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Previous studies that explored the impact of misspecification of cross-classified data 
structure as strictly hierarchical are limited to random intercept models. This study 
examined the effects of misspecification of a two-level, cross-classified, random effect 
model (CCREM) where both the level-1 intercept and slope were allowed to vary randomly. 
Results suggest that ignoring one of the crossed factors produced considerably 
underestimated standard errors for: 1) the regression coefficients of the level-1 predictor; 
2) the inappropriately modeled predictor associated with the misspecified crossed factor; 

and 3) and their interaction. This misspecification also resulted in a significant inflation of 
the level-1 residual variances and the intercept and slope variance components across the 
levels of the remaining crossed factor in hierarchical linear model. 
 
Keywords: Hierarchical linear model, cross-classified random effect model, Monte 
Carlo study 

 

Introduction 

Multilevel datasets in educational and social studies may have cross-classified, not 

purely nested, higher level sampling units, which prevents the use of hierarchical 

linear model. Examples of such data structure include students cross-classified by 

school and neighborhood (Raudenbush & Bryk, 2002), such as students in the same 

school coming from different neighborhoods and students in the same 

neighborhood going to different schools. Cross-classification also occurs in a 

longitudinal study when students have different math teachers at different grade 

levels, such as student math achievement cross-classified by the student and the 

teacher at a certain grade level. 

https://doi.org/10.22237/jmasm/1509495900
mailto:feifeiye.s@gmail.com
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The cross-classified random effects model (CCREM) is used to properly 

account for the cross-classified data structure. For example, the cross-classification 

of students in schools and neighborhoods can be modeled by a two-level CCREM, 

with both schools and neighborhoods considered level-2 units. In the pure 

hierarchical model in which neighborhoods are nested in schools, a three-level 

HLM is needed to separate the school (at level-3) and neighborhood (at level-2) 

effects, while assuming students in the same neighborhood all go to the same school.  

With the recent development in computer software that can perform CCREM, 

a growing number of applied researchers have called upon the method to correctly 

model cross-classified data structures. A search of recent education research (1994-

2014) using ERIC via EBSCO, using the keyword “cross-classified” indicated that 

36 peer-reviewed empirical studies have used CCREM. However, given the 

prevalence of cross-classified data structures in educational research, only 36 

studies in the last 20 years seems to be a small number. 

In addition to infrequent use of the CCREM, there is also evidence that its use 

is, sometimes, consciously avoided by social scientists. In a study of neighborhood 

effects on educational achievement, Ainsworth (2002) removed subjects from the 

analysis that moved into new neighborhoods during the course of the study. Ma and 

Wilkins (2002) studied students’ science achievement growth between the 7th and 

12th grades using HLM to control for middle school clustering but ignoring high 

school clustering. More recently, Witherspoon and Ennett (2011) examined rural 

youths’ developmental trajectories of self-reported grades, affective outcomes, and 

behavioral educational outcomes from 6th to 12th grade. The authors did not 

consider the nesting of adolescents within schools for two reasons, the reported 

complication of students changing schools over the course of the study and the 

small number of 9 schools. However, they did not use the school membership as a 

predictor in the model to account for the clustering of students in a school. 

There are several suspected reasons that researchers may be hesitant to use 

CCREMs. First, there may be difficultly in ensuring the model prerequisites have 

been satisfied. In order for the use of a CCREM to be justified, both of the level-2 

units for which a subject is cross-classified have to be randomly selected from 

larger populations. In the case where each of the cross-classified units are not 

randomly selected from larger populations, there has been some debate on whether 

the use of CCREM is appropriate. For example, Teitler and Weiss (2000) used a 

CCREM to examine the sexual behavior of youths who are cross-classified by 

census tract and school. Unless both census tract and school were randomly selected, 

the findings cannot be considered generalizable across all census tracts and schools 

in the U.S. Second, accurate information may not be readily available regarding 
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cluster membership in cross-classified collective structures. Third, the existence of 

CCREM may not be well known, or avoided due to its complexity. 

The hesitance to use CCREMs may lead to misspecification of the cross-

classified data. It was shown using empirical or simulated datasets misspecifying 

CCREM may result in misleading conclusions (Fielding, 2002; Goldstein, 1994; 

Luo & Kwok, 2009; Meyers & Beretvas, 2006). There are two approaches to 

misspecifying the cross-classified data structure, HLM-delete and HLM-complete 

(Meyers & Beretvas, 2006). For example, for students who were nested within a 

cross-classification of middle and high schools, HLM-delete omitted subjects who 

did not attend the main middle school that fed into their particular high school. This 

resulted in a strictly hierarchical dataset with students nested in middle schools 

which were nested in high schools, restricting the generalizability of the findings 

only to subjects who are not cross-classified (e.g., those who attended the main 

middle school). HLM-complete utilized all subjects but ignored the middle school 

clustering. Thus, students were only nested in high schools and the middle schools 

were not modeled as a separate level. 

Meyers and Beretvas (2006) compared the two HLM approaches and 

CCREM when modelling test scores from students who were cross-classified by 

middle and high schools using the 1988 National Educational Longitudinal Study 

(NELS). They found that the fixed parameter estimates and their standard errors, 

the level-1 residual variance and its standard error were all similar between the 

HLM and CCREM models. However, the estimated between high school variance 

differed substantially between the models. The HLM-Delete model had the highest 

value followed by the HLM-Complete model, with the CCREM presenting the 

lowest between high school variance. This suggests in the HLM models the 

between middle school variance was masked to produce an inflated between high 

school variance. 

