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ABSTRACT OF THE THESIS

Distribution and Occurrence of Inorganic and Organic Contaminants in Sediments and

Whole Fish Tissue of Everglades and Biscayne National Parks

by

Adolfo M. Fernandez

Florida International University, 2004

Miami, Florida

Professor Rudolf Jaffe, Major Professor

This study provides a detailed survey of the presence, concentration levels,

and spatial distribution of organic and inorganic contaminants in sediment and tissue

samples collected within Everglades and Biscayne National Parks. The results of these

analyses revealed elevated concentrations of arsenic, and lead and chromium in

Everglades National Park (ENP) sediments exceeding Potential Effects Levels (PEL) in

9, 5 and 5% of sediment samples and concentrations of nickel exceeding Threshold

Effects Levels (TEL) in 5% of samples. In Biscayne National Park, arsenic exceeded

TEL in 4400 of sediment samples. Organic analyses of ENP sediments revealed elevated

concentrations of DDT and its metabolites in 5 % of the samples. Fish tissue analysis

indicate that Endosulfan may pose a hazard in aquatic environments due to its high

frequency of detection, Endosulfan sulfate in 85% and -Endosulfan in 5% of samples.
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1. INTRODUCTION

1.1 Background

South Florida is in the process of undergoing the largest environrental restoration

project in the history of the United States, namely, the Comprehensive Everglades

Restoration Project (CERP). The CERP priorities include altering the system's

hydrology in order to improve the quality, quantity, and timing of water flows into and

throughout the Everglades. The project addresses water quality issues, specifically the

effects of increased levels of nutrients and mercury on the structure and function of

ecosystems in the Everglades region. While these and other aspects of troubled

ecosystems in South Florida have been identified, many others are still being

investigated. Little consideration has been given in the restoration effort to the role that

pesticides and other organic and inorganic contaminants play in the structure and function

of ecosystems in the Everglades although this is clearly a recommendation of the Science

Subgroup (1996) in all physiographic regions that comprise South Florida.

The need to fill the void with more information on chemical contaminants in the

Everglades gains in importance since an increasing number of anthropogenic

contaminants are capable of disrupting endocrine function in vertebrate and invertebrate

wildlife. Pollutants such as trace metals, PCBs, organochlorine pesticides, PAHs and

others, can reach these aquatic environments through atmospheric transport, agricultural,

industrial, municipal and tourism-related activities. However, limited information is

available about the presence and the levels of such pollutants within Everglades National

Park. This study presents preliminary data on eleven major and trace metals, PCBs,
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organochlorine pesticides and PAHs in sediments and tissue samples from Everglades,

and Biscayne National Parks, and discusses their environmental significance.

Most monitoring studies in South Florida have focused on concentrations of

contaminants present in different environmental compartments (exposure assessment).

For example, the South Florida Water Management District (SF WMD) began monitoring

pesticides in water and bottom sediment in South Florida canals in the mid 1980's

(Pfeuffer, 1985, 1991). Recent sediment and water analyses in South Florida by

SFWMD indicate that atrazine, ametryn, bromacil, simazine, diuron, alpha-endosulfan,

beta-endosulfan, endosulfan sulfate, ethion, hexazinone and norflurazon were the most

frequently detected pesticides in surface water. While DDE, DDD, ametryn, atrazine,

dicofol, diquat, and endosulfan sulfate were the most frequently detected pesticides in

sediment samples between 1991 and 1995 (Miles and Pfeuffer, 1997).

Several of the SFWMD sampling sites were located in the Everglades

Agricultural Area (EAA) and others were in the Homestead Agricultural Area (HAA)

adjacent to Everglades National Park. At most sampling sites for water and sediment

more than one pesticide was detected in each sample. The U.S. Geological Survey

(U.S.G.S.) through its National Water Quality Assessment (NAWQA) program is also

measuring the occurrence of pesticides in water, sediment and fish. Recent analysis of

fish (i.e. largemouth bass, Florida gar) collected in 1995 show that concentrations of

organochlorine residues including DDT and its degradation products (p,p'-DDE) have

remained prevalent in freshwater fish and are similar to measurements in the early 1970's

in canals of the northern Everglades (Haag and McPherson, 1997). PCBs were not as

frequently detected in 1995 as in the 1970's but concentration ranges were similar.
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One study conducted as part of the National Oceanic and Atmospheric

Administration (NOAA) Status and Trends Program (Long, E. et al. 1999) surveyed the

toxicity of Biscayne Bay sediments collected from a large number of samples (226). For

this study, a suit of toxicity tests were conducted on all samples collected as well

chemical analysis for the presence of chlorinated pesticides, polychlorinated biphenyls,

polycyclic aromatic hydrocarbons, and trace elements. The results of this study revealed

that the levels of toxicity and chemical contamination are similar to or less severe than

the national average based upon previous NOAA studies. However, several

contaminants appear at elevated concentrations, these include DDT and its metabolites,

PCBs, and trace elements including copper, lead, mercury, cadmium and zinc.

These studies, however, do not provide a comprehensive assessment of the levels

of these contaminants over a wide geographic range nor do they employ consistent

methods of analysis upon uniform matrices. This research project represents one of the

first investigations to define pesticide, PCB, PAH, as well as major and trace metal

distributions, and their toxicological implications and hazard to ecological receptors in

the Everglades and Biscayne National Parks. This study area will focus on sites within

Everglades National Park (ENP) as well as sites within Biscayne National Park (BNP).

The data generated from this study will form the basis for the initial phase (hazard

identification) of an ecological risk assessment under the USEPA framework and it will

provide a scientific information base to meet some of the goals/objectives of the South

Florida Ecosystem restoration effort recommended in the science plan by the interagency

Science Subgroup (1996).
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This project has relevant and significant scientific merit because of the wide scale

uses of pesticides in South Florida, the documented levels of detectable pesticide residues

in soil, water, sediment and biota, the limited data on pesticide, PCB, PAH and trace

element exposure, and biological effects in the Everglades and the known sensitivity of

various organisms to these organic contaminants. Additionally, wide-scale changes in

the hydrology of the Everglades system resulting from proposed CERP projects may have

a significant impact on the presence, transportation, and availability of certain

contaminants.

1.2 Fate of Hydrophobic Organic Contaminants in the Aquatic Environment

Sediments are complex mixture of materials, which are comprised of detritus,

inorganic and organic particles, and are relatively heterogeneous in terms of physical,

chemical and biological characteristics. Sediments are regarded as the ultimate sink for

persistent pollutants discharged into the environment and are one of the best media for

the long-term monitoring of many contaminants. In addition, due to various diagenetic

processes, sediment-bound metals and other pollutants may remobilize and be released

back to overlying waters and in tum impose adverse effects on terrestrial and aquatic

organisms (Li et al., 2000). Sediment quality investigations conducted by NOAA and the

Florida Department of Environmental Protection (FDEP) have indicated that toxic

chemicals are found in the sediments and biota of Florida estuaries (NOAA, 1997) which

resulted in the promulgation of Sediment Quality Assessment Guidelines (SQAQ'S) used

to assess the environmental quality of coastal areas and embayment (McDonald, 1994).
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In addition to soil and sediment analysis, chemical analysis of fish tissue is a

useful tool for assessing the magnitude of contamination of certain pollutants within a

region. Contaminants such as chlorinated pesticides and PCBs are hydrophobic and tend

to accumulate in the lipid tissue of living organisms. Different processes affect the

accumulation of persistent hydrophobic chemicals in aquatic organisms (Jaffe 1991).

The uptake of these chemicals directly from the environment through the gills or by

direct contact with skin is a process known as bioconcentration. Uptake through the

ingestion of contaminated biota is referred to as biomagnification. An important

parameter necessary for the assessment of contamination through these processes is the

bioavailability of a contaminant. Bioavailability is defined as the fraction of the total

bulk of a substance in the environment that can be potentially taken up by an organism

during its lifetime. Since soils and sediments are the ultimate sinks for such

contaminants, their characteristic properties such as organic matter content and particle

size distribution are important factors in determining the bioavailability of these

substances (Jaffe 1991, Van der Gost 2003).

1.3 Organic Contaminants

1.3.1 Organochlorine Pesticides

Organochlorine pesticides (OCPs) are an important group of contaminants of

concern in the South Florida region because of its extensive history of intensive

agriculture. It is estimated that 14,590 tons of pesticides are applied in south Florida each

year (Miles and Pheuffer, 1997). OCPs such as DDT, methoxychlor, chlordane, aldrin,

dieldrin/endrin, heptachlor and endosulfan were introduced as pest control agents after
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the Second World War (Manahan, 2000). Their high toxicity against insects made them

very popular insecticides and their use spread widely in the following decades. However,

most of these compounds are very stable against decomposition or degradation in the

envirom ent, they have very low solubility in water, and they are highly soluble in

hydrocarbon-like environments, such as the fatty material in living matter (Baird 1999).

The properties of OCPs make them environmentally persistent globally and they

are thus, exerting chronic-toxic effects on wildlife and humans (Logananthan, 1994).

OCPs are released locally into the environment during application through agricultural

runoff, leaching and aerial spray drift. They are also transported globally via the

atmosphere resulting from volatilization from soil and crops (Mites 1987). Once in the

atmosphere, OCPs can be deposited in remote areas in the form of wet or dry deposition

(Van Dijk and Guicherit, 1999, Hites 1987). Although most OCPs were banned in the

US in the 1970's due to their toxicity, persistence, and tendency to bioaccumulate, they

continue to be detected in water, sediment and aquatic biota through out the world

(Sapozhnikova and Schlenk, 2004).

1.3.2 Polychlorinated Biphenyls

Polychlorinated Biphenyls (PCBs) are common sediment pollutants. PCBs

comprise a class of 209 nonpolar, chlorinated hydrocarbons with a biphenyl nucleus on

which one to ten of the hydrogen atoms have been replaced by chlorine atoms. The

entire set of 209 PCBs forms a set of congeners. When PCBs are subdivided by degree of

chlorination, the term homolog is used, e.g., trichlorobiphenyl homologs. PCBs of a given

homologous group with a different chlorine substitution position pattern are called
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isomers e. g. 2,3,4-trichlorophenyl and 3,3',5-trichlorobiphenyl are two of the twelve

trichlorobiphenyl isomers (Erickson, 1997).

