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ABSTRACT OF THE THESIS  

THE STABILITY OF URANIUM-BEARING PRECIPITATES CREATED AS A 

RESULT OF AMMONIA GAS INJECTIONS IN THE HANFORD SITE VADOSE 

ZONE 

by  

Alberto Javier Abarca Betancourt 

Florida International University, 2017  

Miami, Florida  

Professor Shonali Laha, Major Professor  

Uranium (U) is a crucial contaminant in the Hanford Site.  Remediation techniques to 

prevent contaminant migration of U located in the soils to other important water resources 

such as the Columbia River are of paramount importance. Given the location of the 

contaminant in the deep vadose zone, sequestration of U caused by ammonia (NH3) gas 

injections appears to be a feasible method to decrease U mobility in the contaminated 

subsurface via pH manipulation, ultimately converting aqueous U mobile phases to lower 

solubility precipitates that are stable in the natural environment. This study evaluated the 

stability of those U-bearing precipitates via preparation of artificial precipitates mimicking 

those that would be created after NH3 gas injections and sequential extractions experiment. 

Results showed that most of the U was recovered with the extracting solutions targeted to 

remove uranyl silicates and hard-to-extract U phases, suggesting that U present in the solid 

particles has strong bonds to the vadose zone sediments, causing the precipitates to be 

stable and therefore the remediation technology to be effective under the simulated 

conditions. 
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I. INTRODUCTION 
 

Past nuclear weapons production and other defense related activities led to improper waste 

disposal and storage practices causing serious environmental contamination at Department 

of Energy (DOE) sites throughout the United States.  Uranium (U) is the key element of 

the nuclear fuel cycle; during fission, major U isotopes are formed: 235U being the fissile 

isotope, 238U being a reactant for the formation of 239Pu, and others. Uranium was used in 

massive quantities during production years at the DOE Hanford site as follows: uranium 

fuels were assembled in the 300 Area, irradiated by eight nuclear reactors in the 100 Area 

and reprocessed to recover U and produce plutonium in the 200 area (Zachara et al., 2007). 

Furthermore, approximately 200,000 kg of U were discharged to the ground in the Hanford 

200 and 300 areas as part of the previous and other associated waste disposal activities as 

well as accidental spills (Corbin et al., 2006). 

A significant residual mass of uranium still resides in the deep vadose zone (VZ) where 

oxidizing, carbonate-rich, neutral to mildly basic subsurface conditions prevail. This 

contamination has caused the creation of three groundwater plumes with a combined area 

of 1.6 square kilometers with dissolved U (VI) concentrations above the Environmental 

Protection Agency (EPA)-established Maximum Contaminant Level (MCL) of 30 ppb 

(Hartman, 2007). Additionally, there is evidence that certain groundwater U(VI) plumes 

continue to grow in size indicating a sustained flux from the vadose zone (Hartman, 2007). 

Uranium contamination of soil and groundwater is of great environmental concern due to 

the toxicological properties of the uranyl species. The Columbia River, which serves as the 

main source of water supply for nearby populations, is transverse through the Hanford site 
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areas, and large scale remediation efforts have been undertaken to treat uranium wastes 

released to soil and groundwater to prevent the movement of contaminated plumes into the 

river. Additionally, according to Zachara et al., (2007), an ominously larger number of 

vadose zone plumes of U exist below cribs, trenches and retention basins that have not yet 

migrated to groundwater. The biggest concern exists over their future migration to the very 

highly permeable saturated zone and knowledge on new remediation technologies are 

sought to mitigate the migration behavior of U(VI) plumes .  

Remediation of this type of contamination located in the Hanford Site VZ is a challenging 

task due to the depth of contaminants in combination with the predominant uranyl-

carbonate complexes (UO2CO30, UO2(CO3)22- and UO2(CO3)34-) characterized by high 

mobility, ultimately creating a potential source of contamination for the underlying aquifer. 

Therefore, in-situ remediation methods require sequestration of uranium in the subsurface 

to prevent further spreading of mobile uranium species. This research is a lab-scale 

evaluation of the effectiveness of an in-situ remediation method which consists of a 

subsurface pH manipulation by injecting ammonia gas (NH3) in order to sequester uranium 

as insoluble precipitate.   
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II. BACKGROUND AND THEORY 

Hanford Site is a nuclear testing facility located near the Columbia River in the state of 

Washington, USA. It was built in 1943 as part of the Manhattan Project for the production 

of the first atomic weapons. The 200 Area is located at the Central Plateau and has the 

highest elevation. The 200 Area has several large processing facilities called “canyons”, 

burial grounds or “tank farms”, hundreds of sites where some of the most hazardous waste 

was stored, an Environmental Restoration Disposal Facility, a Waste Treatment Plant, 

office buildings and other operational or abandoned facilities related to the infrastructure 

of the site. (US Department of Energy., 2016) 

The main function of the facilities in the 200 Area was to remove plutonium from the 

uranium fuel rods after they had been subjected to the nuclear chain reaction in the 100 

Area reactors. The technology used at that time generated large amounts of radioactive 

waste containing uranium and other constituents. Different techniques were used to reduce 

this waste and to “safely” store it. One method involved storage of some of the most 

hazardous chemical and nuclear wastes in 177 underground storage tanks spread out among 

eighteen tank farms, ranging in capacity from 50,000 gallons to more than 1,000,000 

gallons (US Department of Energy., 2016).  

As early as 1956, waste leakage from the tanks and underground pipes was suspected, 

which was confirmed in 1961. The radioactive leaks, consisting of aqueous solutions 

[acidic and basic with organic complexes (citrate and ethylenediaminetetraacetic acid) and 

inorganic ligands (CO3, PO4)], have been detected in 67 of the 149 single shell tanks. This 

is not surprising since these tanks have exceeded their design lifetime by more than 30 

years. The liquid waste leakages, including about 200,000 kg of uranium (Simpson et al. 
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2006), have soaked into the ground at the site and have created multiple plumes of 

contamination, which are being monitored and treated to remove contaminants. Currently 

at Hanford, some 53,000,000 gallons of chemical and nuclear waste remain stored in these 

tanks. Beginning in the 1990s, the site’s main activities have revolved around restoring the 

site to comply with state and federally regulated contaminant levels. 

 

Figure 1: Hanford Site Area. (http://www.hanford.gov/page.cfm/ProjectsFacilities#HM)

http://www.hanford.gov/page.cfm/ProjectsFacilities#HM
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Hanford Site Climatic Conditions 

Due to its location within the semiarid shrub-steppe Pasco Basin of the Columbia Plateau 

in South Central Washington State, the region's climate is greatly influenced by the Pacific 

Ocean, the Cascade Mountain Range to the west, and other mountain ranges located to the 

north and east. The Pacific Ocean moderates temperatures throughout the Pacific 

Northwest, and the Cascade Range generates a rain shadow that limits rain and snowfall in 

the eastern half of Washington State. The Cascade Range also serves as a source of cold 

air drainage, which has a considerable effect on the wind regime at the Hanford Site. 

Mountains ranges to the north and east of the region shield the area from the severe winter 

storms and frigid air masses that move southward across Canada. 