Meyers and Beretvas (2006) replicated their real data analysis of the 1988 

NELS data with a simulation study. Five factors were included in their design: 

correlation between the residuals of two cross-classified factors, number of feeder 

middle schools, number of levels of cross-classified units, average middle school 

size, and intraclass correlation (ICC) values. The CCREM model had students 

(level-1) nested within a cross-classification of middle and high schools (level-2), 

while the HLM model had students (level-1) nested within high schools (level-2), 

ignoring the middle school clustering. Both the CCREM and HLM models included 

three predictors, a student variable, a middle school variable, and a high school 

variable. However, while the CCREM modeled both the middle and high school 

characteristics as level-2 predictors, the HLM purposely modeled the middle school 
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characteristic which is a level-2 variable on level-1, as a student level characteristic. 

Results suggested that although the fixed parameter estimates were not affected as 

a result of misspecification, the standard errors for the middle school predictor that 

was included on the first level were. They found the relative biases of the standard 

error estimates under the CCREM model were all acceptable. However, most of the 

relative biases of the standard error values in the HLM model were intolerably high 

and negative. Furthermore, they found the between high school variance parameter 

was overestimated when the model incorrectly ignored the middle school clustering. 

Luo and Kwok (2009) extended the above study by examining the impact of 

misspecification of CCREMs in a three-level model with two random factors 

crossed at the top level and at the intermediate level respectively. They found that 

ignoring one of the crossed factors biased the variance component estimates and 

standard errors of the fixed effects regression coefficients. The variance 

components of adjacent levels were overestimated and the variance component of 

the remaining crossed factor was underestimated. Further, misspecification resulted 

in underestimation of the standard error of the regression coefficient associated with 

a predictor of the ignored crossed factor and overestimation of the standard error of 

the regression coefficient of a predictor at a lower level. 

Shi, Leite, and Algina (2010) assessed the effect of omitting the random 

interaction effect in CCREMs on parameter estimate and standard errors. No bias 

was found for the fixed effects. For random effects, variances at level-2 were 

affected but not those at level-1. 

These three simulation studies examining the misspecification of CCREM 

focused on the random intercept model where the slope of the student (level-1) 

predictor remains constant at the cross-classified levels (e.g., middle school and 

high school). It is common for the effect of student predictors to vary across schools, 

and researchers are more interested in whether the effect is predicted by the school 

level predictors (i.e., cross-level interaction). Consequently a comparison of 

CCREM and HLM models with random slopes and intercepts warrants further 

investigation. 

Studies in which the impact of misspecification of cross-classified datasets 

was explored can be compared to those exploring the impact of omitting a level in 

a purely hierarchical model (see, e.g., Moerbeek, 2004), which, similarly, were 

focused on random intercept models. This may be because analytical results are 

derivable with a closed-form solution for random intercept models, but not for 

random slope models (Van Landeghem, De Fraine, & Van Damme, 2005). When 

analytical results cannot be obtained, simulation studies are needed to evaluate the 

consequence of model misspecification. Random slope models are of interest in 
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cross-sectional research (e.g., Swanson & Stevenson, 2002) and longitudinal 

research. A random slope model is prevalent especially for the growth curve models 

as the changing slope across time is considered to vary across subjects. In summary, 

it is important to evaluate how ignoring cross-classified data structure affects the 

performance of fixed effects and variance components estimators in random slope 

models, and this study fills the gap. It is hypothesized ignoring cross-classified data 

structure will influence the standard error of fixed effects related to the misspecified 

level, and variance components of both random intercepts and slopes. 

Methodology 

Simulation Design 

The design of this simulation mirrored the study of Meyers and Beretvas (2006) 

with one major difference: the slope of the level-1 predictor was modeled as 

randomly varying across both the middle and high schools. Four factors were 

manipulated: correlation between the level-2 residuals (0, 0.40); the intraclass 

correlation (ICCs) (0.05, 0.15, 0.25); the number of cross-classified units, (i.e., the 

number of middle schools and high schools, 30 and 50); and the average middle 

school size (20, 40). This resulted in a total of 24 conditions; for each condition, 

2,000 datasets were generated. 

Most of the simulation conditions in Meyers and Beretvas (2006) were 

adopted, except the added conditions with ICC = 0.25 as large ICC is common in 

with national longitudinal databases in education (Hedges & Hedberg, 2007). This 

study may be the first in which the impact of ignoring one level in multilevel 

analysis in random slope models is examined. It was considered important to keep 

the simulation conditions similar to the previous literature (Meyers & Beretvas, 

2006; Luo & Kwok, 2009; Shi et al., 2010) so the results could be directly compared. 

As found when generating values, the distribution of predictors and the coefficients 

impacted the bias results. The simulation studies on CCREM, including Luo and 

Kwok (2009) and Shi et al. (2010) were based on similar parameter values as 

Meyers and Beretvas. 

Unlike Meyers and Beretvas (2006), the number of feeder middle schools into 

high schools was held constant at two. Refer to their study for a detailed explanation 

of the way in which middle school students were organized into varying high 

schools. Meyer and Beretvas found the number of feeder middle schools did not 

affect outcome biases measures. Shi et al. (2010) came to a similar conclusion in 

their study of omitting random interaction effect in the cross-classified random 
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effects models. Different numbers of feeder schools resulted in different degrees of 

sparseness in the generated cross-classified cells. For example, with 30 high schools 

and 30 middle schools, there would be a total of 900 cells, and 840 (93.33%) cells 

in the two-feeder condition and 810 (90%) cells in the three-feeder condition would 

be empty. The degree of sparseness was found not to influence the bias outcome. 

The correlation between the level-2 random effects for the middle and the 

high schools was set to be either 0 or 0.4. The zero correlation condition was chosen 

as a baseline model to compare to the 0.4. Meyers and Beretvas (2006) chose 0.4 

to mimic the fairly related data structures found in many applied datasets (e.g. 

students who attend low socioeconomic middle schools are likely to attend low 

socioeconomic high schools as well). 

The number of middle schools and high schools were either both 30 or both 

50. The number of students in each middle school was randomly generated, either 

from a normal distribution with a mean of 20 and a standard deviation of 2 or from 

a normal distribution with a mean of 40 and a standard deviation of 2. 

