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A series of simulation studies are reported that investigated the impact of a skewed 
predictor(s) on the Type I error rate and power of the Wald test in a logistic regression 
model. Five simulations were conducted for three different regression models. A detailed 
description of the impact of skewed cell predictor probabilities and sample size provide 
guidelines for practitioners wherein to expect the greatest problems. 
 
Keywords: logistic regression, skewed cell probability, simulation study, categorical 

predictor, skewed predictor 

 

Introduction 

Logistic regression modeling is growing in popularity in psychological and 

educational research (Cohen, Cohen, West, & Aiken, 2013; Tabachnick & Fidell, 

2013). In these disciplines, data analysts commonly encounter skewed predictor 

variables: either categorical predictor variables that reflect skewed cell 

probabilities or skewed continuous predictors. The purposes of this paper are to 

describe the issues surrounding skewed predictors and to document their 

consequences on parameter estimation, as well as on the Types I and II error (and 

statistical power) of their Wald tests.  

The skewness of predictors is rarely discussed in statistical treatments of 

logistic regression for educational and psychological researchers. Moreover, while 

the mathematical statistics literature does mention skewed variables, as will be 

seen below, they are typically used as a motivation for employing alternative 

estimators, test statistics, and analysis strategies—which is quite reasonable given 

https://doi.org/10.22237/jmasm/1509494640
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the purpose of those studies. What is not found in either the methodological or the 

mathematical/statistical literature is a detailed documentation of the impact of 

predictor skewness on the convergence of estimators, and on the Types I and II 

error and statistical power of the hypothesis tests. There is no detailed information 

to guide researchers on the impact of skewed predictors in logistic regression. 

With the aim of filling this gap in the literature, consider the results of five 

simulation studies that aim to provide a comprehensive investigation of the 

convergence in maximum likelihood estimation (MLE) of the regression 

parameters (b-weights) and the operating characteristics of the Wald statistic for 

predictors in logistic regression with skewed cell probabilities. Note operating 

characteristics is used to here refer to the Type I and II error rates and statistical 

power of a hypothesis test (Ferris, Grubbs, & Weaver, 1946). 

Problematic Data Structures: Sparse Tables, Skewness, 
and Separation in Logistic Regression, and Statement of 
the Problem 

There are very few discussions of the issue of skewed or unequal cell probabilities 

in the logistic regression literature (Jennings, 1986; Larntz, 1978). A review of the 

literature on broad categorical data analysis reveals three types of data patterns 

that provide a context for issues potentially related to the impact of skewed cell 

probabilities and hence may offer insights on the problem.  

Three types of data patterns. 

To understand problematic data patterns, it is necessary to be able to visualize the 

data. In addition to the conventional data matrix (in which rows are participants 

and columns are variables), categorical data may be displayed as a multi-way 

table in which the cells are counts of occurrences of the corresponding row and 

column elements. The former display allows insight on the variety of covariate 

patterns, whereas the latter allows learning about potential small sample sizes in 

the cells of the table that result in sparse data. The statistical literature on 

categorical data analysis uses both of these data visualization tools, though it 

focuses more on cross-tabulation and the language of cell counts, and provides a 

few descriptions of problematic data structures and an extensive number of 

remedies (i.e. smoothing techniques and robust estimation procedures).  

Sparse tables are a common concern in categorical data analysis. From the 

perspective of the cross-tabulation of the data, one is fitting a logistic regression 
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model with data in this table. In his discussion of empty cells and sparse tables, 

Agresti (2002) described them as contingency tables having small or zero cell 

counts. Sparse tables may occur when the sample size is small, when a variable 

contains a large number of categories, or when a model has many predictor 

variables and hence a high dimensional multi-way table. A sparse table in a 

logistic regression with a dichotomous predictor can be thought of as a two-way 

(row-by-column) table that has a similar format to Table 1. In Table 1, even 

though the outcome variable (Y) is symmetrically distributed and the predictor 

variable has a small skew in the marginal cell counts, there is a cell with zero 

occurrences—an empty cell. As such, it is clear that the marginal distributions are 

not necessarily indicative of the covariate pattern in the data. 
 
 
Table 1. Two-way table with a zero count cell, an example of a sparse table or quasi-

complete separation. 
 

  
X   

  
0 1 Total 

Y 
0 40 10 50 

1 0 50 50 

Total 40 60 100 

 
 

The issue of separation was first introduced by Day and Kerridge (1967) to 

describe a problematic data configuration between the categorical outcome and 

predictor variables that negatively affects the MLE. Refining these earlier 

findings, Albert and Anderson (1984) identified three types of data configurations 

that may affect estimation: complete separation, quasi-complete separation, and 

overlap. They mathematically proved that although overlap yields a finite and 

unique solution, MLEs do not exist for the other two data patterns, although it was 

left to future researchers to develop new techniques to overcome this obstacle 

(e.g., Barreto, Russo, Brasil, & Simon, 2014; Gordóvil-Merino, Guàrdia-Olmos, 

& Peró-Cebollero, 2012; Heinze & Puhr, 2010; Mîndrilã, 2010; Rousseeuw & 

Christmann, 2003).  

Although skewness is a term rarely used in categorical data analysis, 

following Larntz's (1978) classic study, skewed probabilities is adopted to 

describe the row (or column) marginal distribution of the categorical predictor 

variables. This phrase has two uses in the statistical literature of interest. Larntz 

considered a case where the binary or multinomial predictor variables have an 

implicit order (help grade, or otherwise an ordered categorical variable of help), 

and where the marginal probabilities of the predictor variable are therefore 
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distributed in a skewed manner. Jennings (1986) did not use the phrase skewed 

probabilities, but instead described the marginal probabilities of the outcome 

variable as equal or unequal. The characterization Larntz described is more in line 

with the one adopted here, in good part because it corresponds more closely to 

how data analysts in education and psychology conceptualize such distributions. 

Skewness here is used in lieu of sparse tables or separation for a few reasons. 

Sparse tables and separation are descriptive of a relationship between two 

variables (i.e., outcome and predictor), whereas skewness in the probability of 

occurrence for the categories in a predictor is a unique descriptor of one variable. 

Also, the term skewness can be generalized to the continuous cases. Because the 

interest is in the skewness of the predictor variable, the methods in conducting 

this study reflect this concept. In severe cases of skewed probabilities, however, 

sparse tables or separation may occur. Nevertheless, similar to the example shown 

in Table 1, a sparse table or separation does not indicate skewed marginal 

probabilities in a variable. 

Relatively little is known about the impact of skewed probabilities on later 

statistical decisions of a logistic regression model. Therefore, if the skewness in 

the probabilities of a predictor is not severe enough to disrupt the MLEs in terms 

of convergence, to what extent could a researcher trust the test results and make 

valid decisions? The information in Table 2 represents an example of this problem, 

wherein the predictor X’s probability of obtaining category 0 is nine times more 

likely to occur than category 1, all while the probability of obtaining both 

categories in the outcome variable Y is approximately 0.5. The cell counts for the 

adjacent cells of (X = 0, Y = 1) and (X = 1, Y = 1) are very different. The question 

is, although estimation will yield a finite solution, to what extent are these 

estimates to be trusted? Is there bias? How large or small are the standard errors? 

And ultimately, how much can we trust the results of test statistics such as the 

Wald test? 
 
 
Table 2. An example of the data structure examined in this study. 
 

  
X   

  
0 1 Total 

Y 
0 89 18 107 

1 91 2 93 

Total 180 20 200 
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What Is Known To Date 

Skewed probabilities of a categorical variable 

Although we know of no studies that have investigated the skewness of predictor 

variables in logistic regression, there are three others on related issues. 

 

1) Jennings (1986) examined the impact of skewed probabilities (in the 

outcome variable) in a dichotomous logistic regression, where one 

category in the outcome variable was more likely to occur than the 

other. The MLEs of the parameter coefficients are upwardly biased 

as the cell with the lowest count in the row-by-column table becomes 

smaller. As a result, Jennings introduced a measure that detects 

inadequacies in estimation. 

 

2) Larntz (1978) focused on the case of goodness of fit of binary and 

multinomial variables with two- and three-way tables and compared 

the performance of three multinomial goodness-of-fit statistics with 

varying sample sizes and degrees of skewness of cell probabilities. 

Working particularly with small samples because they often generate 

sparse tables, Larntz used a Monte Carlo simulation to induce 

skewness in the probabilities in the binary and multinomial variable. 

It was found that the fit statistics generally performed well. 

 

3) In a study aimed to find a solution to the separation problem, 

Anderson and Richardson (1979) conducted a simulation study to 

investigate the effectiveness of a bias reduction method within MLEs. 

The recognition of potential skewness in the data set was interesting. 

They stated, “the distribution of the maximum likelihood estimators 

would be skew, particularly when the number of sample points from 

at least one population was disproportionately small” (p. 72). 

Because simulating complete separation or a cell with zero 

frequency would result in estimates that are extremely large 

(characterized as ±∞), these were eliminated, while only those data 

sets that were “acceptable” were included (p. 74).  
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Separation and MLE 

Viewing the impact of skewed predictor cell probabilities from the different but 

potentially related lenses of separation and sparse tables resulting from particular 

data configurations (Anderson & Richardson, 1979; Jennings, 1986; Larntz, 1978), 

we predict that when these probabilities are skewed, the Type I error rate will be 

deflated and effect sizes will, in some cases, be inflated and may be infinite, 

however, the extent and under what conditions are unknown. Therefore, given the 

lack of an analytic solution, computer simulation experiments are needed to more 

fully explore the impact of predictor skewness.  

There will be cases in this simulation when separation is inevitable—that is, 

when the sample size is small and the predictor variable is highly skewed. More 

generally, separation is caused by a linear combination of continuous or 

dichotomous predictors that perfectly separates events from non-events (the 1 and 

0 of the outcome variable). Complete separation occurs when one or more of a 

model’s predictors perfectly predict the outcome variable, therefore, no variance 

is left to be explained in the outcome variable by the model’s other predictors. 

More commonly, quasi-complete separation occurs when only one covariate 

pattern has a zero count—expressed differently, when, for example, only one cell 

of the implied 2×2 table of X and Y is empty (Zorn, 2005, p. 161). Under such 

conditions, the parameter estimate for the separating variable will also be infinite, 

but the model’s other predictors may remain unaffected (Zorn, 2005). Both 

complete and quasi-complete separation may be present in our simulation 

experiment as a by-product of the data configuration. 

