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Cancer screening and diagnostic tests often are classified using a binary outcome such as 
diseased or not diseased. Recently large-scale studies have been conducted to assess 
agreement between many raters. Measures of agreement using the class of generalized 
linear mixed models were implemented efficiently in four recently introduced R and SAS 
packages in large-scale agreement studies incorporating binary classifications. Simulation 
studies were conducted to compare the performance across the packages and apply the 
agreement methods to two cancer studies. 

 
Keywords: Agreement, binary classifications, Cohen’s kappa, Fleiss’ kappa, 
generalized linear mixed model, multiple raters 

 

Introduction 

Assessing the strength of agreement between physicians’ ratings of screening test 

results is of primary interest because an effective diagnostic procedure is dependent 

upon high levels of consistency between raters. However, in practice, substantial 

discrepancies are often observed between physicians’ ratings and is considered a 

major issue in many common screening tests including mammography and 

diagnosis of invasive bladder cancer (Beam, Conant, & Sickles, 2002; Compérat et 

al., 2013; Elmore, Wells, Lee, Howard, & Feinstein, 1994; Onega et al., 2012). This 

has motivated large-scale studies to examine accuracy and agreement between 

physicians’ ratings and to investigate factors that may play an influential role on 

the consistency of ratings, precipitating a pressing need for statistical methods of 

agreement that can flexibly accommodate classifications of a large number of raters. 

https://doi.org/10.22237/jmasm/1509495300
mailto:amitani@bu.edu
mailto:kerrie@bu.edu
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The outcome of a patient’s screening test may be classified using a binary 

categorical scale (for example, diseased or not diseased) based upon the physician’s 

(subjective) interpretation of the screening test result. For example, mammographic 

results are often categorized as requiring recall or no recall of a patient for further 

testing and bladder cancer images may be classified as indicating invasive or non-

invasive cancer (Compérat et al., 2013). In this paper we focus on large-scale 

agreement studies where more than two raters’ classifications are made using a 

binary categorical scale. 

When multiple raters participate in a large-scale agreement study, only a 

limited number of methods are available to assess agreement between their binary 

ratings in a unified and comprehensive approach. Summary measures include Fleiss’ 

measure of agreement and Shrout and Fleiss’ intraclass correlation coefficient 

(ICC) (Fleiss & Cuzick, 1979; Fleiss, 1971; Shrout & Fleiss, 1979). Modeling 

approaches include a Bayesian generalized linear mixed model (GLMM) with 

nested random effects and an approach based upon GLMMs with crossed random 

effects (Hsiao, Chen, & Kao, 2011; Nelson & Edwards, 2008, 2010). Log linear 

models, another modeling approach, are best-suited for modeling agreement 

between two or three raters (Agresti, 1989; Tanner & Young, 1985). 

Due to a lack of statistical methods that can easily be implemented in practice 

for studies with multiple raters, clinical research papers tend to instead focus on 

comparing agreement using pairwise approaches (i.e. comparing between each pair 

of raters at a time) which can be inefficient, lending itself to several summary 

measures and often complex or disjointed interpretation of agreement (Ciatto et al., 

2005; Compérat et al., 2013; Epstein, Allsbrook, Amin, Egevad, & ISUP Grading 

Committee, 2005; Ooms et al., 2007). 

Until recently, various modeling approaches such as Nelson and Edwards’ 

(2008) GLMM-based method have been challenging to implement due to a lack of 

availability in standard statistical software packages for modeling GLMMs and a 

necessity for sophisticated programming skills. However, recent advances in 

statistical software packages including R (R Core Team, 2014) and SAS (Cary, NC: 

SAS Institute) have led to much improved and efficient procedures for fitting 

complex models including GLMMs with crossed random effects. In this paper we 

demonstrate how Fleiss’ kappa for multiple raters and Nelson and Edwards’ 

GLMM modeling approach can easily be implemented in four R packages and in 

SAS software to assess agreement in large-scale studies with binary classifications. 

The aim of this study is to compare the performance of the different software 

packages using extensive simulation studies to assess the impact of normally and 

non-normally distributed (symmetric and skewed) random effects and sample size 
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on parameter estimation and the calculation of the agreement statistics. It is 

motivated by two large-scale agreement studies. The first is a study of 119 

community radiologists assessing 109 mammograms as recall or no recall 

conducted by the Breast Cancer Surveillance Consortium (BCSC) (Onega et al., 

2012). The second study conducted by Compérat et al. (2013) involved 8 

pathologists reviewing 25 bladder cancer specimens for the presence or absence of 

invasive cancer. For each of these two studies we implement the different 

agreement approaches described above in each of the four statistical software 

packages and assess levels of agreement between the multiple raters. We also 

demonstrate how the classifications of individual raters can be assessed from their 

random effect terms. 

Models and Measures of Agreement for Multiple Raters 

GLMM Approach An approach based upon GLMMs with a crossed random 

effects structure can be implemented to assess levels of agreement between multiple 

raters’ binary classifications (Nelson & Edwards, 2008, 2010). This approach, 

unlike many others, is intended to accommodate the ratings of multiple raters, does 

not grow increasingly complex as the number of raters increases, and can 

accommodate missing data where some raters do not classify every test result 

(Ibrahim & Molenberghs, 2009). Derived from this model is a chance-corrected 

measure of agreement which incorporates data from the entire sample of subjects. 

Its value, unlike Cohen’s kappa statistics, is robust to the underlying prevalence of 

the disease. A brief description of the method is following; full details can be found 

in Nelson and Edwards (2008, 2010). Our setup assumes a sample of J raters 

(j = 1,…, J) each independently classifying a sample of I subjects (i = 1,…, I) 

generating the set of binary outcomes Yij, each taking the value 0 or 1. 

The binary GLMM with a probit link function and crossed random effects 

models the probability that a subject’s test result is classified as a success, 

Pr(Yij = 1) as follows: 

 

   1 Pr 1| ,ij i j i jY u v u v       (1) 

 

where η is the intercept and ui and vj are the random effects for the ith subject and 

the jth rater, respectively. The subject random effects ui (i = 1,…, I) and the rater 

random effects vj (j = 1,…, J) are assumed normally distributed with mean 0 and 

variances 2

u  and 2

v , respectively. A positive random effect value for ui indicates 

a test result that is more likely than other test results to be classified as a success 
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over many raters. A positive value for vj suggests a rater who is liberal in classifying 

a subject as a success over their classification of many such test results. The chance-

corrected model-based kappa has been derived previously and takes the form 
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where 2 2 2 1T u v      and 2 2

u T   . Full details on the derivation of κm and its 

variance can be found in Nelson and Edwards (2008, 2010). The summary measure 

of agreement κm takes values between 0 and 1 and is interpreted in a similar manner 

to Cohen’s original kappa where a value close to 0 indicates little or no chance-

corrected agreement and values closer to 1 reflect strong chance-corrected 

agreement between raters (Cohen, 1968; Landis & Koch, 1977). 

The marginal likelihood function for the GLMM model takes the form: 
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where Y is the vector of all the binary classifications of all raters. 

The inclusion of the crossed random effects leads to a high-dimensional 

likelihood function, thus no closed form solution for maximizing the marginal 

likelihood function is available. Hence, approximate maximum likelihood methods 

are explored for estimating the parameters. Adaptive Gaussian quadrature is not a 
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viable technique for obtaining approximate maximum likelihood estimates due to 

the large number of random effects. Instead, estimates of the parameters 

 2 2, , u v  θ  can be obtained by fitting the GLMM using an approximate 

maximum likelihood approach such as the Monte-Carlo expectation-maximum 

(MCEM) algorithm provided in McCulloch (1997) and Kuk and Cheng (1997). 

These methods based on Monte-Carlo Markov-Chain (MCMC) (Karim & Zeger, 

1992; Kuk & Cheng, 1997; McCulloch, 1997) are feasible in obtaining approximate 

maximum likelihood estimates for these GLMM models, however they often take 

a large amount of computational programming and running time and are sometimes 

unstable, not reaching convergence. Recently a multivariate Laplacian 

approximation technique, which is computationally very efficient and stable, has 

been implemented in R and SAS for fitting GLMMs with crossed random effects. 

In the multivariate Laplacian approximation method, large-sample approximate 

standard errors are estimated by taking the square-roots of the diagonals of matrix 

H at convergence, i.e. 