Figure 2: Hanford Site tank farms highlighting ARC-FIU research study areas. 
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The Hanford Site area presents unique climatic characteristics with precipitation from 

November to March ranging from less than 2.4 in. to more than 8 in. Annual precipitation 

is 6.8 in. Snowfall accounts for about 38% of all precipitation from December through 

February. Ranges of daily maximum temperatures vary from 36°F in early January to 95°F 

in late July. Finally, occasional high winds of up to 129 kilometers (80 miles) per hour 

occur throughout the year. (Bunn et al. 2002). Table 1 summarizes the climate average 

conditions at the Hanford Site.  

 

Table 1. Climate Average Conditions at the Hanford Site 

Condition Maximum Minimum Annual 
Average 

Temperature (oF) 93.98               
(July) 

22.10            
(January) 53.3 

Precipitation (in) 1.05       
(November) 

0.1                   
(July) 6.8 
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Stratigraphy 
 

The Hanford formation is the uppermost stratigraphic unit 

and makes up most of the 200 Area vadose zone. It is 

composed of sediments deposited during several episodes 

of cataclysmic flooding and consists of poorly sorted sand-

containing lithic fragments from pebble to boulder size, 

fine-to-coarse-grained sand, and silt (DOE 1988, 2002). 

The Hanford formation is subdivided into three subunits: 

H1, H2, and H3, based on composition (Figure 3). The 

Cold Creek Unit (CCU) follows beneath the Hanford 

formation and is present only in the 200 West Area (Figure 

4) The CCU represents deposits that accumulated within 

the central Pasco Basin about 2 to 3 million years ago, 

which brackets two significant geologic events. The older 

event is a regional base-level drop and subsequent incision 

of the Ringold Formation (DOE 1988). The younger event 

is the initiation of Ice Age cataclysmic flooding, which 

began at the beginning of the Pleistocene, about 1.5 to 2.5 

million years ago (Bjornstad et al. 2001). The older event 

makes up the lower subunit of the CCU and represents a 

calcium carbonate cemented layer (caliche-rich zone). The 

newer event makes up the upper

Figure 3: Borehole 299- E33-338 
Stratigraphy in 200 East Area 

(Serne et al., 2002). 
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subunit and is a well sorted and relatively un-weathered, brown-colored silt-rich deposit. 

The upper and lower portions of the Cold Creek unit strongly impede the vertical 

movement of pore fluids in the vadose zone. Beneath the CCU lies the Ringgold formation.  

The Ringold Formation Unit E is fluvial-deposited pebble-to-cobble gravel with a sandy 

matrix. 

It is characterized by complex interstratified beds and lenses of sand and gravel with low 

to moderate degrees of cementation (Last et al. 2006) 

 

 

 
 
 
 

 

 

 

Hanford Formation Mineralogy 

The 200 East and 200 West areas have similar mineralogy as measured by electron 

microprobes (Xie et al. 2003). In general, data collected shows dominance by quartz (SiO2) 

(~45% to 95%), plagioclase feldspar (~10% to 20%), and alkali feldspar (~20% to 40%) 

Figure 4: Generalized West-to-East Geologic Cross Section through the Hanford Site 
(Last et al. 2006) 
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(Serne, 2008) followed by minor amounts of mica, chlorite, and amphibole (Xie, et al. 

2003). 

The mineralogy of the Hanford formation sediment in the 200 Area is highly variable. 

Gravel-dominated sediment tends to have a high abundance of lithic fragments (mostly 

basaltic, with some plutonic, metamorphic, and detrital caliche fragments) (30% to 50% of 

the total) (DOE, 2002), approximately equal amounts of quartz and plagioclase feldspar 

(15% to 30%), and then biotite (2% to 6%) and pyroxene (0.5% to 2.5%) (Bjornstad, 1990). 

Finer grained facies have proportionally less lithic fragments and more quartz, feldspar, 

and mica grains. Microprobe analysis of this fraction indicates dominance by quartz (18 to 

67.1% by weight), plagioclase feldspar (5.1 to 41.5%) and microcline (1.8 to 30.1%) with 

minor amounts of potassium feldspar (<10%) (Tallman, et al. 1979) (Xie, et al. 2003). 

Overall, approximately 45% of the clay fraction consists of silicon, followed by lesser 

amounts of aluminum (~15%) and iron (~12 %) (Serne, 2008). 

Hanford formation sediment is typified as having low organic carbon content, generally 

<0.1% by weight, and low-to-moderate cation exchange capacity (2.6 to 7.8 

miliequivalents per 100 g). Small amounts of detrital calcium carbonate (less than ~3.25 

wt. %) are common and can act as a weak buffer. The sediment has a slightly basic pH 

when wet, ranging from 7.6 to 8.1 (Serne et al. 2008).  
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Bulk Chemical Composition 

At Hanford site, silicate content is much higher than the other chemicals in the 200 Area, 

followed closely by aluminate. In the 200 Area, this is due to the high amount of quartz 

and feldspars forming rocks in the vadose zone. Other chemicals found with high 

abundance are calcium and iron, two elements present in the minerals plagioclase and 

pyroxene composing the basalt in Hanford formation. Bulk sediment samples were 

characterized for major and trace elements. Overall, results showed very little difference 

in the primary elemental oxide concentrations for any of the sediment samples as a function 

of depth or lithology. The primary elemental oxides in decreasing concentration include: 

SiO2 (58.77 to 70.33 wt%), Al2O3 (12.7 to 15.73 wt%), Fe2O3 (3.74 to 7.92 wt%), CaO 

(3.02 to 4.80 wt%), Na2O (2.05 to 3.23 wt%), K2O (1.70 to 2.65 wt%), MgO (1.64 to 2.73 

wt%), TiO2 (0.51 to 1.39 wt%), P2O5 (0.13 to 0.30 wt%), and MnO (0.07 to 0.12 wt%) 

(Lindenmeier 2003). 

Calcium carbonate is also found abundantly. Content ranges between 1 and 5 wt% for the 

Hanford formation (Last et al. 1989) and is as high as 40 wt% in the Cold Creek unit due 

to pedogenic alteration and secondary cementation with calcium carbonate (caliche). 

Content has similar values to the Hanford formation in the Ringold formation (Serne 2008). 

 

 

 



11 
 

Moisture Content 

Data collected from the three formations from the 200 Area indicates that moisture content 

in the 200 Area is similar to the overall Hanford site moisture (2.5 to 26 wt%) (Serne et al., 

2008). Data has also shown that areas where contamination has been identified contain the 

highest moisture content. For instance, the uncontaminated soils in the 200 West Area near 

241-S tank farm and beneath the 241-U Single-Shell Tank Farm generally average less 

than 10 wt% and 1 wt%, respectively, while two contaminated soils in the 200 West Area, 

one near the 241-S tank farm and the other near the tank SX-115, had moisture contents 

between approximately 2 and 25 wt% (Serne 2008) and between 2 to 23 wt%, respectively 

(Lindenmeier et al. 2003). 

Pore Water Characterization 

Table 2, adapted from Serne et al (2002), summarizes the average cation content of pore 

water collected from Borehole 299-E33-338 vadose zone sediment located in the northeast 

of Hanford Site’s 200 Area.   
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Table 2: Average Calculated Cation Pore Water Content for Borehole 299-E33-338 

Average 
concentrations, 

(mg/L ) 

Depth, feet below ground surface (ft. bgs.) 

