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Abstract 

Urinary 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodGuo) is a widely measured biomarker of 

oxidative stress.  It has been commonly assumed to be a product of DNA repair, and therefore 

reflective of DNA oxidation.  However, the source of urinary 8-oxodGuo is not understood, 

although potential confounding contributions from cell turnover and diet have been ruled out.  

Clearly it is critical to understand the precise biological origins of this important biomarker, so 

that the target molecule that is oxidised can be identified, and the significance of its excretion 

can be interpreted fully. 

 In the present study we aimed to assess the contributions of nucleotide excision repair 

(NER), by both the global genome NER (GG-NER) and transcription-coupled NER (TC-NER) 

pathways, and sanitisation of the dGTP pool (e.g. via the activity of the MTH1 protein), on the 

production of 8-oxodGuo, using selected genetically-modified mice.  In xeroderma pigmentosum 

A (XPA) mice, in which GG-NER and TC-NER are both defective, the urinary 8-oxodGuo data were 

unequivocal in ruling out a contribution from NER.  In line with the XPA data, the production of 

urinary 8-oxodGuo was not affected in the xeroderma pigmentosum C mice, specifically excluding 

a role of the GG-NER pathway.  The bulk of the literature supports the mechanism that the NER 

proteins are responsible for removing damage to the transcribed strand of DNA via TC-NER, and 

on this basis we also examined Cockayne Syndrome mice, which have a functional loss of TC-NER.  

These mice showed no difference in urinary 8-oxodGuo excretion, compared to wild type, 

demonstrating that TC-NER does not contribute to urinary 8-oxodGuo levels.  These findings call 

into question whether genomic DNA is the primary source of urinary 8-oxodGuo, which would 

largely exclude it as a biomarker of DNA oxidation.  The urinary 8-oxodGuo levels from the MTH1 
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mice (both knock-out and hMTH1-Tg) were not significantly different to the wild-type mice.  We 

suggest that these findings are due to redundancy in the process, and that other enzymes 

substitute for the lack of MTH1, however the present study cannot determine whether or not 

the 2’-deoxyribonucleotide pool is the source of urinary 8-oxodGuo.  On the basis of the above, 

urinary 8-oxodGuo is most accurately defined as a non-invasive biomarker of oxidative stress, 

derived from oxidatively generated damage to 2’-deoxyguanosine. 

 

 
Keywords:  oxidative stress; urine; 8-oxo-7,8-dihydro-2’-deoxyguanosine; nucleotide excision 

repair; transcription-coupled repair; MTH1. 
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Introduction 

The non-invasive assessment of oxidative stress, using nucleic acid-, lipid- and protein-derived 

biomarkers, has a potential use in studying many major diseases, including cancer, cardiovascular 

disease, neurodegenerative disease and chronic inflammatory disease [1].  In particular, excreted 

biomarkers of nucleic acid oxidation may have prognostic use in some conditions, such as 

radiosensitivity [2], mortality in Type 2 diabetes [3], and survival following radiotherapy [4].  The 

nucleobase oxidation product 8-oxo-7,8-dihydroguanine (8-oxoGua) is of particular interest and 

importance, largely because of its biological significance, for example as a replicative and 

transcriptional mutagenic lesion [5], its modulation of gene expression via affecting transcription 

factor binding, and DNA methylation; and acceleration of telomere shortening (reviewed in [1]).  

Furthermore, 8-oxoGua is relatively easy to detect using widely available analytical methodology.  

