (GO:0045211) 6.08 9.84E-03 

GO Biological Process regulation of membrane potential 
(GO:0042391) 4.73 1.71E-02 

PANTHER Pathways Nicotinic acetylcholine receptor signaling 
pathway (P00044) 8.05 1.88E-02 

GO Cellular Component synaptic membrane (GO:0097060) 5.05 1.90E-02 

GO Biological Process chemical synaptic transmission, 
postsynaptic (GO:0099565) 11.86 2.27E-02 

GO Molecular Function gated channel activity (GO:0022836) 4.91 2.37E-02 

GO Biological Process biological regulation (GO:0065007) 1.31 3.45E-02 

GO Biological Process regulation of neurogenesis (GO:0050767) 3.49 4.13E-02 
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Table 4.8 | Enriched TF ChIP-seq peaks overlapping SCZ SNPs 
TF Fold Enrichment P-value FDR 

BCLAF1 3.6255 2.38E-04 2.85E-02 

TAF1 2.1440 3.06E-04 2.85E-02 

TAF7 3.2253 3.53E-04 2.85E-02 

ZNF263 2.2811 3.76E-04 2.85E-02 

POU2F2 2.5088 5.81E-04 3.52E-02 

CCNT2 2.5539 7.34E-04 3.71E-02 

USF1 2.0150 9.89E-04 3.78E-02 

PHF8 2.3665 1.08E-03 3.78E-02 

SREBF1 3.0027 1.12E-03 3.78E-02 

SAP30 2.8971 1.49E-03 4.40E-02 

CEBPD 3.2675 1.83E-03 4.40E-02 

eGFP-ATF1 1.9465 2.03E-03 4.40E-02 

NBN 2.7484 2.25E-03 4.40E-02 

RFX5 2.2771 2.28E-03 4.40E-02 

ZNF207 2.8709 2.63E-03 4.40E-02 

eGFP-ZBTB11 2.1681 2.64E-03 4.40E-02 

FLAG-SSRP1 2.8535 2.74E-03 4.40E-02 

eGFP-ELF1 2.3168 2.76E-03 4.40E-02 

SIN3A 1.7325 2.85E-03 4.40E-02 

TBP 1.8900 2.90E-03 4.40E-02 

TARDBP 2.1932 3.26E-03 4.70E-02 
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Table 4.9 | Enriched cell types with TF ChIP-seq peaks overlapping SCZ SNPs 
TF Fold Enrichment P-value FDR 

GM15510 2.97 1.51E-04 9.89E-03 

GM10847 3.33 2.68E-04 9.89E-03 

HEK293 1.82 4.02E-04 9.89E-03 

GM19099 2.64 5.27E-04 9.89E-03 

GM18526 2.88 5.82E-04 9.89E-03 

SK-N-SH 1.59 1.81E-03 2.17E-02 

PFSK-1 2.14 2.23E-03 2.17E-02 

GM19193 2.28 2.28E-03 2.17E-02 

H1-hESC 1.44 2.43E-03 2.17E-02 

GM18505 2.34 2.55E-03 2.17E-02 

Panc1 2.07 3.03E-03 2.31E-02 

Raji 2.37 3.26E-03 2.31E-02 

GM18951 2.07 4.13E-03 2.69E-02 

Ishikawa 1.79 4.42E-03 2.69E-02 
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Table 4.10 | Top 10 mouse RNA-seq experiments with enriched expression for TF 

Tissue/Cell Types Enriched 
Expression 

Background 
Expression 

~ Fold 
Enrichment P-value FDR 

B10.H-2aH-4bp/Wts 
CH12.LX 39.86 13.87 2.87 1.18E-03 3.78E-02 

C57BL/6 hindbrain 
embryo (11.5 days) 31.75 18.65 1.70 4.60E-03 3.78E-02 

C57BL/6 midbrain 
embryo (13.5 days) 39.86 18.26 2.18 5.22E-03 3.78E-02 

C57BL/6 midbrain 
embryo (11.5 days) 35.90 19.29 1.86 5.60E-03 3.78E-02 

C57BL/6 forebrain 
embryo (13.5 days) 38.17 20.49 1.86 6.45E-03 3.78E-02 

C57BL/6 midbrain 
embryo (16.5 days) 24.05 15.55 1.55 7.40E-03 3.78E-02 

C57BL/6 forebrain 
embryo (11.5 days) 46.56 22.09 2.11 7.43E-03 3.78E-02 

C57BL/6 hindbrain 
embryo (13.5 days) 30.95 17.58 1.76 7.85E-03 3.78E-02 

C57BL/6 megakaryocyte 
male adult (5-6 weeks) 23.19 13.56 1.71 8.99E-03 3.78E-02 

C57BL/6 midbrain 
embryo (12.5 days) 41.95 25.41 1.65 9.06E-03 3.78E-02 
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EXTERNAL FIGURES AND TABLES  

