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A robust statistic to detect single and multi-outliers in univariate circular data is proposed. 
The performance of the proposed statistic was tested by applying it to a simulation study 

and to three real data sets, and was demonstrated to be robust. 
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Introduction 

Statistical data can be classified according to their distributional topologies into two 

sets. First, linear data can be represented on a straight line. Second, circular data 

can be represented on the circumference of a unit circle. Circular data can be 

measured either in degrees, when they are distributed in the interval [0° – 360°), or 

in radians, in the interval [0 – 2π). Circular data can arise in contrasting scientific 

fields such as earth sciences, meteorology, biology, physics, psychology, image 

analysis, and medicine. The classical statistics that we apply to linear data cannot 

be used for circular data because of the geometrical properties of the circular data. 

For example, if we have two circular data points at 100° and 300°, then the 

arithmetic mean according to the linear measure is equal to 200°. However, the 

mean direction is equal to 80° according to the geometrical theory of the circle. 

A special statistical measure is needed to deal with circular data. Between 5% 

and 10% of any set of statistical data are surprising points that are often called 

outliers (Hampel, Ronchetti, Rousseeuw, & Stahel, 1986). They may unduly affect 

the statistical analysis and the final outcomes. 

https://doi.org/10.22237/jmasm/1509495720
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There are many methods to detect outliers in linear univariate data. However, 

little is known regarding detecting outliers in circular data. It can be defined as an 

observation that is discordant in comparison with the rest of the sample. In linear 

data, an outlier is an observation that is extreme. However, the outliers in circular 

data may not have extreme values. For example, consider the following circular 

data (Collett, 1980): 

 

 10,15,20,25,30,350   

 

As linear data, it is obvious that the last observation, 350, is an outlier. 

However, as circular data, it is clear that 350 is consistent with the other 

observations. Therefore, the methods used to detect outliers in circular data are  

different from those used for linear data. 

Mardia (1975) suggested a statistic to identify a single outlier in univariate 

circular data. He considered the observation that is the most influential on the 

resultant length to be an outlier. Collett (1980) proposed four test statistics, namely 

L, C, D, and M, to identify a single outlier in univariate circular data. It was found 

for small samples sizes that it is better to use the C and D statistics. However, no 

statistic was recommended to detect multiple outliers, and typical methods are only 

successful in detecting a single outlier. Furthermore, there was no discussion on 

how to identify an outlier when the sample size is large. 

Fisher (1993) summarized three causes of outliers in statistical data: mis-

recording, unwitting sampling from another population, and vagaries of sampling 

resulting in the occasional isolated value. In this identification he used the M 

statistic, which had already been suggested by Collett (1980), and did not propose 

a new statistic. 

Mardia and Jupp (2000) suggested that circular data could be tested by 

considering three factors: The first was the mean resultant length. They promoted 

the use of either the Mardia (Mardia, 1975) statistic or the C statistic (Collett, 1980). 

The second was the likelihood ratio test for slippage in the model. For circular data, 

they considered either the likelihood ratio test for location slippage in a von Mises 

distribution (Collett, 1980) or the likelihood ratio test for concentration slippage in 

a Fisher distribution (Fisher, Lewis, & Willcox, 1981). Their final factor was the 

exponential distribution. Some tests for this factor had been suggested by Fisher et 

al. However, Mardi and Jupp did not suggest a new test statistic. 

Jammalamadaka and SenGupta (2001) promoted the use of the P-P plot as a 

simple graphical way of detecting outliers in circular data. Furthermore, they 

proposed two statistics: The first of these was the locally most powerful invariant 
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(LMPI) statistic. They used LMPI for the circular data that were applie din the 

wrapped stable and uniform mixture model WSM. Second, they proposed using a 

likelihood ratio testing (LRT) approach to identify outliers in circular data. They 

tested the hypothesis that ϑ1, ϑ2,…, ϑi–1, ϑi+1,…., ϑn follow a von Mises distribution 

[vM(µ0, k)] and that ϑi is distributed as [vM(µ1, k)], where i is unknown. They 

applied this test to two cases: first, when µ0, µ1, and k are all known and second, 

when only k is known. They calculated the power of the procedure and the 

probability of detecting outliers perfectly by comparing both the LMPI and the LRT 

approaches with the L statistic (Collett, 1980) and with the statistic of Mardia 

(1975). They noted that their statistics are better than the other statistics. However, 

they did not propose a way to test circular data if k is unknown. 