Different structural forms of this lesion, consisting of the nucleobase itself (8-oxoGua), the 

ribonucleoside (8-oxoGuo) and the 2’-deoxyribonucleoside (8-oxodGuo), have been detected in 

the urine of healthy subjects and patients with various pathologies, but predominantly as 8-

oxodGuo, rather than 8-oxoGua.  The preference to measure 8-oxodGuo derives from an early 

study which suggested that urinary 8-oxoGua levels are significantly influenced by diet, whereas 

8-oxodGuo levels are not [6], hence the latter became the more favoured urinary biomarker of 

DNA oxidation, coupled with its relative ease of measurement (via electrochemical detection), 

and its apparent stability against further oxidation, compared to 8-oxoGua [7, 8].  However, more 

recent evidence refutes diet as a confounding source of urinary 8-oxoGua in mice [9] and humans 

[10, 11].  It is widely assumed that 8-oxodGuo is derived from the repair of DNA, and is hence a 

biomarker of DNA oxidation.  In fact, the biological origin of urinary 8-oxodGuo is not known, 
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limiting our interpretation and understanding of differences and changes in the excretion of this 

biomarker. 

Several repair processes prevent the persistence of 8-oxoGua in the genome, either by 

acting on DNA directly, or by sanitisation of the dGTP pools (nuclear and mitochondrial).  Those 

acting on DNA include base excision repair (BER), nucleotide excision repair (NER), mismatch 

repair (MMR), nucleotide incision repair (NIR), and proof-reading by DNA polymerases.  To 

sanitise the dGTP pools, Nudix hydrolases catalyse the hydrolysis of 8-oxo-7,8-dihydro-2’-

deoxyguanosine triphosphate (8-oxodGTP), which is a potentially mutagenic DNA polymerase 

substrate, to 8-oxo-7,8-dihydro-2’-deoxyguanosine monophosphate [7, 12].  The latter is not a 

substrate for re-phosphorylation, and will not be misincorporated.  The activity of BER, 

predominantly via 8-oxoguanine DNA glycosylase (OGG1), is the primary repair process for 

removing genomic 8-oxoGua and contributes to urinary 8-oxoGua levels.  In contrast, the origins 

of urinary 8-oxodGuo remain unclear although, as described above, significant progress has been 

made to exclude contribution from diet [9, 11].  We also cited evidence to argue against cell 

turnover contributing to urinary lesion levels [11].  Critically, the relative importance of DNA 

repair pathways in generating free 8-oxodGuo is largely unknown, despite over 25 years of its 

measurement.   

Of all the repair pathways acting on DNA, NER [with the corresponding transcription-

coupled NER (TC-NER) and global genome NER (GG-NER) pathways] has the potential to generate 

8-oxodGuo, from repair-derived, 8-oxoGua-containing oligonucleotides.  Subsequent 

degradation of these lesion-containing oligonucleotides will release free 8-oxodGuo, in a manner 

analogous to the processing of cyclobutane thymine dimer-containing oligonucleotide repair 



7 
 

products [13-15].  Indeed, there is considerable evidence to support a role for NER (and some 

evidence for TC-NER [16-18]), and NER-initiating proteins in the repair of 8-oxodGuo, in various 

species [19-22].  We have proposed previously that Nudix hydrolases, via degradation of 8-

oxodGTP, or 8-oxodGDP, to 8-oxodGMP, and subsequent de-phosphorylation, are an alternate 

source of extracellular 8-oxodGuo [12].  Indeed, there is some evidence in the literature to 

support our hypothesis, and to indicate that dGTP in the nucleotide pools is an important target 

for oxidants.  For example, knock-down of MTH1 (a.k.a. NUDT1) decreases 8-oxodGuo excretion 

in response to ionising radiation [23] and exogenous expression of MTH1 increases baseline 

excretion of 8-oxodGuo [24].  Thus the nucleotide pool, and its attendant sanitising activities, 

would appear to be a credible process for producing urinary 8-oxodGuo [7].   

Clearly, determining the exact ‘DNA’ repair origins of this widely measured urinary nucleic 

acid oxidation product is critical to enable full interpretation of its measurement, and understand 

which target molecule is being oxidised.  In the present study we have assessed directly the whole 

body contributions of NER (TC-NER and GG-NER) and MTH1 activity on the genomic DNA levels 

of 8-oxodGuo, and the production of urinary 8-oxodGuo, in selected genetically-modified mice.  

