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Variance homogeneity (HOV) is a critical assumption for ANOVA whose violation may 
lead to perturbations in Type I error rates. Minimal consensus exists on selecting an 

appropriate test. This SAS macro implements 14 different HOV approaches in one-way 
ANOVA. Examples are given and practical issues discussed. 
 
Keywords: ANOVA, homogeneity, SAS 

 

Introduction 

The analysis of variance (ANOVA) is regarded as one of the most powerful and 

flexible methods for testing hypotheses about population means. When the 

underlying assumptions are satisfied, ANOVA provides powerful statistical tests, 

but if they are not satisfied, Type I error rates are inflated and statistical power 

reduced. A critical assumption of ANOVA is homogeneity of variance (HOV), 

that is, the compared populations have equal variances, which can be expressed as 

 

 2 2 2

0 1 2: kH      . (1) 
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Although it was found that moderate deviations from the HOV assumption 

might not seriously affect the results in ANOVA (Glass, Peckham, & Sanders, 

1972), there remains the concern about large violations of HOV that can lead to 

invalid inferences. In fact, careful attention has been paid to this issue, and 

numerous procedures have been developed for the purpose of evaluating the HOV 

assumption although each of these procedures has limitations. For example, the 

classic F test has been commonly applied, but was found to be sensitive to 

departures from normality. Similarly, Snedecor and Cochran (1989) discovered 

that Bartlett’s test (Bartlett, 1937) is sensitive to violations of the normality 

assumption. Therefore, it is advisable to turn to alternative tests that are less 

dependent on the assumption of normality. 

Cases of these alternative approaches which are relatively insensitive to 

departures from normality include the Levene (Levene, 1960), Brown-Forsythe 

(BF; Brown & Forsythe, 1974), and O’Brien (OB; O’Brien, 1979, 1981) tests. 

Simulation studies (Algina, Olejnick, & Ocanto, 1989; Conover, Johnson, & 

Johnson, 1981; Lee, Katz, & Restori, 2010; Olejnick & Algina, 1987) have 

revealed differences in performance among these tests. For example, the OB test 

provided Type I error rates near the nominal alpha in unbalanced samples, but 

with platykurtic distributions which exhibit lighter tails than a normal distribution, 

it was more sensitive to variance differences than the BF test. When sample sizes 

were equal, OB had a power advantage used with platykurtic distributions and 

had a slight power advantage when used with mesokurtic distributions (i.e., 

exhibiting same tail weight as a normal distribution) regardless of whether the 

distributions were skewed or not. On the other hand, the BF test had a power 

advantage used with leptokurtic distributions (i.e., having heavier tails than a 

normal distribution) regardless of the skewness. When sample sizes were unequal, 

results were different because the relative power of these tests depended on the 

direction of the relationship between the population variances and sample sizes. 

For example, the power of the OB test was improved when used with skewed-

platykurtic and symmetric platykurtic distributions. The power of BF was also 

enhanced when the relationship between population variance and sample size was 

direct (i.e. larger samples come from populations with larger variances) and with 

leptokurtic or mesokurtic distributions. With other distributions, the tests had 

similar power.  

The appropriate test should be selected in the context of their research 

questions, sample data, and analysis plan. It would be difficult to reach a 

consensus in answering the question what method should be applied for testing 

the HOV assumption, because every study is different and no procedure is 
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superior to the rest in an absolute sense. Furthermore, some testing procedures are 

less known, or how to implement them, which makes it harder to be selected as a 

suitable HOV method. The goal of the current study is two-fold: 1) introduce 

fourteen different approaches that can be used to evaluate the HOV assumption 

and 2) provide a SAS macro designed to implement these statistical tests. 

Statistical Methods for Testing the HOV Assumption 

Bartlett Test.   Bartlett (1937) proposed a special use of the chi-

square test for testing the HOV assumption. The computation of the Bartlett’s chi-

square is as follows: 
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  (2) 

 

where N is total sample size, nj is the group j sample size, k refers to number of 

groups, and Sj
2
 denotes group j variance. The null hypothesis that the 

subpopulation variances are equal will be rejected if Bartlett’s χ2 statistic is 

greater than the critical χ2 value with degrees of freedom k − 1.  

 

Levene’s Test (Absolute and Squared). To overcome departures from 

normality, Levene (1960) proposed to use the absolute values or squared residuals, 

which transforms a test of variances into a test of means that is relatively robust to 

the violation of the normality assumption (Sayago & Asuero, 2004). The statistics 

of the absolute values and squared residuals used for the Levene’s test are defined 

as follows (Katz, Restori, & Lee, 2009): 

 

 .ij ij jZ Y Y   and  
2

2

.ij ij jZ Y Y  , (3) 

 

where ijY  is the raw score and . jY  denotes the mean of the jth group. 

The test statistic, W, which is approximately distributed like F, is defined as: 
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where 
. jZ  represents the group mean of Z

ij
 and ..Z  is the grand mean. The 

obtained W value is compared to the F critical value (Fcrit) with degrees of 

freedom (k − 1) and (N − k) for numerator and denominator, respectively. The 

null hypothesis that the group variances are equal is rejected if W > Fcrit.  

 

Brown-Forsythe Test. This test follows the idea of Levene’s test but uses 

the group median instead of the group mean in calculation of absolute deviation. 

This test first transforms the dependent variable values into absolute values of 

deviations from the group median: 

 

 ij ij jz Y Y   (5) 

 

where 
jY  is the median of group j and z

ij
 refers to the transformed value of Y

ij
. 