The three levels of ICCs were 0.05, 0.15, and 0.25. Meyers and Beretvas 

(2006) chose 0.05 and 0.15 to represent small and moderate ICCs as their 

examination of applied studies and textbook examples suggested that conditional 

ICCs ranged from 0.009 to 0.24, (M = 0.066, SD = 0.0682). The 0.25 was added 

here to represent large ICCs. Hedges and Hedberg (2007) examined achievement 

scores in longitudinal surveys with national probability samples and found that the 

average ICC was about 0.22 for all schools across Grades K-12, higher than the 

widely-used guidelines of 0.05-0.15. 

Model Used to Generate Data 

Data were using a two-level cross-classified model where students were cross-

classified by middle school and high school and both level-1 intercepts and slopes 

were set to be random. Following the notation of Raudenbush and Bryk (2002), the 

level-1 equation of the CCREM model is: 

 

              0 1
, ~ , ²N 0

i jk jk jk i jk i jk i jk
Y X e e       (1) 

 

where Yi(jk) represents a student’s achievement score, π0(jk) is the adjusted mean of 

students who had zero values on the student level predictor, Xi(jk), and attended the 

same middle and high school combination. π1(jk) is the regression coefficient of the 

student level predictor. The level-1 residual, ei(jk), is the difference with which the 
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student’s score varies from the cluster’s adjusted mean, and has a unity variance. 

The level-2 equations are: 

 

 
 

 

000 010 020 0 0 000

100 110 120 1 0 101

j k j kjk

j k j kjk

Z W b c

Z W b c

   

   

    


    

  (2) 

 

The intercept model is the same as in Meyers and Beretvas (2006). The level-

1 intercept is a function of an intercept, γ000, a high school predictor, Wk, a middle 

school predictor, Zj, plus the residual that is decomposed into two separate 

components for middle and high schools, b00 j and c00k, respectively. However, 

unlike Meyers and Beretvas, the slope, π1(jk), of the level-1 predictor, Xi(jk), is now 

modeled as randomly varying across middle and high schools, reflected in the b1 j0 

and c10k terms. The random slope was also predicted by Wk and Zj, resulting with 

two cross-level interaction terms. 

The intercept (γ000) was set to be at 100 and the coefficients of the predictors 

in the model (γ100, γ010, γ020, γ120, γ110) were set to be 0.5 to replicate the study by 

Meyers and Beretvas (2006). The predictors (Wk, Zj, Xjk) were all generated from 

normal distributions (M = 0, SD = 10). The mean of these distributions were set to 

be zero because in models with interaction terms, predictors should be centered to 

avoid multicollinearity. The lower-order effects (X, Z, W) were interpretable as the 

linear slope of a predictor given the other predictors at zero values. In applied 

research, researchers often need to make a decision regarding centering the student 

level predictor, X, as grand mean or group mean centered. Here, setting the mean 

of X to be zero in each combination of a middle school and a high school will 

produce similar results while centering with grand or group mean, thereby reducing 

the possible confounding effects introduced by the different centering approaches. 

The CCREM model incorporated five variance components of b0 j0, b1 j0, c00k, 

c10k, and ei(jk) The residuals, b0 j0 and b1 j0 represented the amount of variation among 

middle schools in their adjusted mean (intercepts) and among the slopes of the 

student level predictor, after accounting for the middle and high school predictors. 

Similarly, c00k and c10k were the amount of variation among the high schools in the 

adjusted mean (intercepts) and the slopes of the student level predictor, after 

accounting for the middle and high school predictors. The variances of b00 j, c00k, 

and their covariance depend on the values of ICC and correlation. 
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Table 1. Covariance matrix of random effects in data generation model for different 

correlation and ICC values 
 

Correlation ICC Generating distribution of random intercepts and slopes 

0.00 0.05 

     
      
      
      
      

    

0 0

1 0

00

10

0 0.0556 0 0 0

0 0 0.0278 0 0
~ N ,

0 0 0 0.0556 0

0 0 0 0 0.0278

j

j

k

k

b

b

c

c

 

 0.15 

     
      
      
      
      

    

0 0

1 0

00

10

0 0.2143 0 0 0

0 0 0.1072 0 0
~ N ,

0 0 0 0.2143 0

0 0 0 0 0.1072

j

j

k

k

b

b

c

c

 

 0.25 

     
      
      
      
      

    

0 0

1 0

00

10

0 0.5000 0 0 0

0 0 0.2500 0 0
~ N ,

0 0 0 0.5000 0

0 0 0 0 0.2500

j

j

k

k

b

b

c

c

 

0.40 0.05 

     
      
      
      
      

    

0 0

1 0

00

10

0 0.0556 0 0.0222 0

0 0 0.0278 0 0
~ N ,

0 0.0222 0 0.0556 0

0 0 0 0 0.0278

j

j

k

k

b

b

c

c

 

 0.15 

     
      
      
      
      

    

0 0

1 0

00

10

0 0.2143 0 0.0857 0

0 0 0.1072 0 0
~ N ,

0 0.0857 0 0.2143 0

0 0 0 0 0.1072

j

j

k

k

b

b

c

c

 

 0.25 

     
      
      
      
      

    

0 0

1 0

00

10

0 0.5000 0 0.2000 0

0 0 0.2500 0 0
~ N ,

0 0.2000 0 0.5000 0

0 0 0 0 0.2500

j

j

k

k

b

b

c

c

 

 
 

Presented in Table 1 are the generating distribution of the residuals in random 

intercepts and slopes (b0 j0, b1 j0, c00k, c10k) by correlation and ICC values. Using τ 

as the symbol for variance, the ICC is calculated as 
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 0 0

0 0 00

2

j

j k

b

b c



   
  

 

for students attending the same middle school and 

 

 00

0 0 00

2

k

j k

c

b c



   
  

 

for students attending the same high school. With 
0 0 00j kb c   and σ2 = 1, solve the 

values of the variances and then covariances (calculated as the square root of the 

product of corresponding variances and the correlation) for different conditions. 