 

     
1

se diˆ ˆag


  
 

θ H θ   

 

where 

 

 
 2 l ; , ,


 

θ u v y
H

θ θ
t

  

 

is the second-order derivative of the log-likelihood function l(θ; u, v, y) evaluated 

at the approximate maximum likelihood estimates of θ and is generated during the 

model-fitting process. 

 

Fleiss Kappa for Multiple Raters Fleiss (1971) described a generalized Kappa 

statistic which extends Scott’s pi (Scott, 1955) in order to accommodate multiple 

raters and multiple categories. Later, Fleiss and Cuzick (1979) introduced a version 

of their kappa statistic for binary classifications with unequal number of ratings per 

test result. Briefly, it is structured as follows: For I subjects (i = 1,…, I) under study, 

let ni denote the number of raters rating the ith subject and let xi denote the number 

of positive ratings on the ith subject. Defining pi = xi / ni as the proportion of positive 

ratings for each subject, 
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as the overall proportion of positive ratings, the Fleiss’ kappa for agreement takes 

the form 
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where Hn  is defined as the harmonic mean number of raters for each subject, 
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When the number of raters per subject is constant, ˆ
F  is equivalent to the Fleiss 

kappa statistic introduced by Fleiss in 1971 (1971; Fleiss, Nee, & Landis, 1979; 

Fleiss & Cuzick, 1979). Fleiss’ kappa take values between 0 and 1 and are 

interpreted in a similar manner to Cohen’s original kappa (Cohen, 1968), where 0 

indicates no chance-corrected agreement and values closer to 1 suggest strong 

chance-corrected agreement between the raters. For further details on this summary 

agreement measures, see Fleiss (1971) and Fleiss and Cuzick (1979). A potential 

drawback of Fleiss’ kappa includes vulnerability to marginal prevalence issues in a 

similar manner to Cohen’s kappa. 
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Statistical Software Packages in SAS and R 

Until recently GLMMs with crossed random effects have been challenging to 

implement in standard software packages, instead requiring sophisticated 

programming skills and often computationally intensive algorithms (Kuk & Cheng, 

1997; McCulloch, 1997). However, recent advances in SAS and R allow for these 

models to be fit efficiently by using packages or procedures that do not require 

programming skills. Four of the available procedures that are capable of fitting 

GLMMs with crossed random effects allowing for a probit link function in R and 

SAS are (we will briefly discuss each in turn): 

 

a) R – clmm function in ORDINAL package 

b) R – glmer function in LME4 package 

c) R – MCMCglmm package 

d) SAS – GLIMMIX procedure 

 

ORDINAL Package in R The ORDINAL package (Christensen, 2013) was 

recently added to R and is primarily intended for fitting cumulative mixed models 

such as ordered regression models, proportional odds and proportional hazards 

models for grouped survival times, and ordered logit/probit models. The clmm 

function in the ORDINAL package allows GLMMs with crossed random effects to 

be fitted with a probit link function. Estimation procedures include the Laplace 

approximation and Gaussian quadrature but we are restricted to the Laplace method 

to fit our model of interest with crossed random effects. While this package is 

primarily intended to fit ordinal models, it also provides an efficient approach for 

estimating parameters in a binary GLMM. For fitting our GLMM of interest, the 

probit link function and the random effects structure can be specified in the model 

formula. Solutions to the random effects for subjects and raters are computed based 

on the conditional modes, the points at which the conditional density of the 

estimated random effects are maximized. We are not aware of any studies 

comparing the performance of the ORDINAL package to that of other packages 

such as LME4. 

 

LME4 Package in R The glmer function in LME4 package is perhaps the most 

widely-used function to fit GLMMs in R. Its default approximation method is the 

Laplace approximation and the function accommodates crossed random effects. To 

fit the model of interest, family = binomial(link = “probit”) and the random effects 

structure are specified in the model formula. Similarly to the ORDINAL package, 

the solution to the random effects are computed based on the conditional modes. 
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MCMCglmm Package in R The above packages use a frequentist approach to fit 

GLMMs. The MCMCglmm package uses a Bayesian approach and can fit GLMMs 

with crossed random effects and a probit link function (Hadfield, 2010). Priors for 

the fixed effects and variance structures for the random effects and residuals need 

to be specified. In MCMCglmm, the prior distribution for the fixed effects are 

assumed multivariate normal with the user specifying the parameters, and the prior 

distribution for both the R-structure for the error distribution and the G-structure 

for the random effects variance covariance matrices are assumed inverse-Wishart, 

again with the user specifying the parameters (Hadfield, 2015). The function 

posterior.mode or posterior.mean is used to obtain solutions to the random effects 

for each subject and rater. 

 

GLIMMIX Procedure in SAS In a similar manner to the ORDINAL and 

LME4 packages in R, the GLIMMIX procedure in SAS relies on the Laplace 

approximation for estimation of GLMMs with crossed random effects. The solution 

to the random effects are again computed based on the conditional modes. 

Another procedure in SAS that fits GLMMs is the NLMIXED procedure. The 

NLMIXED procedure estimates the parameters by integral approximation methods 

through adaptive Gaussian quadrature. However, at present, the procedure cannot 

accommodate a crossed random effects structure so it will not be examined here. 

Methodology 

Although the LME4, MCMCglmm, and PROC GLIMMIX packages were 

described for estimation in various binary GLMM models (Kim, Choi, & Emery, 

2013; Li, Lingsma, Steyerberg, & Lesaffre, 2011; Zhang et al., 2011), the 

performance of the ORDINAL package has not yet been reported for binary 

outcomes nor for the calculation of agreement measures. Our focus in this paper is 

to explore the use of these four aforementioned packages in R and SAS to calculate 

the measures of agreement for multiple raters classifying test results using a binary 

scale. To achieve this, we conducted extensive simulation studies to compare the 

performance of the four packages with regards to estimation of GLMM model 

parameters and the summary agreement measures. One important motivation for 

conducting these simulation studies is to ensure that reasonably unbiased estimates 

of the model-based measure of agreement κm are obtained from the existing 

packages. 
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Simulation studies were conducted under scenarios that varied in sample size 

(number of subjects and raters), random effects components, distributions of the 

random effects, and the choice of priors for the MCMCglmm Bayesian method. 

The various simulation scenarios we explored are displayed in Table 1. Part I of the 

simulations had normally-distributed random effects, while parts II and III had non-

normally-distributed random effects. In part II, the random effects were symmetric 

(mixture of two normal distributions and uniform distribution) and, in part III, at 

least one of the random effects were skewed (exponential, Gamma or chi-squared 

distribution). For each part of the simulations, we evaluated four scenarios. The 

first scenario (Scenario 1) resembled the BCSC breast cancer data set to verify that 

our methods perform well in this setting and others (η = −0.1, 2 1.5u  , 2 0.2v  ). 

In Scenario 2, the variance of the rater random effects was set to be larger than the 

variance of the subject random effects (η = 1, 2 1u  , 2 5v  ). In Scenario 3, the 

variance of the subject random effects was set to be larger than the variance of the 

rater random effects (η = 1, 2 5u  , 2 1v  ). In Scenario 4, the variances of both 

random effects were set as large η = 1, 2 10u  , 2 10v  ). Regardless of the 

random effects distribution, the variances of the subject and rater random effects 

were kept constant for each scenario (i.e. for Scenario 1, the variance of the subject 

random effects was set as 1.5 for normal, non-normal symmetric, and skewed 

distributed random effects). Within each scenario, one was larger in sample size 

with 150 subjects and 100 raters (Scenario #a) while the other was smaller with 100 

subjects and 50 raters (Scenario #b). [Table 1] 

For each simulation scenario in part I (normally distributed random effects), 

one thousand datasets were generated using R in the following manner: First, I 

subject random effects and J rater random effects were randomly generated from 

 2N 0, u  and  2N 0, v  distributions, respectively. For each (ij)th observation, the 

probability of the jth rater correctly classifying the ith subject was generated 

according to the ordinal probit GLMM 

 

    Pr 1| , Φ , 1, , ; 1, ,ij ij i j i jp Y u v u v i I j J           

 

using the qnorm function in R. 
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Table 1. List of parameters used to generate simulated data sets for each scenario 

(Number of simulations per scenario = 1,000) 
 