The obtained statistic W is computed using the same formula as that in the 

Levene’s Test presented above. The critical values of W are obtained from the F 

table with (k − 1) and (N − k) degrees of freedom. If the p-value < α, H0 is 

rejected and we conclude that the variances are not equal. The Brown-Forsythe 

test is more robust than Levene’s test when the population distribution is skewed 

(Brown & Forsythe, 1974). 

 

O’Brien’s Test.  O’Brien (1979) proposed a method that transforms 

original scores so they would represent sample variances. The transformed scores 

are used for ANOVA or the Welch test as a dependent variable. The 

transformation he proposed is the weighted average of a modified Levene’s 

squared difference that is computed as 
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, (6) 

 

where Sj
2
 represents the within-group unbiased estimate of variance for sample j 

and w (0 ≤ w ≤ 1) denotes the weighting factor. 
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The mean of the transformed values per group, 2ij

j j

j

r
r S

n


  , will equal the 

variance computed for that group. The weighted average, r
ij
(w) is a modification 

of Levene’s squared difference from the group mean (w = 0), and a jackknife 

pseudo value of Sj
2
(w = 1). O’Brien (1981) suggested setting w = .5 as default. 

Then the F statistic computed on r
ij
 in the standard ANOVA procedure would be 

the test statistic for O’Brien’s test. 

 

Bootstrap Brown-Forsythe Test. Boos and Brownie (2004) recommended a 

bootstrap approach for comparing variances where power outweighs 

computational simplicity. The test they investigated in earlier work (Boos & 

Brownie, 1989) focused on drawing bootstrap samples from 

 

  .ij jS Y Y  , (7) 

 

which will simply be the residuals from the original sample. Instead of drawing a 

separate bootstrap sample from each of the groups, bootstrapping is performed by 

pooling the residuals across groups. In each bootstrap sample, a test statistic for 

variances is computed and the p-value for the bootstrap test is obtained as the 

proportion of bootstrap samples with a statistic’s value that is greater than that 

observed in the original data. The authors recommended using the median version 

of Levene’s test statistic (that is, the Brown-Forsythe statistic), then obtaining the 

p-value via the bootstrap rather than the F distribution. This recommendation was 

also made by Lim and Loh (1996): their simulation study found that the 

bootstrapped version of Levene’s test provided more power than the F 

distribution version. 

 

Ramsey Conditional Test: Brown-Forsythe or O’Brien.           Ramsey (1994) 

proposed a conditional procedure based on the Brown-Forsythe method and the 

O’Brien method. He suggested the appropriate test between the two methods 

should be selected conditional on a test of kurtosis. To decide which procedure to 

use, the kurtosis for each of k groups is computed by using Pearson’s traditional 

measure: 

 

 4
2 2

2

m
b

m
 , (8) 
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where  . /
r

r ij j jm Y Y n    and m
2
 is the second moment about the mean or the 

biased sample variance. Thus, the formula for kurtosis of group j, b
2j

, is 
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. (9) 

 

The kurtosis value for each group is then compared to critical values 

obtained from a table provided by Ramsey and Ramsey (1993). A score of −1, 0, 

or 1 is recorded depending on the test being significantly platykurtic, 

nonsignificant, or significantly leptokurtic, respectively. These scores of kurtosis 

were added across groups as a total score, S, which was used to identify the 

population as platykurtic if S ≤ −1, mesokurtic if S = 0, or leptokurtic if S ≥ 1. The 

O’Brien method will be applied if the data are platykurtic and the Brown-Forsythe 

method will be used if the data are mesokurtic or leptokurtic. 

 

Cochran’s Test (Arithmetic and Harmonic). Cochran’s C (Cochran, 1941) 

is essentially an outlier test that defines a test statistic as the ratio of the largest 

group variance to the sum of the sample variances: 

 

 
2

max

2

j

S
C

S



  (10) 

 

Critical values of Cochran’s C can be obtained from the central F 

distribution: 

 

 

  , 1, 1 1

1

1
1

n k n
k

Critical C
k
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  
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
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, (11) 

 

where n is the number of observations in each group (for the balanced design) and 

F refers to the critical value of F at α/k with df = n − 1, (k − 1)(n − 1). For an 

unbalanced design one could either use an arithmetic average of n or the harmonic 
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mean of n to calculate degrees of freedom in the numerator. If the obtained value 

of C exceeds the critical value, the null hypothesis of variance homogeneity is 

rejected. 

 

G Test.    As an alternative to Cochran’s C, ‘t Lam (2010) 

suggested using the G test which is a ratio of the product of the largest variance 

and its degrees of freedom to the sum of the products of each variance and its 

degrees of freedom:  

 

 
2

max max
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v S
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v S
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  (12) 

 

Critical values of the G test can be obtained from the central F distribution: 
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where v
pool

 is the pooled degrees of freedom; v
max

 denotes the degrees of freedom 

for the group with the largest variance; jn  is the mean number of observations in 

each group; F
α/k

 denotes the critical value of F at α/k with 

  1, 1 1j jdf n k n    . 

 

The Maximum F-ratio Test (F
max

) (Arithmetic and Harmonic).  Hartley 

(1950) developed the F
max

 test (a.k.a. Hartley’s test) for comparing three or more 

population variances. Hartley’s test requires independent random samples of the 

same size from normally distributed populations (Ott & Longnecker, 2010). The 

F
max

 test is computed by taking the ratio of the largest group variance (S 2
max) to the 

smallest group variance (S 2
min) and its formula is presented as follows: 

 

 
2

max
max 2

min

S
F

S
 . (14) 
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The value of F
max

 is compared to a critical value from the table containing 

the sampling distribution of Hartley’s test. A F
max

 value less than the critical value 

provides evidence that the groups have similar or equal variances. Similar to the 

Cochran’s C test for an unbalanced design, an arithmetic average of the sample 

size or a harmonic mean can be used to calculate degrees of freedom in the 

numerator. 