The data rule out the contribution of NER, which includes TC-NER and GG-NER, to the levels of 

urinary 8-oxodGuo.   
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Materials & Methods 

XPA, XPC knock-out and CSB mutant mice. 

XPA, XPC knock-out and CSB mutant mice (C57Bl/6J background) mice were housed in 

conventional cages with a 12∶12-h light-dark cycle and had free access to food and water.  All 

animal experiments were approved by the institutional ethics committee on animal care and 

experimentation at Leiden University Medical Center.  Animals were bred at Leiden University 

Medical Centre using the methodology described in van Oosten et al. [25].  The CSB animals 

produce a small truncated protein, devoid of biological function, analogous to the common CSB 

defect in humans, resulting in a loss of functional TC-NER; the XPA and XPC animals lack their 

corresponding genes.  XPA mice are deficient in both GGR and TC-NER, and XPC mice are deficient 

in GGR only. Urine samples were collected using a similar protocol to that reported for the MTH1 

mice (below).  At the end of the experiment all surviving animals were culled and organs removed 

and frozen as described for MTH1 knock-out mice. 

 

MTH1 knock-out mice 

Three male MTH1+/- mice (backcrossed to a C57BL/6J background for 21 generations; 

from Division of Neurofunctional Genomics, Kyushu University, Fukuoka, Japan), were mated at 

the Institute of Cancer Research with female C57BL/6J mice and the offspring genotyped (from 

tail DNA) as described by Sakumi et al. [26]. Mice thus identified as MTH1+/- were mated and their 

offspring, which included wild-type, MTH1 +/- and MTH -/- mice, were identified by genotyping.  At 

approximately 16 weeks of age the mice were housed individually for 24 h once every four weeks 
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in metabolism cages, and their urine collected and frozen prior to analysis.  The mice sampled 

were as follows: three male and three female C57BL/6J (wild-type); 3 male and 2 female MTH1+/- 

mice; 3 male and 2 female MTH1-/- mice.  Twenty-four-hour urine samples were collected a total 

of 13 times (over 48 weeks) except for two mice that were culled before the end of the 

experiment (one male wild-type and one female wild-type) due to poor condition.  At the end of 

the experiment all surviving animals were culled and selected organs (brain, heart, kidneys, liver, 

and lungs) removed and snap frozen in liquid nitrogen.  All animal experiments were reviewed 

and approved by the local ethical committee, and licensed by the UK Home Office. 

 

Human MTH1 transgenic mice 

A more limited set of urine samples were obtained from human MTH1 transgenic 

(hMTH1-Tg) mice (bred and housed at Istituto Superiore di Sanità) comprising 24 h urine samples 

from at least six animals pooled according to genotype [wild type mice and hMTH1-Tg mice [27] 

and collected at 3, 12 and 24 months of age. 

 

Analysis of urinary 8-oxodGuo, 8-oxoGua and creatinine. 

The urinary 8-oxodGuo concentrations were assessed in all the MTH1 animals at each 

time point, subject to the availability of sufficient volumes of urine.  Urine production over 24 h 

during months 7-13 in these animals was consistently lower than for months 1-6, resulting in 

much less urine available for chromatographic analysis, requiring pooling of the urine samples 
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based on genotype.  Urinary 8-oxodGuo and 8-oxoGua were determined in all MTH1 knock-out 

mouse urines using GC-MS following HPLC pre- purification [10].  

Urinary creatinine concentrations were determined by HPLC-UV detection according to 

the method of Yang (1998) [28].  Briefly, prior to the chromatographic separation and analysis, 

urine samples were thawed and diluted 1:10 in distilled water.  After centrifugation at 2000 x g 

for 10 min, a 10 μL aliquot was injected onto the HPLC system.  The mobile phase consisted of 

0.02 mol/L KH2PO4 adjusted to pH 6.5 with sodium hydroxide, in 2% (v/v) methanol.  The solution 

was filtered through a 0.22 μm membrane before use.  Chromatographic analysis was performed 

on a Phenomenex Luna C18 column (250 x 4.6 mm, 5 µm) with flow rate 1 mL/min, using a 

gradient elution reaching 50 % methanol, with a total separation time of 15 min per sample.  The 

eluent was monitored for UV absorbance at 236 nm.  Creatinine quantification was based on a 

four point calibration curve. 