Otieno and Anderson-Cook (2005) tested three of the preferred directions, 

mean direction, median direction (Fisher, 1993), and the Hodges-Lehmann (HL) 

estimate (Otieno & Anderson-Cook, 2003). They concluded circular HL is a good 

compromise between circular mean and circular median, like its counterpart for 

linear data. The HL estimator is less robust to outliers compared to the median, but 

it is an efficient alternative because it has a smaller circular variance. 

Abuzaid, Mohamed, and Hussin (2009) proposed the A statistic to detect an 

outlier in univariate circular data. This depends on the sum of the circular distances 

from any point to all other points on the circumference of the unit circle. They 

depended on calculating both the probability that the contaminant observation was 

an extreme observation and could be identified as an outlier and the probability of 

a type II error as a measure for comparing their suggestion with the C, D, and M 

statistics. However, the probability results for the A statistic are close to the results 

for the C statistic and they did not test their suggestion for large sample size or 

apply it to identify multiple outliers. 

Abuzaid (2010) used the geometrical properties of the chord of a circle for 

detecting an outlier in univariate circular data. However, this suggestion detects 

only a single outlier. Abuzaid, Hussin, Rambli, and Mohamed (2012) then 

suggested a test statistic to detect outliers in univariate and bivariate circular data. 

The test statistic was based on the approximate distribution of the circular distances 

between the sample points. Nonetheless, they did not evaluate their statistic using 

any statistical measures. Moreover, they suggested a way to identify only a single 

outlier. 

Mohamed, Rambli, Khaliddin, and Ibrahim (2015) proposed a procedure to 

identify single outliers and patches of outliers in univariate circular data. It is based 

on spacing theory in circular data. They compared their procedure with the C, D, 

and A statistics. However, their procedure is difficult, especially if the circular data 



MAHMOOD ET AL 

421 

have multiple outliers. Furthermore, the rates of swamping, the identification of 

inliers as outliers (Barnett & Lewis, 1978), are relatively high. For more 

information, see Beckman and Cook (1983) and Barnett and Lewis (1978), who 

reviewed the literature on the detection of outliers in various areas of statistical data. 

The aim of this study is to investigate the robustness of our proposed statistic 

to detect outliers in univariate circular data when the data follow a von Mises 

distribution. The circular distance between any circular data point and the circular 

median is considered as a statistic test to identify outliers. 

The circular median is defined as any angle ϑ such that half of the data points 

lie in the arc ϑ, ϑ + π and the majority of the data points are nearer to ϑ than to ϑ + π 

(Mardia & Jupp, 2000). This will be compared with existing methods to detect a 

single outlier. Furthermore, the aim is to identify outliers when there is a high level 

of contamination and with large sample sizes, using various statistical measures to 

evaluate the procedure. 

von Mises Distribution 

Let ϑ1, ϑ2,…, ϑn be circular observations following a von Mises distribution with 

mean direction µ and concentration parameter k, denoted by [vM(µ, k)]. The 

probability density function of the von Mises distribution is given by Hamelryck, 

Mardia, and Ferkinghoff-Borg (2012) as follows: 

 

    cos

0

1
g , , e

2π I

k
k

 
 


   (1) 