Thus, for conditions with zero correlation, the variances of b0 j0 and c00k were set at 

0.0556 for ICC = 0.05, at 0.2143 for ICC = 0.15, and at 0.50 for ICC = 0.25. For 

conditions with 0.4 correlation, the variances of b0 j0 and c00k were set with the same 

values of the corresponding conditions with zero correlation, while the covariance 

between b0 j0 and c00k was set at = 0.0222 for ICC = 0.05, 0.0857 for ICC = 0.15, 

and 0.2 for ICC = 0.25. The variances of b1 j0 and c10k were set to be half of the 

variances of b0 j0 and c00k as the variances of slopes are often smaller than those of 

intercepts (Raudenbush & Liu, 2001). The covariances between random intercepts 

and random slopes (b0 j0 and b1 j0; c00k and c10k) were set to zero. Even though 

random intercepts and random slopes may be correlated in applied research, it was 

not considered in order to compare results to previous studies by introducing only 

variance components of random slopes. Introducing intercept-slope covariance 

may confound such comparison. 

Data Generation and Analysis 

Cross-classified datasets were generated using equations (1) and (2). First, we 

generated 50 (or 30 depending on the number of middle schools) 1 × 4 vectors from 

multivariate normal distributions as in Table 1. Combinations of middle schools 

and high schools were generated following the condition with two middle school 

feeders in Meyers and Beretvas (2006). The residuals of middle schools were then 

sorted into an ascending order. For all middle schools except the one with the 

largest residual, sixty percent of a middle school’s students were sent to the high 

school paired with this middle school, and the rest were sent to the high school 

paired with the middle school with the next higher residual. For the middle school 
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with the largest residual, 40% of its students were sent to the high school paired 

with the middle school with the smallest residual. 

Then, 2000 data sets were generated for each of the 24 simulation conditions 

in SAS 9.1.3. For each of the generated data set, SAS PROC MIXED was used to 

perform the CCREM analyses and HLM analyses using the full maximum 

likelihood estimation. The HLM addressed the high school clustering, but ignored 

the middle school clustering. The HLM included the middle school predictor and 

its interaction with the student predictor as the student level predictors. The level-

1 equation of HLM model is 

 

 0 1 2 3ij j j ij j i j j ij i j ijY X Z X Z e          (3) 

 

This first level shows how the student’s score, Yij, is a function of the intercept, 

π0 j, plus a student predictor, Xij, and its weight, π1 j, as well as a middle school 

predictor erroneously included on the first level, Zij, and its weight, π2 j, the 

interaction between the two first level predictors, XijZij, weighted by π3 j, plus an 

error term, eij, which captures the deviation from the student’s score from the high 

school mean conditioned on the three predictors. The level-2 equations for the HLM 

are 
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  (4) 

 

The level-1 intercept, π0 j, is predicted by an overall mean for all students 

conditioned on all predictors, γ00, a high school predictor, Wj, its weight, γ01, plus 

the error term, u0 j, which is the difference from a high school’s adjusted mean to 

the overall mean for all high schools. The slopes, π1 j, are predicted by an overall 

slope, γ10, plus a high school predictor, Wj, and its weight, γ11, plus the error term, 

u1 j. The slope for the middle school predictor, π2 j, was held constant, as was the 

slope of the interaction term between the student and the middle school predictor. 

The HLM analyses incorporated variance components of three residuals: u0 j, 

u1 j, and eij. The first residual, u0 j represents the amount of variation in the intercepts, 

or the mean achievement across high schools that remained unexplained after 

accounting for the predictors at the first and second levels. u1 j stands for the amount 

of residual variation in the slopes of the student level predictor across high schools, 
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and eij is the amount of student level variation that exists after controlling for the 

predictors. For comparison with CCREM estimates, only the variance components 

of intercepts and slopes between high schools and level-1 residuals were 

investigated. HLM analysis did not contain the middle school variance component, 

and thus could not be compared with CCREM on these estimates. 

Outcome Measures 

The outcome measures included relative biases of parameter estimates and standard 

error estimates of fixed effects and variance components. The relative bias of 

parameter estimates,  ˆB  , was calculated using equation (5), where ˆ
r  is the 

mean of the rth parameter estimate across the 2,000 replication and θr is the actual 

value of the rth parameter (Hoogland & Boomsma, 1998). 

 

  
ˆ

ˆB r r

r

 
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
   (5) 

 

The relative bias of the standard errors (SEs),  ˆ
ˆB

r

S


 was calculated using 

equation (6), where ˆ
ˆ

r

S


 is the mean standard error across the 2,000 replications and 

ˆ
r

S


 is the standard deviation of the parameter estimates (i.e., empirical standard 

error) (Hoogland & Boomsma, 1998). 
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Analysis 

Descriptive statistics were used to examine whether the bias was acceptable for 

each condition; that is, whether the relative parameter bias was less than 0.05 and 

the relative standard error bias was less than 0.1 in absolute value (Hoogland & 

Boomsma, 1998). When biases were not acceptable in all simulation conditions for 

a parameter, analyses of variance (ANOVA) were conducted to determine which 

factor(s) affected the relative biases regarding this parameter. The outcome 

variables included the relative deviations of parameter estimates, calculated as the 

differences between the parameter estimates and the population parameters divided 
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by the population parameters, and the relative deviations of standard error estimates, 

calculated as the deviations of the sample standard error estimate from the empirical 

standard error divided by the empirical standard error. 

The between-subjects factors in ANOVAs included the correlation between 

the level-2 residuals, zero and non-zero; the intraclass correlation, 0.05, 0.15, and 

0.25; the number of cross-classified units, 30 and 50; and the average middle school 

size, 20 and 40. The within-subjects factor included the model type (CCREM and 

HLM). Due to the large number of replications, statistical significance was not 

examined. Instead, partial eta squared effect sizes, 
2

p , were computed as a measure 

of practical significance. Only effects that were practically significant with 
2 0.01p   were interpreted, which was considered a very conservative cut-off value 

for an appreciable effect in similar simulation studies (Shi et al., 2010). 
 