 

Z-Variance Test.   Overall and Woodward (1974) proposed the Z-

variance test for the HOV assumption. This test is an approximate test based on 

Fisher and Yates (1963), which transforms the chi-square statistics with large 

degrees of freedom (df) into standard normal deviate z-scores. Fisher and Yates’ 

(1963) formula provided a z-score transformation for chi-square statistics based 

on large df:  

 

  22 2 1z df   . (15) 

 

Because sample variance estimates have a chi-square distribution, 
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n S
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where S2 is the sample variance estimate; σ2 is the true population variance. A 

z-score transformation of within-cell variance estimates that appears adequate for 

samples as small as n = 10 or larger is then computed as  
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 
21

1 1
j j

j j

w

c n S
Z c n

MS


    , (17) 

 

where c = 2 + 1⁄n
j
, n

j
 is the sample size for the jth group; Sj

2
 denotes unbiased 

variance estimate for the jth group, and MS
w
 denotes the pooled within-group 

mean square  (or MS
E
 as the pooled within-group error variance).  

The F-ratio with k – 1 and ∞ degrees of freedom for testing the homogeneity 

of variance of k samples variance is given as 
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Note the division of the sum of squared z-scores by k – 1, as the estimate of 

σ2. The right-hand side of the equation can be conceived as a between groups sum 

of squares divided by df = k – 1. Overall and Woodward (1974) found that the Z-

variance test performed very well with normally distributed data but produced too 

many Type I errors when samples were from leptokurtic or skewed distributions.  

 

Modified Z-variance Test.  To improve the performance of the Z-variance test 

when sample distributions are leptokurtic or skewed, Overall and Woodward 

(1976) proposed the modified Z-variance approach to testing the HOV. Based on 

their examination of the robustness of this modification to the z-variance against 

four other tests, in which the authors investigated a c value based on sample size, 

skewness and kurtosis, they determined c to be a scaling coefficient that affects 

the variability of the Z
j
 values. The formula for c is, 
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where n
j
 is the sample size of the jth group and K refers to the mean of the 

kurtosis indices from all groups. Overall and Woodward’s kurtosis index is the 4 th 

power of the Z-scores within each group divided by n
j
 − 2 degrees of freedom,  
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Methodology 

ANOVA_HOV: A SAS Macro 

ANOVA_HOV is a macro is written to implement the 14 procedures to test the 

homogeneity of variance assumption in one-way ANOVA models. Before the 

macro is defined, two datasets of critical values are created for the F
max

 test and 

Ramsey’s conditional test (see Appendix A for SAS code). Critical values at 

alpha levels of .05 and .01 for the F
max

 test are included. To use the ANOVA_HOV 

macro researchers need to input their data set into SAS, identify variables, and 

then call the macro. The macro will run each of the fourteen HOV tests using the 

data set and input variables.  

Macro input parameters. Use of the macro requires specification of four 

arguments for the macro call, which are briefly described below. 

 

data. Specifies the name of the input data set. 

iv. Specifies the name of the independent variable.  

dv. Specifies the name of the dependent variable.  

nboots. Specifies the number of bootstrap samples used in the Bootstrap 

Brown-Forsythe Test. A large number of replications are 

conducive to consistency in estimation.  

Results 

To illustrate the use of the macro, two examples are provided. Data in the 

examples were downloaded from the database of the Integrated Postsecondary 

Education Data System (IPEDS), a system of interrelated surveys conducted 

annually by the U.S. Department of Education’s National Center for Education 

Statistics (NCES) (NCES, 2014). IPEDS gathers information from every college, 

university, and technical and vocational institution that participates in the federal 

student financial aid programs. The latest wave of data available was collected in 

2014 and only excerpts of the data were involved in the examples below. 

For Example 1, the dependent variable was enrollment of Hispanic students 

and the HOV was tested on the independent variable, institutions of different 

categories. The four categories of institutions (“cat”) were 1) degree-granting 

with primarily baccalaureate degrees or above; 2) degree-granting but less than 

50% above bachelor’s level; 3) degree-granting at levels of Associate’s and 
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certificates; and 4) non-degree-granting. The number of enrolled Hispanic 

students per institution (“sumef”) ranged from 0 to several thousands. To evaluate 

the macro in a situation of equal group sizes, a random sample of 10 institutions 

were drawn from each category to create a sample of 40 out of a total of over 

7,000 institutions in the data set. The syntax below shows how the data were read 

into SAS to be analyzed. 

 

data enrfrn; 

  input cat sumef @@; 

  datalines; 

2 94 2 3 2 278 2 19 2 2 2 3 2 18 2 10 2 1 2 50  

3 8 3 2 3 12 3 19 3 79 3 8 3 20 3 23 3 15 3 1  

4 2582 4 983 4 743 4 2 4 4 4 19 4 13 4 339 4 197 4 4  

5 10 5 20 5 1 5 153 5 1 5 60 5 1 5 3 5 21 5 4 

;;; 

 

The statement below invokes the macro by calling the variables. 

 

%hov (data = enrfrn, iv = cat, dv = sumef, nboots = 5000); 
 
 

 
 
Figure 1. Output for Example 1. 