 Urinary 8-oxoGua was assessed in the GG-NER/TC-NER deficient mice (CSB, XPA and XPC) 

in the first and last urine collections for each animal, using the above HPLC pre-purification GC-

MS technique.  Urinary 8-oxodGuo was assessed in the CSB, XPA and XPC animals at all timepoints 

using a recently reported UPLC-MS/MS method, with sample clean-up by solid-phase extraction 

[29].  Correction of 8-oxodGuo values for urine concentration was, in this instance, performed by 

specific gravity (SG) determination using a hand-held refractometer (Reichert Technologies, 

Depew, NY); since undiluted urine samples gave SG determinations outside the specifications of 

the instrument, urine samples were diluted 2-, 4- and 8-fold with water and the SG of the 

undiluted urine determined by extrapolation on the y-axis of a plot of SG versus urine dilution.  

Correction of urinary 8-oxodGuo concentration was achieved using the following formula [30]: 
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8-oxodGuoc = 8-oxodGuo[(pSG-1)/(sSG-1)] 

Where:  8-oxodGuoc = corrected 8-oxodGuo concentration in pmol/mL; 8-oxodGuo = 

uncorrected 8-oxodGuo concentration; pSG = population specific gravity (mean SG for a 

particular genotype over the entire collection period); sSG = individual sample specific gravity.  

 

Genomic 8-oxodGuo analysis 

Snap-frozen brain, heart, lungs, liver and kidneys were stored at -80 °C until DNA extraction. 

These were processed for 8-oxodGuo determination in all of the MTH1 knock-out mice and a 

selection of the XPA, XPC and CSB animals. 

Extraction of DNA from 90-150 mg of homogenised tissue (outer layer removed with a 

scalpel; homogenised in a hand-held homogeniser) was performed according to a protocol 

recommended by the European Standard Committee on Oxidative DNA Damage (ESCODD) 

designed to minimise adventitious formation of 8-oxodGuo [31].  Extracted DNA was dissolved in 

nuclease-free water overnight at room temperature on a rotating mixer, then quantified by a 

Nanodrop 1000 device (ThermoFisher Scientific, Loughborough, UK).  A volume equivalent to 50 

µg DNA was dried in a SpeedVac, reconstituted in DNA digestion buffer, enzymatically digested 

and analysed by HPLC-MS/MS according to the protocol reported by Singh et al. [32].  Heart 

tissues consistently yielded low amounts of DNA and were not analysed further. 
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Statistical analysis 

Data were plotted and analysed (ANOVA) using GraphPad Prism, v.6.02 (GraphPad 

Software Inc., La Jolla, CA). 
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Results 

Urinary 8-oxodGuo and 8-oxoGua concentrations in repair-deficient and wild-type mice 

The urinary 8-oxodGuo and 8-oxoGua concentrations (9.93 +/- 1.2 and 497.0 +/- 68.0 

nmol/mmol creatinine, respectively) in wild type mice were comparable with those reported 

elsewhere in the scientific literature and, importantly, creatinine, and specific gravity values did 

not vary significantly within each genotype over the collection period.  As reported elsewhere 

[33], urinary 8-oxoGua values were significantly greater than urinary 8-oxodGuo values. 