 

 
 
Figure 1. Relative standard error bias of coefficients of W (the high school predictor), X 

(the student level predictor), Z (the middle school predictor), and interactions between X 
and W and between X and Z 
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Results 

Relative Parameter and Standard Error Bias of Fixed Effects 

All relative parameter biases for fixed effect estimates met the criterion of 

Hoogland and Boomsma (1998) (< 0.05) for acceptable parameter bias amounts. 

All relative standard error biases for fixed effect estimates, as shown in Figure 1, 

met Hoogland and Boosma’s criterion (< 0.10) for acceptable parameter bias 

amounts except the HLM estimates of coefficients of X, Z, and XZ. 

 

Coefficient of X, the Student Level Predictor For coefficients of X (γ100 for 

CCREM and γ10 for HLM), the CCREM standard error estimates were in the 

acceptable range for all conditions with biases ranging from -0.07 to 0.01 

(M = -0.03, SD = 0.02). The HLM standard error estimates were unacceptable for 

all conditions with biases ranging from -0.20 to -0.13 (M = -0.16, SD = 0.02). 

Given the substantial bias found in the HLM standard error estimates, a 2 

(correlation) × 3 (ICC) × 2 (number of cross-classified units) × 2 (average middle 

school size) between-subjects ANOVA was conducted on the relative deviations of 

HLM standard error estimates. Only the main effect of number of middle schools 

was significant  2 0.012p  . The other effects had 
2 0.004p  . Biases in 

conditions with 30 schools (M = -0.18, SD = 0.15) were larger in magnitude than 

those with 50 schools (M = -0.15, SD = 0.09). 

 

Coefficient of Z, the Middle School Predictor For the coefficient of Z (γ010 

for CCREM and γ20 for HLM), CCREM standard error estimates were acceptable. 

The relative standard error bias ranged from -0.07 to 0.00 (M = -0.03, SD = 0.02). 

However, HLM standard error estimates were negatively biased with a range from 

-0.37 to -0.15 (M = -0.25, SD = 0.06). The between-subjects ANOVA conducted 

on the relative deviations of HLM standard error estimates indicated that the 

significant effects included the main effects of ICC  2 0.08p   and middle school 

size  2 0.14p  . The other effects had 
2 0.003p  . Pairwise comparison suggested 

that biases for ICC = 0.25 (M = -0.29, SD = 0.14) were larger in magnitude than 

those for ICC = 0.15 (M = -0.26, SD = 0.13), which in turn were larger than those 

for ICC = 0.05 (M = -0.20, SD = 0.13). Biases were larger in magnitude when 

middle school size was 40 (M = -0.30, SD = 0.12) than 20 (M = -0.20, SD = 0.14). 
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Coefficient of XZ, the Cross-Level Interaction between the Student Level 

Predictor and the Middle School Predictor For the coefficient of XZ (γ110 for 

CCREM and γ30 for HLM), the CCREM standard error estimates were in the 

acceptable range for all conditions with the biases ranging from -0.07 to -0.01 

(M = -0.03, SD = 0.02). The standard error biases of HLM estimates exceeded the 

acceptable level for all of the conditions ranging from -0.87 to -0.76 (M = -0.82, 

SD = 0.04). A between-subjects ANOVA on the relative deviations of HLM 

standard error estimates presented similar results as those for the coefficient of Z 

with the main effects of ICC  2 0.24p   and middle school size  2 0.45p   

significant. The other effects had 
2 0.008p  . Pairwise comparison suggested that 

biases increased in magnitude for larger ICCs (M = -0.84, SD = 0.04 for 

ICC = 0.25; M = -0.83, SD = 0.04 for ICC = 0.15; M = -0.80, SD = 0.05 for 

ICC = 0.05). Biases were larger in magnitude when middle school size was 40 

(M = -0.85, SD = 0.03) than 20 (M = -0.79, SD = 0.04). 

In summary, the HLM model resulted with deflated standard errors of 

regression coefficients related to the student level predictor, the middle school 

predictor, and their interaction. This is not surprising, because the HLM model 

ignores the middle school level and disaggregates the middle school predictor at 

the student level. 
 
 
Table 2. Relative bias of variance estimates when correlation between residuals was 0 

 

 No. of 

schools 

Middle 
school 

size 

Variance of 
intercept across 

high schools  

Variance of slope 
across high 

schools  

Student-level 

residual variance 

ICC CCREM HLM  CCREM HLM   CCREM HLM 

0.05 30 20 -0.108 0.232  -0.054 0.432  0.000 1.219 

0.05 30 40 -0.103 0.299  -0.057 0.411  0.002 1.260 

0.05 50 20 -0.079 0.328  -0.039 0.464  0.001 1.255 

0.05 50 40 -0.035 0.412  -0.031 0.471  0.000 1.283 

0.15 30 20 -0.088 0.252  -0.055 0.424  0.000 4.711 

0.15 30 40 -0.059 0.357  -0.050 0.411  0.000 4.836 

0.15 50 20 -0.057 0.326  -0.029 0.466  -0.001 4.825 

0.15 50 40 -0.045 0.398  -0.032 0.464  0.000 4.979 

0.25 30 20 -0.066 0.267  -0.053 0.423  0.000 11.012 

0.25 30 40 -0.055 0.353  -0.056 0.414  0.000 11.384 

0.25 50 20 -0.038 0.364  -0.030 0.473  0.000 11.319 

0.25 50 40 -0.042 0.399   -0.029 0.460   0.000 11.578 
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Figure 2. Relative parameter bias of variance estimates of intercepts across high schools 

for conditions with correlation = 0; the two numbers on the horizontal axis were number of 
schools / middle school size 

 

Bias of the Random Effects Variance Components for Zero Correlation 

Conditions 

As Meyers and Beretvas (2006) pointed out, when correlation between middle 

school and high school intercepts residual was not zero, the true value of the 

variance components was not known because the analysis using CCREM assumed 

that the correlation of cross-classified units was zero. Thus, only relative parameter 

bias is reported for the student level residual variance and variance of intercepts 

and slopes between high schools for conditions when correlation was zero (Table 

2). For conditions when correlation was 0.4, compare the variance estimates of 

CCREM and HLM. 