 

where 0 ≤ μ < 2π, k ≥ 0, and I0 denotes the modified Bessel function of the first kind 

and order 0, which can be defined as follows: 
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1
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If k = 0, then the probability density function of the von Mises distribution will be 

the same as the probability density function of the uniform distribution of circular 

data, where 
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The mean direction of the circular observations is estimated according to the 

following formula (Fisher, 1993): 

 

 

 
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where 

 

    
1 1

sin , cos
n n

i i

i i

s c 
 

     

 

The mean resultant length R̅ is a measure of the concentration of the circular 

observations at a specific point of the circumference of the circle. It is calculated 

using this formula: 

 

 
2 2R c s    (3) 

 

where 0 ≤ R̅ ≤ 1, c̅ = c / n, s̅ = s / n. 

R̅ = 0 is satisfied if and only if the circular data are widely dispersed on the 

circumference (c̅ = 0 and s̅ = 0). R̅ = 1 is satisfied if and only if the circular data 

have a high concentration at a specific point (c̅ + s̅ = 1). 

The concentration parameter k of the circular observations is estimated 

according to the following formula (Fisher, 1993): 
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Methods 

Detection of a Single Outlier by Existing Methods 

The following methods for the detection of single outlier will be compared in 

univariate circular data with the suggested procedure. 

 

Mardia Statistic 

 

Mardia (1975) suggested a statistic to identify a single outlier in univariate circular 

data. The outlier was considered to be the observation that is the most influential 

on the resultant length. Therefore, 

 

 
 

1
min

i
n R

Mar
n R


   

  
  

  (5) 

 

where R(-i) is the resultant length after omitting the ith observation and R is the 

resultant length for the full data set. 

 

M Statistic 

 

Collett (1980) suggested the M statistic to detect an outlier in univariate circular 

data. This is given as 

 

 
 

1 1
max

i k
R R R R

M
n R n R


     

  
   

  (6) 

 

where Rk = max{R(-i)}. 

 

A Statistic 

 

Abuzaid et al. (2009) used the circular distance between the circular observations 

ϑi and ϑj as suggested by Rao (1969). This is given as 

 

  1 cosij i jd       

 



DETECTION OF OUTLIERS IN UNIVARIATE CIRCULAR DATA 

424 

where dij ∈ [0, 2]. The sum of all circular distances of the ϑj to all other observations 

is given by 

 

   
1

1 cos , 1,2, ,
n

j i j

i

D j n 


      

 

Abuzaid et al. (2009) argued that if the observation θj is an outlier (and so lies far 

away from the other observations), the value of Dj will increase. Therefore, the A 

statistic to detect an outlier in the circular univariate data is based on the average 

circular distance 

 

 
1

jD

n 
  

 

when omitting the observation θj. The statistic is given as follows: 

 

 
 

max , 1,2, ,
2 1

jD
A j n

n

  
  

  
  (7) 

 

where A ∈ [0, 1]. Jammalamadaka and SenGupta (2001) considered the circular 

distance between any two circular data points to be the smallest arc between them 

on the circumference. They calculate the circular distance between ϑi and ϑj as 

follows: 

 

 π πij i jd         (8) 

 

where  0, πijd  . 

Abuzaid (2010) used equation (8) to calculate the sum of all circular distances 

from the observation ϑj to all other observations. This is given as 

 

  
1

π π , 1,2, ,
n

j i j

i

D j n 



       

 

An alternative statistic is given by 
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 max , 1,2, ,
1

jD
A j n

n




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where A* ∈ [0, π]. Abuzaid expected that the statistic A* has a similar performance 

to the A statistic. 

 

Chord Statistic 

 

Abuzaid (2010) used the geometrical properties of the chord of a circle to develop 

an alternative test to identify an outlier in circular univariate data. A chord is a 

segment that connects two different points on circumference of the circle. The 

length of the chord between ϑi and ϑj can be calculated using the following formula: 

 

  crd 2 sin
2

ij
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d
d r

r



   

 

where r is the radius, so in the unit circle r = 1, and ijd 
 is the smallest arc length 

between ϑi and ϑj, which is calculated from equation (8). 