 

XPA, XPC knock-out and CSB mice 

No statistical differences were seen between the concentrations of 8-oxodGuo, corrected 

for specific gravity, month-by-month, between any of the genotypes, although there was some 

evidence of a general upward trend with time (Fig. 1 A-D).  For the CSB mice, in particular, and 

also the XPA mice, this trend became more pronounced from month seven, becoming statistically 

significant (p < 0.05) at month ten (Fig. 1B and C).  Urinary 8-oxoGua concentrations, corrected 

for creatinine, were also determined in the first and last urine collections (ages one and ten 

months) for the CSB, XPC and XPA mice, but were not statistically different between each mutant 

genotype and the corresponding wild-type animals (Supplemental Data Table 1).   
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MTH1+/+, MTH1+/-, MTH1-/- and hMTH1-Tg mice 

No statistical differences were seen in the 8-oxodGuo concentrations between the three 

genotypes over months one to six, for which urinary 8-oxodGuo values were derived from 

individual animals.  This trend continued for the remainder of the samples, where analysis of 

samples pooled by genotype was performed (Fig. 2A).  Again, there were no statistically 

significant differences between mice of different genotypes.  A similar trend was also seen for 8-

oxoGua excretion, with no statistical changes (Fig. 2B).  In a sub-study (n=6 mice/group), we also 

observed no effect on 8-oxodGuo excretion in the hMTH1-Tg mice, compared to wild type (Fig. 

2C).  We did note a ~66% decrease in urinary 8-oxodGuo between 12 and 24 months, in both 

genotypes. 

 

Genomic 8-oxodGuo levels in repair-deficient mice 

Our aim was to examine whether deficiencies in specific repair pathways led to alterations 

in genomic levels of 8-oxodGuo (expressed as a ratio between the number of 8-oxodGuo per 106 

dGuo) in a number of key tissues. 

 

XPA, XPC knock-out and CSB mutant mice 

No statistically significant differences were noted between genomic levels of 8-oxodGuo 

in liver, kidney, brain and lung between any of the genotypes, including wild-type, or indeed 
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between the different tissue types (Fig. 3).  The yield of DNA from extractions of heart was too 

low to allow reliable determination of 8-oxodGuo. 

 

MTH1+/+, MTH1+/-, MTH1-/- and hMTH1-Tg mice 

Levels of genomic 8-oxodGuo were higher for kidney tissue compared to brain tissue for 

all genotypes, in contrast to the findings for XPA, XPC and CSB mice.  We noted no relationship 

between genotype and relative level of lesion.  For example, MTH1-/- mice did not have 

significantly more 8-oxodGuo in kidney or brain DNA compared to MTH1+/+ mice (data not 

shown).  The low levels of DNA recovery from other tissues precluded reliable and consistent 

measurement of 8-oxodGuo.   
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Discussion 

Measurement of urinary 8-oxodGuo has received extensive study with a literature 

database comprising of over 925 articles across a period of 28 years, in which it is commonly 

referred to as biomarker of oxidatively generated damage to DNA, and released via the action of 

DNA repair.  In fact, the exact origins of this lesion continue to remain obscure, although we have 

shown that contributions from diet and cell turnover are negligible.  This is the first report of DNA 

and urinary 8-oxodGuo and 8-oxoGua measurements in, and comparisons between, XPA, XPC, 

CSB, MTH1-/-, MTH1+/-, MTH1 knock-in and MTH+/+ (wild-type) mice; and their use to examine the 

relative importance of rationally selected DNA repair pathways in the production of urinary 8-

oxodGuo.  [7].  In order to ensure our findings are robust, it is important to consider them in the 

context of the adequacy of the knockout/transgenic models we have chosen, as such genetic 

manipulation of mice has reported limitations [34, 35].  Reassuringly, knockout of the CSB, XPC 

or XPA genes confers no consequences for the mice during development unlike, for example, the 

ERCC1 knockout mouse, which has a severe aging phenotype.  The same is true for the hMTH1-

Tg mice over the period of time for which we studied the mice.  However, it should be noted that, 

as all the mice are viable, it is plausible that alternative repair pathways are selected for, that are 

secondary, or back-up processes in wild type mice. 