16-107.8 115.9-198.6 200.6-240.3 

Aluminum 1.38±1.2 2.07±1.7 0.52±0.8 

Barium 0.63±0.3 0.78±0.4 0.49±0.4 

Calcium 157.44±60.2 162.18±57.4 111.75±62.3 

Iron 0.63±0.4 2.39±2.1 0.64±1.2 

Potassium 55.61±13 84.6±34.9 41.5±1.2 

Magnesium 35.98±18.3 41.93±14.5 24.93±18.7 

Sodium 215.35±171.6 210.07±93.5 149.91±106.7 

Silicon 139.09±32.9 199.08±79.5 118.17±112.9 

Strontium 0.73±0.3 0.91±0.3 0.610±0.4 

 

Using information from Table 2, it can be concluded that the highest average 

concentrations of aluminum (2.07 mg/L), as well as other analyzed elements such as 

barium, calcium, iron, potassium, magnesium, silicon and strontium, are found at depths 

between 115.9 to 198.6 ft.. However, the highest average concentration of sodium (215.35 

mg/L) was found at a shallower depth between 16 and 107.8 ft. 

Pore water collected from the 200 Area was also analyzed for the presence of nitrate and 

bicarbonate. The characterization of shallow sediments taken from Borehole 299-E33-45 

showed the presence of nitrate contamination starting at the contact between the Hanford 

H1 and H2 units at 34 ft. bgs., and extending down into the sediment of the fine-grained 

Plio-Pleistocene Silty Unit, all the way to the water table at 255 feet bgs.. Bicarbonate is 

one of the major anions calculated (from sediment-to-water extracts). Its concentration in 
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the pore water is also elevated in the H2 middle sand sequence between 75 and 167 ft. bgs.; 

the pore water bicarbonate concentration varies between 0.1 and 0.21 M between 110 to 

130 ft. bgs. around the paleosol layer, having a peak concentration of 0.21 M at 120 ft. bgs.  

The concentration of sulfate in pore water samples appear to be slightly elevated and found 

in the range of 9.6 to 897 mg/L (1:1 extracts) over the soil vertical profile. The pore water 

chloride concentrations appear slightly elevated between 70 and 255 ft. bgs. (i.e., the water 

table) with concentrations between 0.7 to 196 mg/L, compared to an average concentration 

of 1.7 mg/L. The phosphate pore water distribution in the VZ sediment at Borehole 299-

E33-45 shows elevated concentrations between ~80 and 130 ft. (24.4 to 39.6 m bgs.) within 

the H2 middle sand sequence, in the paleosol at 120 ft. bgs., and just below the paleosol to 

130 ft. bgs. (Serne et al. 2002). 

Uranium Contamination 

Uranium (U) is considered to be one of the primary risk drivers associated with long-term 

stewardship of the site (Zachara et al. 2007). The great amount of U discharged to the 

vadose zone, combined with its mobility under the oxidizing, circumneutral-to-mildly-

basic geochemical conditions found at Hanford has led to the creation of three identified 

groundwater plumes (Hartman et al. 2007). These plumes have a combined area of 1.6 

square kilometers with dissolved U concentrations that are above the U.S. Environmental 

Protection Agency’s established maximum-contaminant level (MCL) of 30 ppb. 

At the Hanford site subsurface, the mobility of uranium in the oxidizing, carbonate-rich 

subsurface at pH~8.0 is relatively high, with a low U(VI) adsorption distribution 

coefficient (Kd) averaging 0.11 - 4 L/kg. Uranium is present as aqueous or adsorbed phases, 
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with the two primary species at pH 8 as neutral and anionic carbonates [Ca2UO2(CO3)3 aq 

and CaUO2(CO3)32-], whereas under highly alkaline conditions, two anion species 

dominate [CaUO2(CO3)32- and UO2(CO3)34- [Liu et al., 2008; Zachara et al., 2007]. The 

mobility of U (VI) is explained by the formation of highly soluble and stable uranyl 

carbonate complexes (UO2CO3, UO2(CO3)22- and UO2(CO3)34-) (Langmuir 1997, 

Guillaumont et al. 2003). Uranium is also present in vadose zone at medium to high 

concentrations as carbonates (liebigite and rutherfordine), co-precipitated with carbonates, 

hydrous silicates {uranophane [Ca(UO2)2(SiO3OH)2·5H2O] and Na-boltwoodite 

[Na(UO2)(SiO4)·1.5H2O]}  (Szecsody et al., 2012); additionally it is present in more 

mobile aqueous and adsorbed phases which  is the focus of research investigation of U 

behavior in this type of environment. Furthermore, uranyl associated with carbonate or 

phosphate tends to form the most stable aqueous complexes. Nevertheless, precipitation 

and co-precipitation reactions involving uranyl species will impact U mobility in the 

subsurface environment and extractability from sediment (Smith & Szecsody, 2011). 

Uranium is also a naturally occurring element that is present as a trace constituent in the 

earth’s crust. Table 3 contains the concentration of uranium as measured in uncontaminated 

or background sediment samples. The data has been gathered either via recent field-

sampling and characterization campaigns or is based on historical analyses of site-wide 

samples (near-surface soils/sediments/rocks and groundwater) since the early 1990s.  
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Table 3: Background Uranium-Sediment Concentrations 

Location 
Average Uranium 

Concentration 
(mg/kg) 

Standard 
Deviation Reference 

WMA-B/BX/BY 1.47 0.55 Lindenmeier et al. (2003) 
WMA-T 2.59 0.95 Serne et al. (2004b) 

WMA-TX/TY 2.31 0.57 Serne et al. (2004a) 
Hanford Site 2.27 0.64 DOE/RL-96-12 (1996b) 

 

Based on the information contained in Table 3, the range of background uranium 

concentrations in the 200 Area Hanford sediments is from 1.47 to 2.59 mg/kg.  

Three different measurement methods of the total uranium content were compared using 

Borehole 299-E33-45 sediment samples. Data from this contaminated borehole suggests 

that the significantly elevated uranium-238 activity first appears at 73.4 ft. bgs. in the 

Hanford H2 unit sediment just above the first thin lens (1 ft. thick at 74.5 ft. bgs.). From 

about 90ft. to ~111ft. bgs., there is little indication that significantly elevated 

concentrations of uranium are present. Between 119 and 120 ft. bgs., the maximum 

uranium content reached about 660 mg/L. Below 120ft. bgs. down to 145ft. bgs., the 

uranium content in the sediment is quite high (reaching values between 200 and 500 mg/L). 

Between 145 and 167.2 ft. bgs., in the lower portion of the H2 middle sequence, there are 

elevated uranium concentrations (between 50 and 200 mg/L). Within the fine grained lens 

between 167.2 and 169.8 ft. bgs., the uranium concentration increases again to values 

between 200 and 400 mg/L. Below, in the H3 lower sand sequence and the plio-pleistocene 

sediments, there is no significant indication of elevated uranium, but small concentrations 

are still present in the sediments. 
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Remediation Strategy 

Due to the environmental conditions in the western area of the U.S where typical arid and 

semi-arid porewater composition, and oxygenated, high-carbonate alkalinity soils are 

present, remediation of uranium in the deep unsaturated zone (below 100 ft. bgs.) is a 

challenging task. Remediation techniques for the deep vadose zone contaminated with 

radionuclides are critical for protection of water resources. Remediation of deep vadose 

zone contamination of radionuclides can potentially be done in-situ by converting aqueous 

U-carbonate mobile phases to lower solubility precipitates that are stable in the natural 

environment. Nevertheless, injection of aqueous solutions in the dry vadose zone may 

potentially cause downward U(VI) migration to the underlying groundwater aquifer. 