In the unit circle, calculating Sj, the sum of the lengths of all the chords 

passing through observation ϑj, was proposed as 
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where 0 ≤ Sj ≤ 2(n – 1). When 0ijd   , 

 

 
1

sin 0
2

n
ij

i

d 



   

 

while 

 

 
1

sin 1
2

n
ij

i

d
n





    

 



DETECTION OF OUTLIERS IN UNIVARIATE CIRCULAR DATA 

426 

when πijd   . Therefore, if Sj has the maximum value, this suggests that ϑj is a 

candidate for the outlier. The chord statistic is given by 

 

 
 

max , 1,2, ,
2 1

jS
Chord j n

n

  
  

  
  (9) 

The Proposed Method 

A robust circular distance RCDu statistic is now proposed to identify outliers in the 

circular data. It depends on two main points: first, the fact that the outliers in 

circular data may not be extreme values and second, an important property of the 

von Mises distribution is to be symmetric about the mean direction. However, the 

circular median is more efficient than the mean direction when the circular data 

have outliers (Ducharme & Milasevic, 1987). He and Simpson (1992) 

recommended the circular median is more robust than mean direction when the data 

do not follow von Mises distribution. Therefore, use the circular distance between 

any observation and circular median as a statistic to detect single and multi-outliers. 

Suppose ϑ1, ϑ2,…, ϑn are circular observations located on the circumference 

of a unit circle. To apply the proposed procedure, there are several possible ways 

to calculate the circular distance dist(i) between ϑi and the circular median med 

because of the circular geometry of the data. The cases are as follows: 

 

i. If 0 ≤ med ≤ π 

 

 
 

if π

2π if >π

i i

i

i i

med med
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med med

 
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ii. If π ≤ med ≤ 2π 

 

  

if π
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i i

i

i i

med med
dist

med med

 

 
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  
  (11) 

 

If ϑi is an outlier then dist(i) is expected to be relatively large. Therefore, the 

cut-off point is given by 

 

  maxRCDu dist   (12) 
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Table 1. Cut-off points for RCDu statistic with 10% 

 

