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Abstract
For more than two and a half decades,
experiments on two dimensional elec-
tron systems in strong magnetic fields,
at low temperatures have given rise
to a series of surprising phenomena,
known collectively as the quantum
Hall effects. I shall give here a brief
overview of the field, beginning with a
description of the integer and fraction-
al quantized Hall effects, and the basic
conditions associated with their occur-
rence: an absence of mobile carriers in
the bulk of the 2D system, combined
with unidirectional electrical conduc-
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tion along the sample boundary. The way in which these conditions are
satisfied, in the case of the integer quantized Hall effect can be under-
stood in terms of non-interacting electrons, using a semiclassical argument.
The fractional quantized Hall effect depends fundamentally on electron-
electron interactions, which lead to a peculiar highly correlated ground
state, with elementary quasiparticle excitations that carry fractional charge
and “fractional statistics.” I shall discuss briefly a number of other phenom-
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ena that occur in quantum Hall systems, and indicate some areas where
open questions exist.

Introduction

The term “quantum Hall effects” refers to a large set of peculiar phenomena,
which occur in two-dimensional electron systems, at low temperatures in
strong magnetic fields.[1–8]

In experimental realizations, the two-dimensional system has usually
been formed from electrons (or holes) in a gallium arsenide semiconductor
structure. Veryhigh quality samples of this type can be grown by the process
of molecular beam epitaxy. The earliest studies of quantized Hall effect,
however, were done in silicon field-effect transistor structures (mosfets).
Most recently, the integer quantized Hall effect has been seen in graphene,
a single atomic layer of graphite, and also in double-layer graphene. A large
variety of phenomena occur, in part, because samples can differ widely
in electron densities and in the degree of freedom from defects, and the
magnetic fields applied can vary over a large range, from approximately 0.1
to 45 Tesla. Still, it is quite remarkable what a large variety of phenomena
have been found in a restricted class of devices, made from relatively simple
basic materials.

Experiments on quantum Hall systems have, in fact, produced many
surprises since the discovery of the Integer Quantized Hall Effect, in 1980.
Understanding these results has required concepts and mathematical tech-
niques from far corners of theoretical physics, including some completely
new ideas. The goal of this talk will be to give a brief overview of the subject.
The questions I will try to address, at least briefly, are:

What are the quantized Hall effects?
How do we understand them?
What are some unanswered questions in the field?

A typical geometry for studying the Hall effect in a two-dimensional system
is shown in Figure 1. An electrical current Ix is passed through the sample, in
the x-direction, through current contacts at the two ends. Voltage probes,
which draw no current, are attached at several points along the lateral
edges, and one measures simultaneously the longitudinal voltage drop Vx

between two probes on the same edge, and the “Hall voltage”, Vy between
contacts lined up on opposite edges of the strip. As the voltages are generally
proportional to the current, it is convenient to divide the voltages by the
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Figure 1: Sketch of arrangement for measurement of the longitudinal resistance and
Hall resistance in a two-dimensional electron system. A current Ix flows along the sample
in the x-direction, entering and leaving through the current contacts at the two ends.
Voltage is measured at contacts along the edges, which draw no current. Hall voltage Vy

is the voltage difference between two contacts on opposite edges of the sample, while
longitudinal voltage Vy is the voltage drop between two contacts on the same edge.
A magnetic field B is applied perpendicular to the plane of the sample.

current, and discuss the longitudinal resistance, Rxx ≡ Vx/Ix , and the Hall
resistance, RH ≡ Vy/Ix

The classical Hall effect was discovered in 1879 by Edwin Hall, who
observed the effect in three-dimensional metals, and formulated a classical
theory for it. In the classical Hall effect, the Hall voltage Vy is proportional
to the magnetic field B. More precisely, the Hall resistance is given by
RH = B/nee, where ne is the density of electrons, and e is the electron
charge. The longitudinal resistance will depend on details, including the
shape of the sample and the amount of electron scattering in the material,
but it is roughly independent of B in most cases.