 

 
 

The output from the macro run is shown in Figure 1. The top paragraph 

gives a summary of the data while the rest of output includes the name of the 
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HOV tests, the obtained values for each test, and their associated p-values. Note 

that only comparisons with critical values are reported for the bottom five tests 

because their p-values are not calculated. 

In the second example, the ANOVA_HOV macro was applied to a large data set 

from IPEDS with unequal group sizes. The independent variable was a 

classification of how the institution is operated (“control”): 1) public institution, 

2) private not-for-private institution, and 3) private for-profit institution. Both of 

the first two categories included more than 1,000 institutions whereas there were 

fewer than 200 in the third group. The dependent variable in the analysis was total 

salaries and wages expenditures as part of the institution’s library budget 

(“lsalwag”), which has a mean of $1,143,651. The data file in analysis contains 

nearly 3,000 observations and is named “libsal”. The macro was invoked using 

the statement below and the number of bootstraps was set at 5,000 once again. 

 

%hov (data = libsal, iv = control, dv = lsalwag, nboots = 5000); 

 

The output of this analysis is provided in Figure 2.  
 
 

 
 
Figure 2. Output for Example 2. 

 

 

A Simulation Study 

To investigate the accuracy and precision of the fourteen approaches for 

testing the homogeneity of variance assumption in one-way ANOVA models, a 

simulation study (Wang, Rodríguez de Gil, Chen, Kromrey, Kim, Pham, Nguyen, 
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& Romano, 2017) was conducted employing six design factors: number of groups, 

average number of observations per group, sample size pattern, variance pattern, 

maximum group variance ratio, and population distributions measured by 

skewness and kurtosis. The performance of the fourteen methods was examined at 

six nominal alpha levels (.01, .05, .10, .15, .20, and .25). For each condition, 

5,000 samples were generated and Type I error and statistical power examined. 

Bradley’s (1978) liberal criterion for robustness was set at ±0.5α around the 

nominal alpha and eta-square effect sizes were estimated to explore the significant 

impacts of the research design factors on the variability in the Type I error 

estimates. Lastly, statistical power was estimated only for conditions in which 

Type I error was adequately controlled. 

Of the approaches, Levene’s test with the squared residuals, Brown-

Forsythe, O’Brien, Ramsey’s conditional procedure, and Bootstrap Brown-

Forsythe tests were the five tests that maintained adequate Type I error control 

and were superior to other tests. Meanwhile, the power of these five tests was 

found to be acceptable and the power differences between them were subtle. 

O’Brien’s test had slightly less power than the other four tests and the Bootstrap 

Brown-Forsythe test tended to have slightly greater power.  

Population shape and average group size were two design factors that 

affected Type I error rates. Specifically, Ramsey and O’Brien were the only two 

tests that maintained adequate Type I error control across all the population 

shapes investigated. Among the five best tests, Brown-Forsythe and Bootstrap 

Brown-Forsythe tests had conservative Type I error rates if the distribution shape 

was extremely leptokurtic. In contrast, Levene’s test with the squared residuals 

tended to have liberal Type I error rates when the shape is skewed. With normal 

populations, 12 out of 14 approaches maintained adequate Type I error control. 

Bartlett, Cochran with the harmonic mean, and Z-variance tests maintained Type I 

error control extremely well. Levene’s test with squared values, F
max

 with the 

harmonic mean, and Z-variance had larger power. Z-variance test seemed to be 

the best choice for a normal distribution. Average group size had significant 

impact on Type I error control for four of the five best performers including 

Ramsey, Brown-Forsythe, Bootstrap Brown-Forsythe, and Levene’s test with 

squared values. Increasing the sample size of a group improved Type I error 

control; on the other hand, when the average per-group sample size falls to five, 

only O’Brien’s test maintained adequate Type I error control, which improves for 

all tests as the nominal alpha level grew. 
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Conclusion 

When examining the differences between two or more group means, ANOVA is 

among the most commonly used procedures. The assumptions of variance 

homogeneity and normality continue to be critical; in particular, violations of 

HOV may impact Type I error rates. This macro provides the researcher with the 

ability to apply fourteen different evaluation measures mainly for two purposes: 

first, for testing substantive hypotheses about population variances (e.g., do 

educational enrichment programs increase heterogeneity of student achievement 

scores?), and secondly, for assessing the tenability of homogeneity of variance in 

consideration of a subsequent test of mean differences. Different nominal alpha 

levels may be indicated for these uses.  

HOV tests must be selected with care because it is difficult to assess 

population distribution shape based on samples, more so with small samples, 

which might result in severe consequences of non-normality for most of these 

tests. It is recommended that when average group is fewer than 10, the O’Brien 

test should be used because it gives a better Type I error control; for average 

group sizes between 10 and 20, the Ramsey test provides the most power; as for 

large groups with more than 20 observations, the Bootstrap Brown-Forsythe test 

will supply the most power. 
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Appendix A: The SAS Macro ANOVO_HOV 

 data test; 

  input group Y; 

  datalines; 

1 49.66 

1 47.86 

1 51.61 

2 49.68 

2 51.02 

2 50.02 

3 50.45 

3 49.09 

3 45.73 

4 46.39 

4 49.25 

4 48.39 

4 51.99 

4 47.84 

4 57.99 

4 53.28 

4 48.08 

4 48.10 

4 53.48 

4 49.98 

;;; 

run; 

 

 

* Critical values for the Fmax test; 

data cv05a; 

 Input nuval c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12; 

Cards; 

2 39.0 87.5 142 202 266 333 403 475 550 626 704 

3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104 114 124 

4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4 

5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9 

6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7 
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7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8 

