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CHAPTER 1. INTRODUCTIONS 

As reported by the Centers for Disease Control and Prevention (CDC), from 1999 to 2013, 

motor vehicle traffic related incident ranked first among all intentional and unintentional causes 

of injury-caused deaths for children aged 1-14 (CDC, 2015). Besides occupant impact in car 

crashes, motor vehicle to pedestrian impact is also a major cause of injuries and deaths to children. 

According to the 2011 data published by National Highway Traffic Safety Administration 

(NHTSA), for children aged 14 years or younger, 20% of the road traffic fatalities were caused by 

vehicle-to-pedestrian impacts (NHTSA, 2013). Worldwide, about 30% - 40% of children injured 

or killed in traffic are pedestrians, and this higher percentage is due to the inclusion of more low-

income counties (WHO, 2008). 

Among all pedestrian casualties, children should be paid more attention, especially for age of 

8 to 12 years. Worldwide, around 35% of pedestrian deaths were children (Untaroiu et al., 2010). 

Wazana et al. (1997) reviewed earlier studies and stated that, pedestrians between the ages of 8 

and 12 have the highest rate of injury (per unit time) compared to other children groups. In 2011, 

totally 4,432 pedestrian fatalities occurred in the US, 5.2% of which were children aged 14 years 

or younger; whereas the same age group accounted for 15.9% of all 69,000 injured pedestrians. 

The fatalities of age group 8 to14 years were more than the summation of the other child age 

groups (NHTSA, 2013), as shown in Figure 1-1. More in-depth epidemiology studies will be 

reviewed in CHAPTER 2. 
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Figure 1-1: Pedestrian fatalities among children aged 14 and younger, by age group, 2002-

2011 (NHTSA, 2013) 

To investigate the pedestrian injury mechanisms and further protect the pedestrians better, 

some methodologies have been used. These could be divided into two categories: (1) physical tests 

using post mortem human subject (PMHS), volunteers, anthropomorphic test devices (ATDs) or 

animal surrogates; (2) numerical simulations using multi rigid-body models or finite element (FE) 

models. They all have some limitations to a certain extent, which are briefly summarized as follows. 

Due to ethnic and legal concerns, the quantity of pediatric PMHS studies is very small. Volunteer 

tests are conducted in unreal impact loadings with a lower intensity. ATDs are standardized and 

repeatable for industrial application, but the biofidelity could be further improved. Animal 

surrogates are usually implemented for body region or organ tests where the accessibility of human 

subjects is low. Multi-body modeling technique lacks detailed geometry of human body. Lastly, 

FE method is a commonly used technique for pedestrian impact research but the pervious modeling 
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efforts were scarce for children around 10 years old (YO). More details about current research 

methodologies will be reviewed in Chapter 3. 

As a result, a whole-body FE model for a 10 YO child with high biofidelity was desired in 

order to better understand the injury mechanism of children impacted by vehicles. Since the pelvis 

and lower extremities (PLEX) are where the first contacts usually occur, and they also account for 

the largest portion of AIS 2+ injuries for pedestrians (Kikuchi et al., 2006, 2008), an accurate 

PLEX FE model for children around 10 YO is proposed in this dissertation study. 

In terms of model biofidelity for a numerical model representing a child, some special tissues 

for child are critical for injury biomechanics, such as the epiphyseal growth plate. Epiphyseal 

growth plate (GP), also known as physis, is where growth occurs at the cellular level for immature 

bones. 

  

Figure 1-2: The X-ray image of knee with GPs gaps between epiphysis and metaphysis, 

because non-ossified GPs are radiolucent in X-ray (by Danna 2011, obtained from 

https://thesebonesofmine.wordpress.com/category/femur) 
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Taking knee region as an example, shown as the dark gaps at the ends of distal femur and 

proximal tibia in Figure 1-2, the GP is the layer between the epiphysis and metaphysis (a 

transitional segment from epiphysis to diaphysis) and is responsible for the growth in length of the 

bone. 

The GP is weaker than surrounding cortical or trabecular bones, and this mechanical 

weakening accounts for GP related fractures that occur to adolescents and younger children, and 

constitute 15% to 20% of all childhood fractures (Peterson, 2007). A GP on the epiphysis enables 

the longitudinal growth of long bone and GP damage may lead to a growth arrest and long-term 

disturbance (Caine et al., 2006; Peterson, 2007). The GP is vulnerable in shearing, which is 

perpendicular to the bone’s longitudinal growth axis, a likely loading mode in a pedestrian impact. 

Hence, it is important to include GPs in the modeling of a pediatric pedestrian. 

To model the GP, material property of GP needs to be investigated. Although some GPs have 

similar appearances like cartilages (Tschegg et al., 2012; Villemure and Stokes, 2009) or even 

termed as cartilage, it is not proper to treat it as a cartilage mechanically. For example, Cohen et 

al. (1992) found that, the tensile modulus of bovine GP was 35.0 MPa, which is much lower than 

the elastic moduli for articular cartilage and meniscus at 84 MPa and 200 MPa, respectively. In a 

word, the GP is a critical component in pediatric pedestrian computational modeling, and an 

investigation of its structure and material property is important and wanted. 

Unfortunately, it was found that only very few experimental studies of human GP were 

available in the literature. A number of tests on animal GPs were found, however most of them 
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were limited to a single anatomic site (e.g. proximal tibia GP) and most of them were not associated 

with the loading condition of a car-to-pedestrian impact (high strain rate, lateral shearing). 

Based on the literature reviews, the dissertation study was planned with three specific aims. 

They are shown as follows, with the research contents under each aim. 

Specific Aim 1: Develop an average representative FE model for PLEX of a 10 YO child, as 

a baseline model for pedestrian protection study. 

Anthropometric study and clinical images assured the external and internal dimensions. The 

baseline model was validated against available pediatric PMHS test data and additional scaled 

adult data, then the PLEX model was integrated to build a whole-body FE model representing a 

10 YO pedestrian. 

Specific Aim 2: Investigate the mechanical behaviors of the GPs by conducting experiments 

on the porcine GP specimens. 

A series of tensile and shearing experiments on porcine bone-GP-bone units were carried out. 

The GPs from the femoral head, distal femur, and proximal tibia of 20-weeks-old piglets were 

tested, under different strain rates. Randomized block ANOVA was conducted to determine the 

effects of anatomic region and strain rate on the material properties of GPs. By comparing the 

porcine experimental data to the limited data obtained from tests on human subjects reported in 

the literature, an optimal conversion factor was derived to correlate the material properties of 20-

week-old piglet GP and 10 YO child GP. 
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Specific Aim 3: Determine the material properties for GPs of a 10 YO child. Explore the FE 

modeling technique of GP in the whole-body human model. 

A transversely isotropic hyperelastic material model (MAT_92 available in LS-DYNA) with 

added viscosity was adopted to mimic the GP tissues. After a series of optimization procedures, 

the material parameters needed for MAT_92 were determined to represent the GPs in different 

regions of a 10 YO child. Parametric studies were conducted by using the proximal sub-model to 

explore the GP modeling techniques. Subsequently, as a practical application, these techniques 

were implemented in a whole-body pediatric pedestrian model to assess the mechanical influences 

of the GPs to the pedestrian responses. 

 

 

  



7 

 

 

CHAPTER 2. EPIDEMIOLOGIC REVIEW 

2.1. PEDIATRIC PEDESTRIAN ACCIDENT 

Continued from the Introduction section, more pedestrian injury characteristics related to age 

and body region are further summarized in this section. 

Back to 1980's, NHTSA conducted the Pedestrian Injury Causation Study (PICS), involving 

pedestrian accidents from 1977 to 1980. Later in 1995, NHTSA further initiated the Pedestrian 

Crash Data Study (PCDS) to investigate the detailed information related to pedestrian casualties 

(Jarrett and Saul, 1998). Altogether 521 pedestrian accidents were included by Dec. 31, 1998 

(Chidester and Isenberg, 2001). In the age distribution study, 6-10 years of age had the highest 

incident rate reported in PICS, and this group was still the second highest group in PCDS, as shown 

in Figure 2-1. Based on PCDS, the impact orientations were examined and it was found that the 

most dominant (approximately 70%) impact direction was side impact (Jarrett and Saul, 1998). A 

statistics study conducted in New York City demonstrated that, the injury rate (per 100,000 

populations) peaked for age 8 to 12 (DiMaggio and Durkin, 2002). 
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Figure 2-1: Age distribution of two pedestrian data analysis studies initiated by NHTSA 

(PICS and PCDS). Re-drawn from the original plot by Jarrett and Saul (1998) 

The same trend was found in more recent field data. In year 2012, pedestrian injuries in 

children aged 10 to 15 were the highest among all age groups and accounted for 22% of fatalities 

and 9% of injuries (NHTSA, 2014). The above epidemiologic review demonstrated that, for 

children around 10 YO, car-to-pedestrian impact is a key cause of injury or death. Whereas for all 

pedestrian impacts, age group around 10 years has the highest injury risk. 

The PCDS database was utilized by many researchers as the main source of data for in-depth 

injury pattern investigation. The injury pattern in terms of distribution on different body regions is 

reviewed and summarized below, focusing on the characteristics of the PLEX. For all injuries, 

lower extremity was the most frequent injured region as shown in Figure 2-2 (a) (Chidester and 

Isenberg, 2001). Given the slight injuries such as integumentary scratches may distort the 

distribution, further examination was made for different injury severities, in terms of Abbreviate 
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Injury Scale (AIS). The skin (integumentary) injuries (AIS 1) account for 64% of all pedestrian 

injuries. The body region distribution for AIS≥2 is shown in Figure 2-2 (b), and the lower 

extremity has the highest injury frequency, followed by head (Kikuchi et al., 2006). 

    

     (a)            (b) 

Figure 2-2: Pedestrian injury distribution based on PCDS database. (a) all injuries 

(Chidester and Isenberg, 2001); (b) injury for AIS≥2 (Kikuchi et al., 2006) 

Ivarsson et al. (2006) grouped the ages and discussed the age related change on the injury 

pattern for AIS≥2 (Figure 2-3 a) and AIS≥3 (Figure 2-3 b) pedestrian injuries respectively, based 

on PCDS data (Ivarsson et al., 2006). It was observed that the lower extremities and head & face 

are the two most frequently injured regions for all five age groups. The proportion of casualties 

who sustained an AIS 2+ lower extremity injury was 18% in the youngest group of 1-3 YO, 40–

50% in the other four age groups. For AIS 3+ lower extremities injuries, age group of 4-6 YO has 

the highest rate, followed by age group of 7-9 YO. 
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     (a)            (b) 

Figure 2-3: Pedestrian injury distribution for children. (a) with at least one AIS 2+ injury; 

(b) with at least one AIS 3+ injury (Ivarsson et al., 2006). The injury percentages for spine 

(lumbar or thoracic) and neck (including cervical spine) did not exceed 2% for all age groups 

in two frequency investigations, therefore not shown in both figures 

Pedestrian PLEX injuries were further subdivided into several body segments. Kikuchi et al. 

(2006) did an overall study involving all age groups older than one year, as shown in Figure 2-4 

(a). It consists of fractures to the pelvis, femur and tibia along with fractures at the knee joint and 

knee ligament rupture. The tibia/fibula had the highest percentage of PLEX injuries. Ivarsson et al. 

(2006) further studied the injury distributions in the lower limbs for different age groups. It was 

found that tibia/fibular injuries increased with age increased. 

 
     (a)            (b) 

Figure 2-4: Distribution of pedestrian injuries (AIS 2+) at pelvis and lower extremity. (a)  

for all age groups (Kikuchi et al., 2006); (b) for children (Ivarsson et al., 2006) 
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Compared to the overall distribution, children with smaller body statures have higher injury 

incidence on upper femur and pelvis in pedestrian impacts (Mizuno and Ishikawa, 2005). Based 

on a 14-year-long review of pediatric pedestrian injuries at a Level I trauma center, Woods et al. 

(2003) revealed that femur injuries were more common in younger than in older children, but old 

children were more likely to suffer lower leg, ankle, and foot injuries. In a 10 years trauma registry 

study on pedestrian injuries in Los Angeles (Demetriades et al., 2004), several significant 

differences between children (≤14 YO) and the adults (55-65 for example) were found: Children 

had more femur injuries (15.5% vs. 8.3%) and less tibia injuries (15% vs. 34.8%); However, 

children had less pelvic fractures (6.3% vs. 16.2%). 