Quantum mechanics predicts corrections to the classical Hall effect,
which become manifest particularly at low temperatures, in strong mag-
netic fields, in high quality samples, which have a long mean-free-path for
electrons between scattering events due to impurities. These corrections
include oscillations in Rxx and RH as a function of the applied magnetic
field, which had been known for many years in three-dimensional systems,
and were studied in two dimensional electron systems during the 1970s.
Nonetheless, the discovery, in 1980, by von Klitzing, Dorda and Pepper,
[9] of what we now know as the Integer Quantized Hall effect, was a very
great surprise. In measurements on a silicon MOSFET, as they varied the
magnetic field, they found a series of plateaus, where the Hall resistance was
absolutely constant over a certain interval of B. In these same field intervals,

http://www.reference-global.com/action/showImage?doi=10.1515/9783110207798.3.237&iName=master.img-001.jpg&w=198&h=115


240 Bertrand Halperin

the longitudinal resistance was found to become vanishingly small at low
temperatures. Most remarkably, the values of RH on the various plateaus
could be fit by a simple formula:

RH = h/νe2, (1)

where h is Planck’s constant, and ν is an integer that varies from one plateau
to the next. (In common units, the quantity h/e2 is equal to 25,812.82
ohms.) Subsequent experiments, in many laboratories, found the same be-
havior in a variety of semiconductor materials, and have confirmed that
the Hall plateaus are quantized in integer ratios within a precision of better
than a part in 107 . It should be emphasized that the observed values of the
quantized Hall plateaus do not depend on the shape of the sample, nor on
other details of the preparation, within broad limits.

Following the discovery of the integer quantized Hall effect, a num-
ber of theoretical arguments were advanced to explain the precision of the
quantization, despite the presence of impurities and irregularities in any
real sample. Among the explanations were elegant arguments using the
concept of gauge invariance or considerations of the topological invariants
of an electron wave function in a magnetic field. [10,11] There were also
arguments based on perturbation theory, including some in the earlier lit-
erature that, in retrospect, had pointed strongly in the right direction. [12]
I will not review these arguments here, but in my discussions below, I will
present a somewhat different approach to understanding the precision of
the quantized Hall plateaus, emphasizing the role of sample edges. [13]

Even more surprising than the integer quantized Hall effect was the
discovery, in 1982, of the fractional quantized Hall effect. [14] In samples
of very high quality, in addition to the integer quantized Hall plateaus, at
sufficientlyhigh magnetic fields, one mayobserve additional plateaus, where
ν is a simple rational fraction. The first fractions seen were at ν = 1/3 and
2/3. Shortly thereafter, with the advent of higher quality samples, stronger
magnetic fields, and lower measurement temperatures, Hall plateaus were
seen (or at least indicative dips in the longitudinal resistance) at a large
number of odd-denominator fractions, including ν = 4/3, 5/3, 1/5, 2/5,
3/5, 3/7, 4/7, 4/9, and 5/9.[1]

Although explanations of the integer quantized Hall plateaus need to
take into account the effects of impurities in a fundamental way, the effects
of electron-electron interactions are generally secondary. Essentially, the
integer quantized Hall effect would be present in a system of non-interacting
electrons, and from a theorists point of view, it is only necessary to show that
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the effect would not spoiled by interactions between electrons, at least if
the interactions are not too strong. The fractional quantized Hall plateaus,
however, could not be even remotely explained in terms of non-interacting
electrons. The role of electron-electron interactions is absolutely essential,
and we now understand that the explanation involves new types of highly
correlated electron states, which had never been previously encountered.

What about even-denominator fractions? Quantized Hall plateaus have
been found corresponding to a few even denominator fractions; e. g., ν =
5/2. However, there is no quantized Hall plateau in a single layer sample
at the simplest even-denominator fraction, ν = 1/2. In the magnetic field
region where the Hall resistance passes through the corresponding value
of 2h/e2, the Hall resistance varies linearly with magnetic field, just as
in the classical Hall effect. The longitudinal resistance varies only slowly
with magnetic field in this region. However, strong anomalies have been
observed in other properties, such as in the propagation velocity of surface
acoustic waves. [15] Thus, there is still something very strange occurring at
the point where the Hall resistance passes through the value corresponding
to ν = 1

2 . I like to call this the “Unquantized Quantum Hall Effect”. The
explanation for the observed behavior is, in fact, a very interesting story,
but, unfortunately, I will not be able to discuss it in this talk. [16, 17]

Conditions for the quantized Hall effect, integer or fractional

In order to have a quantized Hall plateau, the electron system should be in
a state that has several special characteristics. In the 2D bulk, far from the
edges, the system should have an energy gap for creation of mobile charges.
Then, at low temperatures, the charge carriers will freeze out, so the bulk
is essentially an insulator.