Scenario I J True η Distribution of ui* Distribution of vj* 

I. Normally distributed random effects 

1a 150 100 
-0.1 N(0, 1.5) N(0, 0.2) 

1b 100 50 

2a 150 100 
1 N(0, 1) N(0, 5) 

2b 100 50 

3a 150 100 
1 N(0, 5) N(0, 1) 

3b 100 50 

4a 150 100 
1 N(0, 10) N(0, 10) 

4b 100 50 

      

II. Non-normally distributed random effects (Symmetric) 

1a 150 100 
-0.1 0.5N(-1, 0.5) + 0.5N(1, 0.5) Unif(-0.775, 0.775) 

1b 100 50 

2a 150 100 
1 0.5N(-0.8, 0.36) + 0.5N(0.8, 0.36) Unif(-3.87, 3.87) 

2b 100 50 

3a 150 100 
1 0.5N(-2, 1) + 0.5N(2, 1) Unif(-1.73, 1.73) 

3b 100 50 

4a 150 100 
1 0.5N(-3, 1) + 0.5N(3, 1) Unif(-5.48, 5.48) 

4b 100 50 

      

III. Non-normally distributed random effects (Skewed) 

1a 150 100 
-0.1  Exp 1 1.5   Gamma 4, 20  

1b 100 50 

2a 150 100 
1 N(0, 1) Gamma(5, 1) 

2b 100 50 

3a 150 100 
1 Gamma(5, 1) Unif(-1.73, 1.73) 

3b 100 50 

4a 150 100 
1 

2

df =5
χ  N(0, 10) 

4b 100 50 
 

Note: * Mean and variance shown for normal distributions, N(μ, σ2) 

 
 

A binary classification Yij was then randomly generated for each observation 

from the corresponding Bernoulli distribution with probability pij. To assess the 

impact of a misspecified random effects distribution in GLMM, we also generated 
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data with non-normally-distributed subject and rater random effects (Litière, 

Alonso, & Molenberghs, 2008). In the symmetric non-normal random effects 

scenarios, the random effects of the subjects were randomly sampled from a 

symmetric mixture of two normal distributions with mean of 0 and the same 

variance as the corresponding normal distribution. Each ith subject was assigned a 

number generated from uniform distribution with (0, 1) support. If the assigned 

number was less than 0.5, the random effect of the subjects was sampled from the 

first of the two normal distributions. Otherwise, the random effect of the subjects 

was sampled from the second of the two normal distributions. The rater random 

effects were randomly sampled from a uniform distribution with mean of 0 and the 

same variance as the corresponding normally distributed random effects. In the 

skewed random effects scenarios, the random effects of the subjects and raters were 

randomly sampled from a combination of various skewed distributions 

(exponential, Gamma, and chi-squared) and normal and uniform distributions. For 

the true random effects distribution to have mean 0, an assumption of GLMM, each 

of the skewed random effects distributions was centered by subtracting its true 

mean value. See Table 1 for the parameters and distributions of random effects used 

in each set of scenarios. 

The binary GLMM in equation (1) was then fitted to each of the one thousand 

simulated datasets using each of the four statistical packages (PROC GLIMMIX, 

LME4, ORDINAL, and MCMCglmm). With the MCMCglmm package, two 

different sets of priors were used for each scenario. We specified the variances of 

the subject and rater random effect terms to follow an inverse-Wishart (IW) 

distribution, which is comprised of two parameters: the scale parameter V, and the 

degree of freedom parameter ν, also referred to as the degree of belief parameter. 

For the first set of priors, denoted by “MCMCglmm1”, we let the variance of the 

random effects follow an IW distribution with V = 1 and ν = 1, and for the second 

set of priors, denoted by “MCMCglmm10”, we let the variance of the random 

effects follow an IW distribution with V = 10 and ν = 1. Under Scenario 1a, we also 

used the uninformative prior specification with V = 1 and ν = 0.002 which is used 

frequently for variance structures (Hadfield, 2015). 

The GLMM parameters of interest estimated for each dataset were η, 2

u , and 

2

v . These parameter estimates were then used to compute the model-based 

measure of agreement, ˆ
m , and its variance,  ˆVar m . Fleiss’ agreement measure 

F̂  was also calculated for each dataset. 
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Results 

Simulation results from normally-distributed and symmetric non-normally-

distributed random effects datasets are presented in Tables 2 and 3, respectively, 

for large sample size (I = 150, J = 100). Results from skewed random effects are 

presented in Supplementary Table 3. For each simulation scenario, the mean of the 

1,000 estimates (Mean Estimate) and the mean of the 1,000 model-based standard 

errors (Mean SE) estimated for each of the model parameters, η, 2

u , and 2

v  from 

each of the four software packages are reported. The mean of the 1,000 estimates 

and standard errors for measure of agreement κm are also reported for each set of 

simulations. The coverage probability (the percent of times the 95% confidence 

interval for ˆ
m  included the true κm value) of κm over the 1,000 simulated datasets 

is also reported for each of the four statistical packages, as well as the convergence 

rate of the GLMM based on the number of times the model was able to produce the 

standard errors for 2

u , and 2

v  estimates. Also, the mean estimated Fleiss’ kappa 

(
F̂ ) and the mean standard error for each simulation scenario are reported. The 

focus is on results from scenarios with large sample size (I = 150, J = 100). 

Simulation results from scenarios with small sample size (I = 100, J = 50) followed 

a similar pattern to those from scenarios with large sample size. Full details of the 

simulation results of small sample size can be viewed in Supplementary Tables 1, 

2, and 4. 

GLMM Parameter Estimates 

Minimal biases were observed in the estimation of η across the four packages when 

the random effects were normally distributed. Slightly larger biases were observed 

under the scenarios with non-normal random effects and when one of the variance 

components, 2

u  or 2

v , was 5 and the other was 1 (Scenarios 2 and 3). These biases 

tended to be larger under the MCMCglmm package for both sets of priors. Biases 

in the estimation of η were largest under the scenarios with skewed random effects 

but varied little among the different packages. [Supplementary Table 3] Due to the 

model format used in its package, the η estimates produced from the ORDINAL 

package have an opposite sign from those produced from other packages. To make 

the comparison between packages easier, we present η estimates with consistent 

signs in the tables. 

Observe more variability in biases of the random effects variance component 

estimates between the different packages. Generally, with normally-distributed 

random effects, ORDINAL, LME4, and PROC GLIMMIX tended to slightly 
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underestimate 2

u  and 2

v  while MCMCglmm1 and MCMCglmm10 tended to 

overestimate them. For example, under Scenario 1a, 2

u  were 1.492, 1.500, and 

1.493 for ORDINAL, LME4, and PROC GLIMMIX, respectively, while they were 

1.530 and 1.613 for MCMCglmm1 and MCMCglmm10, respectively. [Table 2] 

For the symmetric non-normal random effects, most packages overestimated 2

u , 

and 2

v  under Scenarios 1 and 2. Under Scenario 3 ( 2 5u   and 2 1v  ), 

ORDINAL, LME4, and PROC GLIMMIX estimated 2

v  with minimal bias (0.993, 

0.999, and 0.993, respectively) but overestimated 2

u  (5.816, 5.758, and 5.816, 

respectively). MCMCglmm1 and MCMCglmm10 also overestimated 2

u  (6.263 

and 6.386, respectively). [Table 3] For the skewed random effects, all packages 

tended to overestimate the larger of the two variances under Scenarios 1, 2, and 3. 

Under Scenario 4, all packages underestimated 2

u  while 2

v  was estimated with 

smaller biases. [Supplementary Table 3] 

The ORDINAL package and the GLIMMIX procedure produced identical 

GLMM parameter estimates to the third decimal place confirming that these two 

packages employ virtually identical multivariate Lapacian procedures. With the 

exception of LME4, the other three packages exhibited very stable estimation 

procedures with usually a 100% convergence success rate over each set of 1,000 

simulated data sets, for both normally- and non-normally-distributed random 

effects. The LME4 package proved to be consistently less stable compared to all 

the other packages, with convergence rates ranging from 79.8% to 99.9%. In 

particular, convergence rate for LME4 tended to be worse for simulation scenarios 

with large random effects variances and for non-normally-distributed random 

effects distribution (symmetric and skewed). The average time to fit one GLMM 

for the larger data set was 9, 8, 109, 104, and 27 seconds for ORDINAL, LME4, 

MCMCglmm1, MCMCglmm10, and PROC GLIMMX, respectively, indicating 

that all four packages were able to fit these models in a computationally efficient 

manner. 