These figures and tables are too large to include in the PDF version of this 

thesis. They are available online at 

https://drive.google.com/drive/folders/0B07orkTYRj9pRy1IdE9JUVVYTzA?usp=s

haring 
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METHODS 

 
Generating Control Datasets 

For each lead SNP from the NHGRI GWAS catalog182,183, we selected a 

random SNP from the SNP chip used in the study that fell in the same minor allele 

frequency (MAF) quartile and distance from transcription start site (TSS) quartile 

as the lead SNP. For each of the control SNPs, we extracted all SNPs in LD 

(r2>0.7) based on phasing analysis from the 1000 Genomes Project European 

population (EUR)113 using the HaploReg Database106. This constituted one control 

dataset. We generated 500 control datasets for each GWAS. This method was 

adapted from the Understanding Enrichment Through Simulation (UES) algorithm 

from the Klein lab101. 

 

Testing for Enrichment in cRE Activity 

Using Bedtools (v25.5.0) we intersected psych and control SNPs with cREs 

from the Registry of cREs. To assess whether the cREs in a cell type were 

enriched in psych SNPs, we select all cREs overlapping psych or control SNPs 

with cREs that have a H3K27ac/DNase Z-score > 2 in the cell type. To avoid over 

counting, we pruned the overlaps, counting each LD group once per cell type. We 

calculated enrichment between GWAS LD groups with the 500 matched controls 

using a one-sided Fisher's exact test. Finally, we applied an FDR of 5% to each 

study. To compare relative enrichments across studies, we calculated Z-scores of 

the -log(p-value).  
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Enrichment for Gene Expression 

For each cell type, we tested whether the psych genes group had higher 

expression than the control group using a one-sided Wilcoxon-Rank Sum test. 

We used gene expression values generated by the GTEx consortium108 and the 

ENCODE project. We also considered mouse datasets for which we compared 

the expression of genes with ortholgous mouse genes as defined by the Jackson 

laboratory (HOM_MouseHumanSequence.rpt) 

 

Gene Ontology Analysis 

We performed gene ontology analysis using the online tool Panther's  

statistical overrepresentation test (http://pantherdb.org/). For all analyses, we 

reported enrichments from five collections: GO Molecular Function, GO Biological 

Process, GO Cellular Component, Reactome Pathways, and Panther Pathways. 

We only report categories with a Bonferroni p-value < 0.05.  

 

Temporal Clustering of Brain cREs 

We selected all mouse cREs that had a DNase Z-score > 1.64 and H3K27ac 

Z-score > 1.64 for at least one brain region time point. For each of these brain 

cREs we extracted their Z-score signal for forebrain, midbrain, and hindbrain. For 

each cRE in each tissue, we normalized the range of Z-scores so that all values 

fell between 0 and 1. Using the elbow method, we determined the optimal number 
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of clusters was four. We then implemented K-means clustering for each tissue 

using the python scikit learn package.  

 
 
Determining Overlapping Motifs 

For each psych SNP, we generated major and minor allele sequences for 

41 bps window centered on the SNP. Using the FIMO algorithm, we searched for 

motifs from the CISBP transcription factor database145. We selected all motifs that 

overlapped a psych SNP with a q-value < 0.05. We tested for motif enrichment by 

comparing the fraction of psych SNPs overlapping each motif compared to the 

control SNPs using one-sided fisher's exact test and applying an FDR of 5%. 

 

Enrichment for TF Binding Sites 

We intersected psych and control SNPs with optimal IDR ChIP-seq peaks 

from 914 ENCODE experiments. To assess whether psych SNPs we enriched for 

a TF binding sites, we used a one-sided Fisher's exact test comparing the number 

psych SNPs overlapping peaks vs control SNPs after pruning for LD. We ran three 

tests: 1) analyzing TFs 2) analyzing cell types, and 3) analyzing individual 

experiments.  In all three cases we applied an FDR of 5%. 