The contact points between the pedestrian and the vehicle are critical for the injury outcomes, 

which were determined by the impact speed, the profile of vehicle front end and the pedestrian 

anthropometry (Mizuno and Ishikawa, 2005; Roudsari et al., 2005). It is illustrated in Figure 2-5, 

that the primary impact spot (bumper to the pelvis or lower extremity) and the secondary impact 

spot (the head to hood/windshield) were different among different ages (Serre et al., 2010). This 

significant difference between adult and child pedestrians suggested that the car design optimized 

for adult pedestrian impact may not be favorable for children. In-depth study on injury mechanisms 

of children is highly demanded. 
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Figure 2-5: Locations of bumper impacting on the lower limb and the head impacting on the 

hood or windshield for pedestrians with different ages (Serre et al., 2010) 

The average shapes and dimensions of vehicle front end were measured and standardized by 

Mizuno and Ishikawa (2005), and the average leading edge height (LEH) for light weight car is 

702 mm, which is right at the greater trochanter region for an average 9 YO, however just above 

the middle of femur shaft for an adult (Serre et al., 2010). In a review of Australian and German 

pedestrian accidents, Fildes et al. (2004) measured the total societal cost and ranked the top ten 

injured body regions and associated impact modes. Some distinction between children and adults 

could be seen in Table 2-1. For example, "upper leg to bumper" injury was ranked as the third for 

children, which was not in the top ten for adults. 

Table 2-1: Top ten priorities of pediatric pedestrian injury mitigation with social cost 

percentages compared with adults' (Fildes et al., 2004) 
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The injuries at the PLEX are typically not life threatening, compared to the head and thoracic 

injuries. However, from the point view of long-term consequences and social costs, these injuries 

shall also draw attention of researchers. On the other hand, pelvis or lower extremities are the first 

body region where vehicle-to-pedestrian impact happens. The mechanical and kinematical 

responses of these lower body parts will determine the following overall behavior of pedestrian 

and the loading directions and energy levels from the vehicle or the ground upon to the upper torso 

and head. Therefore, a better model of the PLEX is critical to a study of whole-body human model 

for pedestrian protection. 

Above brief epidemiologic reviews have revealed that for children around 10 YO, pedestrian 

crash is a key cause of injury or death. For all pedestrian accidents, age group around 10 years has 

the higher risk compared to other age groups of children. These explained the reason why age 

group of 10 YO was selected in this study. The detailed injury pattern among different body regions 

showed particular needs for pediatric pedestrian impact study, and the importance of developing a 

biofidelic PLEX model as well. 

2.2. GROWTH PLATE TRAUMATIC INJURY 

Traumatic injuries of the GP are reviewed here to emphasize the important role of GP played 

under mechanical loadings. They include all types of traumas rather than car-to-pedestrian impacts, 

since epidemiologic data for this specific tissue in this specific traffic mode was not available. 

Peterson and Peterson (1972) reviewed epiphyseal GP injuries cases at Mayo Clinic of 

Minnesota (330 cases through 20 years). As shown in the first column of Table 2-2, the distal radius 
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was the location where GP injuries happen most frequently, followed by the phalanges and then 

the distal tibia. In contrast, proximal ends of long bones such as the tibia, femur, radius, ulna and 

fibula rarely had GP fractures. Later, Peterson (2007) did a comprehensive retrospective review 

including 4534 cases in 14 epidemiologic studies from 1915 to 1987 and discovered similar trends. 

Focusing on the lower extremities GP injuries in Table 2-2, it can be seen that distal tibia is 

the most frequent injured site (15%, ranks behind distal radius and phalanges), followed by distal 

fibula (4.0%) and distal femur (3.1%). The proximal tibia has the highest incident proportion (2.5%) 

among the proximal ends of long bones (Figure 2-6). 

Table 2-2: The injury frequency distribution among GPs, later than 1970's (Peterson, 2007) 
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Generally speaking, the GPs at distal ends of long bones were injured much more frequently. 

Injuries of the proximal forearm and lower leg were infrequent. It does not mean that GPs at some 

specific anatomic sites are physiologically more vulnerable than other sites, but it is associated 

with the more exposure to trauma with higher kinematic energies. 

 

     

     (a)           (b) 

Figure 2-6: Distribution of GP injuries drawn based on the data in Table 2-2 by Peterson 

(2007). (a) Overall distribution; (b) Distribution at three long bones of the lower extremities 

Fractures of GP are categorized in different ways. The most common classification was 

proposed by Salter and Harris in 1960s (Salter and Harris, 1963). Figure 2-7 shows the five major 

types of GP fractures. 

 

Figure 2-7: Salter-Harris epiphyseal fracture classification (Salter and Harris, 1963) 
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Type I: A transverse fracture through the GP. It accounts for 15.1% of all GP fracture 

incidences. Here, the percentages of fracture distribution by type were provided by Peterson (2007), 

considering epidemeologic studies from 1933 to 1994. 

Type II: A fracture through part of the GP and part of the metaphysis, so that the epiphysis is 

separated. It accounts for 59.9% of all incidences. Usually it takes approximately 2–3 weeks to 

heal. 

Type III: A fracture through part of GP and part of epiphysis, sparing a portion of epiphysis. It 

accounts for 10.3% of all incidences. 

Type IV: A fracture through metaphysis, the GP and epiphysis. GP interface has no separation 

in this case. It accounts for 9.2% of all incidences. 

Type V – A compression fracture of the GP (resulting in a decrease in the perceived space 

between the epiphysis and diaphysis on X-ray). It has an incidence ratio of 0.3%. 

Another import type of GP is the one lying on the bottom of the acetabulum, which is also 

termed as triradiate cartilage (more anatomic details will be given in Section 5.1). Generally, the 

injury of triradiate cartilage is relatively rare, compared to the other GP in the PLEX. Up to 20% 

of children with major pelvic injuries would have injuries of the triradiate cartilage (Bucholz et al., 

1982). Further case reviewing revealed that most of the triradiate cartilage fractures were caused 

by car-to-pedestrian collision (Bucholz et al., 1982; Heeg et al., 1988). In a study by Von Heyden 

et al. (2012), 15 children acetabulum fractures were observed, which accounted for 9.8% of all 
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pelvic fractures for children, as shown in Table 2-3. In contrast, the acetabular fractures accounted 

for 22.3% of all pelvic fractures for adults. 

Table 2-3: The incidence rate of pelvic fractures and acetabular fracture for children and 

adults (Von Heyden et al., 2012) 

 

In another trauma registry study over nine years involving 166 patients with pelvic fractures, 

it was found that children had fewer acetabular fractures compared with adults (6% vs. 44%), 

whereas they had more ramus and iliac wing fractures than adults (53% vs. 31% and 29% vs. 6%) 

(Silber and Flynn, 2002). Above epidemiologic data implied that the triradiate cartilage might 

increase the compliance of the pediatric pelvis, compared to an acetabulum with ossified GP from 

an adult. Very few FE modeling study has been directed to this immature structure. This Y-shaped 

GP was also modeled and included in the PLEX FE model to be described in later chapters. 

 

Figure 2-8: The fractions of fracture happening to different pelvic locations for immature 

(lighter bars) and mature (darker bars) pelvic groups (Silber and Flynn, 2002)  
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CHAPTER 3. RESEARCH TOOLS FOR PEDESTRIAN PROTECTION 

Methodologies pertaining to human impact biomechanics include two categories: (1) physical 

tests using PMHS, volunteers, anthropomorphic test devices (ATDs) or animal surrogates; and (2) 

numerical modeling using multi rigid-body models or FE models. 

PMHS biomechanics experiments have long been providing important fundamentals and 

golden standards for human computational modeling. However, pediatric PMHS experiments for 

computational model validations are extremely rare and this situation highly hampers the 

development of an accurate FE pediatric human model. In this study, pediatric test results from 

Ouyang group, (Ouyang et al., 2003a) and (Ouyang et al., 2003b) were used for validation of lower 

limb bones and pelvis sub-model. Those data are valuable and have already been used by several 

model validation publications (Ito et al., 2009; Ivarsson et al., 2004; Kim et al., 2009). Some early 

tests by Asang et al. (1969) and Asang et al. (1973) [cited by (Ivarsson et al., 2004)] reported two 

data points of ultimate bending moments of 12 YO children's tibiae, however the subject details 

were not available. Upon literature review, no additional experimental studies on PLEX of children 

from 8 to 12 YO were found, this study therefore mostly rely on test data of Ouyang group, and 

explore the scaling methodologies for implementation of adult PMHS test data. 

Volunteer tests in related to pediatric responses were mainly whole-body kinematic studies. 

For example, Arbogast et al. (2009) conducted a series of sled deceleration tests to study the 

responses of belted volunteers in low speed frontal impact. They could provide vivid information 

regarding the real human motions before and during a minor crash event. Some advanced tests 
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measured the muscle activation levels using EMG (Choi et al., 2005). However, results from 

volunteer test usually cannot provide sufficient insights for the purpose of FE model validation, 

because the loading condition is much less severe than a real-world accident to protect the 

volunteers. Additionally, the activation of muscle may play a role in a volunteer test, which is a 

confounding factor when the results are adopted to validate a model without active muscles. 

Humanetics (Plymouth, MI, US) developed a Hybrid III 10 YO dummy, where the geometric 

and material parameters were scaled from adult dummies (Irwin and Mertz, 1997; Irwin et al., 

2002). The European project of enabling protection for older children (EPOCh) extended the Q-

series dummy to include the Q10 dummy for the 10 YO group by basically scaling from other 

child dummies in 2010 (Humanetics, 2014). However, these dummies were not specifically 

designed for use in studying pedestrian protection of children. To reduce the injuries at lower limbs, 

some regional test devices were developed and standardized, such as headform and upper legform 

and legform impactors in ECE 127 Regulation (United Nations, 2012), originally proposed by the 

European Enhanced Vehicle-safety Committee (EEVC) Working Group 17 (EEVC, 1998). ATDs 

can be used in severe crash tests as standardized measuring tools. However, some studies have 

raised issues that the biofidelity of these regional impactors and the validity of the associated injury 

criteria still need further improvement (Konosu et al., 2001; Matsui et al., 1999; Takahashi and 

Kikuchi, 2001). Additionally, they were targeting the adults. To sum up, the structures of these 

ATDs cannot accurately mimic the muscles, ligaments and bones in the pediatric pedestrian body. 

Other features such as GPs are missing in ATDs as well. 
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Animal surrogates have been implemented to study the biomechanical responses since 

cadaveric tests on children are difficult due to ethnic and legal concerns. After decades of studies, 

animal surrogates are usually for in-depth material property or injury mechanism study of a certain 

tissues/organs, which are difficult to obtain from human. For example, Jin (2009) used cow 

samples to estimate the material property of human pia-arachnoid complex; Mao and Yang (2011) 

used rat brain to investigate the contusion mechanism and threshold. For pediatric GP modeling in 

this study, animal surrogates were implemented to identify GP properties. Pig, cow, sheep, mouse, 

orangutan etc. are used previously in GP related experimental studies. Briefly, pig is one of species 

that are most frequently used for biomechanical study because of the comparable dimensions and 

easy accessibility. 

MADYMO (TASS, Helmond, the Netherlands) is a multi-body modeling software commonly 

used to conduct multi-body system simulations of pedestrian impact. In 2002, Liu and Yang 

developed child pedestrian models for children with ages of 3, 6, 9 and 15 YO in the MADYMO 

by scaling a 50th percentile male pedestrian model (Liu and Yang, 2002). Van Rooij et al. 

developed a 6 YO multi-body pedestrian model by scaling down from a 50th percentile adult model 

(Van Rooij et al., 2003; Van Rooij et al., 2004). Yao et al. used MADYMO to reconstruct a collision 

involving a 7 YO pedestrian (Yao et al., 2006). Untaroiu et al. analyzed the kinematic responses 

of a 9 YO running pedestrian (Untaroiu et al., 2010). The rigid bodies, which represent human 

body segments, make this methodology favorable for straightforward kinematic and dynamic 
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analysis, but limit the biofidelity and capability to mimic the deformation and failure of human 

tissue/organs. 

Finite Element (FE) models can well predict the injury responses with relatively accurate 

geometry and material representations. Much effort has been directed towards the development of 

adult human models for pedestrian and occupant safety studies (Kalra et al., 2016). Total Human 

Model for Safety (THUMS) and Global Human Body Models Consortium (GHBMC) are two 

well-known whole-body human models for adults (Maeno and Hasegawa, 2001; Untaroiu et al., 

2013; Yue et al., 2011). In contrast, fewer pediatric FE models have been built, mainly because of 

the lack of child biomechanical experimental data. Such experimental data from child PMHS are 

limited due to regulatory and ethical concerns. For the same reason, TOYOTA developed a 6 YO 

THUMS model by scaling down the adult model, but they could not validate and officially 

distribute it (Iwamoto et al., 2007). A 3 YO and a 6 YO FE models were developed by Mizuno et 

al. (2005) and Okamoto et al. (2003), respectively. The 3 YO model was developed by scaling 

down the geometry from adults FE model. The lower limbs of the 6 YO model were based on 

magnetic resonance imaging (MRI) scans of children. By scaling up this 6 YO model, Ito et al. 

developed the lower limbs model for three pedestrians around 10 YO (Ito et al., 2009). Kim et al. 

developed a pelvis model using computed tomography (CT) scans from a 10 YO female and the 

material properties were identified by optimization approaches (Kim et al., 2013; Kim et al., 2009). 