It is for that reason that injection of gases such as ammonia (NH3) to the vadose zone 

appears a feasible method to decrease uranium mobility in the contaminated subsurface via 

pH manipulation and creation of alkaline conditions without causing undesired U(VI) 

downward migration (Zhong et al., 2015). It has been demonstrated that NH3 treatment of 

contaminated sediments acts to decrease the highly mobile aqueous and adsorbed U phases 

by incorporation into precipitates and appears to decrease mobility of some existing U 

precipitates (Na-boltwoodite) as a result of mineral coating (Szecsody et al., 2012). 

The process of this in-situ remediation technique is explained as follows: once NH3 gas is 

injected in the vadose zone, unreacted NH3 partitioned to the gas phase would slowly 

migrate upward due to a lower gas density of 0.77 kg/m3 compared to air density of 1.29 

kg/m3. Ammonia is a highly soluble gas and its injection in the vadose zone can cause the 

formation of NH4+ (which consumes H+) in pore water followed by a subsequent increase 



17 
 

in pH up to 12.5 for 100% NH3 [15.7 mol/L NH3(aq)], 11.9 [3.1 mol/L NH3 (aq)] for 5% 

NH3 or pH 11 for 0.1% NH3 (0.063 mol/L) (Katsenovich et al., 2016). This pH 

manipulation in the VZ soils may significantly alter the pore water chemistry due to 

dissolution of the dominant soil minerals such as feldspar, iron oxides, and quartz present 

in the VZ soil. These dissolution reactions in alkaline conditions potentially induce the 

release of cations including Si, Al, Ca, Mg, Na, and K from soil minerals to pore water 

(Zhong et al., 2015). Then, upon the re-establishment of natural pH conditions, various 

silica and aluminosilicate solid phases, would precipitate as uranium silicates such as the 

more stable compound Na-boltwoodite causing the formation of uranium-bearing 

precipitates in the treated vadose zone soil (Szecsody et al., 2013) or decrease U mobility 

by a coating of U-bearing phases forming a low solubility, non-U precipitate (Bickmore et 

al., 2001). These chemical reactions can potentially control the mobility of uranyl cations 

and limit their downward migration to the underlying groundwater aquifer (Szecsody et 

al., 2012).  

Previous short-term laboratory evaluations show a decrease in U mobility after ammonia 

gas injection in the low water content sediments (Szecsody et al., 2013). Furthermore, 

Zhong et al. (2015) also indicated that the mass of U leaching from NH3-treated U-

contaminated sediment was significantly less compared to the mass leached from the 

untreated sediment. However, there has been limited testing of gas remediation 

technologies such as the one described above (Zhong et al., 2015).  
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III. STATEMENT OF PURPOSE 

Importance of the Study 

Environmental remediation is of great importance to restore sites that have been heavily 

contaminated by nuclear waste. Uranium has been found to be one of the major pollutants 

of the Hanford Site 200 Area and represents a great risk to the water resources that are 

close to the site. Given its toxicity, long half-life (4.5 × 109 years), and high mobility in the 

subsurface, understanding the mechanisms of uranium migration from the DOE nuclear 

waste disposal sites has become necessary to prevent further contamination and possible 

exposure hazard to the population of the Washington State. PH manipulations via ammonia 

(NH3) gas injection into the vadose zone has been shown to allow the transformation of 

mobile uranium species to lower solubility precipitates that are stable in the natural 

environment (Szecsody et al., 2012). This type of in-situ remediation that will result in 

sequestration of U in the deep vadose zone soil and prevent the radioactive contaminant 

from spreading to the natural water resources is of paramount significance.  The scope of 

this study is to study the stability of the relatively immobile U contained within the 

precipitates created in the soil after NH3 gas injections. The results are expected to help 

evaluate the effectiveness of the remediation method for the replicated environmental 

conditions.  
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Research Objective 

Ammonia (NH3) gas injections in the vadose zone has been demonstrated to be a viable in-

situ remediation method to decrease U mobility in the contaminated subsurface via pH 

manipulation, ultimately converting highly mobile complexes to lower solubility U-

bearing precipitates that are stable in the natural environment. The purpose of this 

investigation is to evaluate the stability of the U-bearing precipitates created in the vadose 

zone soil as a result of ammonia (NH3) gas injections as a remediation technology. 

Specific Objective 

(i) Description of the relevant environmental conditions prevailing in Hanford Site. 

(ii) Preparation of artificial U-bearing precipitates mimicking those created in the 

subsurface after ammonia gas injection replicating the subsurface conditions 

present in Hanford Site 200 Area. 

(iii) Evaluation of uranium leaching from U-bearing precipitates via sequential 

extraction experiments. 

(iv) Evaluation of U precipitation/removal efficiencies from NH3-treated synthetic 

pore water solutions at low Si concentrations 
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IV. PROCEDURES AND METHODS 

Sample Preparation 

In order to prepare U-bearing precipitates mimicking those that will be created after NH3 

injection at Hanford Site VZ, it was necessary to first study previous characterization done 

on the dominant pore water composition in terms of concentrations of major cations, anions 

and pH to further identify what major components will constitute the samples (Serne, et al. 

2008).  

For the scope of this study, the large pore water composition was simplified to have five 

major components in the sample solutions: uranium (U), bicarbonate (HCO3), calcium 

(Ca2+), silica (Si) and aluminum (Al). A low concentration of U (VI) 2 mg/L and two 

different bicarbonate concentrations of 3 mM and 50 mM were tested. Three different 

calcium concentrations (0, 5 and 10 mM) were selected given past observation of 15 mM 

in 5% NH3 treated Hanford sediments (Szecsody et al., 2012) The silica concentration used 

was 50 mM based on past experiments where concentrations reached up to 100 mM in 10% 

NH3 treated sediments (Zhong, Szecsody, Truex, Williams, & Liu, 2015). Aluminum 

concentration of 5 mM was tested based also on previous studies, which concluded that the 

concentration of Al released by 1 mol/L NaOH is relatively small, resulting in ~5.1 mM of 

Al in the soil solution (Qafoku et al., 2004). It is important to note that Si and Al 

concentrations are orders of magnitude greater than U which can lead to the potential U 

precipitation as U-silicates from the Si and Al rich solutions (Katsenovich et al., 2016). 

The following Table 4 summarizes the simplified pore water composition used to prepare 

the U-bearing precipitate samples. 
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Table 4: Target concentrations in synthetic pore water solutions to create U-bearing 
precipitate samples 

Sample ID Si (mM) Al (mM) HCO3 (mM) Ca (mM) U (mg/L) 
1 50 5 3 0 2 
2 50 5 3 10 2 
3 50 5 3 15 2 
4 50 5 50 0 2 
5 50 5 50 10 2 
6 50 5 50 15 2 

 

a) Preparation of stock solutions 

Stock Solutions of HCO3 (400 mM), Si (422 mM), and Al (50 mM) were first prepared in 

deionized water (DIW) from the salts KHCO3, Na2SiO3·9H2O, and Al(NO3)3·9H2O, 

respectively, reaching the desired concentrations in 50 mL centrifuge tubes, sodium 

metasilicate, Na2SiO3·9H2O, and potassium bicarbonate, KHCO3, were also served as a 

source of sodium and potassium in the mixture. The 200 µg stock solution of uranyl nitrate 

dissolved in DIW was prepared fresh from a uranyl nitrate hexahydrate 1000 µg standard 

before use (Fisher Scientific).   The subsequent Table 5 shows the type and amount of salts 

used to prepare the necessary stock solutions in 50 mL volume. 