The problem with small samples and separated data lies in the estimation 

process—that is, a finite and unique MLE in logistic regression may not exist. 

The resulting estimates of the log odds ratios are biased, and the bias increases as 

the ratio of the number of observations to the number of parameters decreases 

(Cordeiro & McCullagh, 1991). The astronomically large estimates produced 

indicate that a variable perfectly predicts the outcome, which is in essence very 

desirable, but is an artifact of the data configuration. However, in small data sets, 

we must assume that separation is not due to truly infinite estimates, but is instead 

caused by random variation or the nature of the data configuration.  

What is even more interesting is the effect of separation on test statistics, 

specifically the Wald test. Hauck and Donner (1977) demonstrate that for any 

sample size, the Wald test statistics decrease to zero as the distance between the 

parameter estimates and null values increases. Consequently, in all tests for model 

validation, validation variables are biased and the confidence intervals of the 

parameter estimates and the odds ratio are not efficient. In cases of separation, the 
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distance between the parameter estimates and their null value is very large, 

resulting in a nonsignificant Wald statistic.  

In a simulation study conducted by Peduzzi, Concato, Kemper, Holford, and 

Feinstein (1996), in which they examined the effects of the number of events per 

predictor variable in a logistic regression model, it was found the MLE did not 

converge with two and five events per predictor. Moreover, when the MLE did 

converge, the Type I error was deflated (i.e., became more conservative), the 

power decreased, and the empirical distribution of the Wald statistic was not 

normally distributed. These problems did not exist with 10 or more events per 

predictor. However, Barreto et al. (2014) found that the Wald test can detect 

which variables are individually significant, but fails to determine the significance 

of the variable that presents separation. The maximum likelihood estimates 

become inefficient, providing inflated variances.  

The Wald test was criticized for its limitations under both ideal (Pawitan, 

2000) and problematic circumstances (Fears, Benichou, & Gail, 1996; Gregory & 

Veall, 1986; Lütkepohl & Burda, 1997; Vaeth, 1985). However, it is still widely 

reported and used to this day. In a recent review (Alkhalaf, 2014) of 323 articles 

in higher education research that use logistic regression, it was found that all of 

them reported the significance of parameters via the Wald test or z-statistic. 

Moreover, widely used software packages such as R, SAS, Stata, and SPSS 

provide the Wald statistic as output. For these reasons, we focus on the Wald test 

in this study. 

Simulation Studies 

The results of five simulation studies are reported, organized around three logistic 

regression models.  

 

 The first model examined simple logistic regression with skewed 

probabilities of a dichotomous predictor. The results of two studies 

are reported. The first focused on the quality of the parameter 

coefficient estimates, including the convergence rates of the MLEs, 

as well as Type I error. The second simulation study investigated 

statistical power. 

 

 The second model considered skewness in simple logistic regression 

with a continuous predictor. Because this model was included to 

check the generalizability to a continuous predictor case (rather than 
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a categorical predictor), only the MLE convergence and Type I error 

rate were investigated.  

 

 The final model included two simulations that explored multiple 

logistic regression with skewed cell probabilities of two 

dichotomous predictors. Like the first model, the first simulation 

study focused on the convergence rates of the MLEs and Type I 

error, and the second on statistical power. 

General methods 

In this series of studies Monte Carlo simulations were used to examine the 

skewness of a predictor at the population level, meaning what happens when 

skewness is not a sampling artifact, but is rather the result of a population 

imbalance of the marginal probabilities of the predictor(s). This is sometimes 

called naturally occurring skewness. Examples of variables that are naturally 

skewed in the population include (a) the number of visually impaired 

undergraduate students in a certain discipline; (b) in clinical, psychological, health, 

or medical research, the presence of a rare diagnostic ailment; (c) in the social 

sciences, a large gender imbalance of the participants in a study due to culturally 

sensitive issues; and (d) as is well known, binary predictors in models 1 and 3 can 

be interpreted as being a design matrix in an experiment or clinical trial – note 

that the imbalance in the experiment or clinical trial reflects population imbalance 

or what is sometimes called unequal cell sample sizes reflecting population 

characteristics and therefore not due to selection bias or attrition (e.g., Christensen, 

2016). 

To directly answer the research question of the effect of a skewed predictor 

on the eventual statistical conclusions of a logistic regression model, outcome and 

predictor(s) variables were simulated with varying degrees of skewness, sample 

size, and predictor type (i.e., dichotomous and continuous). In all cases, the same 

statistical model that generated the data was fitted to the simulated sample using 

conventional MLE and Wald tests—that is, all of the models are correctly 

specified. The focus is on the Type I error rates and statistical power of the Wald 

test for the predictor(s). As is common practice, the nominal Type I error rate (α) 

was set at 0.05.  

Accordingly, the overall research question can be stated more formally as: 

What is the empirical Type I error rate and statistical power for the Wald test for a 
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binary logistic regression when the predictor variable(s) has a skewed cell 

probability?  

Model 1: Single Binary Predictor 

The first model of interest involves simple logistic regression with one 

dichotomous predictor: 

 

g(y) = β0 + β1x, 

 

where x is a predictor variable with skewed cell probability, β0 and β1 are fixed, 

g(y) is a logit function, and y is a balanced outcome variable. This model acts as a 

baseline for comparing the results of the forthcoming studies.  

Study A: Type I error rates and parameter estimates 

Purpose of the study.   The purpose of this first simulation experiment is to 

document the impact of skewed cell probability in a dichotomous predictor 

variable on the MLE, parameter estimates, and Type I error rate of the Wald test 

of the β1 parameter. The outcome variable of the regression model, throughout, is 

balanced or nearly balanced (i.e., not skewed). A secondary aim is to provide 

diagnostic information by documenting the situations where skewness may affect 

decisions and inferences. 

 

Method 

 

Simulation factors.   For this simulation, two experimental factors were 

varied: sample size and skewness of the predictor variable. Sample sizes ranged 

across 13 levels from 10 to 5000. This large range represents a wide space of 

sample sizes starting from very small at 10 and 50. Then the range includes 

sample sizes that are seen more frequently in educational research of 100 to 1,000 

in increments of 100. A sample size of 5,000 was included to verify the 

simulation experiment. The expected probability p of the predictor variable, 

described in more detail below, ranged from 0.01 to 0.45 across 17 levels. 

Expected probabilities are directly linked to the degree of skewness as can be seen 

later in Model 2. The degrees of expected probability range from extremely 

skewed to non-skewed distributions. These levels of skewed probability were 

chosen to reflect an array of distributional characteristics. Similar to sample size, 
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the slight increments in skewness levels provide a wide range of distributional 

characteristics for variables. In addition, for comparison purposes, the case where 

the predictor variable is balanced was considered, when the probability of 

occurrence for both categories is 0.5. The resulting experiment is an 18×13 fully-

crossed factorial design involving 234 cells. This large range of sample sizes and 

skewness levels is necessary to more fully document the impact of skewed cell 

probabilities. 

 

Simulation procedure. The simulation and analyses were conducted using 

the R software package. There were 1,000 replications in each cell of the 

experimental design, resulting in an empirical probability (either a Type I error 

rate or statistical power) per cell, as well as an empirical representation of the 

sampling distribution of the parameter estimate. The results based on one 

thousand replications were compared to 10,000 replications and we found that 

both yielded the same results in terms of Type I errors, percentage of non-

convergences, standard errors, and statistical power. Therefore, there was no 

marginal gain from the additional replications and we report the results based on 

one thousand replications herein. For each replication in each cell, the simulation 

algorithm consists of multiple loops that achieve different purposes. There are a 

few important steps in this process. 

 

Step 1.  The experiment is built upon data generated from a Bernoulli 

distribution. 

 

  
, 1

   ,
1 , 0

p k
f p

p q k


 

  
 

 

with the expected probability E(x) = p and the variance V(x) = p(1 − p). The 

predictor is randomly drawn from a Bernoulli distribution with a specified 

sample size and expected probability. Similarly, the outcome variable was 

randomly chosen from a Bernoulli distribution with the same sample size 

and an expected probability that is calculated from the model as follows: 

 

(1) The mean of the Bernoulli distribution is a function of β0 and β1, 

which are fixed to zero. The intercept term is fixed to zero 

because the balanced outcome variable results in a natural log of 

one, which is zero. 
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(2) The logit was calculated where Logit = β0 + β1X for the simple 

case. 

 

(3) The predicted probability was then calculated as 

Predicted Probability = P/(1 − P) = eLogit/(1 + eLogit). The 

predicted probability serves as the expected value for the 

Bernoulli distribution from which the outcome variable is drawn. 

 

(4) This process is repeated until the number of replications is 

complete. 

 

Step 2.  All the variables are aggregated in a data frame in preparation for 

analysis. The generalized linear models (glm) function in R is 

used to run the logistic regression. The parameter estimates and 

hypothesis test statistics are stored for each replication. In 

replications where the estimation does not converge (which is 

likely in this case due to separation), an N/A is recorded and the 

simulation outcome (e.g., rejecting the null hypothesis using the 

Wald test) for that instance in the experimental design is 

computed from the remaining converging replications in that cell 

of the simulation experimental design. 

 

Step 3.  The final step is to vary the sample size and skewed probability. 

Each combination of conditions is stored and analyzed separately. 

The Type I error rates are computed as the number of rejections 

of the null hypothesis out of the converged 1,000 replications. 

(To highlight the matter of non-convergence for day-to-day 

researchers, non-convergence rates based on the 1,000 

replications were reported. The resulting Type I error rates are 

therefore based on the number of convergences and the 

simulation results are unbalanced (i.e., every empirical Type I 

error rate is not based on the same denominator). The reported 

results were compared against the findings wherein the number 

of replications within a cell continued until 1,000 convergences. 

The findings did not change, therefore the reported Type I error 

rates and statistical power results would not change. In the worst 

cases it took up to one million replications to achieve the 1,000 

convergences, so the marginal computational gain was minimal.) 
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The nominal significance level was 0.05 throughout this study. Therefore, 

the empirical Type I error is defined as the proportion of times that a true null 

hypothesis was falsely rejected at a critical value of 0.05 (Mood, Graybill, & Boes, 

1974). 

 

Analysis of Type I error. Type I error rate was calculated for each condition. 