Up to date, there is no 10 YO FE full pelvis and lower extremity (PLEX) model directly developed 

from pediatric anatomy of the same age, and the GP injuries were not well investigated, either. 
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Based on the above review, FE modeling was the reasonable research tool adopted in this 

dissertation to investigate the pediatric pedestrian injury biomechanics. An FE baseline model of 

the PLEX of a10 YO child was developed. GP tissues were also modeling by FE approaches, and 

then embedded to the FE sub-model of proximal femur, and further the FE PLEX model of 10 YO. 
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CHAPTER 4. BASELINE PLEX FE MODEL DEVELOPMENT 

Most of the contents included in this chapter have been published as Shen et al. (2015b). The 

relevant paragraphs, tables, and figures were reformatted for incorporation within this dissertation. 

4.1. GEOMETRIC AND ANTHROPOMETRIC STUDY 

The geometric dataset for the 10 YO PLEX model was originally taken from clinical CT scans 

of 10 ± 0.5 YO children at the Children’s Hospital of Michigan (CHM), with the approval of the 

Institutional Review Board (IRB)/Human Investigation Committee (HIC) of Wayne State 

University (Mao et al., 2014). An external anthropometric investigation was performed based on 

the anthropometry study by Snyder et al. (1977) in which measurements were taken from 258 

children aged 9.5-10.5 years. Combined with data for internal dimensions reported in the literature, 

these data were used to conduct minor adjustments of CT images, and the results are listed in Table 

4-1. Additionally, several key dimensions were obtained in collaboration with the International 

Center of Automotive Medicine (ICAM) of University of Michigan, involving 56 subjects, labeled 

as "ICAM" in Table 4-1. The height and weight of the 10 YO whole-body FE model (Version 1.1) 

are 1401 mm and 35.0 kg respectively. Figure 4-1 shows the dimension comparisons between the 

10 YO model and anthropometric measurements from the references. More data were summarized 

and published by Mao et al. (2014). An oblique view of the computer aided design (CAD) model 

is shown in Figure 4-2 (a). 
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Table 4-1: Anthropometric study summary 

External measurement 

Items 

Measured 

(mm), 

(±SD) 

Model 

(mm)  

Model 

error 

(%) 

Reference 

Hip breath at greater 

trochanter 
242 236 -2.5% Snyder et al. (1977) 

Buttock height 692 690 -0.3% Snyder et al. (1977) 

Upper thigh 

circumference 
421 419 -0.5% Snyder et al. (1977) 

Max. shank 

circumference 
278 277 -0.4% Snyder et al. (1977) 

Foot length 216 216  0.0% Snyder et al. (1977) 

Femur length 345.0 345.5 +0.1% Volgyi et al. (2010) 

Tibia length 315 316 +0.3% Volgyi et al. (2010) 

Internal measurement (imaging based) 

Femur neck length  78.5 (±5.5)  76.2  -2.9% 
Goulding et al. 

(1996) 

Femur neck width  24.4 (±2.1)  24.0  -1.6% 
Goulding et al. 

(1996) 

Pelvis great width  203.9 (±14.2) 205.0 +0.5% ICAM 

Ilium depth 98.5 (±10) 100.0 +1.5% ICAM 

Pelvis height 160.3 (±9.7) 160.4 +0.1% ICAM 

Pelvis inner width 91.3 (±9.8) 85.9 -5.9% ICAM 
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Figure 4-1: Dimension comparison between measurement and 10 YO model for femur (a) 

and tibia (b). "Proximal" refers to the cross section 20 mm distal/below the less trochanter. 

"2/3" refers to the cross section lower/distal from the tibia condyle by 2/3 of the bone length 

        

      (a)              (b) 

Figure 4-2: Overview of the geometric data of 10 YO child. The CAD was extracted and 

segmented from clinical images by previous study represented as 3D surfaces. (a) Whole-

body CAD with some skeleton exposed, (b) a closer view of the pelvic bones and cartilages 

(left half) 
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4.2. MESH GENERATION AND MODEL INTEGRATION 

The segmentation was performed using Mimics version 12.0 (Materialise, Leuven, Belgium). 

ANSYS ICEM CFD 12.1 (ANSYS, Canonsburg, PA) was used to create high quality hexahedral 

meshes. Some complex cavities of soft tissue were filled by Tetra-mesh tool in HyperMesh 10.0 

(Altair, Troy, MI). The flow chart in Figure 4-3 shows the technical processes. Because the soft 

tissues connecting different anatomical structures such as cartilages, ligaments, and muscles 

(fleshes) are unclear in CT images, anatomy-related books were used to guide the modeling work 

(Moore et al., 2011; Ogden, 2000). 

 

Figure 4-3: Mesh generation process: from clinical images to CAD surface, to blocks, to 

meshes (further refinement is not shown here) 

Most of the bony structures, including cortical and trabecular bones, were modeled as 

hexahedral, tetrahedral or shell elements. The cortical layers at the pelvis and long bone proximal 

and distal ends were modeled as 3-node/4-node shell elements, with thickness scaled from adults. 

The fleshes in the thigh and shank were modeled as hexahedral elements. The fleshes around the 

pelvis, knee and ankle joints were built using tetrahedral elements. Major muscles of the lower 

limbs were modeled as 2-node cables, attached to the bones through tendons. Prescribed active 

Image data Blocking Meshing 
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forces could be added in future study. The tendons and ligaments at the knee and ankle joints were 

modeled as membrane elements. The ligaments at the pelvic region were represented by cable 

elements, which only bear tensile loads. The sacroiliac (SI) joint, pubic symphysis (PS) cartilage, 

acetabulum cartilages and menisci were modeled using hexahedral elements. The articular 

cartilages at long bones were modeled as shell elements. 

The criteria used to consider suitable model qualities are as follows: Jacobian larger than 0.3, 

aspect ratio less than 5.0 and warpage less than 50°. The minimal element size was 0.25 mm, which 

resulted in a time step of 6.2×10-5 ms. An overview of the baseline model is shown in Figure 4-4. 

     

   (a)       (b)        (c) 

Figure 4-4: Three key regions of the 10 YO PLEX FE model: (a) Knee region (capsule and 

part of flesh is hidden for better view); (b) Foot & ankle region; (c) Pelvis region (rear view 

with pelvic flesh and fat hidden) 

4.3. PLEX BASELINE MODEL VALIDATION 

To assure the PLEX baseline model is a reasonable representation of 10 YO children, it needs 

to be generally validated and verified, so that the model would be appropriate for further upgrade 

(by embedding GPs) and other applications. The validations were done against the available 
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pediatric PMHS test data and the scaled results from some adult PMHS experimental studies. In 

following sections, the finished model validations are introduced briefly. In addition, the scaling 

law issue is addressed to transform the adult test results for the 10 YO modeling purpose. 

4.3.1. Validation overview 

Two levels of simulations were conducted using LS-DYNA (v.971, R 4.2, Livermore 

Software Technology Corporation, Livermore, CA) to validate the model. At the component level, 

the femur, tibia, fibula, pelvic ring and knee models were validated against data obtained from 

experiments under dynamic or quasi-static loading conditions. At the assembly level, the shank, 

thigh and pelvis-hip (sitting posture) and whole-body models, where flesh was included, were 

validated in lateral impacts. Experimentally available loading cases used for validations, as 

summarized in Table 4-2, are mainly in the lateral direction, constituting the largest portion of 

pedestrian impacts. 

It should be noted that, for the validation cases against the results of pediatric subjects, the 

GP effects were assumed minor. This assumption might not be correct in the pelvis-plate impact 

(case 6). For the validation cases against adult data, the effect of GP was not considered since this 

type of structure is already calcified in an adult skeleton. As a result, the validations would be 

treated as preliminary ones to establish a reasonable baseline model and a good foundation for 

future upgrading. In the late stage of the dissertation study, the effects of the embedded GPs will 

be investigated in parametric studies. 
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Table 4-2: Loading conditions and scaling methods for model validation 

No

. 

Loading 

scenario 

Loading 

direction 

Loading 

speed 
Subject References Scaling method 

1.1 

3-point 

bending 

@Femur/Tibia 

A-P* 
8.33 

mm/s 

6, 7.5, 12 

YO 

Ouyang et al. 

(2003a) 

Scaling of the 

children 

experiments 

1.2 

3-point 

bending 

@Fibula 

L-M 
8.33 

mm/s 

6, 7.5, 12 

YO 

Ouyang et al. 

(2003a) 

Scaling of the 

children 

experiments 

2 
Ball impact  

@Pelvic ring 
L-M 4 m/s Adults 

Guillemot et al. 

(1997) 

Enlarge the 10 

YO geometry 

3 
Knee MCL** 

tension 
Axial 

0.1mm/

s 
Adults 

Puso and Weiss 

(1998); Untaroiu 

et al. (2005) 

Same material, 

same elongation 

ratio as adults 

4 

3-point 

bending 

@Thigh & 

Shank 

L-M 1.5 m/s Adults 
Kerrigan et al. 

(2004) 

Scaling of the 

adults  

experiments 

5 

4-point 

bending 

@Knee 

complex 

L-M 1°/ms Adults Bose et al. (2004) 
No scaling or new 

law to develop 

6 

Plate side 

impact 

@Pelvis-Hip 

L-M 7.5 m/s 

5 pediatric 

PHMS (5-

12) 

Ouyang et al. 

(2003b) 

No scaling or new 

law to develop 

7 
Car to whole-

body 
L-M 10 m/s 

10 YO 

MADYMO 

New Multi-body 

simulation 

MADYMO/Scale 

to generate 10 YO 

MADYMO 

model 

*A-P direction adopted because there was no lateral bending test on pediatric PMHS 

** MCL: medial collateral ligament 
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4.3.2. Scaling laws for model validation 

Since the PMHS impact biomechanics tests for children are rare and not sufficient for model 

validation, some scaling techniques are needed to transform the existing adult cadaveric test data 

for indirect comparisons of the responses. 

A number of scaling concepts currently exist. For example, geometric scaling (i.e. to enlarge 

or downsize the anthropocentric dimensions), mechanical properties scaling (e.g. for cortical bone, 

the Young's modulus of 10 YO child is around 85.4% of an average adult’s), test condition scaling 

(e.g. sled velocity, pendulum mass) and test response scaling (e.g. peak force, deflection history, 

and bending moment corridor). In this section, the scaling law for transforming the responses is 

the focus. 

In the literature, some scaling laws had been developed to transform the mechanical and 

kinematic responses (e.g. force, deflection, acceleration) in specific loading conditions. For 

example, a human body moves to a fixed target (e.g. PMHS sled test) or a pendulum strikes an 

unconstrained body (Irwin and Mertz, 1997; Irwin et al., 2002). These two common loading 

conditions are of major interest in automotive industry. The scaling formulas for force, deflection, 

acceleration etc. are listed in Table 4-3. 
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Table 4-3: Formulas for impact response transformation ratios (Irwin et al., 2002) 

 

 

Because the boundary conditions for validations in this study were not the same as those in 

Table 4-3, the laws listed were not applicable. Therefore, new scaling strategy was developed in 
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this dissertation based on a long bone 3-point bending scenario. There were several assumptions: 

there is geometric similarity between human subjects with different age (e.g. 10 YO child vs. adult), 

the cross section of a long bone shaft is a circular ring, and the material is linear-elastic with a 

constant Young's modulus (E). Based on the formulas of deflection for a beam in 3-point bending 

and the cross-sectional moments of inertia of a tube (Young and Budynas, 2002), the equation for 

ultimate bending force (Fmax) at small deflection for a slender circular tube can be expressed as 

below: 

𝐹𝑚𝑎𝑥 =
𝜋

16𝐿
𝐷3(1 − 𝛼4)𝜎𝑠         4-1 

Here L is the span of two roller bases, d and D is the inner and outer diameter of the cross 

section, α is the ratio of the two diameters (d/D) and σs is the ultimate tensile stress of the material. 

Accordingly, the ratios of these parameters are λL, λD and λσs. The ratios of inner/outer diameter are 

assumed to stay unchanged for different samples, because of geometric similarity. The derived 

scale factors for ultimate force (Fmax) and moment (Mmax) are labeled as λF and λM respectively. 