 

Variance of Level-1 Intercepts across High Schools The relative bias 

ranged from -0.108 to -0.035 for CCREM estimates and from 0.232 to 0.412 for 

HLM estimates across the 24 simulation conditions (Figure 2). The CCREM 

estimates in the conditions with larger sample sizes (50 schools and an average of 

40 students per school) were acceptable with relative biases less than 0.05. CCREM 

estimates in the other conditions were slightly negatively biased. However, HLM 

estimates were positively biased in all conditions. A mixed effect ANOVA was 

conducted on the relative deviations of the parameter estimates. Only the main 

effect of model was significant  2 0.45p   with CCREM estimates having smaller 
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deviations (M = -0.06, SD = 0.37) than HLM estimates (M = 0.33, SD = 0.68). The 

other effects had 
2 0.003p  . 

 
 

 
 
Figure 3. Relative parameter bias of variance estimates of slopes across high schools for 

conditions with correlation = 0; the two numbers on the horizontal axis were number of 
schools / middle school size 

 

 
 

 
 
Figure 4. Relative parameter bias of level-1 residual variance estimates for conditions 
with correlation = 0; the two numbers on the horizontal axis were number of 
schools / middle school size 
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Variance of Level-1 Slope across High Schools CCREM estimates of the 

slope variance across high schools were acceptable with the relative biases ranging 

from -0.057 to -0.029 (Figure 3). However, HLM estimates were unacceptable with 

biases ranging from 0.411 to 0.473. A mixed effect ANOVA on the relative 

deviations of the parameter estimates resulted with only one appreciable effect, the 

main effect of model  2 0.76p  . The other effects had 
2 0.004p  . 

 

Student-Level Residual Variance There was no bias in estimating student level 

residual variance using CCREM because the biases ranged from -0.0038 to -0.0007. 

However, the HLM model overestimated the student level residual variance with 

the bias ranging from 1.219 to 11.578. The mixed ANOVA indicated that the 

appreciable effects included: interaction effect between model and ICC 

 2 0.79p  , and main effects of model  2 0.88p   and ICC  2 0.79p  . As 

shown in Figure 4, the degree of overestimation of HLM estimates increased with 

the value of ICC. 

In summary, the HLM model inflated the variance components of the level-1 

residual, the random intercept and slope across high schools. In other words, while 

omitting the middle school level, variance across middle schools was imposed at 

the student and high school level. 
 
 
Table 3. Mean of random effect variance estimates when correlation between residuals 

was 0.4 
 

 No. of 
schools 

Middle 

school 
size 

Var of intercept 

across high schools  

Var of slope across 

high schools  

Student-level 

residual variance 

ICC CCREM HLM  CCREM HLM   CCREM HLM 

0.05 30 20 0.060 0.090  0.026 0.040  0.996 2.221 

0.05 30 40 0.061 0.097  0.026 0.040  0.999 2.254 

0.05 50 20 0.064 0.099  0.027 0.041  0.998 2.245 

0.05 50 40 0.063 0.102  0.027 0.041  0.998 2.289 

0.15 30 20 0.232 0.357  0.101 0.153  0.996 5.750 

0.15 30 40 0.225 0.381  0.102 0.153  0.998 5.848 

0.15 50 20 0.239 0.382  0.104 0.158  0.997 5.858 

0.15 50 40 0.232 0.396  0.104 0.157  0.998 5.950 

0.25 30 20 0.524 0.857  0.237 0.357  0.998 11.969 

0.25 30 40 0.508 0.891  0.238 0.356  0.999 12.297 

0.25 50 20 0.543 0.908  0.242 0.367  0.997 12.269 

0.25 50 40 0.526 0.928   0.243 0.367   0.999 12.565 
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Figure 5. Variance estimates of intercepts across high schools for conditions with 

correlation = 0.4; the two numbers on the horizontal axis were number of schools / middle 
school size 

 

 
 

 
 
Figure 6. Variance estimates of slopes across high schools for conditions with 

correlation = 0.4; the two numbers on the horizontal axis were number of schools / middle 
school size 

 

Random Effects Variance Components for 0.4 Correlation Conditions 

Compared in Table 3 are CCREM and HLM estimates of the variances of intercepts 

and slopes across high schools, and the student level residual variance for 

conditions with 0.4 correlation. The CCREM estimates were close to the generating 
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values of these variances. For variances of intercepts and slopes (Figures 5 and 6), 

the HLM estimates were larger than CCREM estimates, and the differences 

increased with larger ICC values. For student level residual variance (Figure 7), 

HLM estimates were almost twice as large as the CCREM estimates when 

ICC = 0.05, four times larger than the CCREM estimates when ICC = 0.15, and 

twelve times larger when ICC = 0.25. Note the variances of intercepts and slopes 

over the middle schools, the ignored crossed factor in HLM, were the same as those 

of the high schools in the data generation. It is evident that the variance contributed 

by the ignored crossed factor (i.e., the middle school) was imposed on the variance 

components of the other remaining crossed factor (i.e., the high school) and the 

student level when using HLM. 

Relative Standard Error Bias of Random Effects Variance Components 

Presented in Table 4 and Figures 8 and 9 are the relative standard error biases across 

the 24 conditions of estimates of intercepts and slopes variances. None of the 

CCREM and HLM standard error estimates were acceptable. For intercepts 

variances, CCREM standard error estimates had biases ranging from 2.44 to 3.91 

(M = 3.10, SD = 0.54) and HLM standard error estimates had biases ranging from 

3.48 to 7.60 (M = 5.33, SD = 1.21). For slope variances, CCREM standard error 

estimates had biases ranging from 2.62 to 4.06 (M = 3.10, SD = 0.54) and HLM 

standard error estimates had biases ranging from 3.64 to 5.96 (M = 4.82, SD = 0.90). 
 