The energy gap must vanish along the edges of the sample, so that elec-
trical current can flow along the edges. In fact, the edge of quantized Hall
system is a peculiar type of one-dimensional conductor, referred to as a
“chiral metal”: charge carriers travel in only one direction along each edge.

The electrical current along a chiral edge is determined by the voltage V
on the edge. For a small change in voltage, δV , change in current will be
given by

δI = G δV , (2)

where G is a constant. The value of G determines the quantized Hall
resistance, as we shall shortly see.
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Figure 2: Situation when sample is in a quantized Hall state (integer or fractional). The
bulk of the sample is an insulator, which carries no transport current. Sample edges are
“chiral conductors”, which can carry current in only one direction (indicated by arrows),
proportional to the voltage on the edge. The voltages V1 and V2 are constant on each
edge, and in the case of ideal contacts, are equal to voltage (VC1 or VC2) of the contact
from which the edge current flows.

Figure 2 illustrates the current flow around a quantized Hall strip with
current contacts at the ends. If the two end contacts have the same voltage,
VC 1 = VC 2, then the system will be in equilibrium, with the voltage
everywhere equal to the voltage of the end contacts. In equilibrium, there
should then be no net current I flowing from left to right. In order for this
to be true, if Eq. (2) applies, it must be true that the conductance G is the
same on the top and bottom edges, so I = I1 − I2 = 0. Also, because
electrical charge is a conserved quantity, it follows that if the bulk of the
2D system is an insulator, so there is no scattering of charges between the
edges, then the current on each edge must be a constant, independent of
position along the edge. Hence G must be the same everywhere along the
two edges.

If the two end contacts have different voltages, then the voltages on the
two edges will be different from each other, V1 )= V2, and there will then be
a net current (Hall current) flowing along the sample. Since δI1 = G δV1,
and δI2 = G δV2, we now have:

I = I1 − I2 = G(V1 − V2). (3)

If there is no scattering of charges between the edges, the current on each
edge must still be constant along the edge by charge conservation. Hence
V1 and V2 are constants along each edge. There is no voltage drop along a
given edge. If we attach voltage contacts as in Figure 1, we will find that
Rxx = 0, while RH = 1/G .

In the case of ideal current contacts, the voltage on each edge of the
quantized Hall system will be identical to the voltage of the end contact
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from which the current flows into that edge. For non-ideal contacts, there
may be a small voltage difference between the current contact and the edge,
but the voltage will still be a constant along each edge.

We have seen that if there are no mobile carriers in the bulk of the sample,
then G must be precisely constant along any edge. Therefore,this value must
be independent of any details of the edge or of the sample that could vary from
one place to another. Consequently, one must be able to compute the value
of G in a simple model with ideal edges and with no impurities or disorder.
In fact, the only way that G can be precisely a constant along an edge is if
it is quantized, i. e., it must be restricted to a discrete set of values

We may note that a small concentration of impurities will not affect
the Hall quantization, as it will produce only a small number of localized
electron states in the bulk, which cannot carry current across the sample,
from one edge to the other. The quantized Hall effect will only break down
if concentration of impurities becomes high enough so that the impurity
states overlap strongly and produce a new path for electrons to cross the
sample.

Example: The Integer QHE

Consider non-interacting electrons in uniform magnetic field B in 2D. In
classical mechanics, one finds that electrons move in circles, at a cyclotron
frequency νC , proportional to B. The radius of the circle depends on the
energy of the particle, which is arbitrary, and location of the center of the
circle is also arbitrary, but the cyclotron frequency is fixed. In quantum
mechanics, however, the energy levels for orbital motion are quantized into
discrete levels, known as “Landau levels”, with energies given by

En = h νC (n1/2), n = 0, 1, 2, 3, . . . (3)

(These energy levels are the same as one would have for a simple harmonic
oscillator with frequency νC .) The number of independent orbits in each
Landau level (i. e., the number of independent positions for the centers of
the circles) is also quantized, and is given by

NB = B e A/h, (4)

where A is the area of the sample. (When the electron spin is taken into
account we find that each orbital level is split into two states, whose energies
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differ by the Zeeman energy, arising from the coupling of the spin magnetic
moment to the applied magnetic field.) In any case, we may define a very
important dimensionless parameter, the Landau level filling factor f , by

f ≡ Ne/NB , (5)

where Ne is the number of electrons in the system. The filling factor f
may be alternately described as the number of electrons per quantum of
magnetic flux.