Table 5: Type and amount of salts used to prepare Stock Solutions 

Stock 
Solution Salt Used 

Molecular 
Weight of Salt 

(g/mol) 

Stock Solution 
Concentration 

(mM) 

Amount to 
prepare 50 

mL (g) 
Bicarbonate KHCO3 100.114 400 2.002 
Metasilicate Na2SiO3·9H2O 284.196 422.24 5.998 
Aluminum Al(NO3)3·9H2O 375.129 50 0.938 
Calcium CaCl2.H2O 219.08 500 5.447 
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b) Preparation of samples containing U-bearing precipitates 

The general experiment procedure used to prepare 6 samples containing U-bearing 

precipitates was as follows: first, using 50 mL centrifuge tubes, prepared two (2) test 

solutions mixing measured aqueous volumes of Si and Al from the prepared stock solutions 

given Si/Al ratio concentration remain the same for all samples; second, measured volumes 

of the appropriate bicarbonate stock solution was added to the mixture to achieve the 

targeted concentration (3 or 50 mM). Deionized Water (DIW) was added to each test 

solution to reach a final volume of 39 mL, leaving 1 mL of volume for pH adjustment. 

Then, the pH of the resulting solution was measured and adjusted to approximately 8 by 

titration with concentrated nitric acid (HNO3) and DIW was added to end up with a final 

volume of 40 mL in each tube. The pH value is in line with values previously observed in 

the Hanford Site 200 Area vadose zone (Serne et al., 2008). 

Next, 5% ammonia gas (NH3) was injected into the mixture through a metal gas sparger 

(Mott Corporation, 20 µm pores) until the pH of the solution reached approximately 11 

[0.063 mol/L (aq)]. This was followed by distribution of the mixture into six 10 ml 

centrifuge tubes consistent with the 6 different U-bearing precipitate test samples. Finally, 

the corresponding amount of U and Ca were added to each tube. Control samples were 

prepared in DIW amended with U(VI) at concentration of 2 mg/L to test for U(VI) losses 

from the solutions due to sorption to tube walls and caps.  

It is important to note that for confirmation purpose, duplicates were prepared for each test 

sample. In addition, a second set of six original and duplicates samples were prepared 

following an additional filtration step that will be explained later; therefore, the 
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methodology was repeated four times. Tables 6 and 7 below show amount of stock solution 

and DIW to prepare two 40 mL tubes of mix samples, which were subsequently distributed 

into six tubes of 10 mL mixed samples amended with various concentrations of calcium 

solutions. The ammonia gas injections and calcium addition caused precipitate formation 

in each sample. 

Table 6: Amount of Stock Solution and DIW to prepare 40 mL of mixed sample 
 

Mixture Si (µL) Al (µL) HCO3 (µL) DIW (mL) 
1  4,737 4,000 300 30.963 
2  4,737 4,000 5,000 26.263 

 

Table 7: Amount of mixed sample, Ca and U to prepared six 10 mL volume containing U-
bearing precipitate samples 

Sample 

ID 
Sample Content Ca (µL) U(µL) 

Mixed Sample 

(µL) 

Total 

Sample V 

(µL) 

1 3mM HCO3, no Ca 0 200 9,800 10,000 
2 3mM HCO3, 5mM Ca 100 200 9,700 10,000 
3 3mM HCO3, 10mM Ca 200 200 9,600 10,000 
4 50mM HCO3, no Ca 0 200 9,800 10,000 
5 50mM HCO3, 5mM Ca 100 200 9,700 10,000 
6 50mM HCO3, 10mM Ca 200 200 9,600 10,000 

Control DIW: 9,800 mL 0 200 0 10,000 
 

 Unfiltered Samples 
 

The first set of twelve samples (six original and six duplicates) was selected to be the set 

of unfiltered samples.  All control and experimental tubes were capped and placed in a 

shaker at 100 rpm at temperature of 25°C. After letting solid particles within the solutions 

to settle for approximately 24 hours, the samples were centrifuged using Thermo Scientific, 
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Corvall ST 16R centrifuge for 30 minutes at a speed of 5,000 rpm; following, the 

supernatant solution from each sample was collected in different tubes for future analysis 

to be able to determine the concentration of U left in the precipitates. The wet precipitates 

were set to dry in the oven at 35oC for a period of approximately 2-3 weeks. Weights of 

precipitates were recorded until they were stable, which meant the solid particles were 

dried. 

 Filtered Samples 
 

The second set of twelve samples (six original and six duplicated) corresponded to the 

filtered set. The objective of this additional filtration step was to ensure the pore water 

accumulated inside precipitates was removed before sample drying. The filtration process 

consisted of vacuum-filtering all the samples using micro sized pore 0,22µm filters and 

collecting the supernatant solutions in a similar method as the unfiltered samples.  

A total of 24 U-bearing precipitate test samples were prepared following the methodology 

explained in the previous subsections.  

Sequential Extraction Experiment 

Though it is typically reserved for soil samples, sequential liquid extractions were 

conducted to evaluate U leaching potential from solid precipitates formed and thus the 

stability of the U-bearing precipitate test samples created in the previous steps. This process 

allowed the extractability of U(VI) associated with the solid particles. The sequential 

extraction experimental approach involved subjecting the solid particles to serial extraction 

using increasingly aggressive solutions, each intended to target increasingly more difficult 
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to remove uranium phases. Each extraction step utilized solutions and conditions chosen 

specifically to selectively target uranium associated with various phases within the 

precipitate sample.  

A number of sequential extraction procedures have been reported using a wide variety of 

conditions. While some differences are simply adjustments to fit the sample composition 

and analyte being targeted, there are many variations for comparable extractions.  As many 

as six different sequential extraction steps have been used to characterize U in different 

mineral phases of natural sediments (Smith & Szecsody, 2011). For the scope of this study, 

a couple of weak extractants such as deionized water which would access aqueous total U, 

and carbonate solution, which would remove adsorbed U species were used. In addition, a 

series of three sequential liquid extractions of increasing strength were employed to 

generally characterize U mobility (i.e. harder to extract phases are less mobile): an acetate 

solution, an acetic acid solution and finally a very strong extractant such as 8 M HNO3 

which would remove hard-to-extract U from uranium-bearing precipitate samples (Table 

8). Furthermore, the purpose of these 5 sequential extractions was to quantify the phases 

that are potentially able to interact with pore water (i.e., aqueous, adsorbed, associated with 

carbonates and in hydrous silicates) (Szecsody et al., 2012).  Adapted from Szecsody 

(2015), the sequential extraction method, solutions, time of exposure, and target 

compounds for the experiment are presented in the following Table 8. 
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Table 8: Sequential Extraction Experiment Steps 

Step Solution 
Time 

(h) 
Target  Compounds 

1 Deionized Water (DIW)  1 Aqueous U phases 

2 
Carbonate solution: 0.0144M NaHCO3 + 
0.0028M Na2CO3 (pH 9.3); 2 liters: 2.42 g NaHCO3 
+ 0.592 g Na2CO3 + balance DI H2O to 2.0 liters 