Agreement Measures 

The parameter κm was estimated with minimal bias in all simulation scenarios and 

across all four packages and various values of 2

u  and 2

v  when the random effects 

were normally distributed. In general, observe slightly larger bias under simulations 

with non-normally-distributed random effects compared to those with normally-

distributed random effects (symmetric and skewed). 
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Shown in Figure 1 is the relationship between mean absolute bias and 

coverage probability based on the 1,000 κm estimates for each statistical package 

and for each simulation scenario. The results from PROC GLIMMIX are omitted 

because they were identical to those from ORDINAL. The dotted line across the 

horizontal axis represent bias at 0 and the dotted line across the vertical axis 

represent coverage probability at 95%. An ideal situation is when the estimate falls 

on the intersection between the two dotted lines. In general, the mean absolute bias 

was lowest under scenarios with normal random effects, slightly larger under 

scenarios with symmetric non-normal random effects, and largest under scenarios 

with skewed random effects. For scenarios with normally-distributed random 

effects, the coverage probabilities were consistently close to the anticipated 95% 

(90-95% for all packages). [Table 2] For scenarios with symmetric non-normal 

random effects, coverage probabilities were slightly higher than the anticipated 

95% under Scenario 1 (97.1-98.1%) and Scenario 4 (98.7%-98.7%), while they 

were slightly lower than anticipated under Scenario 2 (82.6%-93.0%) and Scenario 

3 (64.8%-87.5%). [Table 3] For scenarios with skewed random effects, the 

coverage probabilities were lower, especially under the extreme case scenarios, 

Scenario 1 and Scenario 3, where both the random effects distributions were highly 

skewed. More specifically, under Scenario 1 where the subject and rater random 

effects followed an exponential distribution and a Gamma distribution respectively, 

coverage probability ranged from 37.5% to 40.9% amongst all packages. Under 

Scenario 3 where the subject and rater random effects followed a Gamma 

distribution and a uniform distribution respectively, coverage probability ranged 

from 52.9% to 65.2% amongst all packages. [Figure 1; Supplementary Table 3] 

Note the largest differences in mean absolute bias and coverage probability 

between the four packages under Scenario 3, when 2 5u   and 2 1v  . For 

symmetric non-normal random effects, ORDINAL (same as PROC GLIMMIX) 

and LME4 yielded lower mean absolute biases (0.007 and 0.010, respectively) and 

higher coverage probabilities (84.1% and 87.5%, respectively) compared with 

MCMCglmm1 (mean absolute bias = 0.019, coverage probability = 64.8%) and 

MCMCglmm10 (mean absolute bias = 0.121, coverage probability = 74.0%). 

However, for skewed random effects, MCMCglmm1 and MCMCglmm10 yielded 

lower mean absolute biases (0.041 and 0.045, respectively) and higher coverage 

probabilities (65.2% and 59.9%, respectively) compared to ORDINAL/PROC 

GLIMMIX (mean absolute bias = 0.048, coverage probability = 54.5%) and LME4 

(mean absolute bias = 0.049, coverage probability = 52.9%). 
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Table 2. Mean estimates and mean standard errors (SEs) from 1,000 simulations for the probit GLMM and agreement statistics 

computed from each statistical package with normally distributed random effects, I = 150 and J = 100 
 

   Statistical Package 

   ORDINAL LME4 MCMCglmm1 MCMCglmm10 PROC GLIMMIX 

Scenario Parameter Truth 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

1a GLMM parameters:       

 η -0.1 -0.103 (0.110) -0.103 (0.110) -0.103 (0.112) -0.104 (0.119) -0.103 (0.110) 

 2

u
σ  1.5 1.492 (0.186) 1.500 (0.184) 1.530 (0.193) 1.613 (0.203) 1.493 (0.186) 

 2

v
σ  0.2 0.198 (0.031) 0.199 (0.031) 0.213 (0.033) 0.316 (0.047) 0.198 (0.031) 

        

Agreement measures:       

 Model-based Kappa, κm 0.375 0.373 (0.022) 0.374 (0.033) 0.376 (0.022) 0.370 (0.023) 0.373 (0.022) 

 Fleiss Kappa, κF    0.373 (0.001)   

        

 Coverage probability of κm (%)  93.2 93.3 92.4 94.2 93.2 

 GLMM convergence rate (%)   99.9 100.0 100.0 100.0 100 

        

2a GLMM parameters:       

 η 1 1.012 (0.238) 1.010 (0.236) 1.015 (0.243) 1.020 (0.247) 1.012 (0.238) 

 2

u
σ  1 0.999 (0.125) 1.006 (0.127) 1.014 (0.128) 1.085 (0.135) 0.999 (0.125) 

 2

v
σ  5 4.791 (0.774) 4.771 (0.698) 5.061 (0.827) 5.214 (0.852) 4.791 (0.774) 

        

 Agreement measures:       

 Model-based Kappa, κm 0.091 0.095 (0.013) 0.096 (0.013) 0.093 (0.013) 0.096 (0.014) 0.095 (0.013) 

   Fleiss Kappa, κF    0.083 (0.001)   

        

 Coverage probability of κm (%)  94.1 94.6 93.1 94.7 94.1 

  GLMM convergence rate (%)   100.0 99.0 100.0 1000.0 100 
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Table 2 (continued) 

 

   Statistical Package 

   ORDINAL LME4 MCMCglmm1 MCMCglmm10 PROC GLIMMIX 

Scenario Parameter Truth 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

3a GLMM parameters:       

 η 1 0.995 (0.211) 0.992 (0.208) 0.999 (0.215) 1.002 (0.219) 0.995 (0.211) 

 2

u
σ  5 4.849 (0.657) 4.815 (0.637) 5.122 (0.703) 5.230 (0.718) 4.849 (0.657) 

 2

v
σ  1 0.998 (0.149) 1.005 (0.151) 1.023 (0.155) 1.124 (0.169) 0.998 (0.149) 

        

 Agreement measures:       

 Model-based Kappa, κm 0.506 0.500 (0.025) 0.498 (0.025) 0.507 (0.025) 0.502 (0.026) 0.500 (0.025) 

 Fleiss Kappa, κF    0.497 (0.001)   

        

 Coverage probability of κm (%)  91.9 92.1 90 90.8 91.9 

  GLMM convergence rate (%)   100 96.3 100 100 100 

        

4a GLMM parameters:       

 η 1 0.999 (0.409) 1.003 (0.409) 0.999 (0.412) 0.999 (0.415) 0.999 (0.409) 

 2

u
σ  10 10.013 (1.273) 10.101 (1.361) 10.191 (1.302) 10.275 (1.305) 10.013 (1.273) 

 2

v
σ  10 9.913 (1.501) 10.009 (1.563) 10.151 (1.558) 10.258 (1.566) 9.912 (1.501) 

        

 Agreement measures:       

  Model-based Kappa, κm 0.316 0.319 (0.031) 0.319 (0.031) 0.318 (0.031) 0.318 (0.031) 0.319 (0.031) 

  Fleiss Kappa, κF    0.312 (0.001)   

        

 Coverage probability of κm (%)  94.6 94.7 93.6 93.9 94.6 

  GLMM convergence rate (%)   100 93.5 100 100 100 
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Table 3. Mean estimates and mean standard errors from 1,000 simulations for the probit GLMM and agreement statistics 

computed from each statistical package with symmetric non-normally distributed random effects, I = 150 and J = 100 
 

   Statistical Package 

   ORDINAL LME4 MCMCglmm1 MCMCglmm10 PROC GLIMMIX 

Scenario Parameter Truth 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

1a GLMM parameters:       

 η -0.1 -0.103 (0.112) -0.104 (0.112) -1.104 (0.114) -0.104 (0.120) -0.103 (0.112) 

 2

u
σ  1.5

 
1.554 (0.189)

 
1.564 (0.188)

 
1.588 (0.196)

 
1.669 (0.205)

 
1.554 (0.189)

 

 2

v
σ  0.2

 
0.200 (0.031)

 
0.201 (0.031)