In the present study, deficiencies in NER [XPA mice (no TC-NER or GG-NER); XPC mice (no 

GG-NER)] and TC-NER (CSB mice) did not alter the excretion of either 8-oxodGuo, or 8-oxoGua, 

ruling out these processes as sources of urinary 8-oxodGuo and 8-oxoGua.  This refutes earlier 

evidence that 8-oxoGua can be a substrate for NER in humans [20, 22], at least in the context of 
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fully competent BER, where OGG1 activity is primarily responsible for removing genomic 8-

oxoGua [36-39].  Other processes acting on DNA, such as MMR, NIR and exonuclease activities of 

DNA polymerases, may be a source of urinary 8-oxodGuo, although the likelihood is low and 

perhaps only relevant to 8-oxoGua in relatively infrequently occurring genomic contexts or under 

certain cellular conditions.  The levels of genomic 8-oxodGuo measured in our study in the various 

tissues of XPA, XPC and CSB mice are comparable with levels observed in other published studies 

and notably not significantly different from wild type tissues or cells, where differences only 

become apparent after oxidant exposure [40, 41].  This further supports our conclusion that not 

only does NER not contribute to urinary 8-oxodGuo levels, but also 8-oxoGua is not a major 

substrate for this pathway.   

The situation for TC-NER is less well defined, not least because the TC-NER of non-bulky, 

oxidatively modified nucleobases is somewhat controversial.  The blocking of transcription 

elongation by RNA polymerase (RNAP) is the trigger for TC-NER and our data, coupled with 

evidence that RNA polymerases may bypass 8-oxoGua [42-44], would appear to strengthen the 

proposal that 8-oxoGua is not a substrate for TC-NER.  However, a recently proposed model 

suggests inter-play between BER and NER.  Specifically, that OGG1 is initially responsible for the 

removal of 8-oxoGua, and it is the resulting abasic site which, when encountered by RNAP, causes 

stalling and recruitment of transcription factors [16].  The rest of the repair process is performed 

by NER.  In this model, a defective TC-NER would have no effect on 8-oxoGua removal, as BER is 

still effective, and the lesion excreted would be the nucleobase 8-oxoGua.  Taken together these 

data further support the importance of OGG1 in removing genomic 8-oxoGua.  Indeed studies in 

OGG1 knock-out mice show a significant (26%) decrease in urinary 8-oxoGua excretion compared 
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to wild-type animals [33].  However even in these animals excretion is not completely abrogated, 

perhaps reflecting the adaptation of cells to the loss of a single repair pathway, particularly when 

this deficit is imposed from conception, and for which numerous back-up pathways have been 

identified [45].  Our genomic 8-oxodGuo levels also show that defects in the downstream 

pathways of TC-NER do not affect global genome levels of 8-oxodGuo, adding weight to the above 

model [16]. 

The Nudix hydrolase activities of MTH1 (NUDT1) and MTH2 (NUDT15), acting on 8-

oxodGTP, and MTH3 (NUDT18) acting on 8-oxodGDP, produce 8-oxodGMP.  Subsequent 

degradation of 8-oxodGMP, by 3’(5’)-nucleotidase(s), would generate 8-oxodGuo [7, 46, 47].  

Based upon the literature, and our above findings, these activities appear to be candidate sources 

of urinary 8-oxodGuo (in the absence of any other identified enzyme activities that yield 8-

oxodGuo as a product).  In the present study, loss of both copies of the MTH1 gene did not alter 

the excretion of 8-oxodGuo, compared to wild-type mice, suggesting that MTH1 is unimportant 

in producing urinary 8-oxodGuo.  However MTH2, albeit with decreased activity towards 8-

oxodGTP, could act as a ‘backup’ for MTH1 [46, 48, 49], although its role as a physiologically 

relevant 8-oxodTPase has recently been questioned [50], particularly in animals that have 

developed from conception in the absence of MTH1.  Furthermore, a contribution from MTH3 

activity to urinary 8-oxodGuo production cannot be ruled out.  The concept of redundancy in 