We shall see that the integer QHE occurs, typically, when f is an integer,
and the value of the quantized Hall conductance (1/RH ) is, here, G =
fe2/h.

Landau levels in a strip of finite width

Let us now consider the situation in a strip of large but finite width. Suppose
the electrons are confined by potential walls to a strip, 0 < y < W , by
a potential, which is strongly repulsive at the boundaries but zero in the
middle of the strip. The electron energy levels will then be pushed up by
the effects of the potential when the centers of the orbits get close to the
edge of the strip. The overall situation may be understood with the sketch
in Figure 3, showing the energies of the allowed orbits, versus the position
y at the center of the orbit. (For simplicity, we neglect the electron spin in
this figure.) Far from the edges, the energy levels are given by the values in
Equation [3], and are independent of position. However, for each value of
the Landau level index n, the energy increases in the vicinity of the edges,
eventually rising without limit, if the confining potential is infinitely high.

For non-interacting electrons, in the ground state, at zero temperature,
the energy levels are filled up to an energy EF , known as the Fermi level.
In the figure, we have chosen the Fermi level so that it lies between the
second and third energy level in the bulk. Thus there are precisely two filled
Landau levels in the bulk, so that f = 2, and there is an energy gap in
bulk. At each edge, however, the lowest two Landau levels are pushed up
through the Fermi energy, so there are two conducting states at the Fermi
level, with no energy gap separating the filled and empty levels. It can be
shown that electrons in these edge states travel along the edge, in opposite
directions at the two edges. Each edge state contributes an amount e2/h to
G , so the total Hall conductance is, here, G = 2e2/h.
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Figure 3: Energy levels for (spinless) non-interacting electrons in a magnetic field, confined
to a strip of finite width W . Vertical axis is energy; horizontal axis indicates position y
across the strip. Energy levels are discrete and independent of position far from the edges,
but are pushed upwards in the vicinity of the edge. Electron levels are filled up to the
Fermi energy, EF .

Fractional quantized Hall states

For the fractional quantized Hall effect (FQHE), the Fermi energy in the
bulk is in the middle of a partially filled Landau level. Why should there be
an energy gap in this case? As mentioned in the Introduction, the energy
gap in this case must come entirely from electron-electron interactions.
However, it is highly non-trivial to understand where this might come from.
In normal metals, if electron-electron interactions are not too strong, their
effects can be understood by the well-established mathematical method
known as “perturbation theory”. However, in order to use perturbation
theory, it is necessary to have a unique ground state for the non-interacting
problem to start from, and not too many nearby states with very low total
energy. For the integer quantized Hall effect, this is not a problem because
there is a unique ground state and excited states in the bulk are separated
from it by an energy gap. For a partially filled Landau level, however, there
are a very large number of ways of placing electrons in orbits within the
Landau level, and all these states have identical energies, if the electron-
electron interaction is absent

A big breakthrough in solving this problem was made in 1983 by Laugh-
lin, [18] who proposed a unique ground state for the interacting electron
system at f = 1/3, and several other odd-denominator filling fractions.
Subsequent work, by many authors, have extended Laughlin’s work, and
have introduced alternative theoretical approaches to understand the many

http://www.reference-global.com/action/showImage?doi=10.1515/9783110207798.3.237&iName=master.img-004.jpg&w=203&h=136


246 Bertrand Halperin

filling fractions that have been observed. [1–8] All of these approaches in-
volve rather sophisticated mathematics, and I will not try to explain them
here. However, I would like to emphasize some of the conclusions.

The ground states for fractional quantized Hall systems states are strong-
ly-correlatedmany-body states with verypeculiar properties.One peculiari-
ty is that the elementary charged excitations are quasiparticles with fractional
charge. [18] For example, the FQHE state at ν = 1/3 has quasiparticles
with charge= ±e/3; the FQHE state at ν = 2/5 has quasiparticles with
charge = ±e/5; etc. This means that an electron added to the bulk of an
FQHE state at f = 1/3 can lower its energy by breaking up into three
quasiparticles of charge e/3. The e/3 charges are achieved by small dis-
placements of the surrounding electrons in the FQHE state, moving a net
charge of 2/3 away from the immediate vicinity of the added electron and
depositing this charge in two nearby places, with 1/3 net charge in each.