 
0.214 (0.033)

 
0.317 (0.048)

 
0.200 (0.031)

 

        

Agreement measures:       

 Model-based Kappa, κm 0.375 0.381 (0.022) 0.382 (0.022) 0.383 (0.022) 0.377 (0.023) 0.381 (0.022) 

 Fleiss Kappa, κF    0.421 (0.001)   

        

 Coverage probability of κm (%)  97.5 97.3 97.1 98.1 97.5 

 GLMM convergence rate (%)   100.0 100.0 100.0 100.0 100.0 

        

2a GLMM parameters:       

 η 1 1.104 (0.260) 1.095 (0.254) 1.112 (0.265) 1.119 (0.269) 1.104 (0.260) 

 2

u
σ  1

 
0.999 (0.125)

 
1.006 (0.132)

 
1.015 (0.128)

 
1.086 (0.136)

 
0.999 (0.125)

 

 2

v
σ  5

 
5.655 (0.921)

 
5.609 (0.804)

 
6.073 (0.995)

 
6.222 (1.018)

 
5.655 (0.921)

 

        

 Agreement measures:       

 Model-based Kappa, κm 0.091 0.084 (0.012) 0.085 (0.012) 0.081 (0.012) 0.084 (0.012) 0.084 (0.012) 

   Fleiss Kappa, κF    0.063 (0.001)   

        

 Coverage probability of κm (%)  91.3 93 82.6 91.1 91.3 

  GLMM convergence rate (%)   100.0 92.3 100.0 100.0 100.0 
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Table 3 (continued) 

 

   Statistical Package 

   ORDINAL LME4 MCMCglmm1 MCMCglmm10 PROC GLIMMIX 

Scenario Parameter Truth 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

Mean Estimate 

(Mean SE) 

3a GLMM parameters:       

 η 1 0.995 (0.211) 0.992 (0.208) 0.999 (0.215) 1.002 (0.219) 0.995 (0.211) 

 2

u
σ  5 4.849 (0.657) 4.815 (0.637) 5.122 (0.703) 5.230 (0.718) 4.849 (0.657) 

 2

v
σ  1 0.998 (0.149) 1.005 (0.151) 1.023 (0.155) 1.124 (0.169) 0.998 (0.149) 

        

 Agreement measures:       

 Model-based Kappa, κm 0.506 0.500 (0.025) 0.498 (0.025) 0.507 (0.025) 0.502 (0.026) 0.500 (0.025) 

 Fleiss Kappa, κF    0.497 (0.001)   

        

 Coverage probability of κm (%)  91.9 92.1 90 90.8 91.9 

  GLMM convergence rate (%)   100.0 96.3 100.0 100.0 100.0 

        

4a GLMM parameters:       

 η 1 1.025 (0.394) 1.030 (0.395) 1.028 (0.397) 1.027 (0.400) 1.025 (0.394) 

 2

u
σ  10 8.970 (1.141)

 
9.058 (1.242)

 
9.091 (1.158)

 
9.173 (1.164)

 
8.970 (1.141)

 

 2

v
σ  10 9.413 (1.434)

 
9.493 (1.488)

 
9.666 (1.487)

 
9.789 (1.505)

 
9.413 (1.434)

 

        

 Agreement measures:       

  Model-based Kappa, κm 0.316 0.307 (0.031)
 

0.307 (0.031)
 

0.305 (0.031)
 

0.305 (0.031)
 

0.307 (0.031)
 

  Fleiss Kappa, κF    0.324 (0.001)
   

        

 Coverage probability of κm (%)  98.7
 

98.7
 

97.8
 

98.1
 

98.7
 

  GLMM convergence rate (%)   100.0
 

92.1
 

100.0
 

100.0
 

100.0
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Figure 1. Absolute mean bias and coverage probability of estimated model-based kappa 

for each statistical package by scenario 
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Figure 2. Density of model-based kappa measure of agreement estimates from each 
statistical package by varying sample size and random effects distribution for scenario 1 

 

 

Interestingly, small to moderate biases in the GLMM parameter estimates had 

little noticeable impact on the estimates of the agreement measure κm. For example, 

under one of the scenarios with normally-distributed random effects (Scenario 1a), 

the estimates for 
2

u  and 
2

v  under the ORDINAL package were 1.492 and 0.198, 

respectively, while under MCMCglmm10, they were 1.613 and 0.316. Even with 
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such seemingly different estimates, both packages produced similar κm estimates 

(0.373 under ORDINAL and 0.370 under MCMCglmm10). 

Shown in Figure 2 are the density of κm estimates from the simulation scenario 

with 
2 1.5u   and 

2 0.2v   (Scenario 1; normal, symmetric non-normal, and 

skewed random effects distributions). Again, the results from PROC GLIMMIX 

are omitted because they were identical to those from ORDINAL. The densities of 

κm estimates obtained from all set of simulations were examined using plots, and 

found to be symmetric and reasonably bell-shaped, centered around the true value 

of κm for normal and symmetric non-normal random effects distributions. For 

skewed random effects distribution, the density of κm estimates appeared to be 

symmetric and bell-shaped but off-centered with a wider spread. Within each type 

of random effects distributions, the densities of κm estimates were extremely similar 

across the four packages. Similar densities of κm estimates were obtained from other 

simulation scenarios. 

The empirical standard errors, computed as the standard deviation of the 1000 

estimated κm, were comparable to the means of the model-based standard errors 

(Mean SE) presented in Tables 2 and 3. In general, when the random effects 

distribution was normal or skewed, the empirical standard errors were equal to or 

slightly larger than the model-based standard errors. On the other hand, when the 

random effects distribution was symmetric non-normal, the empirical standard 

errors were equal to or smaller than the model-based standard errors. 

Fleiss’ kappa estimates ( F̂ ) were comparable to model-based kappa 

estimates ( ˆ
m ) in the majority of scenarios under normally distributed random 

effects. When the random effects distribution was symmetric non-normal, we 

observed slightly larger differences between F̂  and ˆ
m . For example, under 

symmetric non-normal Scenario 1a (
2 1.5u   and 

2 0.2v  ), the mean of F̂  was 

0.421, while the means of ˆ
m  ranged from 0.377 to 0.383 depending on the package. 

[Table 3] Under the scenarios with skewed random effects, the mean F̂  and ˆ
m  

were also comparable except under Scenario 3 (
2 5u   and 

2 1v  ) where the 

mean of F̂  was 0.438 while the means of ˆ
m  ranged from 0.459 to 0.466 

depending on the package. The mean standard errors of F̂  computed using 

equation (4) were extremely small, ranging from 0.001 to 0.003 depending on the 

sample size. However, the empirical standard errors for Fleiss’ kappa ranged from 
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0.026 to 0.055, suggesting that the theoretical standard error potentially 

underestimates the variability of Fleiss’ kappa statistic. This is a topic that needs to 

be further examined. 

Applications to Large-Scale Cancer Studies 

Mammogram Screening Study One of the two data sets used for illustration 

is from a previously-published study conducted by the BCSC, the Assessing and 

Improving Mammography (AIM) study, where radiologists evaluated whether a 

subject should be recalled or not based upon their screening mammogram results 

(Onega et al., 2012). In brief, the AIM study recruited 119 radiologists and obtained 

a set of 130 mammograms from 6 breast screening registries. The investigators 

developed 4 mammogram test sets, each containing 109 mammograms sampled 

from a set of 130 mammograms. Each test set varied by cancer prevalence and case 

difficulty, and included more cancer cases than a standard screening set; thus recall 

rates cannot be compared to a standard screening study. Participating radiologists 

were randomly assigned to one of the test sets and classified the mammograms in 

their test set. The primary outcome measured on each patient was a binary measure 

of whether the patient should be recalled for further testing versus no recall. See 

Onega et al. for further details on the AIM study design. 

The aims are to assess the levels of agreement between the study radiologists 

using the two measures of agreement and to compare these results between the four 

available statistical packages. The data set was fit in all four packages. 
 