DNA repair pathways is well established (reviewed by Evans et al [45]).  The possibility also exists 

that other, as yet undescribed, 8-oxodGTPase activities may be present in cells that could 

substitute for MTH1.  Indeed, some residual 8-oxodGTPase activity was noted in the crude liver 

extract from MTH1-/- mice [51].  The significantly diminished excretion of 8-oxodGuo into cell 
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culture supernatant, following ionising radiation challenge, using cells where MTH1 expression is 

knocked down [52] or significantly increased excretion of 8-oxodGuo from cells where MTH1 is 

overexpressed [53], support our proposal that Nudix hydrolases are a primary source of urinary 

8-oxodGuo.  Our hMTH1-Tg mice did not show any increased 8-oxodGuo excretion because, 

under baseline conditions, the amount of damage in the pool is the limiting factor for how much 

8-oxodGuo is excreted, not the amount of enzyme. 

We conclude that neither GG-NER nor TC-NER activities contribute to the production of 

urinary 8-oxodGuo, on this basis, it may be difficult to confidently define urinary 8-oxodGuo as a 

biomarker of genomic DNA oxidation.  Furthermore, the current findings show that genomic 8-

oxoGua is not a prominent substrate for GG-NER or TC-NER.  From the present study, it cannot 

be determined whether or not the 2’-deoxyribonucleotide pool is the source of urinary 8-

oxodGuo, although it remains a most plausible source, under physiological conditions.  Therefore 

urinary 8-oxodGuo is most accurately described as a non-invasive biomarker of oxidative stress, 

derived from oxidatively generated damage to 2’-deoxyguanosine. 
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Figure Legends 

Figure 1.  Urinary excretion of 8-oxodGuo in (A) wild-type, (B) CSB (TC-NER deficient), (C) XPA 

(GG-NER, and TC-NER deficient), and (D) XPC (GG-NER deficient) mice.  Bars represent the mean 

(± SEM) for monthly levels of urinary 8-oxodGuo, corrected for specific gravity.  In the case of (B) 

CSB, * indicates significantly different (p<0.05) compared to months 1 to 6; and in the case of (C) 

XPA, * indicates significantly different (p<0.05) compared to month 1.   

 

Figure 2.  (A) Urinary excretion of 8-oxodGuo in MTH1+/+ (x), MTH1+/- () and MTH1-/- (▲) mice.  

Mean monthly levels of urinary 8-oxodGuo, corrected for creatinine.  Months 1-6, mean (± SEM) 

for n = 5 or 6 animals; months 7-13 represent urines pooled by genotype prior to analysis, due to 

small excretion volumes.  (B) Urinary excretion of 8-oxoGua in MTH1+/+ (X), MTH1+/- () and 

MTH1-/- (▲) mice.  Mean monthly levels of urinary 8-oxoGua, corrected for creatinine. Months 

1-6, mean (± SEM) for n = 5 or 6 animals, however months 7-13 represent urines pooled by 

genotype prior to analysis, due to small collection volumes.  (C) Urinary excretion of 8-oxodGuo 

in hMTH1-Tg and wild type mice.  Bars represent the mean levels of urinary 8-oxodGuo, corrected 

for specific gravity, at 12 and 24 months of age.   

 

Figure 3.  Genomic levels of 8-oxodGuo in the (A) Kidney; (B) Liver; (C) Brain; and (D) Lung tissues 

of wild-type (WT), CSB, XPC and XPA mice.  Bars represent the mean level of genomic 8-

oxodGuo/106 dGuo (± SEM), for tissue samples from between four and six animals per group, at 

age 13 months. 
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Supplemental data  

 

SD Table 1.  Urinary excretion of 8-oxoGua in wild-type, CSB (TC-NER deficient), XPA (GG-NER and TC-NER deficient) and XPC (GG-NER 

deficient) mice (n = 4 - 6 mice in each group). 

Genotype Wild type CSB XPA XPC 

Sampling timepoint 1 month 10 months 1 month 10 months 1 month 10 month 1 month 10 month 

Urinary 8-oxoGua 
(nmol/mmol 
creatinine), mean 
(+/- SD) 

497 (68) 344 (86) 413 (92) 324 (84) 415 (97) 288 (71) 692 (332) (242) 40 
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