     𝜆𝐹 = 𝜆𝜎𝑠
×𝜆𝐷

3/𝜆𝐿          4-2 

For the bending moment, the ultimate value is proportional to L×Fmax. As a result, 

𝜆𝑀 = 𝜆𝜎𝑠
×𝜆𝐷

3          4-3 

Strictly speaking, the loading conditions for thigh and shank bending cases are not identical 

to the above single bone bending, but with the absence of more robust scaling laws, Equations 4-

1 to 4-3 were still applied. According to Mertz et al. (2001), the dimension ratios at anterior-
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posterior (λx) and lateral-medial (λy) directions are the same for lower limbs, thus the cross-

sectional dimension scale factors λD =λx =λy, and Equation 4-3 is changed to 

𝜆𝑀 = 𝜆𝜎𝑠
×𝜆𝑥

3          4-4 

The scaling method developed in this study, as derived in Equations 4-1 to 4-3, had several 

assumptions. For practical long bone bending simulations, the validity of the scaling law needs to 

be checked. An auxiliary parametric study was performed on 3-point bending test on a femur to 

address this issue. The baseline FE model was from the current 10 YO PLEX model, and the 

loading was in anterior-posterior direction. Based on Equation 4-2, assuming λσs=1, if the length 

stays the same, λF =λD
3; if the outer diameter stays the same: λF =1/λL. The simulation results were 

plotted as scattered dots, which were found well matching the predicted curves, as shown in Figure 

4-5 (a). Therefore, the validity of Equation 4-2 was verified in a certain range in the scenario of 

long bone 3-point bending. 

 

Figure 4-5: The comparison of simulation results and prediction curve: (a) Ultimate bending 

force vs. cross-sectional dimension; (b) Ultimate bending force vs. span/sample length 
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4.3.3. Validation summary 

Long bone 3-point bending 

In 2003, Ouyang et al. conducted a series of 3-point bending experiments on long bones from 

11 child subjects aged from 2 to 12 years of age (Ouyang et al., 2003a). Three subjects (6, 7.5 and 

12 YO) were closest in age, height and weight to the 10 YO model. Consequently, experimental 

data obtained from these specimens are selected for model validation. The higher loading rate of 

8.33 mm/s is chosen. It was noticed that the sizes of the three subjects were different from an 

average 10 YO child, so the scaling law proposed in Equation 4-2 was applied. It was further 

assumed that, for subjects with close age, the bone strength stayed unchanged (λσs = 1) and the 

dimension ratios of the diameter (λD), length or span (λL) and standing height (λH) were all the same 

(λD = λL =λH), and could be calculated by dividing subject's height to the height of the current 10 

YO model (1401 mm). The descriptions of subjects and the scaled test results are listed in Table 

4-4. 

Table 4-4: Subjects information and scaling of test results, originally reported by Ouyang et 

al. (2003a) 

ID 
Age 

(Years) 

Height  

(mm) 

Ultimate bending force F (N) 

Test results Scaled to 10 YO 

Femur Tibia Fibula Femur Tibia Fibula 

2 7.5 1170 1109 951 171 1590 1364 245 

11 6.0 1090 1459 1214 201 2410 2006 332 

12 12.0 1400 1249 995 325 1251 996 325 

Average 1750 1455 301 

Standard Deviation 596 511 48 
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Figure 4-6: Simulation results of 3-point bending tests on long bones, compared to scaled 

data from Ouyang et al. (2003a) 

The average ultimate forces for femur, tibia and fibula from scaled test data are respectively 

1750 N, 1455 N, and 301 N. The validation results are shown in Figure 4-6 in a bar chart exhibiting 

a good agreement between the simulated results of this 10 YO model and scaled test results.  

Pelvic ring lateral impact 

Guillemot et al. (1997) conducted lateral impact tests on 12 adults’ pelvic rings (impact at 

acetabulum). A literature search revealed that no similar test on 10 YO PMHS existed for a direct 

validation. Additionally, there was no simple scaling law to transform the corridor of adults to that 

of children, given a complex geometry like pelvis in a semi-constrained loading condition. 

Therefore, a strategy similar to the study by Jebaseelan et al. (2010) on pediatric lumbar spine was 

used. The pelvic bones with attached ligaments were scaled up to the adult size, using dimensional 

ratios of 1/0.723 at horizontal direction, 1/0.793 at vertical direction (Mertz et al., 2001). 
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Figure 4-7: Pelvic ring lateral impact validation. (a) Simulation setup; (b) Simulation results 

compared with the experimental results originally from Guillemot et al. (1997) 

Figure 4-7 (a) shows the enlarged 10 YO pelvic ring sub-model under the identical loading 

conditions as in Guillemot et al. (1997), where a 3.68 kg impactor hit the steel ball at a speed of 4 

m/s. The ball was resting in the acetabulum for load distribution. A solid base was used to fix the 

collateral iliac wing and support the pelvic ring. Figure 4-7 (b) shows that, the simulated response 

of the enlarged 10 YO model falls within the corridor of adult data with a similar trend. 

Knee MCL tension 

Among the knee ligaments, the medial collateral ligament (MCL) gains the most attention in 

pedestrian impacts. A MCL unit tension simulation was conducted and the result was compared 

with the adult data to affirm the ligament behaves reasonably. The tensile experiment referred to 

Untaroiu et al. (2005) and the setup is shown in Figure 4-8 (a). The material property was assumed 

unchanged for the child MCL ligament as no further detailed age related information was available. 

The adult MCL ligament material property was referred to Puso and Weiss (1998), and the corridor 

of stress-strain curves was plotted in Figure 4-8 (b). In this model, the Young's modulus was 222 

(a) (b) 
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MPa. The failure point is 16.3% strain, or 36 MPa tension stress accordingly, marked in Figure 4-8 

(b). 

     

         (a)             (b) 

Figure 4-8: MCL tensile test: (a) Simulation setup; (b) Corridor of adult MCL material 

property in a stress-strain plot, originally reported by Puso and Weiss (1998) 

Thigh and shank dynamic 3-point bending 

The thigh and shank dynamic 3-point bending experiments were conducted on adult subjects 

by Kerrigan et al. (2004). The predicted failure moments at the mid-shaft sites of the thigh and the 

shank with 50% risk were, respectively, 447 Nm and 312 Nm, at the loading speed of 1.5 m/s. The 

simulation sub-models are shown in Figure 4-9. 
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(a)             (b) 

          

(c)             (d) 

Figure 4-9: The validation thigh and shank: (a) & (b) Before loading; (c) & (d) After failure 

Equation 4-4 was used to scale the adults' responses to those of 10 YO child. In the current 

10 YO FE model, the elastic modulus for the long bone is 85.4% of that of adults' (Mertz et al., 

2001). However, for a piecewise elastic-plastic material model, if the yield stress, tangent modulus 

(for plastic yielding) and ultimate strain stay the same, the difference of ultimate stress between 

the 10 YO model and adults is very small (i.e. 𝜆𝜎𝑠
≈ 1). The validation results are shown in Table 

4-5, demonstrating a good matching for the thigh, while acceptable for the shank. One possible 

explanation is the complex cross-sectional shape of the shank may weaken the accuracy of scaling 

law in Equation 4-4. 

Table 4-5: Scaling of adult results for 10 YO model validation 

Thigh (moment unit: Nm) Shank (moment unit: Nm) 

Adult 

Mmax 
λx 

Scaled 

Mmax 

10 YO Model 

simulation 
Error 

Adult 

Mmax 
λx 

Scaled  

Mmax 

10 YO 

Model 

simulation  

Error 

447 0.703 155.3 148.8 -4.2% 312 0.657 88.5 108.3 +22.4% 
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Knee 4-point bending 

The ligament rupture caused by lateral bending is a main mechanism of knee injury for 

pedestrians in car-to-pedestrian impacts. Thus the behavior of the knee joint of the 10 YO model 

in lateral dynamic bending was compared with the results of adult PMHS conducted by Bose et al. 

(2004). The test setup is shown in Figure 4-10 (a), where all the movements are restricted in the 

coronal plane. One pin joint is mounted at the proximal side with a longitudinal sliding degree of 

freedom, to achieve the simply-supported boundary conditions. The bending angular velocity is 

1°/ms. The adult corridor of bending moment - bending angle curves is shown in Figure 4-10 (b). 

The average failure point for the adults is also marked, with a bending moment of 120 Nm and 

bending angle of 13.5°. The simulated failure point is reasonable qualitatively. 

  

        (a)             (b) 

Figure 4-10: Knee lateral-medial 4-point bending (a) Simulation setup; (b) Adult test results 

in bending moment - bending angle plot, originally from Bose et al. (2004) 

Pelvis lateral plate impact 

Based on the same PMHS for the study of long bones used in Ouyang et al. (2003a), Ouyang 

et al. investigated the pelvis responses of subjects divided into younger (2-4 YO) and older (5-12 



40 

 

 

YO) groups under lateral plate impact (Ouyang et al., 2003b). The force-displacement response 

corridor of the older group was utilized to validate the 10 YO model. In the experiment, a cadaver 

was set in a sitting posture on a friction-free surface with the legs at a natural vertical position. The 

10 YO model was accordingly positioned to a sitting posture. The simulation setup followed 

Ouyang's test, as illustrated in Figure 4-11 (a). The simulated curve fit the corridor well, as shown 

in Figure 4-11 (b). There was no fracture observed in the simulation, which is found to be 

consistent with the experimental results, thus achieving the 10 YO model validation target. 

   

    (a)             (b) 

Figure 4-11: Pelvis lateral impact, (a) Simulation setup; (b) Simulation result compared to 

the corridor of experimental results of 5-12 YO children, originally from Ouyang et al. 

(2003b) 

Whole-body model simulation 

The PLEX FE model was integrated with the previously developed thorax, head and neck FE 

sub-models for a 10 YO child (Dong et al., 2013; Jiang et al., 2014) to simulate the sedan-to-

pedestrian impact. An FE model of a small sedan was obtained from the National Crash Analysis 
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Center (NCAC) website. This car model was then simplified and only the front portion including 

the front bumper, hood etc. was used. A constant speed of 10 m/s (36 km/h) was assigned to the 

car that hit the standing pedestrian in the lateral direction as illustrated in Table 4-6. 

Table 4-6: Sedan-to-pedestrian impact simulations using MADYMO dummy model (scaled 

from adult pedestrian model to 10 YO), published as Shen et al. (2015a) 

Model 0 ms 20 ms 40 ms 

10 YO FE 

pedestrian 

model 

   

10 YO 

MADYMO 

model 

(Scaled 

from adult 

model)    

Model 60 ms 80 ms 100 ms 

10 YO FE 

pedestrian 

model 

   

10 YO 

MADYMO 

model 

(Scaled 

from adult 

model) 
   

MADYMO (v.7.5) (TASS, Helmond, the Netherlands) was used for multi-body model 

development and impact simulation. The 50th percentile MADYMO ellipsoid pedestrian model (v. 

5.0) was taken as the baseline model. MADYMO/Scaler, based on GEBOD population (TASS 
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International, 2014), was used to scale the MADYMO baseline model to a 10 YO multi-body 

model with the same height and weight of 10 YO child (1401 mm and 35.0 kg) used in this study. 

Using coupling FE-multi-body version of MADYMO, the same car FE model, initial positioning 

and impact speed used in FE pedestrian simulation were adopted in the simulation using 10 YO 

MADYMO scaled model. The kinematic response of the whole-body 10 YO model was compared 

to the multi-body simulation results, as shown in Table 4-6. The kinematics histories were similar. 

The initial head contacts occur at 85 ms and 84 ms at speeds of 7.8 m/s and 8.0 m/s in the two 

simulations. This comparison demonstrates that the 10 YO model is robust with a reasonable 

agreement in overall kinematic behavior, although there are a number of limitations in this semi-

quantitative validation. 

Later the whole-body pedestrian model was further postured to represent a seated 10 YO child, 

and these two whole-body models were named Collaborative Human Advanced Research Model-

10 years (CHARM-10), pedestrian and occupant models, respectively). More details about the 

integration and whole-body models verifications were published in Shen et al. (2016). 

4.3.4. Material properties of PLEX 

The material properties of the preliminarily validated PLEX model agreed with those 

published literature, shown in Table 4-7. The scaling factor of the Young's modulus for long bones 

of the 10 YO child was set as 0.854, which was suggested by Mertz et al. and Irwin et al. while 

scaling Hybrid III dummies for additional anthropometric groups (Irwin et al., 2002; Mertz et al., 

2001). 
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Table 4-7: Main material properties of 10 YO PLEX FE model, with the relevant references 

given accordingly 

Component Material Model Material Parameters Reference 

Cortical at long 

bones 
Elastic-Plastic 

ρ=2.0×103 kg/m3, γ=0.3, 

E and σY for different regions of femur: 

Shaft: 12.8 GPa, 120 MPa; Neck: 8.54 GPa, 77 MPa; 

Head 0.854 GPa, 7.7 MPa 

E and σY for Tibia: 14.9 GPa, 125 MPa 

εmax =0.02 

Takahashi et al. 