n k = 2 3 4 5 6 7 8 9 10 12 15 20 

10 2.550 1.900 1.490 1.280 1.130 1.040 0.974 0.910 0.848 0.775 0.710 0.598 

20 2.800 2.190 1.660 1.440 1.270 1.150 1.070 1.000 0.938 0.843 0.756 0.646 

30 2.820 2.350 1.760 1.520 1.330 1.780 1.090 1.010 0.974 0.860 0.762 0.662 

40 2.850 2.500 1.860 1.560 1.350 1.240 1.130 1.060 1.020 0.911 0.797 0.786 

50 3.000 2.610 1.930 1.610 1.400 1.270 1.170 1.090 1.040 0.925 0.818 0.698 

60 3.030 2.660 1.990 1.630 1.420 1.300 1.190 1.110 1.080 0.940 0.835 0.715 

70 3.060 2.700 2.030 1.660 1.480 1.320 1.210 1.130 1.060 0.960 0.849 0.725 

80 3.060 2.750 2.090 1.720 1.500 1.340 1.230 1.140 1.080 0.981 0.858 0.733 

90 3.080 2.800 2.120 1.750 1.510 1.350 1.250 1.150 1.100 0.990 0.866 0.740 

100 3.080 2.830 2.150 1.750 1.520 1.360 1.260 1.170 1.110 0.995 0.872 0.752 

110 3.090 2.860 2.190 1.770 1.550 1.380 1.270 1.180 1.120 0.996 0.886 0.755 

120 3.090 2.880 2.230 1.790 1.560 1.390 1.280 1.190 1.130 1.010 0.895 0.759 

130 3.100 2.890 2.270 1.810 1.570 1.390 1.300 1.200 1.140 1.030 0.897 0.770 

140 3.100 2.900 2.270 1.850 1.580 1.410 1.300 1.210 1.140 1.010 0.905 0.776 

150 3.110 2.930 2.310 1.840 1.590 1.420 1.320 1.220 1.150 1.040 0.917 0.782 

160 3.110 2.940 2.330 1.870 1.610 1.440 1.320 1.230 1.150 1.040 0.913 0.784 

170 3.110 2.960 2.380 1.860 1.620 1.440 1.330 1.240 1.160 1.040 0.917 0.788 

180 3.110 2.970 2.420 1.880 1.630 1.450 1.340 1.250 1.170 1.050 0.931 0.792 

190 3.110 2.980 2.390 1.920 1.630 1.460 1.350 1.250 1.170 1.060 0.928 0.795 

200 3.110 2.990 2.450 1.910 1.640 1.480 1.350 1.260 1.170 1.070 0.932 0.797 

 
 

Consequently, ϑi is identified as an outlier if dist(i) exceeds the cut-off point. We 

will depend on a triple measure of robustness to evaluate the proposed method: 

 

i. Proportion of outliers detected. 

ii. Rate of masking. 

iii. Rate of swamping. 

 

This triple measure of robustness is very popular in the robustness literature for 

evaluating a particular method. A high proportion of outliers detected, and low 

masking and swamping rates, are always considered to be good robustness 

properties for any outlier detection statistic. 

Results 

The Cut-Off Point for the RCDu Statistic 

The RCDu statistic has no simple known distributional form. Therefore, a series of 

simulation studies of univariate circular data are carried out to find the cut-off point 
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for the RCDu statistic using Monte Carlo methods. The same procedure has been 

used by Jammalamadaka and SenGupta (2001) and Abuzaid et al. (2009). Twenty 

different sample sizes of n = 10, 20, 30,…, 200 and twelve values of concentration 

parameter k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20 are used in these simulation studies. 

First, generate a set of circular data such that ϑ ~ vM(0, k), for each sample size n 

and concentration parameter k. Then the RCDu statistic is calculated. The process 

is replicated 5000 times to generate the RCDu statistic for each combination of 

sample size n and concentration parameter k. Finally, the 10% and 5% upper points 

of RCDu are tabulated in Tables 1 and 2, respectively. These tabulated values for 

different sample sizes and concentrations can be used as cut-off points for the 

proposed statistic. However, it is possible to find the cut-off points for any sample 

size and concentration parameter. R codes to generate any cut-off points are 

available from the corresponding author. 
 