 

 
 
Figure 7. Level-1 residual variance estimates for conditions with correlation = 0.4; the 

two numbers on the horizontal axis were number of schools / middle school size 
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Figure 8. Relative standard error bias of variance estimates of intercepts across high 

schools; the two numbers on the horizontal axis were number of schools / middle school 
size 

 

 
 

 
 
Figure 9. Relative standard error bias of variance estimates of slopes across high 

schools; the two numbers on the horizontal axis were number of schools / middle school 
size 
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Table 4. Relative standard error bias of random effect variance estimates 

 

  No. of 
schools 

Middle 
school 

size 

SE of intercept 
variance across high 

schools  

SE of slope 
variance across 

high schools 

Correlation ICC CCREM HLM  CCREM HLM 

0.0 0.05 30 20 2.92 4.15  2.62 3.64 

0.0 0.05 30 40 2.49 3.48  2.79 3.90 

0.0 0.05 50 20 3.91 5.64  3.85 5.44 

0.0 0.05 50 40 3.58 4.99  3.81 5.50 

 
        

0.0 0.15 30 20 2.54 4.74  2.75 3.99 

0.0 0.15 30 40 2.52 4.14  2.76 3.99 

0.0 0.15 50 20 3.64 6.73  3.89 5.71 

0.0 0.15 50 40 3.72 6.14  3.91 5.76 

 
        

0.0 0.25 30 20 2.49 5.00  2.78 4.10 

0.0 0.25 30 40 2.62 4.54  2.76 4.09 

0.0 0.25 50 20 3.74 7.60  3.83 5.71 

0.0 0.25 50 40 3.67 6.48  4.06 5.96 

         
0.4 0.05 30 20 2.83 3.94  2.68 3.80 

0.4 0.05 30 40 2.49 3.58  2.77 3.90 

0.4 0.05 50 20 3.48 5.00  3.85 5.45 

0.4 0.05 50 40 3.56 5.15  3.96 5.67 

 
   

     
0.4 0.15 30 20 2.44 4.58  2.66 3.87 

0.4 0.15 30 40 2.54 4.48  2.77 4.02 

0.4 0.15 50 20 3.50 6.51  3.95 5.83 

0.4 0.15 50 40 3.49 6.23  3.86 5.70 

 
   

     
0.4 0.25 30 20 2.51 5.28  2.82 4.14 

0.4 0.25 30 40 2.53 4.95  2.66 3.93 

0.4 0.25 50 20 3.49 7.43  3.96 5.90 

0.4 0.25 50 40 3.66 7.28   3.79 5.68 

 
 

Mixed effect ANOVA was conducted on the relative deviations of standard 

error estimates for intercepts variances and slope variances. For intercepts variances, 

the appreciable effects included the interaction effects between model and ICC 

 2 0.14p  , model and the number of schools  2 0.06p  , model and middle 

school size  2 0.01p  , and main effects of model  2 0.63p  , ICC  2 0.05p  , 

the number of schools  2 0.23p  , and middle school size  2 0.01p  . In Figure 9, 

we could see that HLM estimates were more positively biased than CCREM 

estimates. The differences in the bias between HLM and CCREM estimates were 



YE & DANIEL 

479 

larger for larger ICC values, 50 schools (vs. 30), and middle school size of 20 (vs. 

40). 

For slope variances, the effects that met the criterion for an appreciable effect 

included: the interaction effects between model and the number of schools 

 2 0.06p  , and main effects of model  2 0.64p  , and the number of schools 

 2 0.29p  . Figure 9 shows that HLM estimates were more positively biased than 

CCREM estimates and such difference was larger for conditions with 50 schools 

(vs. 30), and middle school size of 20 (vs. 40). 

Power of Detecting Nonzero Variance Components 

Power was all 100% for hypothesis tests regarding slope variances across high 

schools for both CCREM and HLM estimates, but not for intercepts variances. 

Figure 10 presents power levels for hypothesis tests regarding intercepts variances 

across high schools. When ICC was 0.05, there was no difference in power between 

CCREM and HLM. For higher ICC values, the CCREM estimates had near one 

power level while HLM estimates had significantly lower power in conditions with 

middle school size of 20. The difference in the power was the largest for the 

conditions with the smallest sample sizes (30 schools with 20 students on average 

per school). 
 
 

 
 
Figure 10. Power of detecting nonzero intercept variances using CCREM and HLM 

models; the two numbers on the horizontal axis were number of schools / middle school 
size 
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Conclusion 

In this study, previous research of ignoring a crossed random factor was extended 

by examining its effect on CCREM models with both random intercepts and slopes. 

One kind of model misspecification of CCREM models was considered: 

misspecifying a cross-classified level-2 unit (e.g., middle school) and imposed its 

characteristics (e.g., the SES of the middle school) as a predictor at level-1 (e.g., 

student level). Our results were consistent to previous Monte Carlo research 

(Meyers & Beretvas, 2006; Luo & Kwok, 2009) in that employing HLM on cross-

classified data resulted in 1) unbiased estimates of regression coefficients of all 

fixed effects; 2) unbiased standard errors of regression coefficient of the high 

school predictor (the remaining crossed factor); 3) underestimated standard errors 

of regression coefficient for the middle school predictor (the predictor misspecified 

as level-1 predictor); 4) overestimated level-1 residual variance; and 5) 

overestimated variance of random intercepts across high schools. 

In the previous studies, a random intercept model was adopted in which the 

effect of the student level predictor was fixed across different middle and high 

schools. In this study, this limitation was freed, and the effect of the student level 

predictor was modeled as random across middle and high schools. In addition, two 

cross-level interaction effects were modeled in which the effect of the student level 

predictor was affected by a middle school predictor and a high school predictor. 