 
Table 4. Estimates and standard errors for the probit GLMM and agreement statistics 

computed from each statistical package on the AIM data set 
 

 Statistical Package 

 ORDINAL LME4 MCMCglmm1 MCMCglmm10 PROC GLIMMIX 

Parameters Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

η -0.124 (0.114) -0.125 (0.114) -0.121 (0.113) -0.116 (0.125) -0.124 (0.114) 

2

u
σ  1.431 (0.192)

 
1.444 (0.189)

 
1.494 (0.205)

 
1.559 (0.218)

 
1.431 (0.192)

 

2

v
σ  0.195 (0.029)

 
0.195 (0.029)

 
0.207 (0.033)

 
0.295 (0.040)

 
0.195 (0.029)

 

      

κm (95% CI) 0.367 0.368 0.373 0.368 0.367 

 (0.321-0.413) (0.322-0.414) (0.326-0.420) (0.321-0.415) (0.321-0.413) 

κF (95% CI)   0.358   

   (0.356-0.361)   
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Table 5. Estimates and standard errors for the probit GLMM and agreement statistics 

computed from each statistical package on bladder cancer data set 
 

 Statistical Package 

 ORDINAL LME4 MCMCglmm1 MCMCglmm10 PROC GLIMMIX 

Parameters Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

η 0.490 (0.460) 0.499 (0.461) 0.622 (0.502) 0.613 (0.763) 0.490 (0.460) 

2

u
σ  3.137 (1.492)

 
3.156 (1.452)

 
6.114 (1.898)

 
5.853 (3.345)

 
3.137 (1.492)

 

2

v
σ  0.369 (0.274)

 
0.366 (0.275)

 
0.723 (0.575)

 
2.508 (1.587)

 
0.369 (0.274)

 

      

κm (95% CI) 0.490
 

0.492
 

0.570
 

0.430
 

0.490
 

 (0.375-0.605)
 

(0.377-0.607)
 

(0.449-0.691)
 

(0.259-0.601)
 

(0.375-0.605)
 

κF (95% CI)   0.465
   

   (0.391-0.539)   

 
 

Table 4 presents the estimated parameters with the standard errors from the 

GLMM model, the model-based kappa values with 95% CI, and the Fleiss kappa 

value ( F̂ ) with 95% CI for this study. The version of Fleiss’ kappa for unequal 

number of raters per subject was used because subjects’ mammograms were 

classified by different number of raters. The model-based kappa ˆ
m  produced 

slightly higher estimates compared to Fleiss’ kappa in all four packages. For the 

model-based approaches, ORDINAL, LME4, MCMCglmm10, and PROC 

GLIMMIX produced extremely comparable results ( ˆ
m  = 0.367, 0.368, 0.368, and 

0.367, respectively) indicating fair agreement between the radiologists. The kappa 

value obtained from MCMCglmm1 was slightly higher ( ˆ
m  = 0.373), but not 

enough to alter the inference and conclusion of the agreement. Fleiss’ kappa 

( F
ˆ 0.358  ) was estimated slightly lower than the model-based kappa estimates 

ˆ
m . 

One of the simulation scenarios (Scenario 1) was designed to resemble the 

BCSC breast cancer data set. Under normally distributed random effects, the biases 

and coverage probabilities of ˆ
m  were comparable between the packages. [Figure 

1] Slightly more variability in bias was observed under non-normally-distributed 

random effects. Bias of ˆ
m  obtained from MCMCglmm1 was the highest (0.008) 

while the bias obtained from MCMCglmm10 was the lowest (0.002). [Figure 1] 
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Figure 3. Rater- and subject-specific random effects from breast cancer data set 

 

 

Bladder Cancer Study The second data set used for illustration is a study 

carried out by Compérat et al. (2013) which assessed agreement among eight 

genitourinary pathologists reviewing twenty-five bladder cancer specimens. Each 

pathologist provided a binary classification for each specimen according to whether 

or not they considered the sample to be non-invasive or invasive bladder cancer. 
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Figure 4. Rater- and subject-specific random effects from bladder cancer data set 

 

 

This data set was fit using the four packages and calculated the two agreement 

measures ( ˆ
m , F̂ ). Model-based kappa estimates ˆ

m  obtained from ORDINAL, 

LME4, and MCMCglmm packages with the smaller prior were higher compared to 

the Fleiss’ kappa estimate ( F
ˆ 0.465  ), which corroborate the original study value 

of moderate agreement between study pathologists. [Table 5] Results from the 

MCMCglmm package yielded an especially higher kappa estimate with the smaller 
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prior ( ˆ 0.570m  ) and a lower kappa estimate with the larger prior ( ˆ 0.430m  ) 

relative to the estimates from the other packages. Compared to the previous AIM 

data set example, this data set provided a wider range of ˆ
m  computed by the 

different packages, with the lowest and highest kappa values as 0.430 

(MCMCglmm1) and 0.570 (MCMCglmm10), respectively. In a similar manner to 

our simulations, ORDINAL, LME4, and PROC GLIMMIX provided equivalent 

kappa estimates. However, all packages indicated that the pathologists had 

moderate agreement. 

 

Unique Characteristics of Raters and Test Results Each statistical package can 

generate subject- and rater-specific random effects based on the conditional modes 

of the conditional distributions for the random effects. These solutions to the 

random effects are useful in understanding the behavior of individual raters if, for 

example, a rater is liberal or conservative in their classification of the test results. 

We present the solutions to the random effects from the ORDINAL package, and 

similar solutions were obtained from PROC GLIMMIX. 

Presented in Figure 3 are the rater-specific random effects with 95% CI and 

the subject-specific random effects with 95% CI for the AIM study. Radiologists 

with large positive random effects values tended to recall mammograms more 

aggressively compared to other raters. However, radiologists with large negative 

random effects values were less likely to recall mammograms relative to other 

raters. For example, the radiologist with ID 22 who had the largest rater random 

effect ( 22
ˆ 1.07v  ) recalled 71% of the mammograms that he/she classified while 

the average recall rate among all radiologists was 43%. [Figure 3a] The subject-

specific random effects ranged from -2.08 to 2.82. Large positive random effects 

values indicate mammograms with a high probability of recall while large negative 

values indicate mammograms with low probability of recall. Values that are close 

to 0 indicate mammograms with ambiguous results and suggest that the disease 

status on these mammograms was less well-defined than others. For example, 

subjects with IDs 136 and 147 had the largest random effects ( 136 147
ˆ ˆ 2.82u u  ) 

and they both had a recall rate of 100% while subject with ID 103 with the smallest 

random effect ( 103
ˆ 2.08u    ) had a recall rate of 2%. [Figure 3b] 

Displayed in Figure 4 are the random effects conditional modes for the 

bladder cancer study. The rater-specific random effects were all moderate in value, 

ranging from -0.527 to 0.657. Relative to other pathologists, pathologists 1 and 3 

were more likely to categorize the specimens as invasive (more liberal) while 
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pathologists 8 and 4 were less likely to do so (more conservative). [Figure 4a] The 

subject-specific random effects ranged from -2.345 to 1.614. Subjects with large 

positive values of random effects (IDs 6-25) suggest having a more clear indication 

of invasive cancer compared to other subjects. On the other hand, subjects with 

large negative values of random effects (IDs 4-14) suggest that their samples 

indicate a non-invasive cancer. [Figure 4b] Note that many rater- and subject-

specific random effects are equal to others due to the small number of raters and 

test results in this study. 

Conclusion 

The performance of four different packages in R and SAS was compared in the 

estimation of parameters for the binary GLMM and for two available measures of 

agreement between multiple raters. The GLMM parameter estimates were similar 

between the four packages when the random effects were normally distributed, 

especially between the packages that use a frequentist approach (ORDINAL, 

LME4, and PROC GLIMMIX). For one of the scenarios (Scenario 1a), the 

Bayesian package (MCMCglmm) was explored further by altering the belief 

parameter (v) to 0.002 which is used regularly in the prior specification of the 

random effects variance structure (Hadfield, 2015). Changing the specification of 

the priors had a minimal impact on the estimation of the random effects parameters 

and on the agreement statistic in the Bayesian package (MCMCglmm). When the 

random effects were non-normally distributed (both symmetric and skewed), we 

observed more variability in the GLMM parameter estimates between the four 

packages. However, we observed considerably smaller variability in the model-

based agreement estimates even when the difference in the GLMM parameter 

estimates between the packages were relatively large.  