8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7 

9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7 

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34 

12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48 

15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93 

20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59 

30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39 

60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36 

; 

data cv01a; 

 Input nuval c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12; 

Cards; 

2 199 448 729 1036 1362 1705 2063 2432 2813 3204 3605 

3 47.5 85 120 151 184 216 249 281 310 337 361 

4 23.2 37 49 59 69 79 89 97 106 113 120 

5 14.9 22 28 33 38 42 46 50 54 57 60 

6 11.1 15.5 19.1 22 25 27 30 32 34 36 37 

7 8.89 12.1 14.5 16.5 18.4 20 22 23 24 26 27 

8 7.50 9.9 11.7 13.2 14.5 15.8 16.6 17.9 18.9 19.8 21 

9 6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6 

10 5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9 

12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6 

15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0 

20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9 

30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2 

60 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7 

; 

 

data cv01; 

 Set cv01a; 

 Array cc[11] c2 - c12; 

 Do kval = 2 to 12; 

 Cv01 = cc[kval-1]; 

 Output; 

End; 

Keep nuval kval cv01; 

Run; 
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Data cv05; 

 Set cv05a; 

 Array cc[11] c2 - c12; 

 Do kval = 2 to 12; 

 Cv05 = cc[kval-1]; 

 Output; 

End; 

Keep nuval kval cv05; 

Run; 

 

proc sort data=cv01; by nuval kval; 

proc sort data=cv05; by nuval kval; 

 

 data fmaxcv; 

  merge cv05 cv01; 

  by nuval kval; 

 run; 

  

* Critical values for Ramsey’s conditional test; 

 data cvw2;  

  input cs lvalue05 uvalue05; 

  cards; 

4 -1.22 0.83 

5 -1.14 1.50 

6 -1.19 1.91 

7 -1.23 2.15 

8 -1.20 2.28 

9 -1.20 2.33 

10 -1.19 2.40 

11 -1.19 2.39 

12 -1.16 2.40 

13 -1.17 2.34 

14 -1.15 2.32 

15 -1.13 2.31 

16 -1.13 2.27 

17 -1.11 2.23 

18 -1.10 2.22 
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19 -1.09 2.19 

20 -1.08 2.16 

; 

run; 

 

options mprint minoperator noquotelenmax ; 

 

%macro ANOVA_HOV (data=, iv=, dv=, nboots=); 

 

* Prepare tables; 

 proc sort data = &data; 

  by &iv; 

 proc means noprint data = &data; 

  class &iv; 

  var &dv; 

  output out = cells mean = cellmn n = cs median = m50 kurt=cg2 

var=vargrp; 

 data grand (drop=&iv _:) cells; 

  set cells; 

  if _type_ = 0 then output grand; 

  else output cells; 

 

 data _null_; 

  set grand; 

  call symputx('mean',cellmn); 

  call symputx('variance',vargrp); 

 

 

 proc means noprint data = cells; 

  var cs; 

  output out = total n = howmany mean=avg_cs max=max_cs min=min_cs 

sum=sum_cs; run; 

 data _null_; 

  set total; 

  call symputx('n_groups',howmany); 

 call symputx('avg_cs',avg_cs); 

 call symputx('sum_cs',sum_cs); 

 run; 
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 %put total is &sum_cs; 

 

 data head; 

  format labl $45. val $15. pr $15.; 

    labl = "Independent Variable:"; val = "&iv"; pr = " "; output; 

    labl = "N of Groups:"; val = put("&n_groups", $10.) ; pr = " "; 

output; 

    labl = "Dependent Variable:"; val = "&dv"; pr = " "; output; 

    labl = "Total N of Observations:"; val = put("&sum_cs", $10.); pr = 

" "; output; 

    labl = " "; val = " "; pr = " "; output; 

    labl = " "; val = "Obtained"; pr = " "; output; 

    labl = "Test"; val = "Value"; pr = "p"; output; 

  run; 

 

 %do nn = 1 %to &n_groups; 

 data _null_;  

 set cells; 

 if &nn = _n_; 

 call symput("size&nn",cs); 

 %end; 

 run; 

 

* Bartlett, BF, Leveneabs, Levenesquare, Obrien; 

 ods listing close; 

 

 proc glm data=&data ; 

  class &iv; 

  model &dv = &iv / ss3 ; 

  means &iv /  hovtest=bartlett; 

  means &iv /  hovtest=bf; 

  means &iv /  hovtest=levene(type=abs); 

  means &iv /  hovtest=levene(type=square); 

  means &iv /  hovtest=obrien (w=.50); 

  ods output overallanova=anova1 hovftest = hov bartlett = bart (keep=df 

chisq probchisq); 

 run;  
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 data hoveff (keep= df fvalue probf rename=(df=df_b fvalue=value 

probf=p)) hoverr (rename=(df=df_w) keep=df); 

  set hov; 

  if source = 'Error' then output hoverr; 

  else output hoveff; 

 run; 

 

 data hovtest; 

  length labl $45. ; 

  merge hoveff hoverr; 

  n_groups = &n_groups; 

  avg_cs = &avg_cs; 

  if _n_ = 1 then do;  

   labl = 'Brown and Forsythe'; 

  end; 

  else if _n_ = 2 then do;  

   labl = "Levene's (absolute values)"; 

  end; 

  if _n_ = 3 then do;  

   labl = "Levene's (squared values)"; 

  end; 

  else if _n_ = 4 then do;  

   labl = "O'Brien";  

  end; 

 run; 

 

 data bart; 

  length labl $45.; 

  set bart; 

  labl = 'Bartlett'; 

  rename df = df_b chisq = value probchisq = p; 

 run; 