Quasiparticles in odd-denominator FQHE states also exhibit a phe-
nomenon known as fractional statistics [19,20]. This means that the quan-
tum properties are, in some sense, intermediate between the properties of
the two types of particles that occur in normal three dimensional systems,
fermions and bosons, (Fermions are particles such as electrons, protons, and
neutrons, which obey the Pauli exclusion principle in filling their energy lev-
els, while bosons do not.) However, as was first pointed out by Leinaas and
Myrheim in 1977 [21], the mathematical structure of quantum mechanics
in two-dimensions does not by itself rule out the possibility of other types
of particles. In particular, one could have particles with fractional statistics,
the quantum mechanical wave function may be multiplied by a complex
phase factor when two identical quasiparticles are interchanged, whereas
for fermions or bosons, the wave function can only be multiplied by ±1.

It was not clear, however, whether such strange particles would ever oc-
cur in nature, where they would have to be constructed, somehow, out of
ordinary electrons and nuclei, which are fermions or bosons. An analysis
of the consequences of Laughlin’s wave functions for the ground state and
quasiparticles in the f = 1/3 state, and related wave functions for other
fractional states, showed that, remarkably, the quasiparticles were realiza-
tions of the fractional statistics concept. [19,20]

Fractional statistics have consequences that are important, indirectly, for
understanding the construction of higher level fractional quantized Hall
states, i. e., states at fractions that cannot be described directly by Laugh-
lin’s original construction. [19] However, it is more difficult to see effects
of fractional statistics directly, particularly in systems with just a few quasi-
particles present. One place where fractional statistics should be directly
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manifest are in “quantum interference”experiments. [22] Such experiments
can be carried out, at least in principle, by constructing a quantized Hall
system with several constrictions that are narrow enough for electrons or
quasiparticles to tunnel across the constrictions, from one chiral edge to
the other. Tunneling of this type leads to breakdown of the quantized Hall
plateaus, giving a deviation from the quantized Hall resistance, and non-
zero values of the longitudinal resistance Rxx . If two constrictions are close
together, the value of the measured resistance may exhibit small oscillations
as a function of the value of the magnetic field or of the total charge en-
closed in the area between the two constrictions, which can be interpreted
as a form of quantum interference between portions of the wave function
that tunnel through the different constrictions. If there are quasiparticles
with fractional statistics enclosed in this area, the extra phase factors arising
from the fractional statistics will lead to changes in the pattern of resistance
oscillations, which should be observable in experiments. [22]

Very recently seen, such effects have been seen, for ν = 1/3, in ex-
periments by V. Goldman and collaborators. [23] However, there remain
many other experiments in similar geometries, with several constrictions,
that are still poorly understood. Real systems are indeed complicated, and
it is known that in some cases at least, competing tunneling processes may
give effects that mask the simple interference effect one is looking for, and
can change the period of observed resistance oscillations, even for integer
quantized Hall systems. [24] This entire area remains one of active current
research.

Even-denominator FQHE at ν = 5/2

In the model proposedby Mooreand Read, in 1990, for the even-denomin-
ator fractional quantized Hall state at ν = 5/2, the quasiparticles are even
more peculiar than in the common odd-denominator FQHE states. [25]
In their model, the quasiparticles have charge±e/4 and obey non-abelian
statistics. This means that when multiple quasiparticles are present, there
are many independent wave functions that can describe the ground state
of the system. If multiple quasiparticles are interchanged, the final wave
function can be quite different from the wavefunction one started with
(not just multiplied by a phase factor) and the state depends on the order in
which the quasiparticles are interchanged. Although there are a number of
theoretical arguments and numerical calculations that give support to the
Moore-Read proposal, there is, so far, no direct experimental evidence that it
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is a correct model for the 5/2 state. Recent improvements in sample quality
and in experimental techniques give hope, however, that this question may
be resolved in the near future. Among the proposed experiments to look
for non-abelian statistics are interference experiments, which should have
a distinctive signature if the hypothesis is correct. [26]

Interest in non-abelian statistics has been given a boost in recent years by
the proposal that such quasiparticles could be used for building a “quantum
computer” [26], which could be used to solve certain types of numerical
problems that would be impractical for any conventional digital computer.
However, we are still a long way from realizing any type of quantum com-
puter, and it is far from clear whether a computer using fractional statistics
quasiparticles will ever be feasible in practice.