1 Adsorbed U phases 

3 
Acetate solution: 2 liters: 136.1 g sodium 
acetate•3H2O + 30 mL glacial acetic acid (17.4 
mol/L), pH 5.0, balance DI H2O to 2.0 liters 

1 
Dissolved some U-
Carbonates 

4 

Acetic acid solution: concentrated glacial acetic 
acid, pH 2.3; 2 liters: 50.66 mL glacial acetic acid 
(17.4 mol/L) + 47.2 g Ca(NO3)2*4H2O, pH 2.3, 
balance DI H2O to 2.0 liters 

120 
Most U-Carbonates and 
hydrated boltwoodite 
(uranyl silicate minerals)  

5 8 M Nitric Acid (HNO3) at 95°C 2 
Dissolved harder U 
phases 

 

Additionally, after each extraction step, samples were rinsed with 5 mL of deionized water 

(DIW) which functioned to help remove any lingering extractant. For analytical purposes, 

this rinse solution was considered a part of the preceding extraction.  For the purpose of 

this study, the extraction volume was selected using a 40:1 solid (mg) to solution (mL) 

ratio which was used in a PNNL extraction study on uranium in Hanford sediment (Smith 

and Szecsody 2011). 

The extraction procedure began with the addition of the corresponding volume of 

extraction solution to the labeled vials containing the solid precipitates previously 

prepared. The mixture was briefly vortexed before being transferred to an orbital shaker 

where the vessel was agitated at 150 rpm for the duration of the extraction. After each 
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extraction, samples were centrifuged at 5000 rpm for 30 minutes in order to separate the 

extractant and remaining precipitate. As mentioned before, the extraction was followed by 

a 10 minute DI water rinse, which was also accompanied with agitation and centrifugation 

steps. This process of extraction and rinse was repeated for extraction steps I through IV 

with each of their specified extraction times. The final extraction (Step V), intended to 

target hard to extract uranium species, differed in that its extraction solution used 8 M nitric 

acid (HNO3) maintained at 95°C using a water bath. 

Following the extractions protocol, all the collected supernatant from the test samples were 

collected to further be analyzed for trace U.  

Low Si Concentration Experiment    

As a result of increasing soil pH due to ammonia gas injections, the concentration of Si in 

pore water has been observed to vary and be as high as 10 g L-1 (Szecsody et al., 2010). 

Additionally, Katsenovich, et al (2016), conducted a study on the role of Si on U (VI) 

precipitation/removal from NH3-treated synthetic pore water solutions concluding that the 

process of U (VI) removal does not seem to be efficient (<80%) when the concentration of 

Si is less than 50 mM. Based on these findings, the objective of this experiment was to 

quantify the role of the major pore water constituent Si at low concentrations on uranium 

(VI) precipitation/removal from NH3-treated synthetic pore water solutions and to find out 

what is a minimal silica concentration that could sustain U (VI) removal. 

For the scope of this study and similar to the sequential extraction experiment, the large 

pore water composition was simplified to have the following major components in the 

sample solutions: silica (Si), aluminum (Al), uranium (U), bicarbonate (HCO3), calcium 
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(Ca+2); in addition, samples containing magnesium (Mg) and iron (Fe) instead of calcium 

were prepared to account for the effect of different pore water composition on U removal 

if any.  Low silica concentrations tested were 7.5, 15 and 25 mM. In addition, aluminum 

concentration of 5 mM, two different bicarbonate concentrations of 3 mM and 50 mM, two 

different calcium and magnesium concentrations of 5 and 10 mM, and finally two iron 

concentrations of 0.2 and 5 mM, based on concentrations observed in sediments from the 

Hanford Site (Szecsody, et al 2010), were tested in three different sets of samples. The 

following tables 9 and 10 summarize the simplified pore water composition used to prepare 

the U-bearing precipitate samples for this experiment. 

Table 9: Target concentrations in synthetic pore water solutions to create U-bearing 
precipitate samples containing Ca 

Sample Si (mM) Al (mM) HCO3 (mM) Ca (mM) U (mg/L) 
1 7.5 5 3 0 2 
2 7.5 5 3 5 2 
3 7.5 5 3 10 2 
4 7.5 5 50 0 2 
5 7.5 5 50 5 2 
6 7.5 5 50 10 2 
7 15 5 3 0 2 
8 15 5 3 5 2 
9 15 5 3 10 2 
10 15 5 50 0 2 
11 15 5 50 5 2 
12 15 5 50 10 2 
13 25 5 3 0 2 
14 25 5 3 5 2 
15 25 5 3 10 2 
16 25 5 50 0 2 
17 25 5 50 5 2 
18 25 5 50 10 2 
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Table 10: Target concentrations in synthetic pore water solutions to create U-bearing 
precipitate samples containing Mg 

Sample Si (mM) Al (mM) HCO3 (mM) Mg (mM) U (mg/L) 
1 15 5 3 5 2 
2 15 5 3 10 2 
3 15 5 50 5 2 
4 15 5 50 10 2 
5 25 5 3 5 2 
6 25 5 3 10 2 
7 25 5 50 5 2 
8 25 5 50 10 2 

 
Table 11: Target concentrations in synthetic pore water solutions to create U-bearing 

precipitate samples containing Fe  

Sample Si (mM) Al (mM) HCO3 (mM) Fe (mM) U (mg/L) 
1 15 5 3 0.2 2 
2 15 5 3 5 2 
3 15 5 50 0.2 2 
4 15 5 50 5 2 
5 25 5 3 0.2 2 
6 25 5 3 5 2 
7 25 5 50 0.2 2 
8 25 5 50 5 2 

 

a) Preparation of stock solutions 

Similarly to the Sequential Extraction experiment, Stock Solutions of HCO3 (400 mM), Si 

(422 mM), Al (50 mM) were first prepared in deionized water (DIW) from the salts 

KHCO3, Na2SiO3·9H2O, and Al(NO3)3·9H2O, respectively, reaching the desired 

concentrations in 50 mL volume.  Likewise, stock solutions of Ca (219.08 mM), Mg (1250 

mM) and Fe (100 mM) were prepared in deionized water (DIW) from the salts CaCl2.H2O, 

H12O6MgCl2, and FeCl3.6H2O, respectively. The 200 µg stock solution of uranyl nitrate 

dissolved in DIW was prepared fresh from a uranyl nitrate hexahydrate 1000 µg standard 
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before use (Fisher Scientific).   The subsequent Table 12 shows the type and amount of 

salts used to prepare the necessary stock solutions in 50 mL volume. 

Table 12: Type and amount of salts used to prepare Stock Solutions for Low Si Concentrations 
Experiment 

Stock Solution Salt Used MW of Salt 
(g/mol) 

Stock Solution 
Concentration (mM) 

Amount to prepare 
50 mL (g) 

Bicarbonate KHCO3 100.114 400 2.002 
Metasilicate Na2SiO3·9H2O 284.196 422.24 5.998 
Aluminum Al(NO3)3·9H2O 375.129 50 0.938 
Calcium CaCl2.H2O 219.08 500 5.447 

Magnesium H12O6MgCl2 203.3 1250 12.706 
Iron FeCl3.6H2O 270.32 100 1.3516 

 

b) Preparation of U-bearing precipitates samples 

Excluding the additional filtration steps, the same procedure as that explained and followed 

in the sequential extraction experiment was followed. A total of 34 samples and duplicated 

unfiltered samples were prepared following the protocol.  