 

 data sastests (keep= labl val pr); 

  set hovtest bart ; 

  val = input(round(value,.0001), $15.); 

  pr = input(round(p,.0001), $15.); 

 run; 
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* Bootstrap BF; 

 data obtained; *Retrieve sample BF value from previous PROC GLM ODS 

table; 

 set hov; 

 if method = 'BF' and source ne 'Error'; 

 fo = fvalue; 

 keep fo; 

 proc sort data = cells; by &iv; 

 data deviates; 

  merge &data cells; 

  by &iv; 

  dev = abs(&dv - m50); 

 run; 

 

 data outboot(drop=__i); 

 do Replicate = 1 to &nboots;  

  do __i = 1 to &sum_cs;  

   p = int(1 + &sum_cs*(ranuni(0)));  

   set deviates point=p;  

   output;  

  end; 

 end; 

 stop; 

 run; 

 data outboot; 

  set outboot; 

  by replicate; 

  if first.replicate then obsnum = 0; 

  obsnum + 1; 

  run; 

 

 data outboot; 

  set outboot; 

 * Assign group membership to observations in bootstrap samples, 

maintaining group sizes in original sample; 

  cumulate = 0; 

  %do i = 1 %to &n_groups; 
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    cell&i = &&size&i; 

    if obsnum gt cumulate then group = &i; 

    cumulate = cumulate + cell&i; 

  %end; 

 run; 

 

 proc glm data=outboot outstat=stats; 

 class &iv; 

 model dev = &iv /ss3; 

 means &iv / hovtest=bf; 

   ods output hovftest = hov_boot; 

 by replicate;  

 run; 

 data hov_boot; 

 set hov_boot; 

 if upcase(source) = upcase("&iv"); 

 f_boot = fvalue; 

 keep f_boot; 

 ods listing; 

 data stats; 

 if _n_ = 1 then set obtained; 

 retain fo; 

 set hov_boot; 

 if fo >= f_boot then count+1; 

 p=strip(put(1-count/&nboots,8.4)); 

 run; 

 data bf_final (keep = labl val pr); 

    length labl $ 45; 

  set stats; 

 if _n_ = &nboots; 

 labl = 'Bootstrap Brown-Forsythe'; 

    val = input(round(fo,.0001), $15.); 

    pr = input(p, $15.); 

run; 

 

 

*Ramsey conditional HOV test; 

 proc sort data=cells ; by vargrp; 
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 data kur1; *Division by zero here; 

  set cells; 

  b2 = 3*(cs-1)/(cs+1) + (cs-2)*(cs-3)/((cs+1)*(cs-1))*cg2; 

  mnb2 = 3*(cs-1)/(cs+1); 

  varb2 = 24*cs*(cs-2)*(cs-3)/((cs+1)*(cs+1)*(cs+3)*(cs+5)); 

  x = (b2 - mnb2)/sqrt(varb2); 

  moment=6*(cs*cs- 5*cs+2)/((cs+7)*(cs+9))*sqrt(6*(cs+3)*(cs+5)/(cs*(cs-

2)*(cs-3))); 

  a = 6 + 8/moment*(2/moment+sqrt(1+4/(moment**2))); 

  z_b2 = (1-2/(9*a)-((1-2/a)/(1+x*sqrt(2/(a-4))))**(1/3))/sqrt(2/(9*a)); 

  pbz_b2 = 2*(1-probnorm(abs(z_b2)));   

  w2 = (cs+1)*b2/(cs-1) - 3; 

 run; 

 

 proc sort data = kur1; by cs; 

 proc sort data = cvw2; by cs; 

 data kur2; 

  merge cvw2 kur1; 

  by cs; 

 data kur3; 

 set kur2; 

 if b2 ne .; 

 s = 0; 

 if (cs <= 20) and (w2 < 0) and (w2 < lvalue05) then s = -1; 

 else if (cs <= 20) and (w2 > 0) and (w2 > uvalue05) then s = 1; 

 else if (cs > 20) and (b2 < 0) and (pbz_b2 < 0.05) then s = -1; 

 else if (cs > 20) and (b2 > 0) and (pbz_b2 < 0.05) then s = 1; 

 run; 

 

 proc means data = kur3 noprint; * Only one obs in kur3; 

  output out=kur4 sum(s) = sums; 

 run; 

 

 data kur5; 

 if _n_ = 1 then set kur4; 

 retain sums; 

 set sastests; 
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 if (labl = 'Brown and Forsythe') or (labl = "O'Brien"); 

 run; 

 

 data ramseytest (keep = labl val pr); 

    length labl $ 45; 

 set kur5; 

 if sums < 0 and labl = 'Brown and Forsythe' then delete; 

 if sums > -1 and labl = "O'Brien" then delete; 

 labl = "Ramsey's Conditional Test"; 

 run; 

 

*Cochran; 

 data ordermax; 

  set cells; 

  nu = cs - 1; 

  nu_x_var = nu*vargrp; 

  nu_pooled = &sum_cs - &n_groups; 

 

 

 proc univariate data = ordermax noprint; 

  var nu_x_var; 

  output out= get_g_den sum = s_den; 

 run; 

 

 proc sort data  = ordermax; 

  by desending vargrp desending nu; 

 data _null_; 

  set ordermax; 

  if _n_ = 1 then do; 

   call symput('nu_j',nu);; 

   call symput('nu_pooled',nu_pooled);; 

  end; 

 run; 