Other peculiar phenomena in quantum Hall systems

I should like to close by mentioning, at least briefly, a few of the other
remarkable phenomena that have been observed in quantum Hall systems,
beyond the integer and fractional quantized Hall effects, and the unquan-
tized quantum Hall effect mentioned above.

So far, we have ignored the spin degree of freedom for the electrons.
This is generally correct for even-integer quantized Hall states, and for
odd-integer Quantum Hall States, this is also correct if the electrons in the
highest occupied Landau level are completely spin-aligned by the applied
magnetic field. For fractional quantized Hall states, it is also correct to
ignore the spin degreeof freedomif the electrons in the partially full Landau
level are maximally spin-polarized. However there are situations where this
is not correct. In the case of electrons in GaAs structures, the effective
magnetic moment of the electron is particularly small, about five times
smaller than the moment of free electrons, so the Zeeman energy, which
favors alignment of the electron spins, can be quite small. Effects of the
electron-electron interaction may favor or disfavor alignment of the electron
spins, depending on the filling factor f . In some cases, interaction effects
may be strong enough to favor ground states or quasiparticle states where
the electron spins are not fully aligned [27]. Experimentally, in some cases
one has observed phase transitions between fractional quantized Hall states
where the spin is fully aligned and states where it is not, as one varies an
experimental parameter, such as electron density or a component of applied
magnetic field parallel to the plane of the sample. [28–30] Such transitions
lead to anomalies in the electrical resistance, which have been studied with
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great interest. Deviations from perfect spin alignment due to quasiparticles
with multiple reversed spins can also produce dramatic effects at filling
fractions close to, but slightly away from, the integer quantized Hall state
at f = 1. [31]

Electron spins couple to the nuclear spins of Ga and as nuclei via the hy-
perfine interaction. Flowing an electric current thorough an elctron system
with inhomogeneous electron spin polarization can lead to non-equilibrium
polarization of the nuclei, which can feed back in turn to the electron sys-
tem and cause changes in the electrical resistance. Changes in the state of
electron polarization can also produce big changes in the relaxation rate for
nuclear spins. These effects have been studied in a number of quantized
Hall systems, where they can produce quite dramatic effects. [32]

Systems composed of two closely spaced electron layers, separated by
a thin barrier, can also lead to a number of unique phenomena in the
quantum Hall regime. Modern technology has allowed experimenters to
attach separate leads to the layers, giving separate control over the current
flow and separate measurements of the voltage drops in the two layers.
[33] A fascinating variety of phases can exist in bilayer systems. [34] As one
example, in the regime where the total filling factor in the combined layers is
one electron per flux quantum (f = 1), if the layers are sufficiently close and
the electron density is sufficiently small, the Coulomb interaction between
electrons in different layers may be comparable to the interaction between
neighboring electrons in a single layer. In this case, one has observed a highly
correlated phase where the combined system behaves like a quantized Hall
conductor for current that moves in the same direction in the two layers,
but is more like a superconductor, with neither longitudinal resistance nor
Hall resistance, when the current flow is equal and opposite in the two
layers. [33] If there is a current flow in one layer and not the other, one
observes a quantized Hall voltage which is the same in the layer without
current as it is in the layer with current. (This has been called quantized
Hall drag.)

There are a variety of experiments in which one can cause an electron to
tunnel between two closely spaced layers, [35] or to tunnel from a three-
dimensional electron system into the center [36] or into the edge of a
two-dimensional system. [37] In the quantum Hall regime, one encoun-
ters a variety of complex behaviors, where the tunneling current depends
in a non-linear fashion on the voltage applied. [38] This behavior has been
much studied, but is only partially understood in real experimental sys-
tems. Other experiments, which study deviations from the quantized Hall
conductance due to tunneling of quasiparticles across a narrow constric-
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tion (referred to earlier) also show non-linear dependences on the applied
voltage, which have been much studied and are only partially understood.
[39] Experiments that measure shot noise in this tunneling regime have led
to a direct measure of the fractional charge of quasiparticles, but are also
only partially understood. [40]
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