Analytical Procedure 

Samples of the supernatant from each vial were analyzed using a kinetic phosphorescence 

analyzer (KPA-11, Chemchek Instrument, Richland, WA) instrument to determine: a) the 

remaining U (VI) concentration left in the solution after preparation of U-bearing 

precipitates in both sequential extraction and low Si concentration experiments, and b) the 

extracted U (VI) concentration after each sequential extraction and rinsing step. For 

analysis with the KPA instrument, an aliquot was extracted from the supernatant of each 

test sample and diluted with 1% nitric acid between 5 and 100 times. 
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V. RESULTS AND DISCUSSION 

Sequential Extraction on Unfiltered Samples 

The KPA data collected from the analysis was graphed to display the mass of uranium 

removed with each extraction step based on the determined uranium concentration and the 

volume that it was extracted into. Figure 5 displays the total mass of uranium removed 

from the unfiltered test samples precipitates during sequential extraction experiment. These 

precipitates contained some remaining pore water inside that was dried with the solids. 

 
Figure 5: Sequential Uranium Extraction of Unfiltered Sample Precipitates on Mass Basis 
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Observing Figure 5, the total mass of uranium extracted shows that each low bicarbonate 

samples had less uranium removed than their high bicarbonate counterparts. Additionally, 

the highest calcium containing samples resulted in the greatest uranium removal.  

A comparison of the relative removal of uranium between the various extraction steps 

reveals how each extracting solution was favored in the different samples. This is useful 

for developing an assumption of the types of uranium phases, which are most prevalent 

based on the “targeted” extraction phase (Refer to Table 8) and the relative mass of the 

analyte removed by its corresponding solution. Figures 5 and 6 exhibit the U extraction 

distribution on a percent basis for both “low” and “high” HCO3 samples.  

 
 

 
 
 
 
 

     

Figure 6: Uranium Extraction Distribution for unfiltered low HCO3 samples 
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The sequential extraction distribution charts reveal that there is a near insignificant uranium 

removal in the less aggressive DIW and carbonate solution extractions, suggesting uranium 

species were not present in the soluble phases. In addition, between equivalent “low” and 

“high” bicarbonate samples, the carbonate extraction, which targets the adsorbed species, 

had a decrease. The relative uranium removal decreased from 2-5% to 1% indicating less 

adsorbed U-phases formed at higher HCO3 concentrations. Furthermore, it is clear that 

most uranium was removed in the acetate solution and nitric acid, step 3 and 4 respectively, 

suggesting that the uranyl carbonates and silicates make up the bulk of the extracted 

analyte. 

Sequential Extraction on Filtered Samples 

Similarly to the unfiltered set of samples, the KPA data collected from the analysis was 

graphed to display the mass of uranium removed with each extraction step based on the 

determined uranium concentration and the volume that it was extracted into. Figure 8 

     

Figure 7: Uranium Extraction Distribution for unfiltered high HCO3 samples 
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displays the total mass of uranium removed from the filtered test samples precipitates 

during sequential extraction experiment. 

Figure 8: Sequential Uranium Extraction of Filtered Sample Precipitates on Mass Basis 

It can be noted that in this case, the total mass of uranium extracted shows that in general, 

low bicarbonate test samples had greater uranium removal than their high bicarbonate 

counterparts except for the samples containing 5 mM of calcium. Additionally, the high 

bicarbonate sample containing 10 mM of calcium resulted in greater uranium removal 

during the first extraction than all of the samples previously tested. This could be explained 
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by the fact that some solid uranium-bearing particles might have been inadvertently 

collected during KPA analysis, consequently causing an incorrect supernatant uranium 

concentration result.  

Figures 9 and 10 below are presented, likewise the unfiltered samples, with the sole 

purpose of developing an assumption of the types of uranium phases which are most 

prevalent based on the “targeted” extraction phase and the relative mass of the analyte 

removed by its corresponding solution. Figures 9 and 10 show the uranium extraction 

distributions on a percentage basis for unfiltered low and high HCO3 samples.  

Figure 9: Uranium Extraction Distribution for filtered low HCO3 samples 
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Figure 10: Uranium Extraction Distribution for filtered high HCO3 samples 

The results obtained from the filtered test samples analysis represented in the sequential 

extraction distribution charts also reveal that there is a near insignificant uranium removal 

in the less aggressive DIW and carbonate solution extractions, suggesting uranium species 

were not present in the soluble phases. In addition, between equivalent low and high 

bicarbonate samples, the carbonate extraction, which targets the adsorbed species, had a 

significant decrease. The relative uranium removal decreased from 6-25% to 1-4%. 

Furthermore, it is clear that the majority of uranium was removed in the acetate solution 

and nitric acid, step 3 and 4 respectively, suggesting that the uranyl carbonates and silicates 

make up the bulk of the extracted analyte. Also, it should be noted that these filtered 

samples didn’t contain pore water, only uranium that complexed with Si, adsorbed on the 

Si surface or was incorporated inside the solid phases.  
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Synthetic Pore Water Optimization and Mass Balance 

The results of previous attempts to account for total mass of U removed after sequential 

extractions showed a relatively lower amount of U analyte in the precipitate compared to 

the amount of U injected. To counter this, the optimization study focused on what 

component concentrations would maximize the fraction of U in the precipitate phase based 

on the concentrations of U left in their supernatants, or in other words, the U removal 

efficiency. This relied on the assumption that all uranium introduced to the sample 

solutions was either retained in solution or precipitated/adsorbed onto the solid phase.  

The optimization experiment was designed such that the results of the KPA analysis of the 

filtered supernatant solutions could be visualized using response surface diagrams (Figure 

11). The full factorial experimental design took into account all test concentrations to 

display the relationship between the two variable concentrations and the concentration of 

uranium in the supernatant phase. 
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Figure 11: Response surface diagrams displaying filtrate solution uranium retention in samples 

The results of the samples set show a clear and demonstrative positive correlation between 

the increasing concentration of bicarbonate in synthetic pore water solutions and the 

concentration of uranium in the filtered post-treated supernatant solution. This finding 

suggests that with increasing sample bicarbonate concentration, the amount of uranium in 

the precipitate decreases. It is therefore safe to conclude that the high bicarbonate samples 

would be least likely to precipitate the uranium analyte. 

This observed trend of uranium in the supernatant solutions increasing with added 

bicarbonate is likely indicative of conditions increasingly favoring the formation of uranyl 

carbonates. These species, which are very stable and highly soluble in aqueous solutions, 

form charged complexes, which can adsorb to the surface solid minerals under the right 
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pH conditions. On the other hand, the trends in Figure 11 show that low bicarbonate 

samples have the least uranium remaining in the supernatant solutions and should, 

therefore, have the most in the precipitate phase. This may be explained by the formation 

of uranyl silicates which are relatively stables in the solid phases. 

Additionally, observing Figure 11, there is correlation between the increasing calcium 

concentrations in sample solution and the concentration of uranium in the supernatant. 

Nevertheless, unlike bicarbonate, the increasing calcium is associated with a decrease of 

uranium concentration in solution and, therefore, an increase in the uranium precipitated. 