Commercial PCBs were manufactured and sold as complex mixtures containing

multiple isomers with different degrees of chlorination. PCBs have low water solubility,

low vapor pressures, and are soluble in most organic solvents, oils, and fats. PCBs are

very stable compounds and do not degrade easily (Erickson, 1997). Because of their

lipophilic characteristics and their persistence, they also tend to bioaccumulate (Erickson,

1997). Although use of PCBs has been banned or restricted in most industrial countries,

environmental levels are only slowly decreasing (Wania, and Daly, 2002).

PCBs are extremely persistent to chemical and biological degradation and are

highly hydrophobic, thus, they tend to accumulate in sediments adsorbed on small

particles (Van der Oost, 1996). More than 90% of the environmental burden of PCBs is

found in soil and sediments (Cousins et al, 1999). Consequently, soils and sediments

which once acted as a sink for these compounds have become a source volatilizing PCBs

back to the atmosphere (Cousins et al., 1998). The environmental transport of PCBs is

complex and global. Volatilization of PCBs from spills, landfills, road oils, and other

sources results in measurable atmospheric emissions. Atmospheric transport is the

primary mode of global distribution of PCBs. Environmental levels of PCBs increase

near their sources, thus urban areas have generally higher concentrations than pristine

environments. PCBs are considered ubiquitous pollutants found in nearly all marine plant

and animal specimens including, fish, mammals, birds (especially piscivorous species),

bird eggs, and, of course humans.
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1.3.3 Polycyclic Aromatic Hydrocarbons

Polycyclic Aromatic Hydrocarbons (PAHs) are another group of ubiquitous

organic contaminants present in coastal marine sediments. The distribution and fate of

PAIs in aquatic systems has received much attention due to their mutagenic and

carcinogenic effects (Grimmer, 1983) and their demonstrated impact on ecosystems

(Neff, 1979). Due to their highly hydrophobic and stable chemical structure, PA s are

not very soluble in the water phase but sorb rapidly and strongly onto particles (Sheedy et

al., 1998). The strong adsorption of PAHs on sediment particles could reduce their

bioavailability, reducing their biodegradation rates and preserving them in sediments.

PAHs are efficiently metabolized by phase I enzymes in fish liver resulting in low

clearance time and therefore due not tend to bioaccumulate in fish tissue (Van der Oost,

et al., 2003).

PAHs are components of fossil fuels such as coal and oil and they are produced in

the combustion of organic matter. The occurrence of PAHs in coastal sediments is well

documented and mainly due to both natural and ant opogenic sources (Buehler et al,

2001). Among these, pyrogenic, (mainly combustion of fossil fuel and vegetation), and

petrogenic (petroleum products) inputs are the two main sources (Jones, 1989). It has

been estimated that on a global scale, the distribution of PA s in contemporary aquatic

environments is dominated by input from pyrogenic sources mainly from anthropogenic

combustion processes. Studies have shown that PAHs from pyrogenic and petrogenic

sources exhibited different chemical behaviors and distributions in marine sediments

(Mastral, 2002). For example, PA s from pyrogenic sources tend to be more strongly

associated with sediment and soot particles and more resistant to microbial degradation
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than PAHs from petrogenic sources (Wang, 2001). Lang, et al. (2002) conducted a study

in the Miami area to identify and characterize the distribution of PAHs in the atmosphere.

The results of this study indicate that automobile exhaust is the predominant emission

source for atmospheric PAHs in this area, while other sources such as waste incineration,

power plants, and biomass combustion contribute a lesser fraction. Based on these

results and the increasing population and urbanization of the south Florida area, an

increase of PAH deposition in the Everglades Region can be expected.

1.4 Trace Elements

Trace metals such as lead, cadmium and arsenic are naturally present in the

environrent at very low levels. Some of these, such as copper and zinc, are required as

nutrients for plants and animals at very low concentrations, but at enriched levels can be

toxic (Papagiannis 2004, Barwick 2003). Trace elements are a considerable

environmental hazard due to their extensive use, toxicity, widespread distribution, and

environmental persistence. Metals are for the most part transported from place to place

via the atmosphere, as gases or as species adsorbed on or absorbed in suspended

particulate matter. The ultimate sinks for metals are soils and sediments (Baird, 1999).

In South Florida, trace metal contamination can be attributed to both local and

regional sources as well as trans-oceanic transport i.e. African dust (Dvonch et al., 1999;

Graney et al., 2004; Holmes and Miller, 2004). Specifically, local sources include

municipal solid waste incineration facilities, with emissions characterized by elevated

concentrations of zinc, lead, mercury, chlorine, and bromine (Graney et al. 2004). Oil

fired power plants, which are common in south Florida are associated with emissions of
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Vanadium and Nickel (Graney et al., 2004; Dvonch et al., 1999). Additionally,

substantial amounts of particulate material containing zinc, lead, and copper, have been

found in emission from municipal and medical waste incineration and cement production

facilities (Graney et al., 2004). Global transport is another important source of trace

metal contamination in south Florida, with African dust accounting for about 25% of

arsenic deposition (Holmes and Miller, 2004). In South Florida, mercury contamination

has received much attention due to the elevated concentrations detected in water,

sediments, soils, and biota at various trophic levels (USEPA 2002). Although mercury

contamination will not be addressed in this study, its presence as a trace element

contaminant should be taken into consideration when discussing the distribution of other

trace elements in the study area.

1. Purpose and Scope

Due to the extensive development, persistence of intensive agriculture in

southeast Florida, and the presence of sediment and tissue contaminants in other south

Florida localities, a complete assessment of the sediment quality of the Everglades

watershed was conducted.

The main objectives for the study are as follows:

* Provide a detailed survey of the presence, concentration levels, and spatial

distribution of organic and inorganic anthropogenic contaminants in sediments

and whole fish tissue collected within the Everglades and Biscayne National

Parks.

10



Establish the potential hazard associated by the presence of common

contaminants using Sediment Quality Assessment Guidelines (SQAGs).

Development of a chemical-toxicological information base that will assist in

filling existing data gaps and managing the South Florida Ecosystem restoration

efforts.

Identify sites within ENP and BNP where additional monitoring should be

considered.

11



2. EXPERIMENTAL

2.1 Chemicals

Water (H20), dichloromethane (CH2C12), pentane (C 5H1 2), hexane (C 6H 14) of

pesticide grade or equivalent, hydrogen peroxide (H20 2), and nitric acid (HNO 3),

hydrochloric acid (HCl) of trace metal grade, and silica gel (60 mesh), alumina, sodium

sulfate (Na2SO4), sand, fiber glass, and metallic copper (Cu) were obtained from Fisher

Scientific (Fair La , NJ). All chemicals were used as received with the exception of

anhydrous sodium sulfate, sand, glass fiber, which were combusted at 450 °C for 4 hours.

The silica was activated in the oven at 170 °C for 16 hrs.

Standards of all the contaminants analyzed were purchased from different

companies such as Supelco, Chem service, and Ultra scientific. Standards used for the

trace metal analysis were obtained from GFS chemicals

2.2 Sampling Strategy and Site Locations

The sampling strategy for the project was based on the assumption that regions of

the Everglades National Park (ENP) located near the Homestead Agricultural Area are

more prone to chemical residue deposition, exposure and adverse effects than more

remote areas. A list of sampling locations and dates for ENP is given in table 1. The first

sediment-sampling event for Everglades National Park was performed between August

and September of 2001. A map of ENP sediment sample stations is given in figure 1.

Samples were collected from 5 transects. The first transect follows an east-west direction

across the northern boundary of the park which receives water from the Water

12
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Areas to the north of the Park and lies just south of Tamiami Trail, the major highway in

this area. The second transect follows a north-south direction across the eastern boundary

of the park, this transect lies closest to the Homestead Agricultural Area (HAA). The

third transect is located in the drainage basin of the C-111 canal which flows through

most of the HAA. The last two transects follow the Shark Slough and Taylor Slough

which flow in a south-west direction from the north and east boundaries, respectively. At

each sampling site, the top 3 inches of five 2.5" cores were collected from within a l00m2

area, consolidated and stored frozen in combusted glass jars with Teflon lined lids for

analysis.

A list of sampling stations for Biscayne National Park (BNP) and Florida Bay is

given table 2. In BNP, samples were collected from 9 stations at areas near land along

the channel from Black Point Marina, off the channel from Turkey Point Nuclear Power

Plant, near outflows from an inland canal, as well as from sites near Elliot Key, a barrier

island approximately 8 miles offshore. A detailed map of BNP sediment sample stations

is given in figure 2. Sediment samples were also collected at four stations from the

eastern area of Florida Bay from areas near the outflow of the C-111 canal as well as

more remote areas of the Bay. A detailed map of Florida Bay sampling stations is given

in figure 3. At each station, 3 samples were collected by diving, and directly placed into

pre-combusted 500 mL glass jars with Teflon lids, which were later consolidated and

stored frozen until prepared for analysis.
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Figure 3.-Detailed map of Florida Bay sediment sampling stations.

Several stations from within ENP were chosen for further analysis and sediment

collections were made during the second year sampling event. These stations were

representative of three regions, the C-111 basin, Shark Slough, and the East Boundary

near the HAA, which exhibited elevated concentrations of several contaminants.

Sediments from these stations were also collected for ecotoxicological assays to be

conducted by FIU's ecotoxicology laboratory.
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Tissue sampling for this study was conducted between December 2001 and

September 2003 from 14 stations previously sampled for sediment analysis. Because of

their limited mobility and their limited capacity for biomagnification, the fish chosen for

analysis include mosquito fish (Gambusia holbrooki, marsh killifish (Funduls

confluentus), flag fish (Jordanella floridac), mayan cichlid (Cichlasoma urophthalnus),

pike killifish (Belanesox belizanu ), bluefin killifish (Lucania goodie), and sunfish

(Lepomis spp.). A list of fish tissue sampling stations is given in Table 3. The collection

date given in table 3 is the first collection date for that station; multiple collections were

conducted until an adequate sample size was attained.

Samples were collected using 4 and 1/8" minnow traps deployed 24 hours prior to

collection. Fish were identified and sorted at the collection sites and composite samples

(N> 20) were homogenized, then stored at < -10° C until ready for analysis.

Fish samples were also collected from 6 stations in Florida Bay using cast nets.