Bradley's (1978) approach was used to compare the nominal and empirical Type I 

error rates for each condition. Bradley specifies two criteria of robustness, one 

stringent and one liberal. The stringent criterion is for a robust test, the empirical 

Type I error should fall within the range of α ± 0.1α, whereas for the liberal 

criterion the empirical Type I error should lie in a range of α ± 0.5α. Given that a 

nominal Type I error rate of 0.05 was specified, the interval for an accepted 

empirical Type I error rate lies between 0.025 and 0.075 for a liberal study and 

between 0.045 and 0.055 for a stringent one. 

 

Results and conclusions 

 

Number of MLEs that do not converge.   An important issue that was 

encountered was the non-convergence of some replications, as indicated in Table 

3. Table 3 depicts the simulation experimental design, wherein each element is the 

number of non-convergences out of 1,000 replications. For example, for a sample 

size of 200 and p = 0.02, 21 of the 1,000 replications in that cell of the 

experimental design did not converge using conventional MLE. As expected, in 

the case of small sample sizes and a high degree of skewness in cell probability 

(i.e., small values of p), most of the replications did not converge. When the 

sample size was 10, non-convergence was present even when the predictor was 

balanced (i.e., p = 0.5). With a sample size of 50, the issue of non-convergence 

diminished as the predictor became less skewed. As the sample size increased, all 

replications converged, even with high levels of skewness. From the table we can 

see that a sample size of 500 is sufficient to ensure that the skewness of the 

predictor variable does not affect estimation for the single predictor model. 

The summary statistics reflecting the outcomes of the simulation (i.e., the 

empirical Type I error rates, odds ratios (ORs), parameter estimates, and standard 

errors) are computed based solely on the replications that converged. Non-

convergent replicates are excluded, mimicking what would go on in daily research 

practice. 
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Table 3. Number of non-convergences from 1,000 replications for Model 1. 

 

Probability 
Sample Size 

10 50 100 200 300 400 500 600 700 800 900 1,000 5,000 

.01 893 610 388 148 50 21 2 0 0 0 0 0 0 

.02 790 380 154 21 6 1 0 0 0 0 0 0 0 

.03 710 230 58 7 1 0 0 0 0 0 0 0 0 

.04 647 143 19 1 1 0 0 0 0 0 0 0 0 

.05 575 83 7 1 1 0 0 0 0 0 0 0 0 

.06 508 44 5 0 0 0 0 0 0 0 0 0 0 

.07 481 29 2 0 0 0 0 0 0 0 0 0 0 

.08 422 12 1 0 0 0 0 0 0 0 0 0 0 

.09 392 7 0 0 0 0 0 0 0 0 0 0 0 

.10 346 3 0 0 0 0 0 0 0 0 0 0 0 

.15 213 0 0 0 0 0 0 0 0 0 0 0 0 

.20 114 0 0 0 0 0 0 0 0 0 0 0 0 

.25 62 0 0 0 0 0 0 0 0 0 0 0 0 

.30 40 0 0 0 0 0 0 0 0 0 0 0 0 

.35 24 0 0 0 0 0 0 0 0 0 0 0 0 

.40 10 0 0 0 0 0 0 0 0 0 0 0 0 

.45 6 0 0 0 0 0 0 0 0 0 0 0 0 

.50 7 0 0 0 0 0 0 0 0 0 0 0 0 

 
 

Type I error rate.  Table 4 is structured in the same way as Table 3 and 

provides Type I error rates for each experimental condition. These Type I error 

rates are compared against Bradley’s criteria, which are shown in Table 5. Table 4 

is greyscale coded to highlight two important areas. The darkly shaded area falls 

below the liberal criterion, while the unshaded area falls within it. Given the 

interaction of the sample size and the skewness of the cell probability of the 

predictor, researchers and practitioners should be careful when interpreting results 

with variable characteristics that are included in the darkly shaded part of the 

table. As will be shown in the next study, statistical power is greatly affected for 

these values. Similarly, to consider the shaded area a safe zone, consider 

statistical power. The Type I error rate rarely met the stringent criterion. Most of 

the time, it ranged from 0 to 0.044, falling below the lower limit of the stringent 

threshold of 0.045. 

Two baseline conditions were included to serve as a check on our simulation 

methodology. In the first case, the Type I error rate for different sample sizes was 

computed for a balanced predictor to establish baselines for comparison with the 

conditions wherein various levels of probability (i.e., skewness in probability) 

were manipulated. In the second case, the Type I error rates for various levels of 

probability were computed for a large sample of 5000. As expected, in both cases, 

the empirical Type I error rate did not exceed the liberal criterion, for the nominal 
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level of .05 and hence verifying that the algorithm works as expected. In the 

balanced case, as shown in the last row of Table 4, all Type I error rates ranged 

from 0.052 to 0.062, meeting the liberal criterion. Also, the Type I error rates for 

the sample of 5000 varied from 0.031 to 0.059. 
 
 
Table 4. Type I error rate for Model 1. 
 

Probability 
Sample Size 

10 50 100 200 300 400 500 600 700 800 900 1,000 5,000 

.01 0 0 0 0 0 0 0 0 0 .02 .02 .02 .05 

.02 0 0 0 0 0 .01 .02 .03 .03 .04 .04 .04 .05 

.03 0 0 0 0 .01 .03 .05 .04 .03 .04 .04 .05 .05 

.04 0 0 0 .01 .03 .03 .05 .03 .03 .04 .05 .04 .04 

.05 0 0 0 .02 .04 .04 .05 .04 .04 .03 .05 .05 .03 

.06 0 0 0 .03 .03 .03 .05 .04 .04 .03 .05 .05 .04 

.07 0 0 .01 .04 .04 .04 .05 .05 .04 .04 .05 .05 .05 

.08 0 .01* .01 .04 .04 .04 .05 .04 .05 .05 .06 .05 .06 

.09 0 .01 .02 .04 .04 .04 .05 .04 .05 .05 .06 .04 .05 

.10 0 .01 .02 .04 .04 .04 .04 .04 .04 .05 .05 .06 .05 

.15 0 .01 .03 .06 .04 .03 .04 .04 .04 .06 .05 .05 .05 

.20 0 .03 .04 .05 .06 .04 .04 .05 .04 .05 .05 .05 .05 

.25 0 .05 .05 .06 .05 .05 .05 .05 .05 .06 .05 .06 .06 

.30 0 .05 .04 .06 .05 .05 .06 .04 .04 .06 .05 .05 .05 

.35 0 .05 .03 .06 .05 .06 .05 .04 .04 .05 .05 .05 .05 

.40 0 .05 .04 .05 .06 .05 .05 .04 .04 .06 .04 .05 .06 

.45 0 .05 .04 .05 .05 .05 .06 .05 .05 .05 .05 .06 .05 

.50 0 .06 .05 .06 .06 .06 .05 .05 .05 .05 .06 .05 .06 
 

* Rounded to decimal points. Note: Cells depicted in grey have deflated Type I error rates, whereas those with 
no shading meet the adequacy condition using Bradley’s criteria (see Table 5). 

 
 
Table 5. Bradley’s criteria. 

 
Bradley’s (1978) Criterion Type I Error Rate 

Violates liberal criterion, therefore deflated α < 0.025 

Meets the liberal criterion  0.025 < α < 0.075 

Meets the stringent criterion 0.045 < α < 0.055 

 
 

In general, the Type I error rates ranged from 0 to 0.062, meaning that all 

conditions met Bradley’s liberal criterion. Regardless of the sample size, the rates 

were consistently deflated with lower probabilities and closer to nominal values 

as they became more balanced. Sample size plays an important role in MLE and 

therefore arriving at more precise parameter estimates. For example, a sample of 

600 and a probability level of 0.02, results in a Type I error rate of 0.026. On the 
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other hand, as the sample size decreased, the level of skewed probability did not 

inflate the empirical Type I error rate greatly. For instance, sample sizes of 50 and 

200 can tolerate skewed cell probabilities of 0.2 and 0.06, respectively. Of 

particular note is the tolerance of the skewed probability of the predictor in this 

model. Even in the most extreme case of skewness (i.e., a probability of 0.01), 

with the largest sample size (5000), the empirical Type I error rate is at the 

nominal value. 

 

Effect Size.    Table 6 is structured similarly to the previous tables, 

each element being the average odds ratio (OR) over the replications that 

converged. The average OR values for small samples and a highly skewed cell 

probability of the predictor are astronomical with values in the millions—whereas 

their true value is 1. Clearly, the degree of bias caused by the skewed predictor is 

very high. In cases where there was bias in the OR estimate, the sampling 

distribution of the OR was skewed and occasionally contained large gaps in the 

distribution. Because of the statistical nature of the sampling distribution, it is also 

useful to examine its median OR in each cell, as shown in Table 7 (Birnbaum, 

1964). This is referred to as median-unbiasedness. 
 
 
Table 6. Average odds ratio, reflecting the widely used “mean unbiasedness.” 

 

Probability 
Sample Size 

10 50 100 200 300 400 500 600 700 800 900 1,000 5,000 

.01 ≈∞ ≈∞ ≈∞ ≈∞ ≈∞ ≈∞ ≈∞  ≈∞ ≈∞  ≈∞ ≈∞ ≈∞ 1.05 

.02 ≈∞ ≈∞ ≈∞  ≈∞ ≈∞  ≈∞ ≈∞  ≈∞ 1.20 1.20 1.20 1.00 1.00 

.03 ≈∞ ≈∞ ≈∞  ≈∞  ≈∞  ≈∞  ≈∞  1.10 1.10 1.10 1.10 1.10 1.00 

.04 ≈∞ ≈∞ ≈∞  ≈∞ ≈∞  1.20 1.20 1.10 1.10 1.10 1.10 1.10 1.00 

.05 ≈∞ ≈∞ ≈∞ ≈∞ 1.20 1.10 1.10 1.10 1.10 1.00 1.10 1.00 1.00 

.06 ≈∞ ≈∞ ≈∞  ≈∞  1.20 1.10 1.10 1.10 1.10 1.00 1.10 1.00 1.00 

.07 ≈∞ ≈∞ ≈∞ ≈∞  1.20 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00 

.08 ≈∞  ≈∞  ≈∞  1.20 1.10 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00 

.09 ≈∞ ≈∞ ≈∞ 1.20 1.10 1.10 1.10 1.00 1.00 1.00 1.00 1.00 0.99 

.10 ≈∞ ≈∞ ≈∞ 1.20 1.10 1.10 1.10 1.03 1.02 1.02 1.03 1.01 1.00 

.15 ≈∞ ≈∞ 1.20 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

.20 ≈∞ ≈∞  1.20 1.08 1.05 1.03 1.03 1.01 1.00 1.00 1.00 1.00 1.00 

.25 ≈∞ ≈∞  1.10 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.30 ≈∞ 1.20 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.35 ≈∞ 1.20 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.40 ≈∞ 1.20 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.45 ≈∞ 1.20 1.10 1.10 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.50 ≈∞ 1.20 1.10 1.10 1.00 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.00 
 

Note that by ≈∞, we are indicating ORs in the millions. 
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Table 7. Median odds ratios, reflecting “median unbiasedness” for skewed sampling 

distributions. 
 