 
Table 2. Cut-off points for RCDu statistic with 5% 
 

n k = 2 3 4 5 6 7 8 9 10 12 15 20 

10 2.760 2.200 1.650 1.430 1.160 1.100 1.080 1.020 0.948 0.857 0.770 0.663 

20 2.960 2.490 1.850 1.600 1.400 1.250 1.170 1.090 1.020 0.913 0.809 0.701 

30 2.980 2.650 1.980 1.670 1.460 1.290 1.180 1.100 1.070 0.934 0.827 0.712 

40 3.000 2.760 2.100 1.720 1.460 1.350 1.230 1.140 1.100 0.968 0.984 0.838 

50 3.060 2.840 2.170 1.780 1.520 1.380 1.270 1.170 1.110 0.982 0.865 0.744 

60 3.080 2.880 2.230 1.780 1.540 1.410 1.270 1.190 1.130 1.010 0.886 0.767 

70 3.100 2.920 2.280 1.840 1.600 1.430 1.300 1.210 1.140 1.020 0.901 0.783 

80 3.100 2.950 2.390 1.900 1.630 1.450 1.320 1.220 1.160 1.040 0.917 0.776 

90 3.110 2.960 2.440 1.930 1.630 1.460 1.340 1.230 1.170 1.040 0.925 0.790 

100 3.110 2.990 2.510 1.930 1.640 1.470 1.360 1.240 1.190 1.050 0.933 0.806 

110 3.120 3.000 2.440 1.950 1.680 1.480 1.370 1.270 1.190 1.060 0.942 0.797 

120 3.120 3.010 2.490 1.970 1.680 1.500 1.380 1.280 1.200 1.090 0.950 0.807 

130 3.120 3.020 2.550 1.990 1.690 1.510 1.390 1.290 1.220 1.090 0.952 0.814 

140 3.120 3.030 2.540 2.010 1.710 1.540 1.390 1.290 1.210 1.080 0.958 0.818 

150 3.130 3.020 2.610 2.030 1.720 1.530 1.410 1.300 1.210 1.090 0.963 0.831 

160 3.120 3.040 2.610 2.060 1.740 1.540 1.400 1.310 1.220 1.120 0.970 0.834 

170 3.120 3.040 2.660 2.040 1.740 1.560 1.410 1.320 1.230 1.110 0.974 0.838 

180 3.130 3.060 2.730 2.060 1.750 1.560 1.430 1.330 1.250 1.120 0.987 0.843 

190 3.120 3.060 2.660 2.130 1.750 1.560 1.440 1.330 1.250 1.120 0.986 0.841 

200 3.120 3.060 2.740 2.090 1.760 1.570 1.450 1.340 1.250 1.120 0.990 0.845 
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The Performance of the RCDu Statistic 

For a Single Outlier 

 

The performance of the RCDu statistic compared with existing statistics, Mardia, 

M, A, and Chord, are compared using Monte Carlo simulations. The study 

parameters were sample sizes n = 20, 60, 100, and 150 with six concentration 

parameters, k = 2, 3, 5, 6, 8, and 10. The data are contaminated with a single outlier 

(ϑc) defined by 

 

  c π mod 2π      (13) 

 

where λ is the degree of contamination, (0 ≤ λ ≤ 1). 

If λ = 0, there is no contamination at position [d]. If λ = 1, the circular 

observation is located at the anti-mode of its initial location. 

Replicate these processes 3000 times for all combinations of the sample size 

and concentration parameter with λ = 0.8. Figure 1 gives the proportions of outliers 

detected and the rates of masking and swamping for the 10% and 5% of cut-off 

points for the sample sizes n = 60. 

It can be seen that, for small values of concentration parameters, the 

performance of all the methods is relatively low. This is because the circular data 

will be more spread around the circumference of the circle for low values of the 

concentration parameter. Therefore, it is very difficult to detect outliers in this case 

(Collett, 1980). The proportions of outliers detected for the A and Chord statistics 

are close to those for the proposed RCDu statistic and have the highest proportions 

of detection outliers. Consequently, the RCDu, A, and Chord statistics have the 

lowest rates of masking. There is not swamping for all combinations with 10% and 

5% cut-off points because the rates of swamping are equal to 0. The results for 

n = 20, 100, and 150 were consistent with the results in Figure 1, so are not shown. 

Interested readers can request the corresponding author to provide more results. 

 

For Multi-Outliers 

 

In order to test performance of our statistic for different ratios of contamination, 

three ratios of contamination (5%, 10%, and 20%) were select, replicated 3000 

times for the same combinations of sample sizes and concentration parameters with 

10% and 5% of cut-off points of the RCDu statistic. The results of the triple measure 

of n = 60 are given in Figure 2. The performance of the RCDu statistic is relatively 
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low for small values of concentration parameter (for the same reason that we 

mentioned above). However, the RCDu statistic successfully identifies outliers for 

k ≥ 5 for different ratios of contamination. It has the highest proportion of detection 

of outliers and the lowest rate of masking. There is no swamping for all ratios of 

contamination for all combinations. The same results for n = 20, 100, and 150 were 

obtained (also available from the corresponding author). 
 