These samples included larger species of fish such as mojarra (Cichlasoma spp.) and

mullet (Mugil spp.). A detailed map of fish sampling stations is given in figure 4
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2.3 Sample Preparation

2.3.1 Dry Weight Determination of Sediments

In order to express the results of analysis on a dry weight basis for sediments, the

dry weight percent of sediments must be determined. A 5 - 10 g sub-sample of

homogenized sediment from each sample was placed in a pre-weighed 40 mL beakers

and the weight recorded. The beakers were then placed in a drying oven at 65 °C for 24

hours. The beakers were then weighed and the weight recorded and then placed back in

the oven for a two-hour period. The sample set was then reweighed and the weight

recorded. This process was repeated for each sample until the difference between two

consecutive weights was less than 0.02 g. For each set of 20 samples or less a duplicate

was processed with a maximum allowable Relative Percent Difference (RSD) of ± 25%.

If the RSD exceeded the criteria, the entire set was reprocessed.

2.3.2 Organic Matter Determination of Sediments

Since a significant portion of the organic contaminants in sediments are bound to

the organic matter fraction, it is useful to determine the organic matter content of a

sediment sample for interpretation of the results of OCP, PCB, and PAH analysis.

In order to conserve the amount of available sample, the sub-samples employed

for the determination of percent dry weight were used for total organic matter

determination. The beakers containing the dried sediment samples were covered in

aluminum foil and placed in a combustion oven at 450 °C for a 24 period. The

samples were then allowed to cool to room temperature in a dessicator. The beakers

were then weighed and the weight recorded and then placed back in the oven for a two-
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hour period. The sample set was then reweighed and the weight recorded. This process

was repeated for each sample until the difference between two consecutive weights was

less than 0.02 g. For each set of 20 samples or less a duplicate was processed with a

maximum allowable Relative Percent Difference (RSD) of ± 250%. If the RSD exceeded

the criteria, the entire set was reprocessed.

2.3.3 Sediment Grain Size Analysis

Previous studies have shown that sediment contamination concentrations can be

correlated to the grain particle size with higher concentrations associated with the smaller

sized particles (Thompsom and Eglinton 1978). Therefore, this characterization was

performed in this study.

A ROTAP RX-29 with 8" Fisher Brand test sieves was used to determine particle

size distribution of sediment samples. The sieves used were: # 10 (2000pm), # 60 (250

pm), # 120 (125 pm), and # 230 (63 pm). 10 - 20 g sub-samples of homogenized

sediment were dried in a drying oven at 65 °C for at least 24 hrs. Samples were then

placed over the # 10 sieve, were covered and then sieved for 3 - 5 minutes. The top

fraction > 2000 pm was discarded, and the remaining four fractions were then each

collected and weighed to 0.001 g to determine the percent of medium/ coarse/ v. coarse

sand, fine sand, very fine sand, and silt fractions.
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2.3.4 Sediment preparation for ICP-MS determination of Metals

The method used for digestion of sediment and soil samples for Inductively

Coupled Plasma Mass Spectrometry (ICP-MS) is based on EPA Method 3052 for

microwave assisted acid digestion of siliceous and organically based matrices. Between

0.2 and 0.5g of thoroughly homogenized sediment (dry weight basis) was placed in a 100

mL fluorocarbon (PFA) microwave digestion vessel, and 10 mL of trace metal grade

HNO3 was slowly added. The vessels were sealed and the samples were processed for a

total of 15 min. The samples were digested using a microwave digestion system (Mars 5,

CEM) at 180 °C for 9 min (EARL SOP-2000-I-001.1).

After digestion, the samples were quantitatively transferred to 100 ml volumetric

flasks and diluted to the mark with DDI water then transferred to acid cleaned 125 mL

Nalgene HDPE bottles for storage prior to analysis. After the particulates settled, 2 ml of

the clear solution was placed in a 10 ml plastic test tube and diluted to 10 ml with DDI

water. In the case of major elements such as aluminum, the solutions were diluted 100

times before ICP/MS analysis. Fifty microliters of internal standard solution (Y, Sc, In,

and Rh 10 ppm) was added, thoroughly mixed, and the samples were ready for ICP/MS

analysis. All samples were digested with a duplicate, and for each batch of 10 or less

samples, blanks, matrix spikes, and reference materials were processed as part of the

QA/QC protocol. Certified reference materials digested for soil/sediment analysis

include PACS-2 marine sediment reference material obtained from National Research

Council Canada (NRCC) and Buffalo River Sediment 2704 obtained from the National

Institute of Standards and Technology (NIST).
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2.3.5 ish tissue preparation for GC-ECD determination of Organochlorine Pesticides,
PCBs, and GC-MS determination of PAHs.

The method used for the extraction and clean-up of sediments for trace organic

analysis is based on the method described by NOAA (1998). Approximately 20g of the

wet sediment samples were chemically dried using sodium sulfate (Na 2SO4); soxhlet

extracted for 20 hours with 300 mL of dichloromethane in 500 mL flat bottom flasks.

Samples were concentrated to 1 ml hexane using a 3-ball Snyder column in a hot water

bath at 65 °C followed by a quantitative transfer into a 25 mL concentrator tube with the

addition of hexane until final volume was achieved and boiling ceased, solvent cleaned

Teflon boiling chips were added at each concentration step. Samples were then purified

from potential matrix interferences using a mixed bed silica-alumina chromatographic

column.

The chromatographic column was prepared in Pentane with 10g of Alumina

previously deactivated with 1% wt./wt. DDI water followed by 20g of Silica deactivated

with 5% wt./wt. DDI water. NaSO 4 was added on top to prevent humidity in the column.

The sediment extract concentrated to 1 ml of Hexane was added to the column. The first

fraction containing the aliphatic hydrocarbons was eluted with 45ml of pentane at a rate

of 1 mL/min. The second fraction was eluted with 250ml of a 1:1 mixture of pentane:

dichloromethane. This second fraction contains the aromatic compounds that include

PCBs, organochlorine pesticides and PAHs. Approximately 1Og of Acid activated (5%

HCl) metallic copper (Cu) was added to eliminate elemental Sulfur that can act as

interference in the GC/ECD determination of Organochlorine compounds.
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Internal standard surrogate solutions were added to each sample prior to

extraction. For Organochlorine pesticide and PCB analysis, A 100 ptL solution of

DBOFB (1.0355 ppm), PCB 103 (1.0385 ppm), PCB 198 (1.0135 ppm), and OCN (209.7

ppm) was added to each sample and QC sample. For PAH analysis a 100 pL mixture of

2 ppm Napthalene-d8, Phenanthrene-d10, Chrysene-d12, Acenapthene-d10, and

Perylene-d12, were added to each sample and QC sample. A 100 pL spiking solution

containing all Organochlorine analytes and a 100 pL spiking solution containing all PAH

analytes were added to each matrix spike (MS) and laboratory blank spike (LBS) for

QA/QC prior to extraction.

Prior to transfer of the second fraction into 2 mL amber glass vials, 100 pL of

TCMX (1 ppm) and 100 pL of 2 ppm Flourene-d10 and Benzo(a) Pyrene-d12 were

added to each sample and QC sample as external standards for OC and PAH analysis

respectively. For the aliphatic fraction, 100 pL of TCMX (1 ppm) was added as an

external standard.

2.3.6 Percent Dry Weight Determination of Tissue

In order to express the results of analysis on a dry weight basis for tissue samples

the dry weight percent of the tissue must be determined. A 3 - 5 g sub-sample of

homogenized tissue from each sample was placed in a pre-weighed 40 mL beakers and

the weight recorded. The beakers were then placed in Labconco vacuum freeze drier for

3 days. The beakers were then weighed and the weight recorded and then placed back in

the freeze drier for a 24 hr. period. The sample set was then reweighed and the weight

recorded. This process was repeated for each sample until the difference between two

26



consecutive weights was less than 0.02 g. For each set of 20 samples or less a duplicate

was processed with a maximum allowable Relative Percent Difference (RSD) of ± 25%.

If the RSD exceeded the criteria, the entire set was reprocessed.

2.3.7 Determination of Percent Lipid in Tissue

Concentrations of organic contaminants are often expressed as a function of the

percent lipid content of a tissue sample since most organic contaminants are lipophilic,

and therefore tend to accumulate in higher concentrations where the percent lipid is

greater. To method applied for determining the percent lipid content of tissue samples is

modified from NOAA (1998), a 20 mL aliquot of the dichloromethane extracted tissue

was placed in a loosely capped 24 mL vial and allowed to evaporate to dryness. The

samples were then reconstituted to 1 mL in dichloromethane. 100 tL was then

transferred to a clean, dried, Whatman@ GF/C glass microfibre filter paper (1 cm x 2

cm), pre-weighed to 0.001 mg using a Ca Electrobalance, and then placed on pleated

sheet of heavy duty aluminum foil over a hot plate set at the lowest setting. After 30

minutes the filter paper was weighed and the weight recorded. This was repeated until

the difference in weight between two consecutive weighs was less than 5 %. For each set

of 20 or less samples, a duplicate sample was processed. If the RPD between duplicates

was not within ± 25 %, the entire batch was reprocessed.
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Equation 1. Percent Lipids in fish tissue.

Percent Lipid =-- x - x -- x 100
AV VW SW

where TV is the total volume of the extract (mL), AV is the volume of the aliquot (mL),

FV is the final volume (mL), VW is the volume weighed (mL), LW is the lipid weight

(g), and SW is the sample weight (g).

2.3.8 Fish tissue preparation for GC-ECD determination of Organochlorine Pesticides,PCBs, and GC-MS determination of PAHs.

The method used in study for the extraction of fish tissue for trace organic

analysis is modified from the method described by NOAA (1998) and has been applied

previously for extraction of trace organics from tissues (Gardinali et al, 1996, Gardinali

and Wade, 1998). An aliquot of 10 - 12g (wet .) of tissue sample was weighed into a

200 mL centrifuge bottle and then the appropriate surrogate and spiking solutions were

added. Approximately 40g of anhydrous sodium sulfate and 100 mL of dichloromethane

were then added to each bottle. Each sample was then macerated for 3 min using an

Ultra Turrax* T18 Basic tissuemizer. The sample extract was then decanted and filtered

through a funnel with a glass wool plug and approximately 40g sodium sulfate pre-wetted

with dichloromethane into a 500 mL flat bottom flask. The extraction was repeated two

more times with 100 mL aliquots of dichloromethane, after the third extraction, the

sample bottles were rinsed 3 times with dichloromethane and poured through the funnel

into the flask. The total volume of the flask was then marked with a permanent marker

and a 20 mL aliquot removed for lipid content analysis.
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Internal standard surrogate solutions were added to each sample prior to

extraction. For Organochlorine pesticide and PCB analysis, A 100 pL solution of

DBOFB (1.0355 ppm), PCB 103 (1.0385 ppm), PCB 198 (1.0135 ppm), and OCN (209.7

ppm) was added to each sample and QC sample. For PAM analysis a 100 L mixture of

2 ppm Napthalene-d8, Phenanthrene-d10, Chrysene-d12, Acenapthene-d10, and

Perylene-d12, were added to each sample and QC sample. A 100 pL spiking solution

containing all Organochlorine analytes and a 100 L spiking solution containing all PAH

analytes were added to each matrix spike (MS) and laboratory blank spike (LBS) for

QA/QC prior to extraction.