Probability 
Sample Size 

10 50 100 200 300 400 500 600 700 800 900 1,000 5,000 

.01 0.00 1.08 0.95 0.98 1.00 0.98 1.00 1.00 1.00 0.99 1.03 0.99 1.01 

.02 ≈∞ 1.00 0.96 0.95 0.98 0.97 1.00 0.98 1.00 0.97 1.00 0.99 0.99 

.03 ≈∞ 1.00 1.00 0.97 0.97 0.99 1.00 1.00 0.99 0.98 1.00 1.00 0.99 

.04 1.80 1.00 1.00 1.00 0.97 1.01 1.00 1.00 1.00 0.97 1.00 0.99 0.99 

.05 1.70 1.00 1.00 1.00 1.00 0.98 1.00 0.98 1.00 0.98 1.00 1.00 0.99 

.06 1.70 1.00 1.00 0.97 1.01 0.99 1.00 0.99 1.00 0.98 0.99 1.00 0.99 

.07 1.70 1.00 1.00 0.97 1.01 1.00 0.99 0.98 1.00 0.98 0.99 0.99 0.99 

.08 1.70 0.92 1.00 1.00 1.00 0.99 1.00 0.98 1.00 0.97 1.00 0.99 0.99 

.09 1.50 1.00 1.00 1.00 1.00 0.99 1.00 0.98 1.00 0.97 1.00 0.99 0.99 

.10 1.40 1.00 1.00 1.00 1.02 1.00 1.00 0.99 1.00 0.99 0.99 0.99 0.99 

.15 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.98 1.00 0.99 0.99 

.20 1.00 1.00 1.03 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

.25 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 1.00 0.99 1.00 1.00 1.00 

.30 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 0.99 0.99 0.99 

.35 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.99 

.40 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00 

.45 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 

.50 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 
 

Note that by ≈∞, we are indicating ORs in the millions. 

 

Given the skewed nature of the sampling distribution of the OR, the OR 

medians are closer to the expected value of one. The median is biased upwards 

when the sample size is 10. The ORs displayed in Table 6 follow the trend in 

Table 4, wherein as the sample size and probability (i.e., skewness in probability) 

increase, the estimated ORs are closer to the simulated population value of one. 

For example, sample sizes of at least 400 perform very well and provide OR 

estimates closer to the simulated value when the skewed probability is at least 

0.04. 

 

Why is the Type I error rate consistently conservative? 

 

 The results in Tables 4 through 7 are based on the converged replications. 

Overall, the simulation agrees with the previous findings on parameter estimates 

(Peduzzi et al., 1996), that is, with a small sample size and few events per 

predictor, the average standard error and average slope estimates are highly biased. 

Figure 1 is a line graph that shows the slope and standard error, where the y-axis 

is the slope or standard error and the x-axis is the skewed probability of the 
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predictor. The line shades represent different sample sizes. Tables 8 and 9 contain 

the values from which these graphs were derived.  
 
 

 
a. Estimated slope means. 

 

 
b. Estimated standard error means. 

 
Figure 1. Slope and standard error averages. 
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Figure 2. Distribution functions for the experimental condition: Sample size = 50, skewed 

probability = 0.01, 0.25, and 0.5. 

 

 
 

As seen in Figure 1 and Table 8, the bias for the slope is both positive and 

negative when the sample size and highly skewed cell probability. The bias in 

slope is not as great as the bias in the ORs (as seen in Table 6). Consider a few 

examples to understand the distribution of the slope parameter estimate, and why 

it averages out to a small bias. Contrast a small sample size of 50 and a large one 

of 500 at three levels of skewed cell probability, 0.01, 0.25, and 0.50. The first of 

these levels represents a highly skewed predictor, the second is moderate, and the 

last is a balanced probability of both categories in the predictor. Shown in Figure 

2 is a stacked density plot for a sample size of 50 and the three levels of skewed 

probability. For the first level of probability of 0.01, the slope estimate’s range is 

[−17.58, 18.04] with a mean of 0.71, as shown in Table 8. The 25th, 50th and 

75th quantiles are −15.52, 0.083, and 15.52, respectively. As indicated in Figure 2, 

the distribution of the slope estimates from this simulation is fragmented into 

three parts, such that there are no slope estimates that lie between them. Most of 

the slope estimates were in the range of [−17.58, −14.75]; the least number were 

in the range of [−1.17, 0.78]; and the rest, which comprised the last part, ranged 

from [14.93, 18.04]. For the same sample size and a skewed cell probability of 

0.25, the shape of the distribution of the slope estimates mostly varies around zero, 

with a few outliers in the tails. The range is [−18.42, 18.62] and the mean is 
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−0.012. The 25th, 50th, and 75th quantiles are −0.51, −1.0 × e−16, and 0.43, 

respectively. 
 
 
Table 8. Average slope in each cell of the simulation design for Model 1. 

 

Probability 
Sample Size 

10 50 100 200 300 400 500 600 700 800 900 1,000 5,000 

.01 -0.36 0.71 -0.44 -0.54 -0.18 -0.30 0.05 0.08 -0.10 0.03 0.10 -0.01 0.00 

.02 1.20 0.23 -0.27 -0.35 -0.10 -0.13 0.12 -0.03 -0.01 -0.01 0.04 -0.02 -0.01 

.03 1.70 -0.08 -0.24 -0.14 -0.13 -0.04 0.06 -0.01 -0.02 -0.02 0.03 -0.01 0.00 

.04 1.30 -0.57 -0.01 0.06 -0.01 0.01 0.01 0.00 -0.01 -0.01 0.02 -0.01 0.00 

.05 1.40 -0.43 0.19 0.06 0.01 0.00 0.01 -0.01 0.00 -0.02 0.02 -0.01 0.00 

.06 1.10 -0.36 0.15 -0.02 0.01 0.00 0.01 -0.01 0.00 -0.02 0.01 -0.01 -0.01 

.07 1.00 -0.46 -0.02 -0.04 0.02 0.01 0.01 -0.01 0.00 -0.02 0.01 -0.01 0.00 

.08 1.00 -0.38 -0.09 -0.02 0.02 0.01 0.00 -0.01 0.00 -0.02 0.01 -0.01 0.00 

.09 0.90 -0.22 -0.02 0.00 0.02 0.01 0.00 -0.01 -0.01 -0.02 0.01 -0.01 -0.01 

.10 0.80 -0.23 -0.07 0.01 0.01 0.01 0.00 -0.01 -0.01 -0.02 0.01 -0.01 0.00 

.15 0.30 -0.15 0.02 0.01 0.00 0.01 0.00 0.00 -0.01 -0.01 0.01 0.00 0.00 

.20 0.02 -0.11 0.00 0.01 0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

.25 -0.04 -0.01 0.00 0.01 0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 

.30 0.12 -0.03 0.00 0.01 0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 

.35 0.24 -0.03 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

.40 0.27 -0.02 -0.01 0.01 0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

.45 -0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

.50 -0.13 0.01 0.00 0.01 0.00 -0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

 
 

For comparison purposes, the distribution of the slope estimates was 

examined when the probability of the predictor is balanced (i.e., p = 0.5). As 

shown in Table 8, the estimated slopes are close to the simulated values of zero. 

In Figure 2, the distribution in this experimental condition is nearly symmetrical, 

with a range of [−2.59, 2.58] and a mean of 0.014. This suggests that the 

distribution of the simulated slope estimates is disrupted by the skewness in the 

probability of the predictor. 

Consider an example where the sample size is large, in this case 500, and 

examine the extent to which the distribution of the slope parameter changes with 

the aforementioned three levels of probability. Figure 3 demonstrates the stacked 

density plots for the three experimental conditions. For a probability of 0.01, the 

distribution is fragmented into three parts that cluster around zero. The 

distribution range is [−15.7, 15.77] and the mean is 0.052. The 25th, 50th, and 

75th quantiles are −0.66, 0.008, and 0.696, respectively. For the same sample size 

and a moderate probability of 0.25, we find that the distribution is symmetrical 

and nearly resembles a normal distribution. The slope estimates vary close to zero 
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(the actual value), with a mean of 0.004 and a range of [−0.63, 0.62]; the 25th, 

50th, and 75th quantiles are −0.15, −0.005, and 0.14, respectively. Finally, when 

the sample is 500 and the predictor is balanced, the distribution is tighter and 

varies closer to zero. It has a range of [−0.57, 0.55] with three outliers equal to 

1.57, 4.81, and 7.87. The mean, as seen in Table 8, is −0.004 and the 25th, 50th, 

and 75th quantiles are −0.123, 0.0003, and 0.12, respectively.  
 
 

 
 

Figure 3. Distribution functions for the experimental condition: Sample size = 500, 

skewed probability = 0.01, 0.25, and 0.5. 

 

 
 

This wide range of the slope estimate when the skewed probability of a 

predictor is small clarifies a few things about the aforementioned small bias, and 

the largely upward bias of the ORs. Since the ORs are the exponentiation of the 

slope estimate, slopes with large positive values can create ORs that are in the 

order of magnitude of tens of millions, whereas negative slopes can result in ORs 

that tend toward zero. Therefore, the upwardly tending slopes will result in very 

large bias in the ORs. 

Depicted in Table 9 are the average standard errors over replicates of the 

simulation. These standard errors range from highly biased to unbiased, with the 

concentration of high bias for small sample sizes and highly skewed cell 

probabilities (i.e., the top left corner of the table). For example, for sample sizes 
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of 50 to 300 and probability levels of 0.01 through 0.2, the average standard 

errors are in the thousands and range from [0.24, 4500], as shown in Table 9. As 

learned from examining the distributions of the slope estimates above, sample 

sizes of at least 400 perform very well and provide estimates closer to the 

simulated values when the skewed probability is at least 0.04. This supports the 

claim that the maximum likelihood estimation is affected by the skewed 

probabilities of the predictor. That is, even in replications where the MLE 

produced finite estimates, there was bias in the parameter estimates and standard 

error. However, as the sample size increases, the estimation becomes less 

influenced by the skewness.  
 