(2000); Untaroiu et 

al. (2005) 

Cortical at pelvis Elastic-Plastic 

ρ=2.0×103 kg/m3, γ=0.3, 

E=12.24 GPa, σY=150 MPa 

εmax =0.027 

Kim et al. (2013) 

Trabecular at long 

bones 
Elastic-Plastic 

ρ=1.1×103 kg/m3, γ=0.3, 

E and σY for different regions of femur: 

Head: 0.77 GPa, 9.3 MPa; Proximal: 0.53 GPa, 6.6 

MPa; distal: 0.25 GPa, 5.6 MPa 

For Tibia: 0.38 GPa, 5.3 MPa 

εmax =0.134 

Takahashi et al. 

(2000); (Untaroiu 

et al., 2005) 

Trabecular at pelvis Elastic-Plastic 
ρ=1.1×103 kg/m3, γ=0.2, E =0.0448 GPa, σY=7.5 MPa 

εmax =0.25 
Kim et al. (2013) 

SI joint & 

acetabulum 

cartilage 

Hyperelastic 
ρ=1.2×103 kg/m3, γ=0.495, Mooney-Rivlin parameters:  

C1=2.87 MPa, C2=0.278 MPa 

Anderson et al. 

(2005); Kim et al. 

(2013) 

PS cartilage Hyperelastic 
ρ=1.2×103 kg/m3, γ=0.495, Mooney-Rivlin parameters: 

G=0.5MPa C10=0.05 MPa, C01=0.2 MPa, C11=0.25 MPa 
Li et al. (2006) 

Articular cartilage Elastic ρ=1.2×103 kg/m3, γ=0.2, E=0.17 GPa 

Froimson et al. 

(1997); Yue et al. 

(2011) 

Knee ligaments Elastic ρ=1.2×103 kg/m3, γ=0.45, E=0.222 GPa, σY=36.4 MPa 

Puso and Weiss 

(1998); Untaroiu et 

al. (2005) 

Pelvis ligaments Discrete beam 

Hip joint (14 beams each side): K=34 N/mm, A:13.4 

mm2 

SI joint (16 beams each side): K=149 N/mm, A:12.8 

mm2 

Bechtel (2001); 

Hewitt et al. (2001) 

Skin Elastic ρ=1.0×103 kg/m3, γ=0.45, E=0.001 GPa 
Pailler-Mattei et al. 

(2008); Yue et al. 
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(2011) 

Flesh for pelvis Viscoelastic 

ρ=1.05×103 kg/m3, γ=0.495,  

Mooney-Rivlin parameters: 

C1=21.5 kPa, C2=6.37 kPa G1=1.72 kPa, G2=7.53 kPa 

β1= 0.54, β2=0.06 

Kim et al. (2013) 

Flesh for limbs Hyper-elastic ρ=1.05×103 kg/m3, loading curve from THUMS model  

Subcutaneous fat Viscoelastic 

ρ=1.0×103 kg/m3, γ=0.495,  

Mooney-Rivlin parameters: 

C1=6.33 kPa, C2=1.58 kPa G1=0.5 kPa, G2=2.2 kPa 

β1= 0.54, β2=0.06 

Kim et al. (2013) 

Notes: ρ: density, γ: Poisson ratio, σY: Yield stress, E: Young's modulus, εmax: Ultimate strain, K: Spring constant 

(N/mm), A: Cross-sectional area (mm2). 

4.4. CHAPTER SUMMARY 

In this chapter, the PLEX FE model of a 10 YO child was established. The validations of the 

biofidelity were conducted on component level and sub-assembly level. In addition, the PLEX 

was integrated with the other body parts and composite of the whole-body model, and the sedan-

to-pedestrian impact was simulated using this model. The simulation results showed reasonable 

agreements with those from experiments or comparable digital models. Therefore, the PLEX 

model was treated as limited validated and can be used for further applications. 
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CHAPTER 5. LITERATURE REVIEW OF GROWTH PLATE 

GP is considered as a remarkable immature feature in children compared to adults. In this 

chapter, the anatomy of GP is first reviewed. A summary of investigations on the existing 

experimental studies on human and animal GPs is presented. 

5.1. GROWTH PLATE ANATOMY 

GPs lie at the ends of long bones and the junctions of some flat bones (e.g. pelvic bones, skull 

bones). Within the GP, chondrocytes undergo processes of differentiation (Flynn et al., 2014). It 

should be noted that a GP is actually not a simple flat plate. It can be seen in Figure 5-1 (a) that 

there is a quadrinodal interface (four protrusions at four quadrants), which is a 3D presentation of 

the waved curvature previously shown in the X-ray image of Figure 1-2. Looking more closely 

using histology reveals more unevenness and ruggedness. A histology photo of femoral head GP 

section shown in Figure 5-1 (b) is an example. This highly irregular morphology of GP from 

macroscopic to microscopic scale shows micro engagements, which make the structure much 

stronger than a simply flat interface, especially in shearing loads (Kandzierski et al., 2012; Peterson, 

2007). 
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(a)                 (b) 

Figure 5-1: Growth plate anatomy. (a) Schematic diagram of distal femoral GP (Peterson, 

2007); (b) Histological section picture of the femoral head from an 8 YO girl (Ogden, 2000) 

Figure 5-2 shows a stained histological micrograph of a rat proximal tibia GP (Villemure and 

Stokes, 2009). It reveals that the GP consists of chondrocytes (cartilage cells) organized in columns 

embedded in an extra-cellular matrix. A GP can be further divided into several cellular zones with 

different morphologies and arrangements of cells. Typically, there are three zones: the reserve zone 

(smaller and flatter at epiphysis end), the proliferative zone (where the new cells are generated) 

and the hypertrophic zone (larger and rounder at metaphysic end). The hypertrophic chondrocytes 

form columns along the long axis of a bone and produce collagen, which are used subsequently 

for bone matrix. The growth route map follows a direction through the zones and the endochondral 

ossification lengthens a long bone at the longitudinal axis. 
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Figure 5-2: Micro-graph of a 2 µm thick section of a rat proximal tibia GP (Villemure and 

Stokes, 2009) 

At the early stage of the growth, GPs include two types of interface, involving the primary 

center of ossification (at the diaphysis with two primary physes by metaphysis) and second center 

of ossification (SCO, within the epiphysis), as shown in Figure 5-3 (Peterson, 2007). Along with 

the growth and development, the SCO expands and the epiphyseal cartilage shrinks. Its side 

towards diaphysis approaches the primary physis, and the spherical GP flattens and gradually 

becomes a contour following the primary physis (Figure 5-3, b). Similar contouring also occurs as 

the SCO approaches the lateral and subarticular regions of the epiphysis. Since the SCO matures 

earlier than the primary GP, during the late stage of childhood, only one fused physis will be 

observed. The primary physis also grows circumferentially. Once the SCO matures, the latitudinal 

growth becomes appositional and is supported by the zone of Ranvier (Peterson, 2007). 
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Figure 5-3: Growth patterns of a typical long bone (A) the second ossification center (SCO) 

surrounded by a spherical physis, secondary physis (SP); (B) the second ossification center 

expanded; (C) the second physis approached to primary physis and fuses to one (Peterson, 

2007) 

The closure ages for GPs from different sites are different. Figure 5-4 shows the closure ages 

for GPs at long bones of extremities. Generally speaking, the closures start from 12 years, and 

finish after 20 years. 

 

Figure 5-4: The closure ages of GPs in upper and lower extremities (Scheuer et al., 2000) 

The GP at pelvis is different from the discoid GPs at lower limbs, because the pelvic bones 

are categorized as flat bones, rather than long bones for lower limbs. As shown in Figure 5-5, the 
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Y-shaped triradiate cartilage is in the connecting interfaces of three primary ossification centers on 

the acetabulum: the ilium, ischium and pubis. The triradiate physis therefore has three arms: one 

anteriorly located between the ilium and pubis, one posteriorly located between the ilium and 

ischium, and one vertically located between the ischium and pubis. The physis between two 

primary growth centers has symmetric structures and generates new osteocytes at both sides to 

enlarge the socket of hip joint. Its closure occurs at around 15 to 18 years of age (Peterson, 2007). 

      

     (a)           (b) 

Figure 5-5: GP at pelvis: Triradiate cartilage. (a) Schematic diagram (Peterson, 2007); (b) 

Detailed view of triradiate cartilage (fused with acetabular articular cartilage) (Bucholz et 

al., 1982) 

Based on anatomical reviews listed above, it could be concluded that GP is a complicated 

inhomogeneous structure with an irregular 3D shape. The distinct characteristics of GPs compared 

to trabecular, cortical bones and articular cartilages make them to be potential sources of pediatric 

trauma injuries. 



50 

 

 

5.2. GROWTH PLATE EXPERIMENTAL STUDIES 

5.2.1. Tensile tests 

The tensile tests can be divided into two categories: tests on whole bone sample with intact 

GP and tests on trimmed bone-GP-bone units. In the first category, most of the tests were on GPs 

from small animals, thus these tests did not provide much helpful information for testing GPs from 

larger animal such as pig. In the second category, Williams et al. (2001) conducted tensile tests on 

human femoral GPs using bone-GP-bone units. The specimens were taken from two subjects, aged 

8 and 13 years. Each bone was cut by a diamond wheel into thin slices with dimensions around 

0.51 mm×2.29 mm×15 mm. A pair of friction grips and guiding rods were used to mount the 

specimen as shown in Figure 5-6 (a). The loading speed was 0.0004 mm/s, i.e. a strain rate of 

0.003/s. 

    

     (a)           (b) 

Figure 5-6: Tensile test setup examples. (a) Friction grips in Williams et al. (2001). (b) 

Complete setup in Cohen et al. (1992), including image tracking system 
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Cohen et al. (1992) carried out tensile tests on bovine distal femoral GPs (using bone-GP-

bone unit) as shown in Figure 5-6 (b). The cross section was 7 mm×7 mm and the axis of the 

specimen was parallel to the diaphysis shaft axis. Different inclination angles were observed 

among specimens. However, no significant differences in the elastic modulus or ultimate stress 

were found for specimens with different inclinations. This phenomenon could be explained by the 

axial orientation of collagen fibers. An additional Video Dimension Analyzer (VDA) image 

tracking system was implemented to analyze the deformation distribution among the bony parts 

and GP. The results showed that the GP deformation accounted for the dominant portion of overall 

stretch, so that the surrounding bony structures could be treated as rigid parts in tensile tests. 

The only tensile test on human showed an average tensile modulus of 4.26 MPa and ultimate 

stress of 0.98 MPa, while the ultimate strain was 31% (Williams et al., 2001). Other studies 

involved animal subjects, and a few of them reported the Young's modulus or elastic modulus, as 

summarized in Figure 5-7. The ultimate tensile stresses reported in literature are summarized in 

Figure 5-8. The associated information of experiments (species, anatomical site, age of test objects 

and reference number) is provided along the horizontal axis. 
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Figure 5-7: The Young's modulus of GP from tension tests. The references in order are (1) 

Cohen et al. (1992), (2) Williams et al. (2001), (3) Fujii et al. (2000) 

 

Figure 5-8: Ultimate tensile stress of GP. The references in order are: (1) Cohen et al. (1992), 

(2) Williams et al. (2001), (3) Fujii et al. (2000), (4) Guse et al. (1989), (5) Noble et al. (1982) 

5.2.2. Shearing tests 

Shearing tests can also be divided into two categories, on the whole bone and on bone-GP-

bone units. Chung et al. (1976) collected 25 pairs of femora of children, aged from newborn to 15 
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years 10 months. The samples of proximal femur were excised and all skin and flesh were cleared 

within 48 hours post mortem. For discussion of the effect of the perichondrial fibrocartilaginous 

complex on the shear strength, the complex was removed for half of the samples, and kept for the 

other half as the control group. X-ray was taken before tests to confirm that there were no 

abnormalities in the samples. The fixture used is shown in Figure 5-9 (a). A pin was pushed from 

the anterior to the posterior side of the femur bone at a speed of 2 mm/min (0.033 mm/s). Each 

sample was loaded to failure. 

       

    (a)            (b) 

Figure 5-9: Shearing test by Chung et al. (1976). (a) Experimental setup; (b) Failure patterns 

for different ages. 