 

 
 
Figure 1. The proportion of a single outlier detected, and rate of masking and swamping, 

for different statistics with 10% and 5% of cut-off points for n = 60 
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Figure 2. The proportion of outliers detected, and rates of masking and swamping, for 

5%, 10%, and 20% of contamination with 10% and 5% of cut-off points for n = 60 
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observation numbered 14 is an outlier. The original circular data were tested; then 

outliers were inserted to bring the ratio of contamination to 20% in order to test the 

performance of the statistic with a high ratio of contamination. The cutoff point is 

2 3 5 6 8 10

0
.0

0
.4

0
.8

10% Cut-off point

Concentration Parameter

P
ro

p
o
rt

io
n
 o

f 
O

u
tli

e
rs

5% Cont.
10% Cont.
20% Cont.

2 3 5 6 8 10

0
.0

0
.4

0
.8

5% Cut-off point

Concentration Parameter

P
ro

p
o
rt

io
n
 o

f 
O

u
tli

e
rs

5% Cont.
10% Cont.
20% Cont.

2 3 5 6 8 10

0
.0

0
.4

0
.8

Concentration Parameter

R
a
te

 o
f 
M

a
s
k
in

g

5% Cont.
10% Cont.
20% Cont.

2 3 5 6 8 10

0
.0

0
.4

0
.8

Concentration Parameter

R
a
te

 o
f 
M

a
s
k
in

g

5% Cont.
10% Cont.
20% Cont.

2 3 5 6 8 10

0
.0

0
0
.0

6

Concentration Parameter

R
a
te

 o
f 
S

w
a
m

p
in

g

5% Cont.
10% Cont.
20% Cont.

2 3 5 6 8 10

0
.0

0
0
.0

6

Concentration Parameter

R
a
te

 o
f 
S

w
a
m

p
in

g

5% Cont.
10% Cont.
20% Cont.



DETECTION OF OUTLIERS IN UNIVARIATE CIRCULAR DATA 

432 

approximately 2.68 according to the results in Table 1 (with 10% cut off point and 

concentration parameter ˆ 2.18k  ). The proportion of outliers detected and rate of 

masking and swamping are tabulated in Table 3 for all methods. 

The competing statistics failed to detect outliers with 20% of contamination. 

The dist(i) statistic is plotted in Figure 3 for the original data set and with 

contamination 20%, respectively. As noted in Figure 3a, observation 14 is classified 

as an outlier because dist(14) = 3.06 exceeds the cut-off point. Also, in Figure 3b, 

note dist(12) = 2.87, dist(13) = 2.73, and dist(14) = 3.06 exceed the cut-off point. 

Therefore, the observations numbered 12, 13, and 14 are classified as outliers. 
 
 
Table 3. Comparison of the performance of the different statistics (frogs data) 

 

  Mardia M A Chord RCDu 

Original data set Proportion of outlier 1 1 1 1 1 
 Rate of masking 0 0 0 0 0 
 Rate of swamping 0 0 0 0 0 

Contamination 20% Proportion of outlier 0 0 0 0 1 
 Rate of masking 1 1 1 1 0 
 Rate of swamping 0 0 0 0 0 

 
 
Figure 3. dist(i) statistic for frogs direction data 
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Table 4. Comparison of the performance of the different statistics (paleocurrent 

orientations data) 
 

  Mardia M A Chord RCDu 

Original data set Proportion of outlier 0 0 0 0 1 
 Rate of masking 0 0 0 0 0 
 Rate of swamping 0 0 0 0 0 

Contamination 5% Proportion of outlier 0 0 0 0 1 

 Rate of masking 0 0 0 0 0 

 Rate of swamping 0 0 0 0 0 

Contamination 10% Proportion of outlier 0 0 0 0 1 

 Rate of masking 0 0 0 0 0 

 Rate of swamping 0 0 0 0 0 

Contamination 20% Proportion of outlier 0 0 0 0 1 
 Rate of masking 0 0 0 0 0 
 Rate of swamping 0 0 0 0 0 

 
 

Example 2: Next, consider the data given by Jammalamadaka and SenGupta 

(2001, p. 238). The sample size (40) represent measurements of the first sample of 

paleocurrent orientations from three bedded sandstone layers, measured on the 

Belford Anticline, New South Wales. They detected that observation number 24 is 

an outlier. In order to test performance of the statistics with different ratios of 

contamination, we insert outliers to bring the ratio of contamination to 5%, 10%, 

and 20%. The 10% cut-off point with concentration parameter ˆ 2k   is 2.85. The 

proportion of detection of outliers and rate of masking and swamping are tabulated 

in Table 4. 