 

Testing for Allele Specificity 

To test for allele specificity, began by first identifying heterozygous loci. 

For each psych SNP, we determined for which cell types it overlapped an active 
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cRE (DNase Z-score). For these cell types, we downloaded mapped reads 

DNase reads (bam files) and determined the allele at the SNP. We considered a 

locus heterozygous if it has at least 15 reads at the ratio of the alternative allele 

to reference allele was at least 0.05. If a SNP was heterozygous, we tested for 

allele specificity in that cell type using a two-sided Fisher's exact test. We 

evaluated our in silico genotyping method using genotyping results generated by 

the ENCODE consortium: wgEncodeHaibGenotypeBalleleSnp2015-03-04.tsv 

 

Scripts 

Scripts for this analysis can be found on GitHub: https://github.com/Jill-

Moore/Dissertation/tree/master/Chapter-IV/ 
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CHAPTER V: Conclusions and Future Directions 
 

Introduction 

In this thesis, we described the Registry of candidate Regulatory Elements, 

a collected of putative regulatory regions we curated across the human and mouse 

genomes. We demonstrated several biological applications of cREs, in particular 

their use in annotating variants reported by genome wide association studies 

(GWAS). In Chapter III, we evaluated methods for linking cREs with potential target 

genes. We developed a benchmark of ELS-gene links which we used to test 

correlation methods and Random Forest models. In Chapter IV, we demonstrated 

the usefulness of the Registry by annotating genetic variants associated with 

psychiatric disorders. Our results suggest that in GWAS variants disrupt neural 

pathways and may also play a role in the immune system.  

 

The Registry of cREs and Future Plans for Expansion 

Chapter II of this thesis detailed the creation and implementation of the 

Registry of cREs. We curated this registry by integrating hundreds of DNase-seq 

and ChIP-seq datasets, generating over 1.3 million cREs in human and 400 

thousand cREs in mouse. We classified these cREs into groups using H3K4me3, 

H3K27ac, and CTCF ChIP-seq signals and extended these classification schemes 

to generate cell type specific annotations for every cRE. We based these 

classification schemes on unsupervised enhancer prediction methods that we 

developed using embryonic mouse data. In this analysis, we determined that 
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combining DNase and H3K27ac data was the best performing method and we 

used this method to predict enhancers which were validated using transgenic 

mouse assays. Subsequent analyses of our classification schemes demonstrated 

they are concordant with other enhancer prediction methods, particularly those that 

also integrate epigenomic datasets. We further demonstrated the utility of the 

registry of cREs by annotating variants reported by GWAS, particularly in Chapter 

IV where we focused on SNPs associated with psychiatric disorders. 

Unlike other collections of regulatory elements, The Registry of cREs has 

several unique features which make it useful for biological research. First, we 

accessioned all cREs so they can be accurately referenced in presentations and 

publications. Other tools generate run-specific identifiers for their called regions, 

but these are not maintained during subsequent uses of the programs. 

Additionally, the Roadmap Epigenomics Consortium generated genome 

segmentations for 3 different ChromHMM models (15 state, 18 state and 25 state 

models). Determining the exact elements a paper used may be difficult if the 

authors do not specifically mention which set of segmentations they used. Second, 

boundaries of cREs are fixed across cell types, which allows us to evaluate the 

cell type specificity of a cRE. While not all elements retain the same boundaries 

between cell types, we have observed that the vast majority do within 50 bp. In the 

future, we can further annotate cREs with estimated boundaries in each cell type 

using overlapping DHSs. Third, to annotate and investigate cREs, users can 

download the Registry from the ENCODE portal or use our web based tool 
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SCREEN. Unlike other web-based catalogs of regulatory elements, SCREEN is 

user friendly, especially for biologists without a computational background. 

Additionally, by integrating other data from the ENCODE Encyclopedia and the 

NHGRI-EBI GWAS catalog, users can easily characterize regions of interest. The 

Registry of cREs also bridges the gap between mouse and human for comparing 

gene regulation. Users can investigate cREs that are ortholgous between the 

species, which ultimately allows them to survey different types of data across new 

cell types. 

Moving forward, we plan on expanding the Registry of cREs. During Phase 

IV of the ENCODE project, production labs will generate new DNase-seq and 

histone modification ChIP-seq datasets which we will incorporate into the registry. 