 
Table 9. Average standard error of the slope in each cell of the simulation design for 
Model 1. 
 

Probability 
Sample Size 

10 50 100 200 300 400 500 600 700 800 900 1,000 5,000 

.01 3956 1295 1015 503 302 135 95 56 18 16 8 4 0.28 

.02 4522 1108 695 217 70 23 8 3 1.10 0.54 0.50 0.48 0.20 

.03 4221 991 470 89 21 4 2 0.50 0.46 0.43 0.40 0.38 0.16 

.04 4360 837 303 39 6 0.54 0.48 0.43 0.39 0.37 0.35 0.33 0.15 

.05 414 715 193 13 0.57 0.48 0.43 0.38 0.36 0.33 0.31 0.29 0.13 

.06 4053 628 114 7 0.51 0.44 0.38 0.35 0.32 0.30 0.28 0.27 0.12 

.07 3914 487 76 4 0.47 0.40 0.36 0.33 0.30 0.28 0.27 0.25 0.11 

.08 3836 403 49 2 0.44 0.38 0.34 0.31 0.28 0.26 0.25 0.23 0.10 

.09 3830 339 31 0.52 0.42 0.36 0.32 0.29 0.27 0.25 0.24 0.22 0.10 

.10 3525 257 20 0.49 0.40 0.34 0.30 0.28 0.26 0.24 0.22 0.21 0.09 

.15 3617 90 0.59 0.41 0.33 0.28 0.25 0.23 0.21 0.20 0.18 0.18 0.08 

.20 3076 35 0.52 0.36 0.29 0.25 0.22 0.21 0.19 0.18 0.17 0.16 0.07 

.25 2434 7 0.47 0.33 0.27 0.23 0.21 0.19 0.17 0.16 0.15 0.15 0.07 

.30 2067 0.65 0.44 0.32 0.25 0.22 0.19 0.18 0.17 0.15 0.14 0.14 0.06 

.35 1744 0.62 0.43 0.30 0.24 0.20 0.18 0.17 0.16 0.15 0.14 0.13 0.06 

.40 1608 0.60 0.42 0.29 0.24 0.21 0.18 0.17 0.15 0.14 0.14 0.13 0.06 

.45 1535 0.59 0.41 0.28 0.23 0.20 0.18 0.16 0.15 0.14 0.13 0.13 0.06 

.50 1483 0.59 0.41 0.28 0.23 0.20 0.18 0.16 0.15 0.14 0.13 0.12 0.06 

 
 

Regardless of the low bias in the slope estimates, when the Wald statistic is 

calculated, the bias of the denominator is very high and outweighs the negligible 

bias of the numerator. This results in a Wald statistic that will likely not reject the 

null hypothesis, resulting in a conservative test. For instance, for a sample size of 

100 and a skewed probability of .04 (which is quite a skewed predictor), the 

numerator of the Wald statistic is not highly biased, but the denominator is, 

resulting in a Type I error rate of zero.  
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Even though some modest bias exists in the parameter estimates, the 

conservative Type I error rates are clearly driven by the large standard errors. The 

apparent contradiction between a conservative Type I error rate and a highly 

inflated OR is best understood by examining the shape of the sampling 

distribution of the slope, wherein the large values of some of the replications with 

a cell of the experimental design influence the average value of the ORs. This is 

best seen by contrasting Tables 6 and 7 with the mean and median ORs, 

respectively. 

In the extreme case of a sample size of 10, the average slope deviates far 

from the simulated value, even when the predictor is balanced. Likewise, the 

standard errors are always upwardly biased in the order of magnitude of the 

thousands. Because of these obvious biases and the impracticality of such a small 

sample size, it was removed from further analyses. 

Study B: Power 

Purpose of the study.  Usually, a low probability of Type I errors is 

accompanied by low statistical power. Therefore, our next step is to examine the 

statistical power of the Wald test of the slope parameter for this model. Although 

there is no agreement on what magnitude of effect (i.e., effect size) is necessary to 

establish practical significance, Ferguson (2009) suggests three values related to 

risk estimates, i.e., measures comparing relative risk for a particular outcome 

between two or more groups. According to Ferguson (2009), ORs of 2, 3, and 4 

represent small, moderate, and large effect sizes, respectively. As Cohen (1988) 

clearly stated, all effect size guidelines are research context dependent and should 

only be used in the research settings from which they were derived. 

 

Method 

 

Simulation factors and methodology.  In addition to skewness and 

sample size, a third factor was manipulated in this study. As in the previous 

simulation, the sample size was varied across 13 levels ranging from 50 to 5000, 

and the probability of the occurrence of a category in the predictor from 0.01 to 

0.45. For comparison purposes, the investigation pertained to what happens when 

the predictor variable is balanced. The third factor added is effect size, which was 

varied from small, moderate, and large. The resulting experiment is an 18×12×3 

completely crossed factorial design.  
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In this simulation, the estimation is built on the assumption that this model 

has an effect. Hence, it was assumed β0 and β1 are fixed to a number different 

from zero. The intercept parameter was fixed to −2. For the slope parameter, three 

levels of effect size were considered: small effect of 0.683 (equivalent to OR = 2), 

moderate effect of 1.1 (equivalent to OR = 3), and large effect of 1.38 (equivalent 

to OR = 4). As in Study A, each cell includes 1,000 replications of the same 

model. 

 

Analysis of simulation results. To assess power estimates, a framework was 

adopted similar to Bradley’s for Type I error rates, to determine at what level of 

skewness 10% and 50% of expected statistical power was lost. The expected 

statistical power was identified as the power in the case of the balanced cell 

probability of the predictor. Hence, the estimated statistical power for each cell in 

the experiment is compared to the power for the same sample and effect size but 

with no skewness in the predictor’s probability. 

 

Results and conclusions 

 

Tables 10, 11, and 12 follow the structure of previous tables and show the 

statistical power for each effect size level. The last row in each table is the power 

estimate for the balanced predictor variable. The tables are greyscale coded: no 

shading reflects losing 10% of power or less, light shading reflects losing 10% to 

50% of power, and dark shading reflects losing over 50% of power.  

Because sample size and effect size both significantly influence power, it is 

not surprising that as these two factors increase, power also increases. From the 

tables, it can be seen for a balanced predictor, an effect size of OR = 2, and a 

sample size of 200 or less, the power of the Wald test is less than 50%. It exceeds 

50% after a sample size of 300, exceeds 75% after a sample size of 500, and 

reaches one after a sample size of 1,000. Moreover, the tables indicate that as the 

effect size grows, there is less of a need for larger sample sizes to detect the 

effects. For example, with a balanced predictor and a sample of 100, the statistical 

power is nearly 75% to detect an OR of 4, while it is 52% and 21% for ORs of 3 

and 2, respectively.  

For a low effect size, samples from 100 to 1,000, and a skewed cell 

probability less than or equal to 0.2, over 10% of power is lost compared to the 

balanced cases. As the effect size increases, the level of skewed probability that is 

tolerated slightly increases. For example, to retain 10% of power for sample sizes 

of 100-300, the level of probability tolerated for a low effect size ranges between 
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0.2 and 0.3. However, the level of skewed cell probability needed to retain 10% of 

power for a high effect is 0.15 to 0.25 for the same sample sizes. Power is highly 

influenced by skewed probabilities in small sample sizes, even when the effect 

size is moderate to large and hence highly detectable. 
 
 
Table 10. Power with low effect size (OR = 2). 
 

Probability 
Sample Size 

50 100 200 300 400 500 600 700 800 900 1,000 5,000 

.01 0.00 0.01 0.04 0.06 0.08 0.10 0.13 0.13 0.15 0.17 0.17 0.50 

.02 0.01 0.04 0.09 0.12 0.13 0.17 0.18 0.19 0.22 0.25 0.27 0.75 

.03 0.03 0.05 0.11 0.16 0.16 0.21 0.25 0.27 0.29 0.32 0.32 0.87 

.04 0.03 0.07 0.12 0.18 0.21 0.24 0.30 0.32 0.34 0.38 0.41 0.94 

.05 0.05 0.09 0.14 0.21 0.24 0.28 0.35 0.39 0.40 0.45 0.47 0.98 

.06 0.06 0.11 0.16 0.24 0.26 0.33 0.38 0.43 0.45 0.49 0.52 0.99 

.07 0.08 0.13 0.17 0.26 0.28 0.36 0.42 0.45 0.49 0.55 0.59 0.99 

.08 0.08 0.14 0.20 0.28 0.32 0.40 0.46 0.51 0.54 0.59 0.63 0.99 

.09 0.09 0.15 0.21 0.30 0.31 0.41 0.49 0.54 0.58 0.64 0.67 1.00 

.10 0.09 0.17 0.22 0.32 0.36 0.45 0.52 0.57 0.62 0.67 0.72 1.00 

.15 0.12 0.18 0.30 0.39 0.49 0.59 0.65 0.70 0.74 0.81 0.85 1.00 

.20 0.13 0.22 0.34 0.46 0.56 0.67 0.73 0.80 0.85 0.87 0.91 1.00 

.25 0.13 0.21 0.37 0.52 0.64 0.72 0.78 0.86 0.90 0.91 0.94 1.00 

.30 0.13 0.22 0.39 0.55 0.68 0.76 0.83 0.89 0.92 0.94 0.96 1.00 

.35 0.11 0.23 0.42 0.58 0.69 0.78 0.84 0.90 0.93 0.94 0.98 1.00 

.40 0.10 0.22 0.43 0.60 0.72 0.80 0.85 0.91 0.95 0.96 0.97 1.00 

.45 0.09 0.22 0.44 0.60 0.73 0.81 0.87 0.93 0.96 0.96 0.98 1.00 

.50 0.06 0.21 0.42 0.61 0.70 0.80 0.87 0.92 0.96 0.96 0.98 1.00 
 

Note: No shading reflects losing 10% of power or less, light shading reflects losing 10%-50% of power, and 
dark shading reflects losing over 50% of power. 

 
 

However, sample sizes of 400 and over can retain 10% of power with low 

levels of skewness. For example, a sample of 500 with an OR of 2 retains 10% of 

power at a probability of 0.3. As the effect size increases to an OR of 3, 10% of 

power is retained at level 0.15; at an OR of 4, 10% is retained at level 0.07. A 

sample size of 1,000 with an OR of 2 retains 10% of power at level 0.2. The 

probability level that retains the same percentage of power quickly jumps to 0.06 

and 0.04 for ORs of 3 and 4, respectively.  
 