Prior to transfer of the second fraction into 2 mL amber glass vials, 100 pL of

TCMX (1 ppm) and 100 pL of 2 ppm Flourene-d10 and Benzo(a) Pyrene-d12 were

added to each sample and QC sample as external standards for OC and PAM analysis

respectively. For the aliphatic fraction, 100 L of TCMX (1 ppm) was added as an

external standard.

The sample extract was then concentrated and purified using a mixed bed silica-

alumina chromatographic column in manner similar to sediment samples as mentioned

above except the addition of copper turnings, which are not necessary for tissue samples.

After silica-alumina cleanup, sample extracts are concentrated to 1 mL of

dichloromethane.
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2.3.9 Purification of Tissue samples by Gel Permeation Chromatography for Organic
analysis

Sample extracts from biological tissue samples contain large amounts of lipids

and high molecular weight components that may interfere with the instrumental analysis

of PAHs OCPs, and PCBs. Sample extracts are purified of these interferences by size

exclusion chromatography using a gel permeation chromatographic technique employing

a high performance liquid chromatography system consisting of an Acuflow Series I

HPLC pump, and a Thermo Separation Products Spectra Series UV 150 ultraviolet

detector set at X 254. Samples were processed through a Phenomonex phenogel 50 x

7.80 mm 10 micron guard column and two Phenomonex phenogel 300 x 21.20 n 10

micron 100A columns.

Prior to introducing samples, the HPLC is calibrated using a solution containing

spiking level concentration of all analytes and surrogates to be analyzed and an

appropriate amount of fish oil to achieve a 10 % lipid content in a dichloromethane

solution. The calibration solution is introduced to the HPLC system at a rate of 5 mL per

minute at an operating pressure of 350 to 450 psi. BLAB chromatographic software is

used to determine the retention times of the lipid content and the target compounds to

determine the appropriate collection times for each fraction. A dichlorormethane blank is

also processed to verify no contamination within the system. Total process time for each

sample is 40 min with the desired fraction collected from about 21 min to 40 min.

After calibration of the GPC-HPLC system was verified, alumina-silica purified

samples pre-concentrated to just under 1 mL dichloromethane were introduced into the

system and the desired fraction collected into 250 mL flat-bottomed flasks. A
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dichloromethane blank was processed after every five samples and a calibration solution

processed after every ten samples. The GPC purified extract was then concentrated to

approximately 5 - 10 mL in a hot water bath set a 65 °C in the flat-bottomed flask with a

3-ball Snyder column. The concentrated sample was then quantitatively transferred into

25 mL concentrator tubes and concentrated to 1 mL, exchanging the final solvent to

hexane. The appropriate internal standards for GC-ECD and GC-MS analysis were then

added before transferring samples into labeled 2 mL amber vials with Teflon lined caps

for storage until ready for analysis.

2.3.9 Preparation of fish tissue samples for ICP-MS determination
of trace elements.

The method employed for total digestion of tissue samples is an adaptation of

EPA Method 3050B using an Environmental Express HotBlockTM. An aliquot of

approximately 1 gram (wet wt.) was directly weighed into a 50 mL polypropylene

digestion vessel. 10 mL of 50:50 trace metal grade (TMG) nitric acid and DDI water was

then added to the vessel, swirled to mix well, covered with a watch glass and placed in

the HotBlock at 95 °C for 15 minutes. The sample was then removed from the HotBlock

and allowed to cool before the addition of 5 mL of concentrated TMG nitric acid and then

placed back in the HotBlock. After 60 minutes, the sample was removed from the

HotBlock; allowed to cool before the addition of 2 - 5 mL of DDI water, followed by the

slow addition of 1 mL of 30% A.C.S. certified H202, allowing 5 -10 minutes for

exothermic reaction to occur before returning sample to the HotBlock. After 30 minutes

an additional 0.5 mL of H202 is added to sample, this step is repeated until no reaction

occurs upon addition of H202. After cooling, the sample is diluted to 50 mL in digestion
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vessel and is ready for analysis. QA/QC for each set of 20 or fewer samples included a

blank, two blank spikes, and two matrix spikes were processed, whenever possible

samples were processed in triplicates, if sufficient sample was not available for all

samples, a duplicate was processed with each batch. A 0.25 - 0.5 g aliquot of DORM-2

(CNRC) dogfish muscle reference material was digested with each batch as part of the

QA/QC protocol.

2.4 Instrumental Analysis

2.4.1 Organochlorine Pesticide and PCB determination by GC-ECD

Chlorinated hydrocarbons can be determined at trace concentrations (ppb) using

gas chromatography with and electron capture detector (ECD), a list of target analytes if

given in Table 4. Purified extracts were analyzed for chlorinated hydrocarbons in a

Hewlett Packard 598011 gas chromatography with electron capture detection (GC-ECD)

using a 30-meter, 0.25 mm i.d., 25 pm DB-5 fused silica capillary column from J&W

Scientific. The HP 588011 GC is equipped with a split/splitless capillary inlet system with

a splitless liner, ultra high purity (UHP) grade helium as a carrier gas (25 psi), and UHP

grade nitrogen for make-up gas (40 psi). The initial temperature for the oven is 100°C,

and it reaches a maximum temperature of 300°C. The injection port has a temperature of

2800 C and the ECD at 325 °C. The run length is about 93.33min.
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Table 4.-Organochlorine pesticides and Polychlorinated Biphenyls of interest.

Pesticides Polychlorinated biphenyls

Chlrorinated Benzenes Dichlorobiphenyls

Tetrachlorobenzene 1,2,4,5 PCB8/5
Tetrachlorobenzene 1,2,3,4 Trichlorobiphenyls

Pentachlorobenzene PC18/17

Hexachlorobenzene PCB29

Hexachlorocyclohexanes PCB28/31

Alpha HCH Tetrachlorobiphenyls

Beta HCH PCB52

Gamma HCH PC844

Delta HCH PCB66/95

Chlorodane-related Compounds Pentachlorobiphenyls

Heptachlor PCB101/90

Heptachlor Epoxide/OCS PCB87/115

Alpha Chlordane PCB105

Gamma Chlordane Hexachlorobiphenyls

Other Cyclodiene Pesticides PCB153/132

Aldrin PCB138 /160

Dieldrin Heptachlorobiphenyls

Endrin PCB187

Other Chlorinated Pesticides PCB180

Chlorpyrifos PC B170/190
Mirex Octochlorobiphenyls

Endosulfan Sulfate PCB195/208

Endosulfan 11 Nonachlorobiphenyls

DDTs and Related Compounds PCB206

2,4 DDE/ENDOSULFAN I Decachlorobiphenyls

4,4' DDE PCB209

2,4' DDD

4,4' DDD

2,4' DDT

443 DDT
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Internal standard quantitation with a 5-point calibration curve (5 - 200 ng/mL)

was used for the analytical determinations. The analysis requires a correlation coefficient

of 0.99 for all of the compounds analyzed. Analyte concentrations were calculated based

on surrogate standards using PCB 103. Surrogate standard recoveries were calculated

using the internal standard TCMX. For each set of samples analyzed, all QA samples

including blanks, fortified laboratory blanks, duplicates, and matrix spikes were included

in the sequence. The calibration standards were interspersed throughout the sequence to

account for instrument drift of retention times and changes in sensitivity.

In the event the response for any sample peak exceeded the highest calibration

solution, the extract was diluted and a known amount of surrogate solution added. The

final concentration was then reported, adjusted for dilution using the ratio between

TCMX and the added surrogate concentrations.

2.4.2 PAHs determination by GC-MS

GC-MS provides sensitive detection of polycyclic aromatic hydrocarbons (PAls)

at low concentrations due to their strong molecular ion response. A list of PAils

analyzed is given in Table 5. PAHs were analyzed from the purified extracts using a

Hewlett-Packard HP589011-HP5971 gas chromatography-mass spectrometry system

operated in selected ion mode (GC/MS-SIM). Chromatographic separation was achieved

in a 30-meter 0.25 m i.d., 25 pm DB5-MS fused silica capillary column using UHP

grade helium as the carrier gas at a flow of 2.0 mL/min. The mass spectrometer was

operated at 70 eV electron energy in the electron impact ionization mode. The injection

port was held at 300°C and operated in splitless mode. The oven was set up at an initial
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Table 5.-Polycyclic Aromatic Hydrocarbons of interest.

GC Standards Quantitation ion Confirmation ion
Benzo(a)pyrene d-12 264 260
Fluorene-d10 176 174

Surrogates
Perylene-d 12 264 260
Naphthalene-d8 136 134
Acenaphthene-d10 164 162
Phenanthrene-d10 188 184
Chrysene-d12 240 236

Target Compounds
Naphthalene 128 127
2-methylnapthalene 142 141
1-methylnapthalene 142 141
2,6-dimethyinapthalene 156 141
1,6,7-trimethyinapthalene 170 155
C2-Napthalenes 156 141
C3-Napthalenes 170 155
C4-Napthalenes 184 169
Biphenyl 154 153
Acenaphthylene 152 153
Acenaphthene 154 153
Flourene 166 165
C1-fluorene 180 165
C2-fluorene 194 179
C3-fluorene 208 193
Dibenzothiophene 184 152
C1-Dibenzothiophenes 198 184
C2-Dibenzothiophenes 212 197
C3-Dibenzothiophenes 226 211
Phenanthrene 178 176
Anthracene 178 176
Carbazole 167 166
1-methylphenanthrene 192 191

C1-phenan/anthrac 192 191
C2-phenan/anthrac 206 191
C3-phenan/anthrac 220 205
C4-phenan/anthrac 234 219
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Table 5 continued.-Polycyclic Aromatic Hydrocarbons of interest.