We are collaborating with data production labs to expand the Registry in two ways. 

One to generate datasets that will increase the number of cell types with four core 

epigenomic marks (DNase, H3K4me3, H3K27ac, and CTCF). We currently have 

21 cell types with all four marks and by increasing this number we can further 

analyze cREs for tissue specificity and different regulatory roles across cell types. 

Two, generate datasets from underrepresented cell types that are not currently 

covered by the Registry. Using publicly available data processed by CISTROME, 

we plan on identifying cell types with a low numbers of overlapping histone 

modification peaks or DHSs and will prioritize these cell type for data generation.  

We also aim to identify new classes of regulatory elements such as 

repressors. While labs have experimentally characterized repressive elements, 
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there are currently no methods for computationally predicting them. One possible 

direction is to study REST ChIP-seq binding sites. As mentioned in Chapter I, 

REST is a repressive transcription factor that binds at RE-1 elements and prevents 

the transcription of neuronal genes in non-neuronal cell types20 . The ENCODE 

consortium has generated REST ChIP-seq data for over 25 cell types. Using the 

Registry of cRE we can determine if REST binding sites overlap 1) our current set 

of cREs, or 2) rDHSs that are not currently classified as cREs. If the former, this 

suggests that: a) repressors are also enriched for H3K27ac signal, b) repressors 

act as enhancers in other cell types, or c) the majority of REST binds to enhancers. 

If the latter, we can determine which features (TF signal, histone modification 

signal, sequence motifs) are enriched at rDHSs with REST binding and using these 

features, identify cREs that are likely to silence gene expression. In addition to 

identifying new classes of cREs, we hope to develop a more sophisticated 

classification scheme for cREs. We currently categorize cREs in generalized 

groups, which make interpretation easy but may miss finer biological features. For 

example, we currently classify all proximal cREs with high H3K4me3 signal as 

PLS. However, we have observed that PLS cRE that directly overlap TSS have 

different features than those that do not. Therefore, we might be able to split these 

cREs into two distinctive classes. In cell types such as GM12878, K562 and H1-

hESCs, we hope to integrate TF data and cluster cREs based on TF binding to 

observe if there are any natural classes of elements. These analyses may reveal 

sub-types of regulatory elements. 



 

 

218 

 

Evaluating Methods Prediction Enhancer-Gene Links 

In order to accurately evaluate enhancer-gene linking methods we 

developed a benchmark of ELS-gene pairs base on chromatin and genetic 

interaction data. We used this benchmark to test correlation base methods and 

found they had low overall performance. While these methods can identify ELS-

gene pairs, they have extremely high false negative and positive rates. These 

results suggest that previous work by ENCODE labs may not identify the correct 

target gene and should be used with caution. We then developed Random Forest 

models which had remarkable improvement over unsupervised approaches and 

can be applied across cell types. Finally, we demonstrated the practical 

applications of target gene predictions by identifying a novel GWAS gene 

associated with multiple sclerosis. 

We felt that it was important to included different types of genomic 

interaction data in our benchmark because each experiment assays a different 

type of interaction. For example, POLII ChIA-PET links tend to be close together 

and occur within the larger domain of CTCF ChIA-PET links67. Eventually, we hope 

to train models that will be able to identify specific links; for example, using 

Shannon Entropy, we can predict whether an ELS cRE is more likely to be an a 

CTCF loop (ubiquitous activity) or POLII loop (cell type specific activity). In the 

future, we also hope to expand our benchmark. During phase IV of the ENCODE 

project, the Ruan and Aiden labs plan on generating new ChIA-PET and Hi-C 
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datasets for cell types covered by the Registry of cREs. Therefore, we will 

incorporate these new links into our benchmark. Additionally, we plan on adding 

confidence levels to our benchmark. With our proposed classification scheme, 

most of our ELS-gene pairs would be considered a "bronze" standard (i.e. they are 

supported by one type of link). A subset of the pairs would be considered a "silver" 

standard if they are supported by both physical and genetic interactions (i.e. Hi-

C/ChIA-PET and eQTLs). Finally, if some of these predictions are experimentally 

validated using genome editing techniques, we will label them as a "gold" standard. 

Expanding this benchmark will enable us to further refine our methods as well as 

continue to annotate the registry of cREs. 