 
  



SKEWED PREDICTOR VARIABLE(S) LOGISTIC REGRESSION  

64 

Table 11. Power with moderate effect size (OR = 3). 
 

Probability 
Sample Size 

50 100 200 300 400 500 600 700 800 900 1,000 5,000 

.01 0.01 0.02 0.07 0.11 0.15 0.19 0.26 0.26 0.29 0.35 0.36 0.88 

.02 0.01 0.07 0.15 0.23 0.29 0.35 0.41 0.43 0.45 0.54 0.54 0.99 

.03 0.04 0.11 0.22 0.31 0.38 0.44 0.51 0.55 0.60 0.67 0.69 1.00 

.04 0.05 0.14 0.27 0.37 0.45 0.53 0.63 0.66 0.71 0.79 0.79 1.00 

.05 0.07 0.18 0.34 0.44 0.53 0.61 0.68 0.76 0.78 0.85 0.85 1.00 

.06 0.09 0.21 0.36 0.50 0.58 0.69 0.74 0.82 0.84 0.89 0.90 1.00 

.07 0.12 0.24 0.41 0.56 0.64 0.73 0.78 0.86 0.88 0.93 0.93 1.00 

.08 0.14 0.27 0.44 0.60 0.69 0.77 0.83 0.90 0.92 0.95 0.95 1.00 

.09 0.15 0.29 0.48 0.62 0.74 0.82 0.85 0.92 0.93 0.97 0.97 1.00 

.10 0.16 0.32 0.52 0.66 0.78 0.85 0.89 0.94 0.96 0.98 0.98 1.00 

.15 0.22 0.40 0.65 0.78 0.88 0.94 0.97 0.98 0.99 1.00 1.00 1.00 

.20 0.25 0.46 0.70 0.86 0.95 0.97 0.99 0.99 1.00 1.00 1.00 1.00 

.25 0.26 0.47 0.77 0.90 0.97 0.99 0.99 1.00 1.00 1.00 1.00 1.00 

.30 0.28 0.51 0.80 0.94 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

.35 0.28 0.53 0.83 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.40 0.27 0.52 0.85 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.45 0.27 0.52 0.87 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.50 0.24 0.52 0.87 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 

Note: No shading reflects losing 10% of power or less, light shading reflects losing 10%-50% of power, and 

dark shading reflects losing over 50% of power. 

 
Table 12. Power with large effect size (OR = 4). 
 

Probability 
Sample Size 

50 100 200 300 400 500 600 700 800 900 1,000 5,000 

.01 0.00 0.02 0.07 0.15 0.23 0.29 0.36 0.40 0.42 0.49 0.51 0.98 

.02 0.01 0.08 0.21 0.34 0.42 0.52 0.58 0.61 0.66 0.73 0.76 1.00 

.03 0.05 0.15 0.31 0.44 0.55 0.65 0.71 0.76 0.81 0.87 0.87 1.00 

.04 0.07 0.20 0.40 0.53 0.65 0.75 0.81 0.85 0.89 0.94 0.94 1.00 

.05 0.10 0.25 0.49 0.62 0.74 0.82 0.86 0.90 0.95 0.97 0.98 1.00 

.06 0.13 0.30 0.54 0.69 0.80 0.87 0.90 0.94 0.97 0.99 0.98 1.00 

.07 0.16 0.34 0.59 0.74 0.84 0.91 0.93 0.96 0.98 1.00 0.99 1.00 

.08 0.19 0.40 0.65 0.70 0.88 0.93 0.95 0.98 0.99 1.00 1.00 1.00 

.09 0.21 0.41 0.69 0.83 0.91 0.95 0.97 0.98 1.00 1.00 1.00 1.00 

.10 0.24 0.46 0.72 0.85 0.93 0.97 0.98 0.99 1.00 1.00 1.00 1.00 

.15 0.32 0.58 0.84 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.20 0.38 0.66 0.90 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.25 0.39 0.69 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.30 0.44 0.73 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.35 0.45 0.74 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.40 0.44 0.75 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.45 0.46 0.75 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.50 0.43 0.75 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 

Note: No shading reflects losing 10% of power or less, light shading reflects losing 10%-50% of power, and 
dark shading reflects losing over 50% of power. 
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Power is largely affected by the skewed probability of the predictor variable. 

High levels of skewness [p = 0.01, 0.1] result in the loss of over 50% of power in 

most sample sizes, with the exception of 1,000 and 5,000. Although it was shown 

in the previous study Type I error is acceptable for the majority of factors 

examined, it has implications on the empirical power of the Wald test. This is 

evidence statistical power is biased downwards with the combination of smaller 

samples and higher degrees of skewed probability. Clearly, the skewed 

probability of a predictor diminishes the statistical power of the Wald test.  

Model 2: Single Continuous Predictor 

The second model of interest involves simple logistic regression with one 

continuous predictor. 

 

g(y) = β0 + β1x, 

 

where x is a skewed continuous variable, β0 and β1 are fixed, g(y) is a logit 

function, and y is a balanced outcome variable. The purpose of this model was to 

investigate whether findings from Model 1 (which used one binary predictor) 

would generalize to a skewed continuous predictor. The aim is to determine 

whether issues with the skewness of the predictor are related to the categorical 

versus the numeric aspect of the variable—whether it is the skew or the binary 

nature that is causing the effect on the Type I error. To confirm this, focus only on 

the Type I error rate, because its reduction is accompanied by a corresponding 

reduction in statistical power. Therefore, a decreased Type I error rate is 

diagnostic of a problem with decreased power. 

Study A: Type I error rates 

Purpose of the study.  Similarly to the previous study, the aim was to 

document the impact of a skewed continuous predictor variable on the estimation, 

parameter estimates, and Type I error rate of the Wald test.  

 

Method 

 

The simulation factors, methodology, and analysis of the Type I error rate are 

exactly the same as in the previous study. The only difference is in the nature of 

the predictor. This variable was generated from a Gamma distribution with the 
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rate and scale parameters fixed to 1 and varying the shape parameter across 17 

levels. Skewness in the gamma distribution is a function of the shape parameter. 

To enable comparison, the skewness levels for this model were matched to the 

expected probabilities in Model 1. Shown in Table 13 are the shape parameter 

values used and the equivalent skewness levels. To create a baseline, the case 

investigated was where the predictor variable is drawn from a standard normal 

distribution with a mean of zero and a standard deviation of one. The resulting 

simulation experiment is a 12 (sample size) by 18 (skewness) completely crossed 

factorial design. 
 
 
Table 13. Shape parameter and equivalent skewness level. 

 
Shape Parameter Skewness Probability 

0.047 9.250 0.010 

0.086 6.870 0.020 

0.130 5.550 0.030 

0.200 4.750 0.040 

0.250 4.040 0.050 

0.300 3.700 0.060 

0.370 3.250 0.070 

0.400 3.190 0.080 

0.500 2.830 0.090 

0.600 2.720 0.100 

1.000 1.960 0.150 

1.750 1.500 0.200 

3.000 1.150 0.250 

5.500 0.873 0.300 

10.000 0.630 0.350 

25.000 0.410 0.400 

50.000 0.200 0.450 

Standard Normal 0.000 0.500 

 

Results and conclusions 

 

It is not surprising that with a continuous predictor, all of the replications 

converged for the 216 conditions of the simulation experiment. Table 14, which is 

formatted similarly to the previous tables, shows that the Type I error rates ranged 

from 0.001 to 0.066, with an average of 0.043. The majority of the conditions met 

the liberal criterion, but not the stringent one. As can be seen from Table 14, in 

only a few cases did the Type I error rate fall below 0.025, as dictated by the 

liberal criterion. These instances are with sample size 50 with skewness ≥ 2.6, 

sample size 100 with skewness ≥ 5.54, and sample sizes 200 and 300 with the 

highest skewness level (9.23).  
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Table 14. Liberal Type I error rate model. 

 

Skewness 
Sample Size 

50 100 200 300 400 500 600 700 800 900 1,000 5,000 

9.25 0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.05 0.02 0.03 0.04 0.04 

6.87 0.00 0.01 0.02 0.03 0.03 0.05 0.03 0.04 0.03 0.04 0.04 0.06 

5.55 0.01 0.02 0.03 0.04 0.04 0.04 0.05 0.05 0.04 0.05 0.04 0.05 

4.75 0.01 0.03 0.04 0.04 0.03 0.05 0.05 0.04 0.05 0.06 0.05 0.04 

4.04 0.01 0.03 0.04 0.04 0.04 0.05 0.04 0.06 0.04 0.04 0.05 0.05 

3.70 0.02 0.03 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.06 0.05 0.05 

3.25 0.02 0.03 0.04 0.04 0.06 0.04 0.05 0.06 0.05 0.03 0.06 0.06 

3.19 0.02 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.06 0.05 

2.83 0.03 0.03 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.06 0.05 0.05 

2.72 0.02 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.04 0.05 

1.96 0.04 0.03 0.04 0.04 0.04 0.06 0.06 0.05 0.06 0.04 0.05 0.05 

1.50 0.05 0.03 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.06 0.05 

1.15 0.04 0.05 0.05 0.04 0.05 0.06 0.06 0.05 0.06 0.07 0.06 0.04 

.873 0.04 0.06 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.06 

.63 0.04 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.06 

.41 0.04 0.04 0.04 0.05 0.06 0.04 0.04 0.07 0.06 0.06 0.06 0.05 

.20 0.03 0.04 0.04 0.06 0.05 0.04 0.06 0.05 0.05 0.05 0.04 0.05 

.00 0.05 0.06 0.06 0.04 0.05 0.06 0.05 0.05 0.06 0.06 0.05 0.06 
 

Note: Cells depicted in grey have deflated Type I error rates, whereas those with no shading meet the 

adequacy condition using Bradley’s criteria (see Table 5). 

 
 

The estimation tolerated a skewed continuous predictor a great deal better than a 

dichotomous one. The same conclusions from the previous study can be drawn 

here in that as the sample size increases and the skewness becomes smaller, the 

Type I error rate gets closer to the nominal value. Hence, as with a dichotomous 

predictor, a highly skewed continuous predictor affects the estimation and 

inferences in the extreme case of a small sample size. 