The other statistics fail to detect outliers with all ratios of contamination. 

However, the RCDu statistic succeeds in identifying all of them without any 

swamping. The dist(i) is plotted in Figure 4 for the original data set and with 5%, 

10%, and 20% contamination. 

Note in Figure 4a that dist(24) = 2.854 exceeds the cut-off point. Therefore, it 

is classified as an outlier. This identification coincides with the identification by 

Jammalamadaka and SenGupta (2001) that this data point is an outlier. In Figure 

4b, note that dist(24) = 2.915 and dist(40) = 3.037 exceed the cut-off point. Therefore, 

the observations numbered 24 and 40 are classified as outliers. Also, as expected, 

in Figure 4c, dist(1) = 3.124, dist(17) = 3.072, dist(24) = 3.054, and dist(40) = 2.932 

exceed the cut-off point. Therefore, they are classified as outliers. The results 

dist(1) = 3.089, dist(9) = 3.037, dist(10) = 2.967, dist(17) = 3.142, dist(24) = 2.985, 

dist(33) = 3.142, dist(39) = 3.124, and dist(40) = 2.862 are greater than the cut-off point, 

so they are detected as outliers. They are given in Figure 4d. 
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Figure 4. dist(i) statistic for paleocurrent orientations data 
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parameter is ˆ 7k  , so the 10% cut-off point is equal to 1.39. The proportion of 
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for all the methods. 

0 10 20 30 40

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

a

observations

d
is

t

0 10 20 30 40

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

b

observations

d
is

t

0 10 20 30 40

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

c

observations

d
is

t

0 10 20 30 40

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

d

observations

d
is

t



MAHMOOD ET AL 

435 

 

 
 
Figure 5. dist(i) statistic for circular residuals 
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Table 5. Comparison of the performance of the different statistics (wind direction data) 

 

  Mardia M A Chord RCDu 

Original data set Proportion of outlier 1.00 1.00 1.00 1.00 1.00 
 Rate of masking 0.00 0.00 0.00 0.00 0.00 
 Rate of swamping 0.00 0.00 0.00 0.00 0.00 

Contamination 5% Proportion of outlier 0.14 0.14 1.00 1.00 1.00 

 Rate of masking 0.86 0.86 0.00 0.00 0.00 

 Rate of swamping 0.00 0.00 0.00 0.00 0.00 

Contamination 10% Proportion of outlier 0.08 0.08 0.92 0.77 1.00 

 Rate of masking 0.92 0.92 0.08 0.23 0.00 

 Rate of swamping 0.00 0.00 0.00 0.00 0.00 

Contamination 20% Proportion of outlier 0.00 0.00 0.73 0.46 1.00 
 Rate of masking 1.00 1.00 0.27 0.54 0.00 
 Rate of swamping 0.00 0.00 0.00 0.00 0.00 

Conclusion 

The RCDu statistic was proposed to detect single and multi-outliers in univariate 

circular data. The proposed statistic is evaluated based on the proportion of outliers 

detected and the masking and swamping rates. The proposed statistic has the 

highest proportion of outliers detected and the lowest rates of masking and 

swamping. Moreover, the proposed RCDu statistic is able to detect outliers in data 

with a high level of contamination. Also, the proposed statistic is successful in 

detecting outliers in a large data set. Hence, we suggest that the RCDu statistic 

should be used to detect outliers in univariate circular data. 
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