One interesting result from our analysis was the importantance of distance 

for predicting ELS-gene links. Simply ranking genes by distance has a higher 

AUPR than even the best performing correlation method and distance was 

consistently the most important feature in our Random Forest models. This heavy 

reliance on distance is partially due to how ELS-gene links are distributed. Some 

methods such as TargetFinder, use a distance matched negative set, but we feel 

this method is impractical. In practice, to predict the enhancer of a target gene one 

would test all genes within a specific distance boundary (e.g. 200 kb) not genes of 

matched distances. Therefore, while distance may dominate our models, it is a 

biologically relevant feature that should not be ignored. Additionally, this 

dependence on distance suggests that while some enhancers target genes at very 

far distances, the majority of interactions occur nearby. 
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 Moving forward we plan on refining our Random Forest models, by including 

additional biological features such as CTCF binding sites, and patterns of gene 

expression. We also plan on comparing our models with the published models 

PReSTIGE, IM-PET, PETmodule, and TargetFinder. Of particular interest will be 

how each program performs on individual datasets. For example, TargetFinder, 

which is trained on Hi-C loops, claims to be able to better identify long range 

interactions than close range interactions. Therefore, TargetFinder may 

outperform the other algorithms for identifying Aiden Hi-C pairs but may have lower 

performance for POLII ChIA-PET pairs.  

 Ultimately, we hope to apply the best performing model to predict ELS-gene 

pairs across all cell types in the registry. Then we can identify differences in links 

between cell types and how these links change over embryonic development. 

 

Annotating Genetic Variants Associated with Psychiatric Disorders 

In chapter IV we demonstrated how we can use the Registry of cREs to 

annotated noncoding variants associated with schizophrenia (SCZ), bipolar 

disorder (BPD) and major depressive disorder (MDD). By analyzing cRE activity 

and gene expression, we determined that SCZ SNPs and CD SNPs were enriched 

for cREs and target genes active in brain tissue and neural development pathways. 

Interestingly, we also observed enrichments in immune related features such as 

cRE activity in blood cells and TFs involved in the immune system. These findings 

are also supported by the previous enrichment in B cell specific H3K27ac peaks 
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reported by the PGC105. 

We developed several hypotheses for this observed enrichment. The first 

being that the immune system is interacting directly with the central nervous 

system and its dysregulation results in CNS changes. Second, these immune 

related TFs are active in glial cells that are not surveyed by ENCODE. The brain 

sub-regions contain a mixture of cell types and therefore the enrichments we 

observe could be due to these non-neuron cells. Third, these factors may have 

dual roles in the CNS and immune system. This hypothesis is not completely 

independent from our second hypothesis but suggests that TFs involved in the 

immune system also have roles in brain development. We plan on testing these 

hypotheses first by analyzing cRE activity and gene expression. For example, we 

can analyzed whether psych cREs  are active in both brain and immune tissues or 

if they tissue specific. We also plan on integrating data from the psychENCODE 

consortium who have generated cell type specific (neuron +, neuron -) histone 

modification data from brain samples. Finally, we also plan to systematically 

analyzing TF expression between human and mouse datasets to determine 

whether there is a general enrichment for TF activity in the brain and immune 

system. 

Overall our analysis demonstrated that psych SNPs across different 

disorders share common enrichments for cRE activity, gene expression, and TF 

motifs. The most strikely was that both SCZ and CD SNPs were enriched for TF 

SP4 motif sites. As we detailed in Chapter IV, SP4 has previously been linked with 
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psychiatric disorders and has been shown to prune dendrites during brain 

development147. Moving forward, we plan to further characterize SP4 binding sites 

using the Registry of cREs and identify potential target genes to determine 

regulatory networks that may be disrupted by the dysregulation of SP4. We also 

plan on further characterizing SP4 expression to determine if it would be a viable 

therapeutic target. For example, if SP4 only targets psych risk genes during brain 

development, it would not be a reasonable target. 