Model 3: Multiple Logistic Regression with Two 
Independent Binary Predictors 

The last model investigated is a multiple logistic regression with two dichotomous 

predictors, 

 

g(y) = β0 + β1x1+ β2x2, 

 

where x1 and x2 are independent dichotomous variables with skewed probabilities; 

β0, β1, and β2 are fixed; g(y) is the logit function, and y is a balanced outcome 



SKEWED PREDICTOR VARIABLE(S) LOGISTIC REGRESSION  

68 

variable. The goal in including this model was to discover whether the skewed 

probability of one predictor could alter the parameter estimates of other variables 

in the model when the two predictors are independent. This model reflects, for 

example, a 2×2 (two-factor) randomized experiment or randomized clinical trial.  

Study A: Type I error rates and non-convergences 

Method 

 

The simulation methodology and analysis of the type I error rate were the same as 

in Models 1 and 2. Three factors were manipulated in this experiment. The first 

two are sample size and the probability of x1, while the additional factor is the 

probability of x2. The probability for each predictor varied from 0.01 to 0.045. As 

in previous studies, the case where the variables were balanced was also 

examined for comparison purposes. The resulting experiment is a 12×18×18 

completely crossed factorial design. Again, as in earlier models, the empirical and 

nominal Type I error rates were compared using Bradley’s criteria. 

 

Results and conclusions 

 

There were 4,212 experimental conditions. Many results were identical or only a 

couple of decimals apart. Because of the sheer volume and the lack of variation, 

only a few sample sizes are presented. 

 

Number of non-convergences. Shown in Tables 15 and 16 are the number 

of non-converging replications with varying degrees of skewed probability on 

both predictors for samples of 100 and 400, respectively. As in previous studies, 

for a sample of 100 and a probability of 0.01, most of the replications did not 

converge. All replications converged when the probability of x1 is 0.09 or higher 

and the probability of x2 is equal or higher than 0.07. For sample sizes 100 and 

400, the number of non-converging replications decreases as the probability of 

both variables becomes more balanced. This issue ceases to be important for 

samples of 900 and 5,000. 
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Table 15. Number of non-convergences from 1,000 replications for Model 3 when sample 

size is 100. 
 

x1 Probability 
x2 Probability 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 … 0.5 

.01 610 463 412 397 390 389 388 … 388 

.02 474 260 195 165 157 155 154 … 154 

.03 407 176 102 70 62 60 58 … 58 

.04 384 143 68 33 23 21 19 … 19 

.05 374 131 56 21 11 9 7 … 7 

.06 373 129 54 19 9 7 5 … 5 

.07 371 127 52 16 6 4 2 … 2 

.08 371 127 52 16 6 3 1 … 1 

.09 370 126 51 15 5 2 0 … 0 

… … … … … … … …   0 

.50 370 126 51 15 5 2 0 0 0 

 
 
Table 16. Number of non-convergences from 1,000 replications for Model 3 when sample 

size is 400. 
 

x1 Probability 
x2 Probability 

.01 .02 .03 … .50 

.01 41 21 21 … 21 

.02 21 1 1 … 1 

.03 20 0 0 … 0 

… … … …  0 

.50 20 0 0 0 0 

 
 

Type I error rate.  The effect of the skewness of x2 on the Type I error 

rate was compared for the Wald test of x1. The results in Table 17 are formatted 

somewhat differently from those in other tables in this paper. Following Conover, 

Johnson, and Johnson (1981), average Type I error rates were used. Presented in 

the table are the Type I error rate of the Wald test for x1 averaged across all levels 

of skewness of x2 for sample size 100, 400, 900, and 5000 to represent the small, 

medium, and large sample sizes found in the literature. Like the tables in Models 

1 and 2, Table 17 is greyscale coded, the darkly shaded areas falling below 

Bradley’s liberal criterion and the unshaded ones falling within it. The Type I 

error was consistently deflated, with lower levels of probability for x1 and x2, 

growing closer to the nominal value as the skewed probability for both predictors 

became more balanced. It satisfies the liberal criterion with ranges of [0, 0.06] for 

a sample size of 100, [0.002, 0.068] for a sample size of 400, [0.017, 0.065] for a 

sample size of 900, and [0.033, 0.057] for a sample size of 5000.  
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Table 17. Type I error rate for x1 averaged across all levels of x2, and the range of Type I 

errors across all levels of the skewed probability of x2. 
 

x1 Probability 
Sample Size 

100 400 900 5000 

.01 
0 0.002 0.019 0.053 

(0,0) (.001,.003) (.017,.021) (.051,.057) 

.02 
0 0.015 0.039 0.041 

(0,0) (.013,.018) (.035,.043) (.035,.042) 

.03 
0 0.023 0.043 0.043 

(0,0) (.021,.026) (.040,.044) (.041,.045) 

.04 
0 0.036 0.045 0.036 

(0,0) (.033,.039) (.042,.046) (.033,.052) 

.05 
0.003 0.041 0.058 0.040 

(.001,.005) (.038,.043) (.056,.060) (.039,.041) 

.06 
0.01 0.039 0.047 0.047 

(.005,.011) (.036,.046) (.045,.049) (.046,.049) 

.07 
0.01 0.046 0.056 0.045 

(.010,.020) (.043,.049) (.053,.059) (.043,.047) 

.08 
0.019 0.05 0.063 0.049 

(.016,.022) (.048,.054) (.061,.065) (.049,.051) 

.09 
0.019 0.05 0.062 0.038 

(.017,.023) (.048,.055) (.060,.064) (.038,.040) 

.10 
0.023 0.049 0.052 0.047 

(0,.030) (.047,.052) (.050,.055) (.046,.049) 

.15 
0.037 0.062 0.055 0.049 

(.034,.040) (.060,.065) (.052,.061) (.049,.051) 

.20 
0.045 0.049 0.045 0.042 

(.034,.048) (.047,.057) (.042,.047) (.041,.043) 

.25 
0.041 0.048 0.047 0.052 

(.035,.044) (.046,.049) (.045,.050) (.051,.053) 

.30 
0.047 0.054 0.038 0.055 

(.039,.053) (.052,.056) (.036,.041) (.054,.056) 

.35 
0.056 0.053 0.048 0.047 

(.039,.060) (.052,.055) (.046,.050) (.046,.048) 

.40 
0.049 0.066 0.053 0.050 

(.047,.052) (.062,.069) (.050,.054) (.035,.055) 

.45 
0.049 0.058 0.040 0.049 

(.037,.052) (.055,.061) (.038,.045) (.047,.051) 

.50 
0.056 0.057 0.047 0.042 

(.052,.059) (.052,.060) (.046,.049) (.042,.044) 
 

Note: Cells depicted in grey have deflated Type I error rates, whereas those with no shading meet the 

adequacy condition using Bradley’s criteria (see Table 5).  

 

The range of average Type I error rates for each cell in Table 17 does not 

vary greatly. Therefore, it is clear that the degree of skewness of the cell 

probability of x2 has little to no impact on the Type I error rate of x1. In other 

words, the Type I error rate of x1 with low probability on x2 does not differ from 
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the Type I error rate of x1 when x2 is balanced. For example, for a sample of 400, 

the Type I error rate for x1 is 0.035 when the probability of x1 = 0.04 and the 

probability of x2 = 0.03 or 0.45. Comparing the Type I error rate of x1 in Model 1 

with Model 3, we can see that factoring in the skewness of an additional variable 

that is completely independent from other variables in this model has minimal 

impact.  

Study B: Power. 

Purpose of the study.  Pursuant to Study A, this simulation was designed 

to investigate the impact of two independent dichotomous predictors with skewed 

probabilities on the power of the Wald test. Ferguson's (2009) suggestion for a 

small, moderate, and large effect size was chosen, applying it to ORs.  

 

Method 

 

In addition to the three factors mentioned in Study A, a fourth factor was added: 

sample size, the probability of both predictors, and effect size, which was either 

small, moderate, or large. The resulting experiment is a 12×18×18×3 completely 

crossed factorial design.  

The simulation procedure is the same, with the added assumption of model 

effect. Assume β0, β1, and β2 are fixed to a number different from zero. The 

intercept parameter was fixed to −2. Examined three levels of effect size for β1: 

small effect: 0.683 (equivalent to OR = 2), moderate effect: 1.1 (equivalent to 

OR = 3), and large effect: 1.38 (equivalent to OR = 4), However, we fixed the 

effect size for β2 to a moderate value of 1.1. The simulation methodology is 

similar to that in Study A, with the addition of an extra loop to account for effect 

size. 

 

Results and conclusions 

 

To analyze power estimates, the best achievable power in the case of a balanced 

design was compared with other combinations of probabilities for each sample 

size. Both 10% and 50% loss of power were considered. The resulting number of 

conditions was 12636. Similarly to Study A, four typical sample sizes: 100, 400, 

900, and 5,000 are presented. Shown in Tables 18 through 20 are power estimates 

for x1 averaged over all levels of probability of x2. As in Table 17, Tables 18 

through 20 include the range of statistical power for each condition.  
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Table 18. Statistical power at an OR = 2 for x1 averaged across all levels of x2, and the 

range of statistical power errors across all levels of the skewed probability of x2. 
 

x1 Probability 
Sample Size 

100 400 900 5,000 

.01 
0.01 0.10 0.17 0.53 

(0,.013) (.074,.110) (.160,.180) (.500,.600) 

.02 
0.04 0.14 0.26 0.80 

(.020,.210) (.140,.150) (.240,.280) (.770,.850) 

.03 
0.05 0.166 0.33 0.92 

(.040,.055) (.150,.180) (.310,.360) (.890,.950) 

.04 
0.08 0.213 0.41 0.97 

(.065,.085) (.200,.230) (.340,.450) (.950,1) 

.05 
0.09 0.26 0.47 0.99 

(.011,.110) (.230,.280) (.440,.530) (.980,1) 

.06 
0.10 0.30 0.53 0.99 

(.096,.011) (.270,.397) (.490,.590) (.990,1) 

.07 
0.12 0.32 0.57 1 

(.110,.130) (.300,.350) (.530,.660) (.990,1) 

.08 
0.13 0.36 0.62 1 

(.120,.140) (.340,.390) (.580,.700) (.990,1) 

.09 
0.15 0.38 0.66 1 

(.130,.160) (.360,.410) (.620,.730) (1,1) 

.10 
0.15 0.40 0.70 1 

(.140,.170) (.380,.440) (.660,.780) (1,1) 

.15 
0.18 0.52 0.84 1 

(.160,.200) (.480,.580) (.810,.890) (1,1) 

.20 
0.197 0.60 0.91 1 

(.170,.230) (.560,.670) (.890,.950) (1,1) 