 

 proc univariate data = ordermax noprint; 

  var vargrp nu_x_var; 

  output out = largevar max=big_ol_var big_nu_var min=sml_ol_var 

min_nu_var sum =sumvars g_gen; 
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 run; 

 

 data getarray; 

  set cells; 

  obs = _n_; 

  array nn[100] n1-n100; 

  retain n1-n100; 

   nn[obs] = cs; 

  keep n1-n100; 

 run; 

 

 data calc_harmonica; 

  set getarray; 

  har_avesize= harmean(of n1-n100);  

  if _n_ = &n_groups;  

 run; 

 proc means data=calc_harmonica noprint; 

  var har_avesize; 

  output out=calc_harm mean=; 

 run; 

 

 data cochran_c_calc; 

  set largevar ; 

  g_test = (big_ol_var*&nu_j)/g_gen; 

  cochran_c = big_ol_var/sumvars; 

 run; 

 

 data cochran_c_crit; 

 merge largevar calc_harm (keep=har_avesize) ;  

  

* Computation of critical values for Cochran C test of variances using 

arthaver; 

 

 * +-------------------------------------+ 

     Researcher inputs these three values 

 * +-------------------------------------+; 

  k =  &n_groups; * Number of Groups; 

  n1 = &avg_cs; * N  for arthm_ave; 
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 n2= har_avesize; *N for harmonic average; 

   

 * +---------------------------------------------+ 

    Critical value calculations for arithmetic 

    average and harmonic mean 

 * +---------------------------------------------+; 

  dfna = n1 - 1; 

  dfda = (n1 - 1)*(k - 1); 

 dfnh = n2 - 1; 

  dfdh = (n2 - 1)*(k - 1); 

  crit_f_a01 = finv(1-.01/k,dfna,dfda);  

  crit_f_a05 = finv(1-.05/k,dfna,dfda);  

  crit_f_a10 = finv(1-.10/k,dfna,dfda);  

 crit_f_h01 = finv(1-.01/k,dfnh,dfdh);  

 crit_f_h05 = finv(1-.05/k,dfnh,dfdh);  

 crit_f_h10 = finv(1-.10/k,dfnh,dfdh);  

 

  cochran_crit__arith_ave01 = 1/(1 + ((k-1)/crit_f_a01)); 

  cochran_crit__arith_ave05 = 1/(1 + ((k-1)/crit_f_a05)); 

  cochran_crit__arith_ave10 = 1/(1 + ((k-1)/crit_f_a10)); 

 cochran_crit__har_ave01 = 1/(1 + ((k-1)/crit_f_h01)); 

 cochran_crit__har_ave05 = 1/(1 + ((k-1)/crit_f_h05)); 

 cochran_crit__har_ave10 = 1/(1 + ((k-1)/crit_f_h10)); 

 

 crit_F_g01 = finv(1-.01/k,&nu_j,&nu_pooled - &nu_j); 

 crit_F_g05 = finv(1-.05/k,&nu_j,&nu_pooled - &nu_j); 

 crit_F_g10 = finv(1-.10/k,&nu_j,&nu_pooled - &nu_j); 

 g_test_crit01 = 1/(1 + ((&nu_pooled/&nu_j - 1)/crit_f_g01)); 

 g_test_crit05 = 1/(1 + ((&nu_pooled/&nu_j - 1)/crit_f_g05)); 

 g_test_crit10 = 1/(1 + ((&nu_pooled/&nu_j - 1)/crit_f_g10)); 

  run; 

 

 data cca (keep=labl cochran_c cochran_crit__arith_ave01 

cochran_crit__arith_ave05 cochran_crit__arith_ave10  

   rename=(cochran_c=value 

cochran_crit__arith_ave01=p01 cochran_crit__arith_ave05=p05 

cochran_crit__arith_ave10=p10))  
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      cch (keep=labl cochran_c cochran_crit__har_ave01 

cochran_crit__har_ave05 cochran_crit__har_ave10  

   rename=(cochran_c=value cochran_crit__har_ave01=p01 

cochran_crit__har_ave05=p05 cochran_crit__har_ave10=p10))  

      ccg (keep=labl g_test g_test_crit01 g_test_crit05 g_test_crit10  

   rename=(g_test=value g_test_crit01=p01 

g_test_crit05=p05 g_test_crit10=p10)); 

  length labl $ 45; 

  merge cochran_c_calc cochran_c_crit; 

 run; 

 

  data cctest (keep = labl val pr); 

   set cca cch ccg; 

   length pr $ 15; 

   if _n_ = 1 then labl = "Cochran's C test (with arithmetic mean)"; 

   else if _n_ = 2 then labl = "Cochran's C test (with harmonic mean)"; 

   else if _n_ = 3 then labl = "G test"; 

   if value gt p01 then pr = "p < .01"; 

   if value gt p05 then pr = "p < .05"; 

   if value gt p10 then pr = "p < .10"; 

   else if value le p10 then pr = "p > .10"; 

   val = input(strip(put(value, 8.4)), $15.); 

 run; 

 

* Fmax with arithmetic mean; 

 data fmax_cal; 

  set largevar; 

  fmax = big_ol_var/sml_ol_var; 

  k = &n_groups; * Number of Groups; 

  kval = k; 

  n1 = &avg_cs;  

  nu = round(n1 - 1);  

  if nu < 11 then nuval = nu;  

  else if nu = 11 then nuval = 10; 

  else if 11 < nu < 15 then nuval = 12; 

  else if 15 <= nu < 20 then nuval = 15; 

  else if 20 <= nu < 30 then nuval = 20; 

  else if 30 <= nu < 60 then nuval = 30; 
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  else if 60 <= nu then nuval = 60; 

 run; 

 proc sort data=fmax_cal; by nuval kval; 

 proc sort data=fmaxcv; by nuval kval;  

 data fmaxcv1; 

  merge fmaxcv fmax_cal (in=a); 

  by nuval kval; 

  if a;run; 

 data fmax; 

  set fmaxcv1; 

  length labl $ 45 pr $ 15 ; 

  labl = 'F-max test (with arithmetic mean)'; 

  val = input(round(fmax,.0001), $15.); 