A fitting curve was drawn based on the shearing strength for the subjects with different ages, 

depicting the age influence on the GP strength. For the GP at the femoral head from a 10 YO child, 

the structural shearing strength was around 12 kg/cm2 (1.20 MPa). The failure pattern also changed 

with age as shown in Figure 5-9 (b). For younger samples, the crack tended to happen on the 

femoral neck region. For the age group of 9-11 years, the separation of the GP was the main 

damage pattern. For the older samples, the failures tended to be punches just under the pushing 
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rod, rather than cracks at other sites. This study demonstrated that the failure was a combined effect 

of structure and material properties of GPs, cortical bone and trabecular bone and not only 

governed by GP material property. Therefore, this whole bone (with an intact GP embedded) test 

was not be mimicked in the planned tests on porcine samples to depict material properties of GP. 

As mentioned in Section 5.1, a GP has connections with surrounding perichondrial and 

periosteum complex. The effect of surrounding soft tissues around GP needs discussion because it 

may provide extra strength under loading. In the series of tests, Chung et al. (1976) found that the 

influence of surrounding soft tissues is minor in the femoral head shear tests for children older 

than 10 YO. 

Williams et al. (1999) used bovine proximal tibia GPs (bone-GP-bone units) to investigate 

the responses of GPs in shearing loads. The specimen was 6.6 mm×6.6 mm×50-80 mm along the 

longitudinal axis. The shear test setup and fixture is shown in Figure 5-10. The loading direction 

is from anterior to posterior. The two bone segments were gripped as close to the GP interfaces as 

possible. One end of bone was fixed to the actuator and loaded vertically, while the other end of 

bone was fixed to a horizontal sliding stand, which could translate along the bone axis. The effect 

of pre-load compressing the GP was also studied by applying a constant force onto one end of the 

bone, using a hanging weight. 
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Figure 5-10: Test set-up of shearing of bone-GP-bone unit from bovine proximal tibia 

(Williams et al., 1999) 

The mean ultimate shear stress for bovine tibia GPs was 2.14 MPa with a standard deviation 

of 0.64 MPa. It was found in this study that there were significant differences on shearing moduli 

among the different portions at the same GP (i.e. the anterior one third vs. posterior one third). In 

addition, the inclination angle played a big role in the overall shearing strength. It should be noted 

that the inclination angle could be either positive or negative, depending on whether the GP was 

sustaining a compression or tension load during this anterior-posterior shearing. 

5.2.3. Compressive tests 

A number of unconfined compression tests were conducted and reported (Cohen et al., 1994; 

Cohen et al., 1998; Sergerie et al., 2009; Wosu et al., 2012). In Cohen et al. (1994), the GP 

specimens (bone-GP-bone unit) were compressed by a vertical actuator in saline solution to 20% 

strain at three different strain rates: 0.38×10-3, 0.76×10-3 and 1.53×10-3 sec-1. The actuator was held 
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in place after the pre-set compression length until the specimen finished the relaxation completely. 

The force and displacement were measured and recorded. The GP material was assumed to be a 

nonlinear biphasic material (solid matrix and interstitial fluid) with strain-dependent permeability. 

Four parameters were used to define the material properties: the aggregate modulus (HA), Poisson's 

ratio (υ), and two intrinsic permeability coefficients (k0 and M). Curve fitting was done for the 

results from one strain rate to get the optimized parameters and then the material constitutive model 

was verified by matching the test results from the other two strain rates. Further, in their continued 

study, Cohen et al. (1998) added transversely isotropic characteristic to the previous isotropic 

material model, making the GP material to be a transversely isotropic biphasic model (TIBPE). 

More parameters such as the Young's moduli and Poisson's ratios in- and out-of- the transverse 

plane were derived by curve fitting. Sergerie et al. (2009) used the same TIBPE material model to 

investigate different material properties from three zones in a GP (Figure 5-11). 

 

    (a)            (b) 

Figure 5-11: Unconfined compression test of GP. (a) Test schematic. The specimen is a thin 

disc of only GP tissue bathed in Hank's balanced salt solution (HBSS); (b) Experimental 

stress relaxation time histories on the complete GP and 3 zones respectively. (Sergerie et al., 

2009) 
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A series of delicate processes were used to trim the GP specimens by three different zones. It 

was found that the reserve zone had significant higher transverse and axial Young's moduli 

compared to the proliferative and hypertrophic zones. Wosu et al. (2012) extracted the mechanical 

properties at four different growth stages of pig, using the same TIBPE material model and 

experiment settings. Nonlinear variation was found with the changing age. 

The emphasis of this dissertation study is to identify pelvis and lower extremity responses in 

a 10 YO child. Because these compression tests had distinct loading conditions from pedestrian 

lateral impacts and the loading rates were also below those of typical car-to-pedestrian impacts, 

compression tests are not in the scope of the test design in this dissertation study. However, they 

can provide more understandings about the anisotropic and viscous features of GP, especially the 

values of the Poisson's ratio, which were rarely reported in other GP experimental studies. 

The behavior of GP in compression tests showed transversely isotropic characteristics. The 

studies performed on animal samples show that the compression modulus was in the range of 0.3-

1.1 MPa in the axial direction and 4.6-10.6 MPa in the transverse direction (Cohen et al., 1992; 

Cohen et al., 1994; Cohen et al., 1998; Fujii et al., 2000; Sergerie et al., 2009). 

5.2.4. Summary of GP tests 

In summary, a general range of the Young's modulus (or equivalent modulus) and ultimate 

strain were abstracted from the experimental studies. However, the mechanical results from tests 

using human subjects are very limited. Only two studies using human femoral head GP were found. 

Although there are a larger number of tests for material properties of GPs from animal subjects, 
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no systematic investigation is available covering GPs from different sites of the same species of 

animal with the same age. Additionally, the tests of animal GP samples are mostly conducted at a 

quasi-static or low strain rate, which is not preferred for studying loading conditions such as traffic 

accidents. As a result, for better GP finite element modeling, more animal tests at higher loading 

rates are needed. If no more data of human subjects are discovered in the near future, the animal 

data could play an important role for estimating the human GP property, by applying some 

correlation method between human and animal subjects as previously discussed. 

5.3. GROWTH PLATE FE MODELING STUDIES IN LITERATURE 

Compared to the medical researches of the GP, which emphasize epidemiology, diagnosis and 

treatments, computational modeling of GP is not so widely investigated. To develop a clear strategy 

for GP modeling, it is necessary to review the existing FE modeling studies for GPs. The related 

studies are summarized as follows. 

Sylvestre et al. (2007) included GP in a lumbar spine model, featuring three layers 

representing the three zones for each GP. The material is represented by a simple elastic model 

with the Young's modulus adopted from Cohen et al. (1998). The thickness proportions of three 

zones are 10% (reserve), 36% (proliferative) and 54% (hypertrophic), respectively. 

During the development of the 10 YO neck model at WSU, GPs were modeled as single layer 

of elastic bricks in Dong et al. (2013). Fishkin et al. (2006) modeled the femoral head GP to study 

the disease of slipped capital femoral epiphysis (SCFE). The GP was modeled as three adjacent 



59 

 

 

plates, with a radius of curvature of 240 mm. Three zones had thickness of 0.3 mm, 1.2 mm and 

0.3 mm, respectively. A lateral wall was built to mimic the ring of Lacroix, which is the mechanical 

support at periphysis. The GP was assigned a Young's modulus of 4 MPa. For the perichondral 

layers and the Lacroix, the Young's modulus was assumed 250 MPa and 775 MPa (referring to 

trabecular bone), respectively. The Poisson's ratio was assumed to be 0.49. 

Sairyo et al. (2006) developed a lumbar spine FE model with GPs (single layers). The Young's 

modulus was assumed to be 10 MPa, and Poisson's ratio was 0.40, which was originally taken 

from the experimental study of Konz et al. (2001) on chacma baboon GPs. Ribble et al. (2001) 

employed the FE method to study the proximal tibia stress pattern for children from new-birth to 

eight years of age. The GPs at femoral head and greater trochanter were modeled as a continuous 

single GP. The Young's modulus was assumed to be 134 MPa and Poisson's ratio was 0.30. In the 

development of a 6 YO pedestrian FE model by Okamoto et al. (2003), the GP was included in the 

model, surrounding the second ossification center and the epiphyseal cartilage, but neither the 

geometric details nor the material properties of GP were reported. Gómez-Benito et al. (2007) 

studied the damage pattern of GP for SCFE patients. They made a thin layer of 1 mm thickness to 

connect the two sides of bone at the femoral head. Two models for a 14 YO boy with SCFE were 

developed and the GPs were modeled as breakable interfaces similar to a bone-cement bonding. It 

took into account that both shear stress and tensile stress and its parameters were fit based on the 

mechanical experimental studies. 
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To sum up, these literatures provide examples of how to reconstruct the GP in FE models. 

Most of the studies used simplified structures ignoring detailed undulations of the GP. Most of the 

studies modeled the GP structure using brick (solid) elements. The material properties were 

roughly estimated or referring to animal experiments. A few modeling studies involved the 

surrounding soft tissue of GP. Some studies discussed the failure criterion and damage pattern. 
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CHAPTER 6. GROWTH PLATE EXPERIMENTAL STUDY 

Reviews summarized in the previous chapter indicated that the experimental data obtained 

from human GPs were very limited. Additionally, among the GP experimental studies conducted 

on animal subjects, few has investigated the strain rate effects or the differences among the GPs 

taken from different anatomic regions. To better understand the GP mechanical properties for more 

accurate modeling the human GPs, a series of tensile and shearing experiments on bone-GP-bone 

units of piglets were conducted. Firstly, a number of tensile tests were conducted on the femoral 

head GPs, mimicking the tensile tests on human subjects performed by Williams et al. (2001). The 

purpose of this series of experiments was to determine a conversion factor to correlate the 

mechanical properties of porcine and human GPs. Additional tensile tests were then conducted on 

three anatomic regions at the lower limbs (femoral head, distal femur, and proximal tibia) at 

different loading rates. Statistical analysis revealed that the effects of these two factors (location 

and strain rate) to the GP mechanical properties in tensile loads and shearing loads, which are of 

interest for pedestrian impact studies. Using the conversion factor from the tensile tests at the 

femoral head GP, the porcine GP material properties could be transferred to represent those of 

human 10 YO children. 

6.1. METHODS 

6.1.1. Test subject selection 

Piglets were chosen as the test surrogates for human subjects. With respect to the age of pig 

which is correlated to 10 YO human, Franklyn et al. (2007) suggested that 6-month-old pigs/piglets 
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were comparable to 10 YO children. Discussions with personnel at the local pig farm, 

slaughterhouse, and distributor revealed that 20- week piglets were more suitable in terms of sexual 

maturity since the properties of GP are highly relevant to their growth phases (Celarek et al., 2014; 

Williams et al., 2001). The consultations suggested that 20-week-old (20 WO) piglets would be 

equivalent to young adolescence, whereas a 6-month one would correspond to late age of puberty. 

For this reason, the surrogate selected for the current experimental study was targeted on 20 WO 

piglets. Because the proposed human PLEX FE model is used to simulate pedestrian impacts 

initiated at the lower limbs, all the tests were conducted on the hind legs of piglets. 

A power analysis was conducted to decide the minimum sample size. It was based on a 

precision criterion, considering the statistical distribution of the obtained measurements and the 

desired confidence interval. Equation 6-1 was used to estimate the minimum sample size by 

iteration (Zar, 2010): 

𝑛 =
𝑠2

𝑑2 [𝑡𝛼(2),𝜈]2         6-1 

, where n is sample size, s2 is the sample variance (e.g. for tensile modulus), estimated with 

υ = n-1 as the degrees of freedom, d is half of the desired interval with a confidence of 1-α 

(normally 95%), 𝑡𝛼(2),𝜈 is the two-tailed critical value of Student's t distribution. Based on the 

pilot test on three piglets, the average Young's modulus of the proximal femur was derived for each 

piglet. The mean value is 11.03 MPa, with a variance of 5.78 (MPa)2 and the d was set as 4.0 MPa. 

If n0 is assumed as 4, the t distribution t0.05(2),4-1=3.182. Bringing these values into the Equation 6-
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1, the calculated n equals to 3.66, which is below the original estimated sample size of four. Thus, 

a sample size n of four (four piglets) is considered acceptable. 

6.1.2. Specimen preparation and measuring 

The hind legs from the 20 WO piglets, including the femur, tibia, fibula and the knee joint, 

were harvested with the flesh and skin removed at a local slaughterhouse. The legs were shipped 

in iceboxes to the laboratory within 24 hours after death. Upon arrival of the legs, the capsule and 

ligaments around the knee joint were dissected to isolate the femur and tibia. A variable-speed 

band saw (14" Tradesman Model 8201, Wilton Corporation, TN, US) was used to cut the femur 

and tibia into two parts across the mid-shaft. The same saw was further used for cutting the isolated 

femur and tibia into slices, as shown in Figure 6-1 (a). During the cutting, the room temperature 

was kept between 20° C and 30° C. Normal saline (0.9%) was sprayed to the cutting site to avoid 

overheating. 