.25 
0.218 0.67 0.95 1 

(.190,.260) (.620,.750) (.930,.980) (1,1) 

.30 
0.23 0.72 0.96 1 

(.190,.290) (.680,.790) (.950,.980) (1,1) 

.35 
0.23 0.74 0.97 1 

(.200,.310) (.690,.820) (.960,.980) (1,1) 

.40 
0.25 0.76 0.98 1 

(.220,.310) (.720,.830) (.970,.990) (1,1) 

.45 
0.25 0.76 0.98 1 

(.200,.300) (.710,.840) (.960,.990) (1,1) 

.50 
0.246 0.76 0.98 1 

(0.210,.300) (.710,.850) (.970,.990) (1,1) 
 

Note: No shading reflects losing 10% of power or less, light shading reflects losing 10%-50% of power, and 

dark shading reflects losing over 50% of power. 
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Table 19. Statistical power at an OR = 3 for x1 averaged across all levels of x2, and the 

range of statistical power errors across all levels of the skewed probability of x2. 
 

x1 Probability 
Sample Size 

100 400 900 5,000 

.01 
0.02 0.15 0.33 0.90 

(.010,.300) (.120,.170) (.320,.305) (.880,.930) 

.02 
0.05 0.28 0.54 0.99 

(.040,.060) (.270,.290) (.520,.560) (.980,1) 

.03 
0.09 0.38 0.68 0.99 

(.080,.100) (.370,.400) (.660,.730) (.990,1) 

.04 
0.14 0.46 0.79 0.99 

(.120,.150) (.440,.480) (.770,.830) (.990,1) 

.05 
0.18 0.53 0.86 0.99 

(.180,.200) (.510,.570) (.840,.900) (.980,1) 

.06 
0.22 0.6 0.90 0.99 

(.210,.230) (.570,.630) (.880,.940) (.990,1) 

.07 
0.25 0.66 0.94 1 

(.240,.270) (.640,.710) (.930,.950) (.990,1) 

.08 
0.27 0.71 0.96 1 

(.260,.290) (.690,.750) (.950,.970) (.990,1) 

.09 
0.3 0.76 0.97 1 

(.290,.330) (.740,.780) (.960,.980) (1,1) 

.10 
0.32 0.80 0.98 1 

(.300,.360) (.750,.920) (.970,.990) (1,1) 

.15 
0.40 0.90 0.99 1 

(.320,.440) (.800,.930) (.980,1) (1,1) 

.20 
0.46 0.96 0.99 1 

(.430,.520) (.930,.980) (.990,1) (1,1) 

.25 
0.49 0.98 1 1 

(.450,.560) (.940,.990) (1,1) (1,1) 

.30 
0.55 0.99 1 1 

(.500,.620) (.980,.990) (1,1) (1,1) 

.35 
0.56 0.99 1 1 

(.520,.630) (.980,.990) (1,1) (1,1) 

.40 
0.58 0.99 1 1 

(.530,.670) (.990,.990) (1,1) (1,1) 

.45 
0.59 0.99 1 1 

(.540,.670) (.990,.990) (1,1) (1,1) 

.50 
0.59 0.99 1 1 

(.440,.680) (.990,.990) (1,1) (1,1) 
 

Note: No shading reflects losing 10% of power or less, light shading reflects losing 10%-50% of power, and 

dark shading reflects losing over 50% of power. 
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Table 20. Statistical power at an OR = 4 for x1 averaged across all levels of x2, and the 

range of statistical power errors across all levels of the skewed probability of x2. 
 

x1 Probability 
Sample Size 

100 400 900 5,000 

.01 
0.02 0.20 0.50 0.98 

(.010,.040) (.170,.230) (.450,.990) (.970,1) 

.02 
0.07 0.39 0.74 0.99 

(.050,.090) (.380,.410) (.720,.770) (.990,1) 

.03 
0.13 0.55 0.87 1 

(.110,.160) (.530,.570) (.850,.900) (1,1) 

.04 
0.19 0.65 0.95 1 

(.170,.220) (.630,.680) (.940,.970) (1,1) 

.05 
0.26 0.74 0.97 1 

(.240,.270) (.700,.780) (.970,.900) (1,1) 

.06 
0.31 0.80 0.98 1 

(.290,.330) (.770,.830) (.970,.990) (1,1) 

.07 
0.36 0.86 0.99 1 

(.340,.370) (.830,.890) (.990,1) (1,1) 

.08 
0.39 0.89 0.99 1 

(.380,.410) (.860,.910) (.990,1) (1,1) 

.09 
0.44 0.92 0.99 1 

(.420,.460) (.910,.940) (.990,1) (1,1) 

.10 
0.47 0.94 0.97 1 

(.450,.500) (.930,.960) (.980,1) (1,1) 

.15 
0.59 0.99 1 1 

(.570,.630) (.980,.990) (1,1) (1,1) 

.20 
0.67 0.99 1 1 

(.630,.720) (.990,1) (1,1) (1,1) 

.25 
0.72 0.99 1 1 

(.600,.780) (.990,1) (1,1) (1,1) 

.30 
0.77 0.99 1 1 

(.720,.830) (.990,1) (1,1) (1,1) 

.35 
0.79 1 1 1 

(.730,.850) (1,1) (1,1) (1,1) 

.40 
0.81 1 1 1 

(.760,.870) (1,1) (1,1) (1,1) 

.45 
0.82 1 1 1 

(.770,.880) (1,1) (1,1) (1,1) 

.50 
0.82 1 1 1 

(.770,.880) (1,1) (1,1) (1,1) 
 

Note: No shading reflects losing 10% of power or less, light shading reflects losing 10%-50% of power, and 

dark shading reflects losing over 50% of power. 

 
 

Statistical power of x1 is not affected by changes in the probability of x2, but 

rather, is affected by its own skewed probability regardless of the sample and 

effect sizes. Considering the range of statistical power for each condition, changes 
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in the power of x1 when the probability of x2 is at its extreme are within [0.01, 

0.03] of the power when the probability of x2 is balanced. However, it is evident 

that the power of x1 is highly influenced by its own skewed probability. For 

example, the highest achievable power for this model under the circumstances 

identified in this simulation for x1 with a sample of 100 and a small effect size is 

0.3, as seen in Table 18. Power is dramatically affected by the deflation in the 

Type I error rate. It is shown that with a skewed probability of 0.01, the power of 

the Wald test for the same predictor plummets to a range of [0, 0.5] for all sample 

and effect sizes. Similar to the findings in Model 1, as the sample and effect sizes 

increase, the skewed probability tolerance accelerates significantly.  

Conclusion 

It is not uncommon to encounter data from skewed populations. In these cases, 

the skewness of the sample and predictor variables reflects the true character of 

the population rather than a sampling bias. Hence, the skewness in the predictor(s) 

may influence estimation if separation occurs or decrease the reliability of 

parameter estimates. Detecting separation through data configurations, infinite 

parameter estimates, and the non-convergence of the MLE is straightforward. 

However, with a skewed predictor, these clear indicators are not present. This 

leaves the question of the impact of skewed predictors on the eventual statistical 

results of a logistic regression. To answer this general question, five inter-related 

simulation studies were conducted, which to our knowledge are the first of their 

kind to be done for skewed dichotomous predictors.  

A broad picture of the effects of skewed cell probabilities in dichotomous 

predictors on the logistic regression model is provided, specifically regarding how 

a categorical predictor’s skewness in probabilities affect estimation, parameter 

estimates, and the Wald test. In many cases, the estimator came to a convergence 

and results were produced, but there is no warning that a potential problem may 

exist. Data analysts can carry on without being aware that the standard errors are 

greatly inflated, resulting in low to no statistical power and (at times) greatly 

enlarged ORs. 

Skewed probabilities can induce separation, which automatically affects 

estimation and results in non-convergence (Albert & Anderson, 1984). When 

separation does not occur—even in severe cases of skewed probability—ML 

converges and estimates are produced.  

MLEs are biased upwards in severe conditions of small samples and highly 

skewed probability. Lastly, when skewness is less severe, with a range of [0.25, 
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0.5], or the sample size is sufficiently large, Type I error rates reach a nominal 

value and power is high. Overall, these findings demonstrate why it is important 

to consider the descriptive characteristics of the predictor(s) before conducting a 

logistic regression analysis. Researchers may encounter situations wherein the 

Type I error rate of their hypothesis test is highly deflated, ostensibly declaring a 

strong test when this may not be the case. Also, the power of the hypothesis test 

performs in a complementary manner to the Type I error rates. That is, the power 

is deflated when the Type I error is, and reaches full power when the rate achieves 

a nominal value.  

The skewed binary predictors can depending on the research design as (i) 

observed groups (e.g., gender differences or rare diagnostic or disease states) that 

have skewed probabilities of occurrence, or (ii) in other research settings these 

binary predictor(s) can be considered elements of a design matrix for experiments 

or clinical trials wherein the imbalance is group sizes is not due to selection bias 

or attrition. 

Therefore, with data analysts and consumers of research materials in mind, 

guidelines are suggested on how to think about and handle skewed predictor(s) in 

a logistic regression analysis based on whether the skewness is severe or not. 

 

1) If skewness is severe (i.e. the shaded areas in the tables included in 

this paper), there are two cases to consider. The first case under 

severe skewness is when separation (by inspecting the data structure) 

or zero cell counts (by looking at multi-way table) occur in the data. 

In this case, the conventional maximum likelihood estimator will not 

converge and estimates are not produced. Data analysts are 

encouraged to use alternative estimation procedures for example the 

ones found in Bull, Mak, and Greenwood (2002) and Heinze (2006). 

The second case under severe skewness occurs when estimates are 

produced by the conventional maximum likelihood estimator. This is 

due to the fact that one does not have zero cell counts nor separation. 

In this case of severe skewness, however, the Wald test is not 

reliable and an alternative test, such as the likelihood ratio test, is 

recommended. 

 

2) If skewness is not severe (i.e. the non-shaded areas in the tables 

mentioned in this paper), the Wald statistic is reliable and the 

interpretation of the test statistic should follow general statistical 

analysis recommendations (i.e. do not rely on the test statistic 
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exclusively but also examine effect size, parameter estimates, 

standard errors, fit, etc.). In addition, because skew of the predictor 

may impact on the operating characteristics of the statistical test, 

when planning a study a researcher/reader should take this in to 

account when computing the level of power and assumed Type I 

error rate. 
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