  

  if fmax gt cv01 then pr = "p < .01"; 

  else if fmax gt cv05 then pr = "p < .05"; 

  else if fmax lt cv05 then pr = "p > .05"; 

  keep labl val pr; 

 run; 

 

 

* fmax with harmonic mean; 

data fmax_cal_har; 

  merge largevar calc_harm (keep=har_avesize); 

  fmax = big_ol_var/sml_ol_var; 

  k = &n_groups; * Number of Groups; 

  kval = k; 

  n1 = har_avesize; * group size (harmonic mean); 

  nu = round(n1 - 1);  

  

  if nu < 11 then nuval = nu;  

  else if nu = 11 then nuval = 10; 

  else if 11 < nu < 15 then nuval = 12; 

  else if 15 <= nu < 20 then nuval = 15; 

  else if 20 <= nu < 30 then nuval = 20; 

  else if 30 <= nu < 60 then nuval = 30; 

  else if 60 <= nu then nuval = 60; 

 run; 
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 proc sort data=fmax_cal_har; by nuval kval; 

 proc sort data=fmaxcv; by nuval kval;  

 data fmaxcv1_har; 

  merge fmaxcv fmax_cal_har (in=a); 

  by nuval kval; 

  if a; 

 data fmax_har ; 

  set fmaxcv1_har;  

  length labl $ 45 pr $ 15 ; 

  labl = 'F-max test (with harmonic mean)'; 

  val = input(round(fmax,.0001), $15.); 

 

  if fmax gt cv01 then pr = "p < .01"; 

  else if fmax gt cv05 then pr = "p < .05"; 

  else if fmax lt cv05 then pr = "p > .05"; 

  keep labl val pr; 

 run; 

 

 

* Z variance; 

 

 data _null_;  

  set anova1; 

  if source = 'Error' then call symput('mse',ms); 

  if source = 'Corrected Total' then call symput('totN',DF+1); 

  run; 

 

 data z2; 

  set cells; 

  c= 2 + (1/cs); 

  z=sqrt((c*(cs-1)*vargrp)/&mse)-sqrt(c*(cs-1)-(c/2)); 

  z_squared=z**2; 

  keep z_squared; 

 run; 

 proc means noprint data = z2 sum; 

  var z_squared; 

  output out = z2a sum = sum_z2; 
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 data z2b (keep = labl val pr); 

  set z2a; 

  length labl $ 45 ; 

  labl = "Z-variance"; 

  value = sum_z2/(&n_groups-1); 

  df_b = &n_groups-1; 

  df_w = &totn - &n_groups; 

  p= 1-probchi(sum_z2,df_b);    

  val = input(round(value,.0001), $15.); 

  pr = input(round(p,.0001), $15.);  

 run; 

 

 * Modified Z variance; 

 

proc means noprint data=&data; 

  var &dv; 

  by &iv; 

  output out=tt var=var_group n=n_group mean=mean_group; 

 

data ones (drop=_type_ _freq_);  

  merge &data tt; 

  by &iv; 

 

* calc kurtosis; 

data temp; 

  set ones; 

  by &iv; 

  z=(&dv - mean_group) / sqrt ((n_group - 1) * var_group / n_group); 

  z_4power=z**4; 

  if first.&iv then sumz4 = 0; 

  sumz4 + z_4power ; 

  if last.&iv then output; 

  keep &iv var_group n_group mean_group sumz4; 

 

 data temp ; 

  set temp;  

  K_i=sumz4/(n_group - 2); 

 proc means noprint data = temp; 
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  var K_i; 

  output out = temp2 mean = K; 

 

data temp3; 

 if _N_ = 1 then set temp2; 

 retain K; 

 set temp; 

  c= 2*((2.9+0.2/n_group)/K)**(1.6*(n_group-1.8*K+14.7)/n_group); 

  z=sqrt( (c*(n_group-1)*var_group) / &mse ) - sqrt (c*(n_group-1)-

(c/2) ); 

  z_squared=z**2; 

  keep z_squared; 

 

proc means noprint data = temp3 sum; 

  var z_squared; 

  output out = z2x sum = sum_z2; 

 

data z2y  (keep = labl val pr); 

  set z2x; 

  length labl $ 45 ; 

  labl = "MZ-variance test"; 

  value = sum_z2/(&n_groups-1); 

  df_b = &n_groups-1; 

  p = 1 - probchi(sum_z2,df_b);   

  val = input(round(value,.0001), $15.); 

  pr = input(round(p,.0001), $15.);  

 run; 

 

* Results; 

 data toprint; 

  set head sastests bf_final ramseytest z2b z2y cctest fmax fmax_har; 

  check_p = substr(pr,1,2); 

  if check_p = '0.' then do; 

   substr(pr,1,2) = ' .'; 

  end; 

  pr = LEFT(pr); 

  drop check_p; 

  run; 
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 proc print data = toprint noobs label; 

  title 'Tests of Homogeneity of Variance'; 

  label labl = '00'x val = '00'x pr = '00'x; 

 run; 

 

%mend ANOVA_HOV; 
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