The addition of random slope changed the impact of model misspecification on the 

fixed effect regression coefficient of the student level predictor found in previous 

studies. Meyers and Beretvas (2006) found misspecified HLM produced unbiased 

standard error of the regression coefficient of the student level predictor. However, 

with the addition of the random slope to model in the current study, it was found 

this standard error was underestimated and magnitude of underestimation was 

larger when there were fewer cross-classified units (middle and high schools). 

The focus in previous studies on random intercept models omitted the cross-

level interaction between the student level predictor and the high school predictor, 

the interaction between the student level predictor and the middle school predictor, 

as well as the variance of random slopes of the student level predictor across high 

schools. In the current study, these omissions were taken into account and it was 

found model misspecification did not impact the regression coefficient or the 

standard error of the cross-level interaction between the student level predictor and 

the high school predictor. The reason may be that clustering of students in high 

schools was considered in the HLM. However, it was found for the interaction 

between the student level predictor and the middle school predictor, the standard 
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error was underestimated using HLM and the magnitude of underestimation was 

higher for larger ICC values and larger size schools. The dependence of 

underestimation on the size of the schools was also found by Meyers and Beretvas 

(2006). This underestimation may be due to the contribution of the per-cluster 

sample size to the design effect in cluster sampling. According to Snijders and 

Bosker (1999), the design effect is larger when the sample size per cluster is larger, 

and thus more bias is introduced when the homogeneity within a cluster is ignored. 

In addition, the design effect is larger when ICC is larger, thus explaining more 

biases for larger ICC values. 

The results from this study suggest, across all conditions considered, the use 

of CCREM for cross-classified datasets produced more accurate results when 

compared to incorrectly using a hierarchical model. It appears that when a predictor 

is modeled on a level lower than it should be and a level of nesting is ignored, the 

parameter of the true predictor on that lower level, as well as its interaction with 

the erroneously modeled predictor, may have biased estimates. This result revealed 

the insidious effect that ignoring a level of nesting may have on the variables in the 

model that were actually correctly specified. The downward bias of the standard 

error for regression coefficients of predictors at level-1, predictors at the ignored 

level, and their cross-level interaction has important implications for applied 

researchers who are utilizing an HLM. This underestimation inflates the Type I 

error rate. Specifically, the degree of underestimation of HLM standard error 

estimates is the most pronounced for the cross-level interaction. The false 

identification of significant interaction effects could lead to excessive effort in 

exploring and explaining such interaction effects. When ICC was not substantial 

(e.g., at 0.05), the standard error estimates in the misspecified HLM models were 

still significantly underestimated. This suggests trying to model the cross-

classification even when there is concern with the degree of dependence within a 

crossed factor. 

The effect of misspecification on random intercepts variance found in 

previous studies applies to random slopes variance as well. In the current study, the 

variances of the level-1 intercepts and slopes across high schools were both 

overestimated in the misspecified HLM. However, this does not necessarily imply 

that misspecified HLM models would be more powerful in detecting the nonzero 

variance components. The standard error estimates of CCREM and HLM are both 

positively biased while HLM estimates have larger biases. With substantial 

clustering, CCREM is found to have more power in detecting the nonzero variance 

components, but HLM has similar power when the number of schools and school 

sizes are large. Caution is needed in using the standard error of an estimated 
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variance component to conduct a hypothesis test. The distribution of the estimated 

variance component converges only slowly to normality as the sample size 

increases, and thus a Wald z-test on variances is not recommended (Raudenbush & 

Bryk, 2002). With positively biased standard error estimates, CCREM still 

produces acceptable power when ICC suggests substantial clustering (ICC ≥ 0.15). 

Raudenbush and Bryk (2002) states that the software of HLM provided a better 

approach to hypothesis testing of variance components, and further studies may be 

needed in comparing their approach to Wald’s z-test in hypothesis testing of 

variance components. 

The biased variance estimates of HLM have serious consequences. If a level-

2 crossed factor is ignored, and instead an HLM is implemented, the notion of how 

much student level variance remains unexplained after accounting for the predictors 

would be severely inaccurate. Using a CCREM greatly reduces this bias and 

provides an unbiased estimate of how much variation in the student level remains 

after controlling for the predictors. Moreover, the overestimation of variances of 

intercepts and slopes across the remaining crossed factor can lead to incorrect 

conclusions on the degree of remaining dependence after all predictors are 

controlled for. This may lead to the identification of a greater number of predictors 

than actually needed to explain the overestimated variances. 

In summary, CCREM should be applied to cross-classified data to avoid 

inflated Type I error of some fixed effects and overestimated variances of level-1 

intercepts and slopes. When CCREM cannot be applied to a cross-classified data 

due to lack of information of cluster membership, if the conditions are similar to 

those used in this study, ignoring a crossed factor will not impact the predictors of 

the correctly modeled crossed factor. Hypothesis tests regarding predictors at the 

lower level and associated with the ignored crossed factor will have inflated Type 

I error rates. Intercepts and slopes variances will be overestimated. 

Limitations and Suggestions for Future Research 

The generalizability of results from this study is restricted to the manipulated 

conditions of the four independent variables in this study and thus is not applicable 

to all research cases. Indeed, there were several limitations of this study that can be 

addressed by research methodologists in the future. The principle limitations of this 

study are contingent on the manipulation of the four factors. Furthermore, as 

Meyers and Beretvas (2006) purported, more research is needed when the number 

of cross-classified units (middle and high schools) is not identical. The covariance 

between random intercepts and random slopes could be nonzero. Last, only partial 
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cross-classification was considered in this study. As Luo and Kwok (2009) pointed 

out, cross-classification structure has important impact on the effect of model 

misspecification of cross-classified data. Different cross-classification structures 

should be evaluated in the future for random slope models. 
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