Flouranthene 202 101
Pyrene 202 101
C1-fluor/pyrene 216 215
Benz(a)anthracene 228 226
Chrysene 228 226
C1-chrysenes 242 141
C2-chrysenes 256 241
C3-chrysenes 270 255
C4-chrysenes 284 NA
Benzo(b)flouranthene 252 253
Benzo (k)fluoranthene 252 253
Benzo (e)pyrene 252 253
Benzo (a)pyrene 252 253
Indeno[1,2,3-cd]pyrene 276 277
Benzo[g,hiperylene 276 277
Dibenzo(ah)anthracene 278 279
Perylene 252 253
temperature of 55°C and a final temperature of 300°C at a rate of 6.5 °C/min. The total

run time was 50min.

A 5-point calibration curve (20 ng/mL - 4000 ng/mL) with a correlation

coefficient of > 0.99 for all analytes was used to demonstrate the linear range of the

detector. Analyte concentrations are calculated based on surrogate standards Napthalene-

d8, Phenanthrene-dlO, Chrysene-d12, Acenapthene-d10, and Perylene-d12. Surrogate

standard recoveries are calculated based on internal standards benzo(a)pyrene-dl 2 and

flourene-d10. A NIST standard reference material (SRM 1491) at a concentration of

12000 pL/mL with appropriate surrogates and internal standards is processed with every

sequence to verify accuracy of calibration curve. For each set of samples analyzed, all

QA samples including blanks, fortified laboratory blanks, duplicates, and matrix spikes

were included in the sequence.
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2.4.3 Trace and Major Element Determination by ICP-MS

The method used for inductively coupled plasma-mass spectroscopy (ICP-MS)

determination of trace and major elements was developed based on EPA Method 6020A

(Revision 1, 1998). This method was chosen for its ability to analyze for a wide range of

elements at the ppb level in a very short amount of time. The elements chosen for

determination in this study and their masses of interest are listed in Table 6.

Table 6.-Trace and major elements of interest (EPA Method 6020A).

Element Masses IS

Aluminum (Al) 27 45

Arsenic (As) 75 89,103

Beryllium (Be) 9 45

Cadmium (Cd) 111,112,114 103,115

Chromium (Cr) 52,53 45,89

Cobalt (Co) 59 45,89

Copper (Cu) 63,65 45,89

Lead (Pb) 206,207,208 89,103

Nickel (Ni) 58,60,61 89,103

Silver (Ag) 107,109 89,103

Vanadium (V) 51 45,89

Zinc (Zn) 64,66,68 45,89
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2.4.3.1 ICP-MS determination of sediment samples

The ICP-MS instrument used for metal analysis of sediments was Model HP 4500

plus (Hewlett-Packard Co., Wilmington, DE) equipped with a Babington-type nebulizer

and an ASX-500 autosampler (Cetac Technologies Inc., Omaha, NE). Instrument

configuration and general experimental conditions were reported previously (EARL

SOP-2000-I-004.1). A set of 9 calibration points was used for minor and major elements

(0, 2, 5, 7, 10, 20, 50, 100, 200 ppb). The analysis requires a coefficient of correlation

greater than 0.99 for all elements. For each sample, 2 mL of digestate (10% HNO2 ) was

placed in a 15 mL plastic test tube, then 50 L of 10 ppm internal standard solution (Y,

In, Sc, and Rh) was added to each test tube, and the solution diluted to 10 mL (2%

HNO2 ). Internal standards were added to all samples, calibration standards, instrument

checks, and QA samples to correct for instrument drift and physical interferences present

in sample matrices. For analysis of aluminum, samples were diluted 100 times to bring

the concentrations within the calibration curve.

The QA/QC protocol for each batch of samples processed includes blanks, blank

spikes, matrix spikes, duplicates, and SRM. An instrument check solution, obtained from

a source independent of the calibration and stock standards, containing all analytes of

interest was processed at 3 concentration levels at the beginning, middle, and end of each

sequence to verify accuracy of calibration curve and check for instrument drift.

2.4.3.2 ICP-MS determination of tissue samples

The ICP-MS instrument used for metal analysis of tissue samples was a Perkin

Elmer ELAN DRC equipped with a Babington-type nebulizer and an ASX-500

autosampler (Cetac Technologies Inc., Omaha, NE). A 1.5-point calibration curve (0,
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0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5, 7, 10, 20, 50, 100, 200 ppb) was used for all elements.

The analysis requires a coefficient of correlation greater than 0.99 for all elements.

For each sample, 1 mL of digestate (20% HNO 2) was placed in a 15 mL plastic test tube,

then 50 pL of 10 ppm internal standard solution (Y, In, Sc, and Rh) was added to each

test tube, and the solution diluted to 10 mL (2% HNO 2). Internal standards were added to

all samples, calibration standards, instrument checks, and QA samples to correct for

instrument drift and physical interferences present in sample matrices. QA/QC protocol

for tissue analysis was the same as that for sediment analysis.
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3. RESULTS AND DISCUSSION

3.1 Sediment Contamination Assessment

To date, there are no state or federal standards or mandates concerning

contamination of sediments and soils. However, several environmental regulatory

agencies, such as the National Oceanic and Atmospheric Administration (NOAA), the

U.S. Environmental Protection Agency (EPA), and the Florida Department of

Environmental Protection (FDEP) have developed guidelines to be used in assessing the

potential hazard of certain pollutants in both freshwater and marine environments as well

as in sediments and soils.

FDEP has established Sediment Quality Assessment Guidelines (SQAGs) in order

to evaluate the potential for biological effects associated with sediment-sorbed

contaminants (MacDonald, 1994). The SQAGs developed for Florida are based on high

quality sediment toxicity databases. These databases were used to develop two

guidelines for interpreting the effects of contaminants on biological endpoints; these are a

threshold effects level (TEL) and a probable effects level (PEL). The TEL represents the

upper range limit of contamination for which no effects are observed in the majority of

toxicity studies done for that contaminant. Below this level, contaminants are not

considered to pose a significant hazard to aquatic organisms. The PEL represents the

lower limit of a contaminants concentration, which is usually associated with adverse

biological effects to aquatic organisms. Above this level, contaminant concentrations

could potentially be associated with adverse biological effects. These guidelines even

though applicable to freshwater environments, were developed for marine environments.
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Thus, whenever available, TEL and PEL criteria for freshwater sediments as described by

NOAA Screening Quick Reference Tables (SQRTs) are used.

3.2 Organic Contaminants in Sediments

3.2.1 Organochlorine Pesticides

A total of 25 organochlorine pesticide (OCP) compounds were chosen for this

analysis. A summary of the OCP compounds detected in the sediments and their

concentration ranges are given in Table 7. Of the OCPs detected in sediments from

Everglades National Park, only DDT, its metabolites DDD and DDE, and dieldrin were

in exceedance of the established TEL criteria. PEL criteria were not exceeded for any

contaminant at any of the stations. Ranked concentrations of these contaminants vs.

TEL/PEL criteria are shown in figures 5-8. Since organic contaminants tend to

accumulate more in sediments with greater organic matter (OM) content, OCP

concentrations are also plotted normalized against total OM to account for variations in

OM within the study area. It should be noted that concentrations expressed in ng/g

organic carbon, are not applicable to the TEL and PEL criteria that are expressed in ng/g

dry weight. Several other pesticides were also detected frequently, at very low levels, in

sediment samples thoughout ENP. For example, aldrin, endrin, and chlo yrifos, were

detected in 59% (13/22), 46% (10/22), and 9 % (2/22) of the samples respectively.

However, these concentrations are low (< 1.0 ppb) and should not be of particular

concern. The spatial distributions of total DDTs and p-p'DDE in ENP, BNP and Florida

Bay sediments are given in figures 9-10.
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Figure 6.- Ranked concentrations of p-p'DDD in ENP sediment.
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One compound of particular concern in south Florida because of its extensive use

in the HAA is endosulfan. More than 700% of the endosulfan applied in the southeastern

U.S. is applied to vegetable crops in south Florida (Scott et. al. 2002). Endosulfan has

been classified as a toxicity class 1 highly toxic pesticide by the EPA and has a regulatory

status of Restricted Use Pesticide (RUP). Technical endosulfan is comprised of two

isomers a and f endosulfan that are usually applied in a 70/30% mixture (ATSDR 2002).

Endosulfan is moderately persistent in soil with estimated half-lives of 35 and 150

days for the c, and p isomers respectively, and both isomers are subject to photolysis,

hydrolysis, oxidation, volatilization, biodegradation and sorption in the aquatic

environment (EXTOXNET 1996). Endosulfan sulfate, which is also considered highly

toxic, is the major product of metabolism for both isomers and is more persistent in the

environment than its parents.

The analysis of ENP sediment in this study revealed the occurrence of c:-

endosulfan, p-endosulfan, and endosulfan sulfate in 27, 50, and 64% of samples

respectively at concentrations ranging from < MDL - 2.25 ng/g (dry wt. basis). In BNP

sediments, a and p endosulfan and endosulfan sulfate were detected in 33, 11, and 22%

of the samples respectively with generally lower concentrations ranging from < MDL -

0.59 ng/g (dry wt. basis). The spatial distribution of endosulfan sulfate in sediments

ENP, BNP, and Florida Bay is shown in figure 11. Ranked concentrations of endosulfan

sulfate expressed in both ng/g dry weight and ng/g total OM is shown in figure 12.

Insufficient data were available for development of SQAGs for both ax and p

endosulfan or their primary metabolite endosulfan sulfate (MacDonald 1994). However,
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water quality criteria for a and p endosulfan have been developed by the U.S. EPA and

its applicability to this study will be discussed in more detail in the section concerning

OCP contamination in fish tissue. Concentrations of a and p endosulfan, and endosulfan

sulfate along the park lands were much lower than those previously reported by Miles

and Pfeuffer (1997) of 16, 24, and 1200 pg/kg respectively, in the C-111 canal.

In order to facilitate comparison of observed concentrations of contaminants

throughout the study area, sampling stations were divided into six geographically distinct

areas. For organic contaminants in sediments, the regions of interest are (1) the East

Boundary, which is comprised of 7 stations along the eastern boundary of ENP which is

adjacent to the Homestead Agricultural Area (HAA). (2) Taylor Slough which consists

of 4 stations extending from near the southern entrance of ENP to near where Taylor

Slough flows into Florida Bay. (3) Shark Slough, has 4 stations that transect the slough

from just south of Tamiami Trail to the center of the park. (4) C-111, consists of 3

stations along (but not in) the C-1l1 canal which drains from the HAA. (5) BNP consists

of the 9 stations sampled in the southern portion of Biscayne Bay. (6) Florida Bay which

consists of 4 stations sampled in eastern Florida Bay.