It was shown in many studies misspecification of the random effects 

distributions do not seriously affect the estimation of the fixed effects. In computing 

the model-based kappa statistic from GLMM, however, the interest is in estimating 

the variances of the subject and rater random effects. Fewer studies have evaluated 

the impact of model misspecification on the random effects estimates and variance 

components. Through simulation, Agresti, Caffo, and Ohman-Strickland (2004) 

showed that extreme departure from Gaussian of the random effects may lead to 

loss of efficiency in the estimated variance of the random effects when fitting binary 

GLMM. If the true variance of the random effects is small, however, the problem 

of misspecification is negligible even if the true distribution is not Gaussian. In their 

simulation study, Litiere et al. (2008) assessed the impact of misspecified random 
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effects distribution under binary GLMM on the maximum likelihood estimate of 

the random effects variance component. They observed that substantial bias can 

occur under misspecification even if the true variance of the random effects is small. 

On the other hand, McCulloch and Neuhaus (2011) showed that the estimation of 

random effects variance components is robust to misspecification of the random 

effects distribution. In our simulation study, we did observe slightly higher bias in 

the estimated variance of the random effects when the true random effects 

distribution were skewed compared to when the true random effects distribution 

was normal. This was more pronounced under the extreme scenarios where both 

the subject and rater random effects were non-normally distributed. Litiere et al. 

(2008) also noted that a more serious bias can be observed with more than one 

random effects in the model. However, the absolute bias in the model-based kappa 

estimates, which takes values between 0 and 1, was generally low (0.06 or less) 

even for these extreme scenarios across the four packages. 

Typically used as an approach to measure reliability among multiple judges, 

the intra-class correlation coefficient (ICC) is another popular summary statistic for 

assessing agreement. Fleiss and Cuzick (1979) show that if the sample size is 

moderately large, ICC is “virtually identical” to kappa.” (p. 539) Indeed, in our 

simulation study, we observed that Fleiss’ kappa and ICC were identical to the 

second decimal place and hence only report the Fleiss’ kappa as a comparison 

measure to the model-based agreement statistic. 

In general, under normally distributed random effects, Fleiss’ kappa estimates 

were smaller compared to the model-based kappa estimates, except in one scenario 

where Fleiss’ kappa estimate was considerably larger than the model-based kappa 

estimates. Fleiss’ kappa has several restrictions: First, it requires a constant number 

of ratings per subject. If the number of ratings per subject differs, then an alternate 

form of Fleiss’ kappa is required to compute agreement. Second, Fleiss’ kappa is 

prone to prevalence of success. If the success rate is low, Fleiss’ kappa will 

underestimate the agreement between raters (Nelson & Edwards, 2008). 

Furthermore, although not discussed here, Fleiss’ kappa cannot be extended to 

incorporate information about rater characteristics that may impact agreement. 

Lastly, in the simulation study, the standard errors of estimated Fleiss’ kappa 

statistics computed using equation (4) were much smaller compared to the 

empirical standard errors. However, this issue needs to be further examined. 

This study has some limitations. The assessment was restricted to four 

packages in R and SAS because of their popularity and accessibility. Other 

packages available in estimating GLMM with a crossed random effects structure 

such as MLwiN, WinBUGS, and Stata were not included. 
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This study has several strengths. First, the data generated for these simulation 

studies included realistic scenarios including the implementation of non-normally 

distributed random effects. In fact, the data set generated for one of the simulation 

scenarios was based on a real-life data set from the AIM study. Second, to our 

knowledge, this is the first study where the relatively new ORDINAL package was 

compared with existing packages on the performance of fitting GLMM with a 

crossed random effects structure for binary responses. The ORDINAL package is 

extremely stable, unlike the LME4 package, computationally efficient, and its 

parameter estimates were identical to those of PROC GLIMMIX in SAS. Lastly, 

the straightforward and reliable implementation of model-based measure of 

agreement ( ˆ
m ) using existing packages was demonstrated. Model-based measure 

of agreement is robust to missing and unbalanced data, where not every subject’s 

test result is rated by each rater. 

Among frequentist R users, the ORDINAL package is recommended over the 

LME4 package for its stability and computational efficiency regardless of sample 

size and distribution of random effects. The GLIMMIX procedure in SAS produced 

nearly identical results to the ORDINAL package. For those who prefer Bayesian 

analysis, the MCMCglmm package performs well in fitting binary GLMM with a 

crossed random effects structure and for computing model-based agreement 

statistics. Although there was very little variability in the model-based agreement 

measures using different sets of priors, performing sensitivity analyses is 

recommended by altering the prior specification of the random effects distribution. 

A useful advantage of the Bayesian package implemented here (MCMCglmm) is 

its flexibility in incorporating a known characteristic of the data set to the model 

through the use of priors and its robustness to model misspecification when random 

effects distribution is skewed. Programs for fitting the binary GLMM with a crossed 

random effects structure for each of the four packages and an example data set are 

provided in supplementary materials. Full code for computing ˆ
m  and its variance 

from GLMM parameter estimates for each package described in this paper is also 

included in the programs. 

Overall, existing statistical software offer satisfactory packages or procedures 

for fitting binary GLMMs with a crossed random effects structure, and for 

estimation of agreement measures in large-scale agreement studies based upon 

multiple raters’ binary classifications. 



AGREEMENT BETWEEN RATERS’ BINARY CLASSIFICATIONS 

306 

Acknowledgements 

The authors are grateful for the support provided by grant R01-CA-17246301 from 

the United States National Institutes of Health. The AIM study was supported by 

the American Cancer Society, made possible by a generous donation from the 

Longaberger Company's Horizon of Hope®Campaign (SIRSG-07-271, SIRSG-07-

272, SIRSG-07-273, SIRSG-07-274, SIRSG-07-275, SIRGS-06-281, SIRSG-09-

270, SIRSG-09-271), the Breast Cancer Stamp Fund, and the National Cancer 

Institute Breast Cancer Surveillance Consortium (HHSN261201100031C). The 

cancer data used in the AIM study was supported in part by state public health 

departments and cancer registries in the U.S., see http://www.bcsc-

research.org/work/acknowledgement.html. We also thank participating women, 

mammography facilities, radiologists, and BCSC investigators for their data. A list 

of the BCSC investigators is provided at: http://www.bcsc-research.org/. 

Funding 

This study was funded by the United States National Institutes of Health (grant 

number 1R01CA17246301-A1). 

References 

Agresti, A. (1989). A model for agreement between ratings on an ordinal 

scale. Mathematical and Computer Modelling, 12(9), 1188. doi: 10.1016/0895-

7177(89)90272-0 

Agresti, A., Caffo, B., & Ohman-Strickland, P. (2004). Examples in which 

misspecification of a random effects distribution reduces efficiency, and possible 

remedies. Computational Statistics & Data Analysis, 47(3), 639-653. doi: 

10.1016/j.csda.2003.12.009 

Beam, C. A., Conant, E. F., & Sickles, E. A. (2002). Factors affecting 

radiologist inconsistency in screening mammography. Academic Radiology, 9(5), 

531-540. doi: 10.1016/S1076-6332(03)80330-6 

Christensen, R. H. B. (2013). ordinal: Regression models for ordinal data 

(Version 2013.9-30) [R software package]. Retrieved from http://www.cran.r-

project.org/package=ordinal 

Ciatto, S., Houssami, N., Apruzzese, A., Bassetti, E., Brancato, B., 

Carozzi,… Scorsolini, A. (2005). Categorizing breast mammographic density: 

http://www.bcsc-research.org/
https://dx.doi.org/10.1016/0895-7177(89)90272-0
https://dx.doi.org/10.1016/0895-7177(89)90272-0
https://dx.doi.org/10.1016/j.csda.2003.12.009
https://dx.doi.org/10.1016/S1076-6332(03)80330-6
http://www.cran.r-project.org/package=ordinal
http://www.cran.r-project.org/package=ordinal


MITANI & NELSON 

307 

Intra- and interobserver reproducibility of BI-RADS density categories. The 

Breast, 14(4), 269-275. doi: 10.1016/j.breast.2004.12.004 

Cohen, J. (1968). Weighted kappa: nominal scale agreement with provision 

for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213-220. 

doi: 10.1037/h0026256 

Compérat, E., Egevad, L., Lopez-Beltran, A., Camparo, P., Algaba, F., 

Amin, M.,… Van der Kwast, T. H. (2013). An interobserver reproducibility study 

on invasiveness of bladder cancer using virtual microscopy and heatmaps. 