It is theorized that the increase in calcium could favor the removal or uranium and one 

possible explanation is that the increase in calcium results in the precipitation of less 

soluble solids, such as calcium carbonates or calcium silicates, which could serve as 

nucleation sites provoking Si polymerization reactions and precipitation of silica (Iler, 

1979). When silica precipitates, this can also lead to co-precipitation of uranium. Finally, 

it is also important to note that in all cases the technology was effective in removing U 

from the synthetic pore water solutions. In fact, considering the concentration of U injected 

as 2000 µg/L, the U precipitation/removal efficiencies from the aqueous phases ranged 

between 75-98%.  
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Low Si Concentrations Experiment 

Experimental results were calculated as percent removal of U (VI) from the supernatant 

solutions. The removal values for the contaminant were plotted on the y-axis against the 

initial concentration of Si on the x-axis (Figures 12 and 13). These graphs were used to 

compare results for each data set prepared with different HCO3 concentrations (3mM as 

“low” and 50 mM as “high”). 
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Figure 12: Percent removal of U (VI) tested at variable bicarbonate and silica 

concentrations in 5 mM Al amended solutions containing 2 mg/L U (VI) and (A) 0 mM; (B) 
5 mM; and (C) 10 mM of Ca 

 

Generally, at Ca concentration of 0 mM and Si concentration of 15 mM, the removal 

efficiency of U resulted in the relatively low values, averaging less than 50% ± 20% 
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including both low and high bicarbonate concentrations (Fig. 12A). Also, the presence in 

the solution composition of “high” bicarbonate concentration (50 mM) appears to 

significantly reduce the removal efficiency of U at Si concentration of 15 mM as oppose 

to improving removal efficiency of U at Si concentration of 25 mM (71% ± 2%). This trend 

was observed only at Ca concentration of 0 mM in the solution composition (Fig. 12A). 

This can be explained by the formation of calcium carbonates or calcium silicates, which 

could provoke Si coagulation and precipitation reactions leading to co-precipitation of 

uranium. In the absence of Ca, the co-precipitation of U can only occur in case of Si 

polymerization reactions that require much higher Si content on the level of Si solubility 

concentrations at alkaline conditions. Furthermore, it is evident that, for all three Ca 

concentrations tested, at high bicarbonate concentrations, removal efficiency of U 

improves as concentration of Si increases (Fig. 12A, 12B and 12C). Moreover, the data 

collected suggests that at both Si concentrations of 15 and 25 mM, U (VI) removal 

efficiency reduces as the concentration of bicarbonate is higher; the gap in this reduction 

is smaller at Si concentrations of 25 mM (Fig. 12B and 12C). According to Katsenovich, 

et al (2016), at HCO3 > 25 mM stable soluble uranyl carbonate species such as UO2(CO3)3-

4 become predominant at alkaline conditions. This might explain the relatively lower 

removal efficiency of U compared to “low” bicarbonate concentrations where uranium is 

present in the uranyl hydroxide form. The highest removal efficiency of U up to 99% was 

achieved in the compositions containing “low” bicarbonate concentration for all Ca and Si 

concentrations tested. (Fig. 12) 
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Figure 13: Percent removal of U (VI) tested at variable bicarbonate and silica concentrations in 

5 mM Al amended solutions containing 2 mg/L U (VI) and (A) 5 mM; and (B) 10 mM of Mg 

 

Samples containing Mg which is one of the major constituent in the pore water 

composition, showed similar trends in removal efficiency of U (VI) as previously was 

observed for samples containing Ca. First, at “low” bicarbonate concentrations, Si 

concentrations of 15 and 25 mM and Mg concentrations of 5 and 10 mM, the removal 
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efficiency of U (VI) was greater than 94%. In addition, the data also demonstrated the 

higher bicarbonate concentration correlates with a significant lower removal efficiency of 

U (VI) at Si concentrations of 15 and 25 mM and Mg concentrations of 5 and 10 mM (Fig. 

2A and 2B). Finally, it is visible that higher Si concentrations improve the general removal 

efficiency of U (VI) at “low” bicarbonate concentration and Mg concentrations of 5 mM.  
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Figure 14: Figure 13: Percent removal of U (VI) tested at variable bicarbonate and silica 
concentrations in 5 mM Al amended solutions containing 2 mg/L U (VI) and (A) 0.2 mM; 

and (B) 5 mM of Fe 

The results of U removal in samples containing Fe, showed a relative different trend to 

those containing Ca and Mg. In the presence of low bicarbonate concentrations, the 

removal efficiencies of U tend to be higher caused by possible formations of uranyl 

carbonates and iron oxides solid phases. Similar to the previous cases, under “high” 

concentration of bicarbonate, removal efficiencies are lower, which can be attributed to the 

formation of stable soluble uranyl carbonates. 

The main difference was that in the scenario of higher silica concentrations (25 mM), the 

samples containing high bicarbonate concentrations resulted in higher U removal 

efficiencies compared to their low bicarbonate counterparts. This suggests that high silica 

concentrations might play a role in the removal of U in the presence of Iron, possibly 

forming greater precipitation of iron oxides leading to co-precipitation of U or reducing the 

formation of soluble and stable uranyl carbonates species.  
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VI. CONCLUSIONS 
 

The results from the sequential extraction experiment provides evidence to suggest that U 

present in the solid particles has strong bonds to sediments located in the vadose zone, 

causing the precipitates created after ammonia (NH3) gas injections to be stable and 

therefore the remediation technology to be effective under the simulated conditions. 

Furthermore, evidence shows that there were little soluble U phases found in solutions after 

NH3 gas treatment.  This finding is of great importance given these U phases are of the 

greatest concern in terms of further contamination potential caused by migration to 

groundwater or the surrounding water resources in the Hanford Site.  

Additionally, the results obtained from the low Si experiment, provide details on the effect 

of different low Si concentrations on the removal/precipitation efficiency of U (VI). From 

the experiment, it is evident that solutions with higher concentrations of Si tended to have 

generally greater removal efficiencies of U (VI). The highest percent removal of U (VI), 

98-99%, was achieved at Si concentration of 25mM in the solutions containing calcium 

and bicarbonate concentrations of 10 mM and 3 mM, respectively, possibly explained by 

the formation of stable solid uranyl silicates, calcium carbonates and calcium silicates as 

well as silica polymerization reactions leading to co-precipitation of U. The lowest percent 

removal of U (VI), 2-3%, was observed at low Si concentration of 7.5 mM in the solutions 

containing high bicarbonate concentration of 50 mM, probably favoring the presence of 

strong soluble uranyl carbonates, suggesting that solutions with higher concentrations of 

bicarbonate resulted in lower removal efficiencies of U (VI).  
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 Future Work 

Future experiments on stability of U-bearing precipitates via sequential extraction 

experiment using different silica and bicarbonate concentrations could help understand the 

variances found in the removal of U from NH3 gas treated solutions. Additionally, 

continuous leach extraction experiments consisting of injecting less and more aggressive 

extractants into small columns containing the U-bearing precipitates and collecting 

samples overtime would complement the results found in this study by evaluating the 

relative extractability of U and influence of contact time in U removal efficiencies and U 

leakage potential. In addition, other major constituents found in the soils at different 

concentrations such as iron (Fe) combined with high concentrations of Si and bicarbonate 

could be used to prepare new U-bearing precipitates and evaluate their role in removal 

efficiency of U (VI). Finally, speciation modeling could be of great support to predict the 

distribution of uranyl aqueous species and formation of uranium solid phases likely to be 

present in tested compositions. 
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