Comparisons of the distribution of organic contaminants within the study area

reveal some interesting results. As would be expected, the highest concentrations of

OCPs were found along the Eastern Boundary stations nearest to the HAA. However, in

the case of p-p'DDT, p-p'DDD, p-p'DDE, Dieldrin, Endosulfan sulfate, and P-

Endosulfan, elevated concentrations were also detected in two stations located in the

Shark Slough area. This is illustrated in figures 5 - 12, which show that stations A07 and
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A37, which are both located in remote areas of ENP, have higher concentrations of these

compounds than most other stations with in the park. It should be noted that both these

stations have the highest total organic matter (OM) content (>85%), and when

concentrations are ranked normalized by total OM, the data show higher concentrations

in the East Boundary stations than in the Shark Slough stations as can be seen in figures 5

- 8, and 12. Additional sediment samples were collected from A07 and A37 in October

2002, and the analysis of these samples revealed similar results indicating that indeed,

this area of the park may be acting as a sink for organic contaminants. Similar

observations were also made of dieldrin, endrin, and chlorpyrifos with regard to these

sites, however at very low (< 1 ppb) concentrations.

Higher than expected concentrations of p-p'DDE were also detected in two of the

Tamiami stations, S63 and S64, with S63 exceeding the TEL, both these stations also

have high OM content, 86 and 49% respectively. Surprisingly little if any OCPs were

detected in the C-111 area, which drains the HAA. This could result from the fact that

sediment samples were collected from an area that until recently was separated from the

canal by a levee formed during its excavation which prevented water to flow into or from

ENP. This levee was removed as part of the hydrology restoration to allow more

freshwater to enter the park (U.S.A.C.E. 1999). This area should be further monitored to

evaluate the impact of this change on the levels of agriculture related contaminants. Box

plot graphs of the distributions of total DDTs, p-p' DDE, o-p'DDE/a-endosulfan, and

endosulfan sulfate are shown in figures 13 - 17.
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Figure 14.-Boxplot graph of p-p'DDE distribution within study area.
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3.2.2 Polychlorinated Biphenyls

PCB formulations, marketed as Aroclor mixtures, contain about 100-110

compounds with approximately 10-20% of them being major components. Thus, PCBs

occur in environmental compartments as mixtures of congeners with distinct distribution

patterns. Therefore, the determination of PCBs for this study is limited to those

congeners that are representative of these mixtures and a list of these individual

congeners was given in Table 4. Concentrations of total PCBs in this study are expressed

as the sum of these congeners. In ENP sediments, total PCB values range from <MDL

- 7.10 ng/g (dry weight), with none of the stations within ENP exceeding TEL or PEL

criteria, thus PCBs are not expected to have environmental significance. In Biscayne

National Park, concentrations of total PCBs range from < MDL - 42.02 ng/g (dry

weight). One station in BNP, BBBP1, located in close proximity to Black Point Marina

and the local landfill, exceeded the TEL but not the PEL criteria. The distribution of total

PCBs in BNP sediments was similar to that reported by Long et al. (1999) with the

highest concentrations detected near canal outflows and decreasing with distance from

land. Concentrations of individual PCBs in Florida Bay did not exceed MDLs in any of

the stations sampled. The spatial distribution of total PCBs for all sediment samples

collected is given in figure 17. With the exception of the one station, BBBP1 in BNP that

exceeded the total PCB TEL, concentrations of PCBs throughout the study area are low,

and uniform in distribution and occurrence, as is shown in figures 17 and 18.
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Figure 18.-Box plot graph of total PCB distribution within study area.

In comparison to other studies conducted in south Florida, the concentrations

detected in sediments in this study (ND-7.10, ng/g) are considerably lower than those

reported in sediments by Wade et al. (1988) of (<0.01-189 ng/g) for NOAAs Status and

Trends Program in the Gulf of Mexico. The most frequently occurring individual PCB

congeners in ENP sediments being PCB 138/160, PCB 180, PCB 101/90, PCB 29, PCB

153/132, and PCB 170/190, detected in 57, 34, 29, 29, 14, and 9% of all stations.

Overall, PCB concentrations were quite low and no significant differences were observed

between the different regions, although the highest concentrations for individual samples

were observed at BNP and the East Boundary of ENP.
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3.2.3 Polycyclic Aromatic Hydrocarbons

Total PAH concentrations detected for Everglades National Park, Biscayne

National Park, and Florida Bay sediments fall below the TEL criteria and below the

ranges reported by NOAA (1994) as significantly toxic for any toxicity tests. The

concentration ranges detected for total PAHs are 15.3 - 682, 1.48 - 912, and 4.98 - 54.9

ng/g (dry weight) for ENP, BNP, and Florida Bay respectively. Table 8 gives the

concentrations of the more frequently detected PAHs in this study. The spatial

distribution of total PA s for all sediment samples is given in figure 19, and a

comparison of concentration distributions within the study area is given in figure 20. As

these figures illustrate, the distribution of PAHs is relatively uniform throughout the

study area with the exception of the stations adjacent to Tamiarni Trail, which are slightly

more elevated than all other areas and one station in BNP in close proximity to a marina

and the municipal landfill. The composition of PAHs detected in sediment samples

consist of both low molecular weight (LMW) PA Hs and high molecular weight (HMW)

PA s

One method commonly used to evaluate the sources of PAM emissions is to

determine the ratio of benzo[a]pyrene (BaP)/benzo[ghi]perylene (BghiP) (Lang et al.

2002). Values of BaP/BghiP from automobile emissions fall into the range between 0.30

- 0.44 where as BaP/BghiP values from sources such as coal combustion can be as high

as 6.6. The average BaP/BghiP values for this study are 0.89 and 0.91 for ENP and BNP

sediment samples respectively; insufficient data were available for Florida Bay stations.

These values from ENP and BNP indicate that the predominant source of PAHs detected
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in this study is automobile emissions. Thus, the higher levels observed for the Tamiami

Trail area are likely due to street runoff from Route 41 (Tamiami Trail) into the park.

Table 8.-Concentrations of frequently detected PAHs in sediment samples.

Anyte Mn MK Cotrationan Sad Evia >VE

Tctd PAHsvth Fryle 1.5 912 121 198

Nphdem ND 2 6.22 487 97%

Bpn ND 9.4 2568 1.99 /A

Pheathene ND 192 399 475 71%

Rlo1ten ND 748 837 152 71%

Pyene ND 666 692 137 63%

C2- Nptler ND 161 399 434 /A

Bcgh,i] payene ND 68 56 135 60/

Bncb]fluoahn N 108 11.0 240 57/

1-V~1hyrgtdee ND 42 113 113 51%

B (k]flante 61 623 136 49/

Beoe]pe D 756 6.6 151 4o

1,23, r ND .5 604 15.80 46/

B a]Antran ND 37.0 297 691 43/

]ND 634 462 1180 4/

RLene ND 49 085 125 31%

a ooiL(n g' d i

"eertgaddalsanple (N34)atormtoddte~ilri (IVE).
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Figure 20.-Distribution of total PAHs in sediments within study area.
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3.2.4 Trace Elements in Sediment

Eleven elements (Be, V, Cr, Co, Ni, Cu, Zn, As, Cd, Pb, and Al) were chosen for

sediment analysis of 22 stations from ENP and nine stations in BNP. The mean

concentrations and ranges for the elements analyzed are given in Table 9. Concentrations

of the elements analyzed were ranked and plotted in reference to Sediment Quality

Assessment Guidelines (SQAGs) for which definitive PEL and TEL criteria are available

as promulgated by FDEP (MacDonald, 1994) and NOAA (1999). Of the elements

determined, arsenic, lead and chromium exceeded the PEL criteria in 9, 5, and 5% and

exceeded the TEL in 32, 14 and 27% of the samples respectively, while nickel exceeded

TEL criteria in 5%of the ENP samples. In BNP sediments, arsenic was the only

element in exceedance of TEL criteria (44% of samples). These concentrations occurred

mostly in samples collected near the outfall of canals, which drain from the HAA, and at

one of the stations near Black Point Marina and the municipal landfill.

The arsenic values obtained in this study for ENP (0.97-20.48 mg/kg), fall within

the range reported as background for undisturbed Florida soils (0.01-38.2 mg/kg),

however, the mean obtained in this study (6.07 mg/kg) is higher than that reported for

disturbed Florida soils (1.43 ± 4.59 mg/kg) (Chen 2001). For BNP the mean value

obtained for arsenic in this study of 7.45 mg/kg is lower than the NS&T US sediment

average of 10.3 mg/kg but higher than the NS&T value reported for the mouth of the

Miami River in Biscayne Bay of 5.1 mg/kg (Valette-Silver 1999). Lead concentrations

detected in sediment samples in this study range from 1.8 - 251 mg/kg with an average of

26 mg/kg. These figures, however are skewed by the presence of one sample collected in
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an area that appeared to be proliferated with lead bullet casings, therefore the median

value for lead of 4.07 mg/kg is a better indicator of the lead concentrations detected in

ENP sediments. This value falls within the lower end of the concentration range (3 - 40

mg/kg) detected in the Barron River Canal and Turner Rivers of Big Cypress National

Preserve (Miller and Mcpherson, 1998), This value also falls well below the median

values obtained from samples collected in residential, commercial, and public park areas

in Miami and Gainesville, Florida (Chirenje et al. 2004). The range and average values

of chromium (040 - 93.24, 21.32 mg/kg) also appear to be skewed by a few samples with

elevated concentration, the median value of 6.06 mg/kg however, falls at the lower end of

the range (6 - 77 mg/kg) detected in Big Cypress by Miller and Mcpherson (1998). The

ranges of copper and nickel concentrations detected in this study are in agreement with

those reported in the Big Cypress study.

Figures 21 - 26 show plots of element concentrations in reference to TEL and

PEL criteria for those elements that exceeded TELs in ENP and BNP. Of the elements

analyzed, only arsenic concentrations fell within the range for significantly toxic

sediments reported by NOAA for Tampa Bay based on amphipod and MicrotoxM

bioluminescence tests (NOAA, 1994). Figures 27 - 35 show the spatial distribution of

trace metals in sediments from all stations sampled.
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Figure 21.-Ranked concentrations of lead in ENP sediment.
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Figure 22.-Ranked concentrations of chromium in ENP sediments.
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Figure 23.-Ranked concentrations of arsenic in ENP sediments.
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Figure 24.-Ranked concentrations of nickel in ENP sediments.