Histopathology, 63(6), 756-766. doi: 10.1111/his.12214 

Elmore, J. G., Wells, C. K., Lee, C. H., Howard, D. H., & Feinstein, A. R. 

(1994). Variability in radiologists’ interpretations of mammograms. The New 

England Journal of Medicine, 331(22), 1493-1499. doi: 

10.1056/NEJM199412013312206 

Epstein, J. I., Allsbrook, W. C. J., Amin, M. B., Egevad, L. L., & ISUP 

Grading Committee. (2005). The 2005 International Society of Urological 

Pathology (ISUP) consensus conference on Gleason grading of prostatic 

carcinoma. The American Journal of Surgical Pathology, 29(9), 1228-1242. doi: 

10.1097/01.pas.0000173646.99337.b1 

Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. 

Psychological Bulletin, 76(5), 378-382. doi: 10.1037/h0031619 

Fleiss, J. L., & Cuzick, J. (1979). The reliability of dichotomous judgments: 

Unequal numbers of judges per subject. Applied Psychological Measurement, 

3(4), 537-542. doi: 10.1177/014662167900300410 

Fleiss, J. L., Nee, J. C. M., & Landis, J. R. (1979). Large sample variance of 

kappa in the case of different sets of raters. Psychological Bulletin, 86(5), 974-

977. doi 10.1037/0033-2909.86.5.974 

Hadfield, J. D. (2010). MCMC methods for multi-response generalised 

linear mixed models: The MCMCglmm R package. Journal of Statistical 

Software, 33(2), 1-22. doi: 10.18637/jss.v033.i02 

Hadfield, J. D. (2015). MCMCglmm course notes. Retrieved from: 

https://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf 

Hsiao, C. K., Chen, P.-C., & Kao, W.-H. (2011). Bayesian random effects 

for interrater and test-retest reliability with nested clinical observations. Journal 

of Clinical Epidemiology, 64(7), 808-814. doi: 10.1016/j.jclinepi.2010.10.015 

https://dx.doi.org/10.1016/j.breast.2004.12.004
https://dx.doi.org/10.1037/h0026256
https://dx.doi.org/10.1111/his.12214
https://dx.doi.org/10.1056/NEJM199412013312206
https://dx.doi.org/10.1097/01.pas.0000173646.99337.b1
https://dx.doi.org/10.1037/h0031619
https://dx.doi.org/10.1177/014662167900300410
https://dx.doi.org/10.1037/0033-2909.86.5.974
https://dx.doi.org/10.18637/jss.v033.i02
https://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf
https://dx.doi.org/10.1016/j.jclinepi.2010.10.015


AGREEMENT BETWEEN RATERS’ BINARY CLASSIFICATIONS 

308 

Ibrahim, J., & Molenberghs, G. (2009). Missing data methods in 

longitudinal studies: a review. TEST, 18(1), 1-43. doi: 10.1007/s11749-009-0138-

x 

Karim, M. R., & Zeger, S. L. (1992). Generalized linear models with 

random effects; Salamander mating revisited. Biometrics, 48(2), 631-644. doi: 

10.2307/2532317 

Kim, Y., Choi, Y.-K., & Emery, S. (2013). Logistic regression with multiple 

random effects: A simulation study of estimation methods and statistical 

packages. The American Statistician, 67(3), 37-41. doi 

10.1080/00031305.2013.817357 

Kuk, A. Y. C., & Cheng, Y. W. (1997). The Monte Carlo Newton-Raphson 

algorithm. Journal of Statistical Computation and Simulation, 59(3), 233-250. 

doi: 10.1080/00949657708811858 

Landis, J. R., & Koch, G. G. (1977). The measurement of observer 

agreement for categorical data. Biometrics, 33(1), 159-174. doi: 10.2307/2529310 

Li, B., Lingsma, H. F., Steyerberg, E. W., & Lesaffre, E. (2011). Logistic 

random effects regression models: A comparison of statistical packages for binary 

and ordinal outcomes. BMC Medical Research Methodology, 11(77). doi: 

10.1186/1471-2288-11-77 

Litière, S., Alonso, A., & Molenberghs, G. (2008). The impact of a 

misspecified random-effects distribution on the estimation and the performance of 

inferential procedures in generalized linear mixed models. Statistics in Medicine, 

27(16), 3125-3144. doi 10.1002/sim.3157 

McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized 

linear mixed models. Journal of the American Statististical Association, 92(437), 

162-170. doi: 10.2307/2291460 

McCulloch, C. E., & Neuhaus, J. M. (2011). Prediction of random effects in 

linear and generalized linear models under model misspecification. Biometrics, 

67(1), 270-279. doi: 10.1111/j.1541-0420.2010.01435.x 

Nelson, K. P., & Edwards, D. (2008). On population-based measures of 

agreement for binary classifications. Canadian Journal of Statistics, 36(3), 411-

426. doi: 10.1002/cjs.5550360306 

Nelson, K. P., & Edwards, D. (2010). Improving the reliability of diagnostic 

tests in population-based agreement studies. Statistics in Medicine, 29(6), 617-

626. doi: 10.1002/sim.3819 

https://dx.doi.org/10.1007/s11749-009-0138-x
https://dx.doi.org/10.1007/s11749-009-0138-x
https://dx.doi.org/10.2307/2532317
https://dx.doi.org/10.1080/00031305.2013.817357
https://dx.doi.org/10.1080/00949657708811858
https://dx.doi.org/10.2307/2529310
https://dx.doi.org/10.1186/1471-2288-11-77
https://dx.doi.org/10.1002/sim.3157
https://dx.doi.org/10.2307/2291460
https://dx.doi.org/10.1111/j.1541-0420.2010.01435.x
https://dx.doi.org/10.1002/cjs.5550360306
https://dx.doi.org/10.1002/sim.3819


MITANI & NELSON 

309 

Onega, T., Smith, M., Miglioretti, D. L., Carney, P. A., Geller, B. A., 

Kerlikowske, K.,… Yankaskas, B. (2012). Radiologist agreement for 

mammographic recall by case difficulty and finding type. Journal of the American 

College of Radiology, 9(11), 788-794. doi: 10.1016/j.jacr.2012.05.020 

Ooms, E. A., Zonderland, H. M., Eijkemans, M. J. C., Kriege, M., 

Mahdavian Delavary, B., Burger, C. W., & Ansink, A. C. (2007). Mammography: 

Interobserver variability in breast density assessment. The Breast, 16(6), 568-576. 

doi: 10.1016/j.breast.2007.04.007 

R Core Team (2014). R: A language and environment for statistical 

computing [Computer software]. Vienna, Austria: R Foundation for Statistical. 

Retrieved from: http://www.R-project.org/ 

Scott, W. A. (1955). Reliability of content analysis: the case of nominal 

scale coding. Public Opinion Quarterly, 19(3), 321-325. doi: 10.1086/266577 

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in 

assessing rater reliability. Psychological Bulletin, 86(2), 420-428. doi: 

10.1037/0033-2909.86.2.420 

Tanner, M. A., & Young, M. A. (1985). Modeling agreement among raters. 

Journal of the American Statistical Association, 80(389), 175-180. doi: 

10.2307/2288068 

Zhang, H., Lu, N., Feng, C., Thurston, S. W., Xia, Y., Zhu, L., & Tu, X. M. 

(2011). On fitting generalized linear mixed-effects models for binary responses 

using different statistical packages. Statistics in Medicine, 30(20), 2562-2572. doi: 

10.1002/sim.4265 

https://dx.doi.org/10.1016/j.jacr.2012.05.020
https://dx.doi.org/10.1016/j.breast.2007.04.007
http://www.r-project.org/
https://dx.doi.org/10.1086/266577
https://dx.doi.org/10.1037/0033-2909.86.2.420
https://dx.doi.org/10.2307/2288068
https://dx.doi.org/10.1002/sim.4265

	Journal of Modern Applied Statistical Methods
	December 2017

	Modeling Agreement between Binary Classifications of Multiple Raters in R and SAS
	Aya A. Mitani
	Kerrie P. Nelson
	Recommended Citation

	Modeling Agreement between Binary Classifications of Multiple Raters in R and SAS
	Cover Page Footnote


	tmp.1512154129.pdf.3cK25