While we observed many similarities between enrichments across the four 

studies, we currently are unable to analyze differences between the disorders. For 

example, we have far more variants associated with SCZ than BPD. The lack of 

enrichment for BPD SNPs in brain regions does not mean that BPD risk factors 

are not active in the brain – just that the BPD GWAS did not report significant hits 

in these regions. This could be due to a number of factors most notably the size of 

the cohort. Therefore, in the future, we hope to develop a method for combining 

multiple GWAS for the same phenotype to increase statistical power. We cannot 

simply just concatenate results from multiple studies due differences in 

methodologies, but we could develop an ensemble voting scheme that would 

weight enrichments observed in different studies. Additionally, the NHGRI-EBI 

GWAS catalog continues to release summary statistics from GWAS. We could use 

these to further prioritize regions of interest that may not reach genome wide 

significance. Both of these approaches would allow us to substantially increase the 

number of variants we could analyze and possible reveal even more about the 
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genetic risk factors of psychiatric disorders. 

Additionally, we showcased two examples of cREs with distinct enhancer 

activity patterns across mouse embryonic development. We are currently 

collaborating with the Pinnacchio and Visel labs to experimentally validate these 

regions and investigate allele specific activity changes. These ELS cREs have 

important yet different biological implications. CACNA1C, is expressed in many 

different tissues, such as the heart, muscle, and brain. EH37E0250841, which 

overlaps a CD SNP, is a brain specific cRE that we predict regulates CACNA1C. 

Because of this brain tissue specificity, the SNP would presumably only effect the 

expression of CACNA1C in the brain, not the heart or muscle.  

Unlike EH37E0250841, EH37E1112284, which overlaps a SCZ SNP, is 

only active during early stages of brain development. ASCL1, EH37E1112284's 

target gene, is involved in neuronal commitment and is highly expressed in brain 

at early embryonic time points. Interestingly, while psychiatric disorders manifest 

during early adulthood, we did not observe enrichment for SNPs in cREs active at 

later time points. Therefore, we hypothesize that these common genetic variants 

result in changes in brain structure and composition that increase an individual's 

risk for developing a psychiatric disorder. 

These two examples also demonstrate the advantage of using orthologous 

mouse cREs to study cRE activity patterns across embryonic development. 

Without the mouse embryonic data, we would not be able to cleanly define 

temporal patterns of brain cRE activity. While we did have fetal brain DNase data 
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for a number of fetal stages, these samples were not surveyed at uniform time 

points and were subject to a number of uncontrollable biases (i.e. genetic 

background, gestational conditions, gender, collection methods). The brain 

samples collected from the embryonic mice, however, were collected from mice 

with the same genetic background and similar gestational conditions using uniform 

protocols. In the future, we plan on extending our analysis to study SNPs 

associated with other human disease. By analyzing enrichments in temporal 

patterns, we can classify diseases based on when their genetic risk factors are 

active (i.e. development, adulthood) which will also give us more information about 

possible therapeutic targets. 

We also plan on generalizing our analysis by annotating cREs allele specific 

binding of TFs and chromatin accessibility. We plan to apply our in silico 

genotyping method described in Chapter IV to genotype SNPs overlapping cREs 

across all 600 cell and tissue types covered by the Registry. For each cell type, we 

can test at heterozygous loci whether DNase, histone modification, or TF ChIP-

seq reads favor one allele. This will be a valuable resource for interpreting genetic 

variants reported by GWAS and whole genome sequencing but also may explain 

underlying mechanisms of gene regulation. For example, one anecdotal 

observation from characterizing allelic imbalance at psych SNPs was that the 

direction of allelic imbalance changed depending on the cell type. We observed 

this for BPD SNP rs2861405 at ZNF490 and ZNF791. When we manually 

surveyed other SNPs that had allelic imbalance in both directions we observed 
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that the many of them located at bidirectional promoters. This anecdotal evidence 

suggests that different TFs bind at promoters depending on cell type context, thus 

resulting in differences in chromatin accessibility between alleles. While this is a 

very small sampling, we aim to test if this phenomenon is more global by 

characterizing AS binding at cREs. 

 
Final Comments 

 Overall our work has created a foundation for the future characterization 

and annotation of regulatory elements in the human genome. We developed a 

pipeline for curating and characterizing candidate regulatory regions in human and 

mouse which can be expanded as more epigenomic datasets are produced. We 

can functionally annotate these cREs by predicting the genes they regulate and 

our work demonstrated that several popular methods of linking enhancer and 

genes should not be used. Additionally, we can utilize these tools to interpret 

variants associated with disease. While we demonstrated the Registry's use for 

annotated common variants, these methods can be applied to annotate rare, 

personal, or cancerous mutations as well. This is especially pertinent to clinicians 

as researchers as whole genome sequencing become more widely used. 
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