65



50

Arsenic

40 -PEL

E
Q- 30

c

20

10
" TELO 20*4:• 010

00-0

Station

Figure 25.-Ranked concentrations of arsenic in BNP sediments.
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The distributions of metal concentrations in sediments vary widely within regions

and are influenced by a variety of factors such as grain size, organic content and

ant opogenic enrichment (Shropp and Windom, 1988). One method used to determine

if metal concentrations in a given area are enriched above naturally occurring levels is to

plot their concentrations against the concentration of a naturally occurring element that is

not likely to be enriched by anthropogenic activity. As part of the Florida Coastal

Management Program for FDEP, Shropp and Windom (1988) conducted a study for

determining metal enrichment in sediments by comparing trace element concentrations

against aluminum concentrations in clean sediments from estuarine areas throughout

Florida. The results of this study produced correlations of trace element concentrations

vs. aluminum concentrations for what are considered non-anthropogenically enriched

sediments. These were plotted with a 95% confidence interval, above which, sediments

may be considered enriched. Although these graphs do not provide exposure-based

interpretation, as do the TEL/PEL plots, they indicate the likelihood that sediments are

enriched for that element over its natural abundance.

The concentrations of trace elements in sediments of ENP and BNP were plotted against

aluminum concentrations in reference to the 950 confidence level of the regression line

determined by Shropp and Windom for non-ant opogenically enriched sediments.

These results are plotted in figures 35-41. A comparison between the TEL/PEL plots and

the element enrichment plots reveals that the stations, which exceeded TEL and PEL

criteria, also fall above the 95% limit, which indicates ant opogenic enrichment. This

method was applied to Biscayne Bay and Miami River
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Figure 35.-Concentrations of arsenic vs. aluminum in ENP sediments.
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Figure 36.-Concentrations of chromium vs. aluminum in ENP sediments.
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Figure 37.-Concentrations of copper vs. alurninum in ENP sediments.
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Figure 38.-Concentrations of nickel vs. aluminum in ENP sediments.
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Figure 394-Concentrations of lead vs. aluminum in ENP sediments.
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Figure 40.-Concentrations of zinc vs. aluminum in ENP sediments.
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Figure 41.-Concentrations of arsenic vs. aluminum in BNP sediments.

sediments (Sc opp et al. 1990) and the results revealed enrichment of cadmium, zinc,

chromium, copper and lead at stations at or near the mouth of the Miami River. Although

this technique was applied in this study, the results should be interpreted cautiously. Van

der Weijden (2002) illustrates this using a statistical perspective as well as realistic

scenarios. Specifically he describes how this method for normalization excludes realistic

estimates of sedimentary phases such as organic matter, which consequently, comprises a

very large fraction of the samples analyzed in this study. Furthermore, the application of

S opp's correlations is better suited to areas that have a consistent source for aluminum

such as clays, which are not present in the sediments analyzed in this study.
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Some trends are apparent in the distribution of trace elements among the different

regions of the study area. Figures 42 - 50 show box plot graphs comparing the

distribution of trace element concentrations with in the study area. These graphs indicate

that the highest concentrations of beryllium, vanadium, and chromium are found in the

Eastern Boundary and Shark Slough areas, while Cobalt and Nickel are highest in the

Eastern Boundary, Shark Slough, and Tamiami areas. Copper, zinc, arsenic and lead all

have higher concentrations in the Eastern Boundary and the Tamiami areas.

Although in many cases the variability in metal content for the different regions

was not very large, it seems that the ENP East Boundary and Tamiami Trail regions

suffer the greatest trace metal impacts, although, as in the case of the organochlorine

compounds, Shark Slough also seems to act as a sink for trace metals.
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Figure 42.-Distribution of Beryllium in sediments within study area.
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Figure 43.-Distribution of Vanadium in sediments within study area.
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Figure 44.-Distribution of Chromium in sediments within study area.
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Figure 45.-Distribution of Cobalt in sediments within study area.
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Figure 46.-Distribution of Nickel in sediments within study area.
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Figure 47.-Distribution of Copper in sediments within study area.

120

100

80

-0 60-

2060E 40
C

20

0

East (7) Taylor (4) Shark (4) Tam iami (4) C-111 (3) BNP (9)

Figure 48.-Distribution of Zinc in sediments within study area.
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Figure 49.-Distribution of Arsenic in sediments within study area.
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3.3 Organic Contaminants in Whole Fish Tissue Samples

3.3.1 Organochlorine Pesticides

A total of 61 fish samples from 14 stations in ENP and 6 stations in Florida Bay

were analyzed for 25 organochlorine compounds and 18 PCBs. A summary of the most

frequently detected organic compounds is given in Table 10. As expected the most

frequently detected contaminants in tissue samples were endosulfan sulfate,

endosulfan, and p-p'-DDE occurring in 87, 64, 77 percent of samples respectively. Other

less frequently detected pesticides (not confirmed by GC/MS) in fish tissues are

chlorpyrifos, and endrin occurring in 55, 27 percent of samples respectively. The spatial

distributions of the most frequently detected pesticides are given in figures 52 - 55. Here

as well, a trend is apparent with the highest body burdens occurring at those stations

closest to the HAA where the application of endosulfan and chlorpyrifos is still occurring

(Shahane 1999). The concentrations and distribution of these pollutants in fish tissue is

in accordance with the limited data available as reported by Scott et al., (2002), although

endosulfan sulfate concentrations for a few samples in this study are considerably higher,

the mean concentrations were similar.

The distribution of OCPs in fish tissue within the study area were more in line

with the original hypothesis than the distribution found in sediments. Figures 56 - 58

show the distribution of concentrations of total DDTs, p-p'DDE, and endosulfan sulfate

within the study area. These graphs clearly show that the highest concentrations of these

pesticides are found in the Eastern Boundary stations, with elevated concentrations also

detected in the C-111 stations.
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Figure 53.-Distribution of total DDT concentrations in fish within study area.
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Figure 55.-Distribution of Endosulfan Sulfate concentrations in fish within study area.
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It is well documented that fish tissue concentrations (FTCs) can be used to

estimate water concentrations using a bioconcentration factor (BCF) (Van der Oost 2003,

Scott 2002, Verweij 2004). The water concentrations calculated in this fashion can then

be indirectly applied to estimate if water quality criteria (WQC) have been exceeded.

Wate; Concetraton(rg / L) =FishTissueConent ration(mg / Kg)

BCF

Using this formula and the established BCFs for a and 3 endosulfan, and

endosulfan sulfate it is possible to roughly estimate the water concentrations in the areas

where the fish were collected and determine if WQC were exceeded. The U.S. EPA has

established Surface Water Quality Criteria for a and p endosulfan of 0.056 ptg/L (56 ppt)

for freshwater and 0.0087 pg/L (8.7 ppt) for marine waters, and has established BCF

values for a and 0 endosulfan, and endosulfan sulfate of 600 (ATSDR 1991). Based on

the above values and the concentrations detected in fish samples collected within ENP for

this study, N.D. - 18.23 and N.D. - 1.29 g/Kg (wet weight) for a and p endosulfan it

can be suggested that WQC were not exceeded for these compounds at the stations they

were collected. Endosulfan sulfate, however, occurs more frequently (94% of samples)

with a concentration range of up to 51.81 g/Kg (wet weight) associated with water

concentrations of up to 0.086 pg/L (86 ppt). Since no WQC have been established for

endosulfan sulfate due to a lack of toxicity data on fish species (US EPA) the potential

risks associated with these concentrations is difficult to assess. Nonetheless, as a

comparative exercise, a spatial distribution map of estimated water concentrations of

endosulfan sulfate based on tissue residue concentrations is given in figure 55. It must be
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noted however, that the water quality criteria expressed in the figure are for a and p

endosulfan, not endosulfan sulfate.

Analysis of fish samples collected from Florida Bay did not reveal the presence of

a or e ndosulfan. Endosulfan sulfate, on the other hand occurred in 54% of the samples

with concentrations ranging from N.D. - 5.82 pg/Kg (wet weight) which correspond to

estimated water concentrations of up to 0.0097 pg/L (9.7 ppt), with one station, Highway

Creek barely exceeding the 8.7 ppt criteria for marine waters. NOAAs S&T Mussel

Watch Program reports that three of the five highest concentrations for endosulfan in the

country were detected in mussels from Florida Bay and Rookery Bay (Cantillo A.Y. et al.

1997)
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3.3.2 Polychlorinated Biphenyls

The concentrations of PCBs were generally low and their distributions show less

spatial variation than that of trace metals and pesticides indicating a more widespread

distribution of these compounds. The highest PCB concentrations occur at those stations

in the Eastern Boundary, followed by C-111, and Florida Bay. The most frequently

occurring PCB congeners in fish tissue samples were PCB 180, and PCB 138/160

detected in 41 and 30% of the samples, PCB 44 and 66/95 were each detected in one

sample. Figures 55and 56 show the distribution of total PCB concentrations detected in

this study. The concentrations of PCBs detected in fish (1.85-9.40 ng/g) are considerably

lower than those reported for fish by Haag and McPherson (1997), (<50-140 pg/kg) in

studies conducted in the 1970's and in the 1990's by the SFWMD and U.S.G.S. in

various locations in South Florida.
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Figure 57.- Distribution of Total PCB concentrations in fish within study area.
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3.3.3 Polycyclic Aromatic Hydrocarbons

A summary of frequently detected PAHs in fish tissues is given in table 11.

PA s detected in fish include low molecular weight (LMW) PAHs such as naphthalene,

biphenyl, 2-methylnapthalene, phenanthrene, and 1-methylnapthalene occurring above

the method detection limit in 95, 90, 75, 75, and 40% of the samples respectively. High

molecular weight (HMW) PAHs detected in fish samples include benzo[a]anthracene,

flouranthene, and chrysene in 10, 10, and 5% of the samples respectively. Total PAH

concentrations detected in fish tissues samples are relatively low (9.01 - 84.8 ng/g dry

wt.) probably because fish tend to metabolize these compounds easily via phase I

enzymes of the mixed function oxygenase system (Van der Oost, 2003). These

concentrations detected do not indicate a significant hazard to the aquatic environment,

and are at least an order of magnitude lower than those detected in edible fish tissue in

samples collected from New York Bight and Long Island Sound (Kennish, 1997).