Figure 6-1 (b) shows a distal femur clamped in a specimen preparation fixture. Depending on 

the width of the femoral condyle, a total of 4 to 6 parasagittal slices, each with a thickness of 5 

mm were cut. Guiding blocks and holding mechanisms were used to control the cutting to assure 

that all slices are parallel to the mid-sagittal plane. Figure 6-1 (c) shows a cut-off view of slice that 

consists of the epiphysis, GP, and metaphysis with the GP located near the center of the slice. Each 

parasagittal slice was further dissected into 3 to 5 bone-GP-bone units (also called as “specimens” 

hereafter), each with nominal dimensions of 5 mm×5 mm×40 mm (width × depth × length). These 

specimens were cut from the slice in a manner that the long axis of the specimen was parallel to 
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the longitudinal axis of the whole bone. For the GPs at femoral head, the axis of the femoral neck 

was treated as the longitudinal axis. 

           

   (a)        (b)          (c)            (d)  

Figure 6-1: Bone-GP-bone unit cutting descriptions. (a) Cutting equipment: a vertical band 

saw; (b) A schematic diagram of the fixture and guiding blocks used for cutting a distal femur 

into sagittal slices; (c) A schematic diagram showing how a parasagittal slice was held and 

cut; (d) A cut bone-GP-bone unit, i.e. a specimen 

The raw specimens were qualitatively screened using following criteria: 

• The GP is continuous and intact with relatively uniform thickness 

• The surfaces of the specimen are smooth and straight 

• The bone segments are long enough for the fixtures to hold. 

The distal tibia was excluded from this experimental study due to the complicated geometry 

of the articular surface and the consequential insufficient specimen harvested. They were labeled 

with sequential numbers and additional marks to denote the specimen locations and orientations. 

High-resolution photos of the specimens were taken using a digital camera (D80 DSLR, Nikon, 

Japan) with a precision ruler positioned next to each specimen. After these photos were taken, the 
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specimens were wrapped in cotton pads soaked with saline and then stored by anatomical regions 

in a plastic container with divided compartments. The container was sealed and stored in a -20˚ C 

freezer until the day before testing. The specimens were thawed in room temperature for 12 hours 

prior to the testing, and then kept in the container in a portable cooler until the testing. During the 

tests installing and loading, saline solution was sprayed to the specimens to avoid being dried out. 

Specimen measuring 

 Digitizer software KLONK Image Measurement (Image Measurement Corp., WY, U.S.) 

was used to draw the reference lines within the software, and the distances and angles were 

measured, as shown in Figure 6-2. 

 

Figure 6-2: Specimen measurement: An anterior view of one specimen with a ruler positioned 

next to it 

The procedures showing how measurements were taken and how they were used to calculate 

the geometric parameters for one specimen are described in Table 6-1. The anterior width was 

defined as the average distance measured from the two width lines crossing the most proximal and 

distal boundaries of GP on the anterior surface (Figure 6-2). The same procedures were used to 

measure the posterior width. The specimen width was then calculated by averaging the anterior 
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and posterior widths. The specimen depth was measured and calculated in the same manner, but 

on the lateral and medial surfaces. 

Table 6-1: Calculations of various dimensions measured on each specimen 

Original 

measurement 

Intermediate 

measurement 

Final parameter Function of the final 

parameter 

Anterior width: wa Specimen width: 

w=(wa+wp)/2 Area: 

A=w×d 

For calculation of 

stress:  

σ=F/A (F: tensile force) 

τ=Q/A (Q: shear force) 

Posterior width: wp 

Lateral depth: dl Specimen depth:  

d=(dl+dm)/2 Medial depth: dm 

Anterior inclination 

angle: θa 
N/A 

Inclination angle 

(lateral-medial 

direction):  

θ=(θa +θp)/2. 

For specimen screening 
Posterior inclination 

angle: θp 

GP thickness at five 

positions (ti, 1 ≤ i ≤ 

5) 

N/A 
GP thickness:  

t=Σ(ti)/5 

For calculation of 

strain: 

ε=δ/t (δ: tensile 

displacement) 

γ=Z/t (Z: shear 

displacement) 

Coordinates of the 

highest and lowest 

points on anterior 

surface: xa1, xa2 

Anterior Maximum 

Height: Rt,a =|xa1-xa2| Normalized 

Roughness 

Rn=max(Rt,a/wa, 

Rt,p/wp) 

For specimen screening 
Coordinates of the 

highest and lowest 

points on posterior 

surface: xp1, xp2 

Posterior Maximum 

Height: Rt,p =|xp1-xp2| 

A GP inclination line on the anterior surface is drawn by connecting the endpoints (at the 

lateral and medial margins) of the GP (dotted line in Figure 6-2). The inclination angle on the 

anterior surface (θa) was measured as the angle between the inclination line and the width line. A 

zero degree indicates that the inclination line was perpendicular to the longitudinal axis of the bone. 
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The GP thickness was calculated by averaging the longitudinal measurements at five locations 

along the GP interface (respectively at the side margins, the center, and the first and third quarters). 

The anterior and posterior Maximum Heights (Rt,a and Rt,p) were defined as the distance between 

the highest (most proximal) point and the lowest (most distal) point at a boundary line of the GP, 

which has been projected to the specimen long axis (Young and Budynas, 2002). They were 

calculated from the anterior and posterior surfaces, respectively. The Normalized Roughness, Rn, 

was calculated as the larger one of Rt-a and Rt-p divided by the respective width (Kishida and Uesugi, 

1987) for the lateral-medial shearing test. 

6.1.3. Experimental design 

The influencing factors associated with strain rates and anatomic regions were taken into 

account in the experimental study. Three levels of strain rates, each with 20 times increments, were 

chosen. The approximate loading speeds in the tensile and shearing tests were around 0.08 mm/s 

(low), 0.16 mm/s (medium), and 3.2 mm/s (high). The actual testing speed was further adjusted 

according to the average GP thickness of each anatomic region from a specimen to assure that the 

loading rates in the same strain rate group were close to each other. Due to the compliance of the 

testing system, the actual strain rates applied to the GPs varied by the specimen’s stiffness. As 

such, the loading speeds were selected referring to the settings used in previous studies, and more 

details are elaborated in Section 6.5.1. The femoral head, distal femur, and proximal tibia were 
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used to assess the effect of different anatomic regions. From each anatomic region of one piglet, 

force and deflection time histories were obtained at three different strain rates. 

After the qualitative screening during the measuring stage, additional quantitative screening 

was conducted before the tensile tests and shearing tests were conducted. For the tensile test, the 

additional screening criteria were the inclination (θ ≤40˚) and Normalized Roughness (Rn ≤1.0). 

These criteria were less strict regarding the GP shape factors compared to those for shearing tests 

because it was found by Cohen et al. (1992) that the angle of GP in a bone-GP-bone specimen 

would not significantly affect the tensile properties. For the shearing tests, the screening criteria 

were the inclination (θ ≤20˚) and Normalized Roughness (Rn ≤0.5). In this manner, the effects 

of the roughness and inclination in the shearing tests could be reduced compared to the specimens 

in the tensile tests. 

Tests with the rupture occurred away from the GP were excluded from the analysis, because 

the results from those tests may not be related to the properties of GP. Finally, results from 65 

tensile tests and 48 shearing tests were available for further analyses. The number of tests available 

for data analyses are shown in Table 6-2 and Table 6-3 for tensile and shearing tests, respectively. 

Table 6-2: The numbers of specimens tested in tension 

       Strain rate 

Anatomic region 
low medium high Subtotal 

Femoral head  5 7 5 17 

Distal Femur 6 7 8 21 

Proximal tibia 10 8 9 27 

Subtotal 21 22 22 Total: 65 
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Table 6-3: The numbers of specimens tested in shear loading 

       Strain rate 

Anatomic region 
low medium high Subtotal 

Femoral head  2 7 7 16 

Distal Femur 4 5 5 14 

Proximal tibia 6 5 7 18 

Subtotal 12 17 19 Total: 48 

 

6.1.4. Test setup and instrumentation 

Tensile test 

The test fixture was designed in a manner to mimic the tensile tests on human subjects by 

Williams et al. (2001). A mini Instron (model 8841, Instron, MA, US) was used to provide the 

loading. Two grip pairs were used to hold the bony portions of a bone-GP-bone specimen, at 

locations that were as close to the GP as possible. The upper grip pair was connected to the actuator 

of the mini Instron through a threaded rod. Nuts were applied to prevent loosening or slippage to 

the actuator and to the upper grip pair. The lower grip pair was connected to a load cell in the same 

manner. The load cell (model MDB-25, Transducer Techniques, CA, US), with a range of ±111.2 

N, was rigidly fixed to a movable extension plate that was constrained onto the Instron table by 

pressing bars and bolts as shown in Figure 6-3. 
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Figure 6-3: Porcine GP tensile test setup at the specimen aligning stage 

When mounting the specimen, all screws and bolts were in position but loosened so that the 

upper and lower grip pairs could be properly aligned. The actuator was lifted with the front half of 

the upper grip pair opened to allow the specimen insertion into the lower grip pair first. The 

actuator and the upper grip pair was then moved slowly in the downward direction along with 

horizontal translation and axial rotation of the lower grip pair until the final alignment was 

achieved. Rigid plates were used to ensure that the upper and lower grip pairs were properly 

aligned. The edges of two grip pairs were assured to be close to the GP, but not overlapping the 

GP line. Afterward, the upper pair was clamped and all the screws and nuts were tightened 

carefully to prevent the specimen from damaging. 

Like the tensile tests conducted by Williams et al. (2001), a digital camera with high definition 

(D80 DSLR, Nikon, Japan) was used to track the motion of the actuator, failure mode of the 

specimen, and any possible slippage of the specimen within the grips. A test showed any slippage 
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during the loading was considered as failure and the corresponding results were discarded. The 

data collection and processing was accomplished by using the hardware and software system 

TDAS-Pro (Diversified Technical Systems Inc., CA, US), which is a portable data collection unit. 

The sampling rates for the low-, medium-, and high-speed tests were 200 Hz, 500 Hz, and 10 kHz, 

respectively. 

An additional series of static tensile tests with only the bony segment (trabecular bone) held 

in position was conducted to measure the intrinsic stiffness in the loading path of the testing system. 

Because under tensile loading, the deformation would not only happen onto the GP, but also to the 

Instron frame, the fixture blocks, the connecting bolts, the load cell internal structures, and the 

bony segment. A stepwise displacement was manually programmed through the Instron servo-

hydraulic controller and the corresponding forces ranged from -30 to 100 N. The negative force 

(compression) was also covered to take into account the initial force caused by specimen 

installation. The force-displacement data points were recorded and plotted. The calculated system 

stiffness was 345.4 N/mm as derived by a linear curve fitting procedure, with a coefficient of 

determination (R2) larger than 0.99. Using these data, the actual deformation of the GP specimen 

could be calculated for later stress-strain relationship calculation. 

Shearing test 

The Instron (model 8500, Instron, MA, US) was chosen to conduct the shearing tests. This 

machine provided easier interfaces than the mini-Instron (model 8841) when installing the 
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shearing test fixtures and larger load cell. The test setup had a similar concept as that reported by 

Williams et al. (1999) (see Figure 6-4). The specimens were positioned horizontally and the 

shearing force was provided by a vertically downward motion. 

The right side of the bony segment of a specimen was held by a right gripping pair fixed to a 

self-lubricated roller bearing sliding carriage runs on two guiding tracks (McMaster-Carr Supply 

Co. OH, US). The snugness of the sliding mechanism was adjustable and the movement of the 

carriage was restricted to the longitudinal axis of the bone, with a low coefficient of friction. An 

adaptor plate connected the track guiding system to a load cell, which was rigidly mounted to the 

Instron table. This load cell was made by Robert Denton at Wayne State University, with a 500 lb. 

(±2223 N) capacity, to record the force data. 

 

Figure 6-4: Porcine GP shearing test setup. The right grip pair is adjustable along the long 

axis of the bone-GP-bone specimen to allow proper positioning of the test specimen; The left 

grip pair is rigidly mounted to the vertical actuator of the Instron 
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The left (per the orientation in Figure 6-4) side of the bony segment was held by the left grip 

pair, which was rigidly mounted to the actuator of the Instron machine. During the downward 

motion of the actuator, the left segment of specimen was lowered vertically, while the right 

segment had no motions in all directions except the direction along the tracks. The edges of the 

grip pairs were set to be close to the GP interface, and the bolts and nuts were used for tightening 

the grips after the final alignment. 