Figure 60 shows the spatial distribution of PAH concentrations detected in fish

tissue samples, indicating a trend similar to that found in sediments with the highest

concentrations being found at those stations closest to Tamiami Trail and the HAA again,

probably resulting from street runoff. Figure 61 shows the distribution of total PAH

concentrations in fish samples within the study area.
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Figure 60.-Distribution of total PAHs in fish tissue within study area.
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3.4 Trace Elements in Whole Fish Tissue Samples

Eleven elements (Be, V, Cr, Co, Ni, Cu, Zn, As, Cd, Pb, and Ag) were chosen for

analysis. The mean concentrations and standard deviations for all of the elements

analyzed are given in Table 12. Figures 62 - 72 show the spatial distribution of selected

trace metals detected in fish samples collected throughout the park. A trend in the

distribution of trace elements within the park is apparent for most trace elements

(beryllium, vanadium, chromium, cobalt, nickel, copper, cadmium and lead), with the

highest concentrations detected along the eastern boundary of the park an area in close

proximity to the HAA. Elevated concentrations of copper, and the highest concentrations

of arsenic, were detected at stations adjacent to Tamiami Trail, the highway, which

traverses the northern boundary of ENP and connects the metropolitan area of Miami-

Dade County with the west coast of South Florida. Surprisingly, the highest

concentrations of silver were detected in fish samples from the remote stations in Shark

Slough but still below mean values detected elsewhere (0.01-1.2 ppm dry weight)

(Kennish 1997). Zinc concentrations were in the range of 43 - 197 ppm, which is

consistent with values reported for fish in uncontaminated areas (Barwick 2003,

Papagiannis 2004), but the highest concentrations were detected in the Eastern Boundary

and Shark Slough. Comparisons of the concentration distributions of trace elements in

whole fish tissue are given in figures 73 - 82. Trace metal analysis of fish tissue in

Florida Bay stations has not occurred at this time.
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Figure 72.- Distribution of arsenic in fish within study area.
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Figure 73.- Distribution of beryllium in fish within study area.
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Figure 74.-Distribution of chromium in fish within study area.
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Figure 75.- Distribution of cobalt in fish within study area.
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Figure 76.- Distribution of copper in fish within study area.
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Figure 77.- Distribution of lead in fish within study area.
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Figure 78.-Distribution of nickel in fish within study area.
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Figure 79.- Distribution of silver in fish within study area.
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Figure 80.-Distribution of vanadium in fish within study area.
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Figure 81.- Distribution of zinc in fish wthin study area.
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Lewis and coworkers (2002) analyzed fish in near coastal areas of the Gulf of

Mexico for metals including arsenic, copper, and zinc. A comparison of the values they

obtained reveals higher concentrations of arsenic (< 0.01 - 28.1 g/g wet , but lower

values were reported for copper and zinc (0.07 - 0.34 and 2.86 - 10.57 g/g wet w),

than those detected in this study. Concentrations of zinc, arsenic, and cadmium detected

in fish in this study were below the maximum concentrations detected in fish samples

collected from the Mississippi River Basin as part of the USGS Biomonitoring of

Environmental Status and Trends (BEST) Program. However, elements like lead and

copper were found to be above their reported maxima for stations 22 and L-67 (Schmitt,

2002).
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4. CONCLUSIONS

From the data obtained during the course of this study one key conclusion can be

drawn: the concentrations of contaminants in both sediment and fish tissue surveyed in

this study from Everglades National Park, Biscayne National Park, and Florida Bay, are

low in comparison to impacted areas and similar to those found in pristine areas (Kennish

1997). However, it appears that ant opogenic activities have resulted in the enrichmnent

of certain contaminants at various locations throughout the study area. Compounds of

particular concern, based on the observed concentrations and environmental assessment

guidelines, include: lead, chromium, arsenic, nickel, and DDT and its metabolites.

Arsenic, lead, and chromium exceeded PEL criteria in 9, 5, and 5% of the ENP sediment

samples and exceeded TEL criteria in 32, 14 and 27% of the samples respectively.

Nickel exceeded the TEL criteria in 5% of the ENP sample stations. Arsenic exceeded

TEL levels in 440 of the BNP sediment samples. Dieldrin, p-p'DDT, and p-p'DDD all

exceeded TEL criteria in 5% of the samples analyzed while p-p'DDE exceeded the TEL

in 14% of the sediment samples respectively. PCB and PAN concentrations were

generally low, and only one station in BNP exceeded the TEL for total PCBs.

Tissue data show clear indications that currently used pesticides such as

endosulfan may pose a risk to sensitive biological endpoints and further studies are

necessary to assess the effects of long-term chronic exposure particularly to higher

trophic level organisms where biomagnification could be important. Endosulfan, and its

sulfate have been reported in multiple matrices (water, sediments and oysters) along the

southern portions of Miami-Dade county and Florida Bay. Endosulfan sulfate was

detected in 87% of the tissue samples and 64% of the sediment samples.
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In the case of organochlorine pesticides which are still in use, specifically

endosulfan and its metabolites, a trend is apparent with the highest concentrations of

these compounds in close proximity to areas of intense agricultural production such as

the Homestead Agricultural Area. Other organochlorine pesticides such as DDT, and its

metabolites DDD and DDD, which are no longer in use, were also detected more

frequently near agricultural areas, however the presence of these compounds were also

detected in more remote areas suggesting that long range transport of these compounds is

occurring throughout South Florida.

The distribution of Polychlorinated Biphenyls is relatively uniform throughout the

areas sampled with the exception of one station sampled in Biscayne Bay, near a

municipal landfill, which may be the source of the elevated levels of PCBs detected at

that station. The observed concentrations for PCBs in both sediment and fish tissue

throughout most of the stations sampled are low and are not expected to be of significant

environmental concern based upon available sediment quality guidelines. Overall, it

appears that PCB distribution in this area is probably due mostly to atmospheric

deposition from long-range global dispersion.

Polycyclic Aromatic Hydrocarbon (PAH) concentrations detected throughout the

study area are relatively low in comparison to other studies. The distribution of PAHs in

sediments show more elevated concentrations at stations located in close proximity to

Tamiami Trail indicating street runoff as a potential source. An examination of the ratios

of Benzo[a]pyrene/Benzo[ghi]perylene also indicate that automobile emissions are a

predominant source of PAHs at most stations throughout the study area. The highest

concentration of total PAHs detected in this study (91 ng/g) was detected at the BNP
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station (BBBP 1) located near a landfill and a marina, all other detections in BNP and

Florida Bay were lower than those found in Everglades National Park.

Trace metal data indicate a potential for sediment enrichment above naturally

occurring levels for elements including arsenic, chromium, copper, lead, nickel, and zinc

at several of the stations sampled within ENP as well as arsenic in BNP. The trends in

distribution show the highest concentrations of beryllium, vanadium, and chromium

found near the east boundary of the park as well as in Shark Slough, while cobalt and

nickel concentrations are highest at the Eastern boundary, Shark Slough and Tamiami

Trail regions. Copper, zinc, arsenic and lead all showed elevated concentrations along

the Eastern boundary, and Tamiari Trail. Trace metal distribution in fish tissue show

similar trends to the sediment data with the exception of zinc, which had high

concentrations at all stations. The reasons for the enrichment of this particular group of

metals in ENP are not yet clear, but ant opogenic emissions from the urban areas of

South Florida are the most likely source.
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5. FUTURE WORK

As a result of this study a snapshot view of the occurrence of a wide variety of

common contaminants throughout Everglades National Park, Biscayne National Park,

and Florida Bay was produced. The purpose of this study was three fold: to provide

background information on the general status of National park lands with respect to

contamianants, to evaluate which areas of the region are most likely impacted by

anthropogenic activities and to identify which contaminants should be monitored more

closely to assess future sustainability of valuable resources along ENP and BNP. Based

on the results, areas that should be monitored more closely in the future include the C-

111 drainage basin and the east boundaries of ENP along the L31-N canal. Both regions

will be targeted for major changes of water delivery that may affect future transport of

contaminants to the south-eastern Everglades as a result of CERP.. Another area of

concern is Shark Slough, which contains stations that had elevated concentrations of both

inorganic and organic contaminants despite their remote location. More stations should

be monitored along this transect in order to better assess the transport of contaminants in

this region of ENP. Although this study focused on organochlorine pesticides, most of

these are no longer in use, and monitoring for more currently applied pesticides such as

organo-phosphates and pyrethroids should be considered in future Everglades monitoring

programs.

The results of these studies will also form the basis of an ecological risk

assessment study conducted at the FlU, to determine the potential consequences of the

presence and distribution of these contaminants to biological resources inhabiting these

parks.
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APPENDIX 1. Chemical Structure o r anochlorine Pesticides
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APPENDIX II. Chemical Structure of Polychlorinated Biphenyls

PCBs have the chemical formula C1u 10onCIn where n=1-10 (Figure 1).

CIm Cn m+ =1 to 10
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APPENDIX III. Chemical Structure of Polycyclic Aromatic Hydrocarbons

Naphthalene Biphenvl Acenaphthylene
ClOH8 M.W. 128.2 C12H10 M.W. 154.2 C12H8 M.W. 152.2

(s

Acenaphthene Fluorene Dibenzothiophene
C12H10 M.W. 154.2 C13H10 M.W. 1662 C12H 8S M.W. 184.2

H

Phenanthrene Anthracene Carbazole
C14H10 M.W. 178.2 C14H10 M.W. 178.2 C12H9N M.W. 167.2

Fluoranthene Pyrene Benz(a)anthracene

C16H10 M.W. 2022 C16 H10 M.W 202.2 C18H12 M.W. 228 2

Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene

C18112 M.W. 2283 C20H 12 MW. 252.3 C20H 12 M.W 2523
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Benzo(e)pyrene Benzo(a)pyrene Indno 1,2,3-cd]pyrene
C20H12 M.W. 252.3 C20H12 M.W. 252.3 C22H12 MW. 2763

Dibenz[a,h]anthracene Benzo[ ,Il]perylene Perylene
C22H14 M.W. 2783 C22H12 M.W.276.3 C20H12 M.W 252.3

2-methylnaphtalene 1-methylnaphtalene C1 IH 10 2,6-dimethylnapthalene
CIIH10 M.W. 142.2 M.W. 142.2 CI2H12 M.W. 156.2

1,6,7-trimethylnapthalene 1-methylphenanthren
C13H14 M.W. 170.2 C15H12 M.W. 192.2
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