The sampling rates for the low-, medium-, and high-speed tests were selected to be 200 Hz, 

500 Hz, and 10 kHz, respectively. The shearing deformation was assumed to be zero when a cut-

off force of 1.0 N was reached so that the subtle clearance of the sled-track system can be 

compensated. The load cell was mounted on the bottom rather than on the actuator so that the 

inertia effect could be eliminated. The center line of load cell was aligned to the center of GP, thus 

the influence due to offset loading could be neglected. 

As described in the tensile tests, the same image tracking system and data acquisition system 

were implemented. A series of static shearing tests with the two grip pairs tightly holding a bony 

segment were conducted to investigate the intrinsic stiffness of the test system. The stepwise 

displacement was manually applied through the Instron controller and the corresponding forces 

ranged from -30 to 200 N. The system stiffness was determined to be 693.6 N/mm through linear 

curve fitting, with a coefficient of determination (R2) larger than 0.99. Therefore, the actual 

shearing deformation of GP could be deduced for later shear stress-strain relationship calculation. 
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6.1.5. Selection of stress – strain scales 

Three different scales of stress-strain relationship: true stress-true strain (true scale), 

engineering stress-engineering strain (engineering scale), and engineering stress-finite strain 

(finite scale) were mentioned in various parts of this dissertation. The true scale can directly 

describe the material properties and is preferred for material constitutive modeling for more 

compliant materials. Many material models in commercially available FE codes are referring to 

true stress-true strain relationship. When the true scale is used, a direct material modeling 

methodology is applicable. In this method, the parameters of a material law were solved by 

comparing the true stress-strain curves from tests to the theoretical behaviors of the constitutive 

model. The engineering scale was most commonly used in the GP experimental studies. It can be 

obtained directly from the mechanical experiment, but it was limited to the small-deformation 

range to approximate the true stress-strain relationship of a material. 

In the current study, the engineering strain could be as high as 0.40 in tensile tests, and as 

high as 1.0 in shearing tests, which exceeded the small-deformation range. Efforts were first made 

to transfer the stresses and strains from engineering scale to true scale, so that a direct material 

modeling could be achieved. For example, in a uniaxial tensile test, the transformation could be 

done by Equation 6-2. 

𝜎𝑡𝑟𝑢𝑒 = 𝜎(1 + 휀)     휀𝑡𝑟𝑢𝑒 = ln(1 + 𝜖)         6-2 

, where 𝜎 and 𝜖 are the engineering stress and strain, respectively. 휀𝑡𝑟𝑢𝑒 is the true strain, 

also known as logarithmic strain, which is defined as the accumulation of instantaneous increments 
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divided by the real-time length. 𝜎𝑡𝑟𝑢𝑒 is the true stress, defined as the load divided by the real-

time cross-sectional area (Young and Budynas, 2002). Equation 6-2 is valid with two preconditions: 

1. The stress is homogenously distributed in the cross-sectional plane and the deformation is 

homogeneous along the specimen length. 2. The volume of the material is unchanged, i.e. the 

Poisson’s ratio is close to 0.5 and the cross-sectional area can be determined from the real-time 

length. For the current experimental study on GP specimens, the first precondition was not fulfilled 

because of the boundary condition limitation; the second precondition was unknown since the 

Poisson’s ratio has not been measured. However, some literature has suggested that GP is not 

isotropic material and Poisson’s ratio was expected to have different values in different directions 

(Sergerie et al., 2009; Villemure and Stokes, 2009). For example, Konz et al. (2001) found that the 

Poisson’s ratio was 0.4 from chacma baboon GPs shearing tests; Sergerie et al. (2009) found that 

the out-of-plane Poisson’s ratio was 0.08 in unconfined compression tests; Another study by Wosu 

et al. (2012) yielded that the Poisson’s ratio at the same direction was 0.06. So, it was implied that 

Poisson’s ratio for GP did not had a simple reference value and Equation 6-2 would not be 

applicable in the current study. 

As a result, an indirect material modeling approach was used. In this method, FE models with 

the same bone-GP-bone structures as a specimen were built to mimic the tension and shearing 

loadings under the same boundary conditions as in the tests. Engineering stress and engineering 

strain were calculated from real-time externally applied force and displacement calculated from 

the simulations (dividing the force by the original area to calculate the stress and dividing the 
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deformation by the original length to calculate the strain, respectively). They were compared to 

the stress-strain captured from the tests in the same engineering scale. A set of optimization 

processes was then carried out to minimize the differences between the stress-strain curves from a 

test and the corresponding simulation. More details of the optimization can be found in Section 

7.1. All the measurements were kept consistent in the same engineering scale. 

Finite scale was not commonly used in GP experiments, but it was used in Williams et al., 

2001 who tested GPs from human subjects. For later correlation of human-porcine GP material 

properties, the engineering strains in the porcine tests were transferred to finite strain, using the 

Equation 6-3: 

휀𝑓 =
1

2
(𝜆𝑠

2 − 1) ,   𝜆𝑠 = 1 + 휀        6-3 

, where 휀𝑓 is the finite strain, 𝜆𝑠 is the stretch ratio, i.e. the deformed length divided by the 

original length. 

To sum up, true stress-true strain was favorable for direct material modeling, but it was not 

applicable for current GP experiments. Engineering stress-finite strain was only used in a few 

experimental studies, including the key literature by Williams et al. (2001), whose data were taken 

as the reference for porcine-human GP correlation. A temporary transformation from engineering 

scale was performed to do this correlation. Engineering stress-engineering strain scale was finally 

chosen for current study. An indirect material modeling method was adopted accordingly. 
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6.1.6. Data acquisition and processing 

The tensile and shearing forces were measured by two respective load cells, while the tensile 

and shearing displacements were measured by the two Instron systems. TDAS-Pro system was 

used for data acquisition. An electrical relay was used to trigger the force and displacement data 

acquisition simultaneously. The original binary data was exported to MS Excel for data processing 

by using TDAS Control software (Diversified Technical Systems Inc., CA, US). 

In tensile tests, the load cell force (F) and actuator displacement (δ) time histories were 

measured. Given the static system stiffness (K0-t, 354.4 N/mm) obtained previously, and the 

dimensional measurements: the average GP thickness (t) and the specimen cross-sectional area (A) 

of the specimen, the engineering tensile stress (σ) and strain (ε) were calculated as shown in 

Equations 6-4 and 6-5, respectively: 

𝜎 =
𝐹

𝐴
            6-4 

휀 = (𝛿 −
𝐹

𝑘0−𝑡
) /𝑡          6-5 

A typical engineering stress-strain curve is shown in Figure 6-5. A linear fit covering a range 

from 20% to 80% of the maximum stress was conducted to derive the tensile modulus (E) for each 

tensile test. The coefficient of determination (R2) of each fit was also recorded to evaluate the 

goodness of the fit. The ultimate tensile stress (σmax) and ultimate tensile strain (εmax) were defined 

as the stress and strain when the stress arrived at the peak. 
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Figure 6-5: A typical engineering stress-strain curve from a GP tensile test. The calculation 

of the elastic modulus, ultimate stress, and ultimate strain were illustrated. Typically, there 

was a toe-in region followed by a larger linear segment. A decrease in slope, when the stress 

was approaching the ultimate point, was not always observed 

For the shearing tests, the data processing procedures were similar to the tensile tests. The 

actuator force (Q), displacement (Z), and the system stiffness (K0-s=693.6 N/mm) were used to 

determine the shear stress and strain. As in the tensile tests, the GP thickness (t) and cross-sectional 

area (A) of the specimen were taken from the measuring processes. The engineering shear stress 

and shear strain were calculated as shown in Equations 6-6 and 6-7, respectively. 

𝜏 =
𝑄

𝐴
            6-6 

𝛾 = (𝑍 −
𝑄

𝑘0−𝑠
) /𝑡          6-7 

Similar to the tensile stress-strain curves, a typical shear stress-strain curve had a toe-in region 

and large linear portion. The curve for each test was processed using the same method in the tensile 

tests to derive the shear modulus (G), ultimate shear stress (τmax), and ultimate shear strain (γmax) 

for each specimen. 
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6.1.7. Human-porcine GP correlation 

To the best of the author’s knowledge, the tension study on human femoral head GPs 

conducted by Williams et al. (2001) was the only available experimental study on human subjects. 

Therefore, the results of the tensile tests on the porcine femoral head GPs from the current study 

were compared to correlate animal tests to human test results. For the tests on human specimens, 

there were 8 specimens tested, 7 of which were from a 14 YO child and the other one was from an 

8 YO child. These data provided, so far, the best estimation of GP tensile properties for 10 YO 

children. It was noticed that the strain formulation in that study was based on finite (large) strain, 

and the definition was adopted from an early growth plate experimental study reported by Cohen 

et al. (1992). The transformation function from engineering strain to finite strain was shown in 

Equation 6-3. 

From the data obtained from the porcine femoral head GP tensile tests at the low strain rate, 

the average tensile modulus (Ep), ultimate stress (𝜎𝑚𝑎𝑥,𝑝), and ultimate finite strain (휀𝑚𝑎𝑥,𝑝) were 

elicited. The mean tensile modulus for human (Eh) was 4.26 MPa (1.22 MPa), the mean ultimate 

tensile stress 𝜎𝑚𝑎𝑥,ℎ was 0.98 MPa (0.29 MPa), and the mean ultimate finite strain 휀𝑚𝑎𝑥,ℎ was 

31% (7%). By assuming that the ultimate strain remined constant, a modulus conversion factor 

X could be used to scale the tensile modulus and ultimate tensile stress from porcine tests to human. 

This assumption was based on the finding by Williams et al. (2001) that the ultimate tensile strain 

was not sensitive to varying GP inclination angles and strain rates, but the tensile modulus and 



80 

 

 

ultimate stress were. Similar trends were found in the current porcine tests and would be described 

in detail in Section 6-2. 

A normalized root mean square error (NRMSE), shown in Equation 6-8, was used to measure 

the difference between the two sets of material property parameters. This index was adopted for 

the optimization purpose in literature, such as those reported by Jin (2009) and Sergerie et al. 

(2009). 

𝑁𝑅𝑀𝑆𝐸 =
√(

𝑋∙𝐸𝑝−𝐸ℎ
𝐸ℎ

)
2

+(
𝑋∙𝜎𝑚𝑎𝑥,𝑝−𝜎𝑚𝑎𝑥,ℎ

𝜎𝑚𝑎𝑥,ℎ
)

2

+(
𝜀𝑚𝑎𝑥,𝑝−𝜀𝑚𝑎𝑥,ℎ

𝜀𝑚𝑎𝑥,ℎ
)

2

3
  6-8 

Using the equation, the best conversion factor X would be the one with the minimal NRMSE. 

A continuous change of NRMSE was plotted using Origin 8.1 (OriginLab, MA, US) while X was 

changed continuously. As a result, the optimal X (Xopt) associated with the minimum NRMSE was 

identified. This conversion factor, in the engineering stress-finite strain scale was assumed to be 

valid when transferring the porcine mechanical properties in engineering scale (E, σmax, εmax and 

G, τmax, γmax) to human GPs. Besides, the stress-strain curves in engineering scale obtained from 

the porcine specimens were accordingly transformed to human GP stress-strain relationships. 

Further material optimization processes would keep using the transformed curves as the 

optimization targets for the human GP material modeling. 
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6.1.8. Statistical analysis 

Statistical analysis was conducted using SPSS v.24 (IBM, NY, US). Descriptive basic 

statistical analysis (mean, standard deviation) was performed for the major parameters, the GP 

thickness, strain rate, tensile properties (E, σmax, εmax) and shear properties (G, τmax, γmax). 

Analysis of Variation (ANOVA) was conducted to investigate the effects of the anatomic 

region (three categories: femoral head, distal femur, and proximal tibia) and strain rate (low, 

medium, and high) on the material properties related to tensile and shear parameters (E, σmax, εmax 

and G, τmax, γmax). It should be noted that the piglet from which a specimen was taken from also 

played a factor in the tests, because in each factorial combination of strain rate and anatomic region, 

the specimens were not fully random and independent but relevant because some of them were 

from the same piglet (block). If the repeating appearances of the piglets were ignored, the result 

would be biased. As a result, Randomized block ANOVA was selected as the statistical model used 

in this study. 

In this Randomized block ANOVA, the main effects and interacting effect of the two 

independent variables, "anatomic region" and "strain rate", were tested, while the dependent 

variables are the six parameters obtained from tensile and shearing tests. The independent variables 

were categorized, while all the dependent variables were continuous and in numeric format. The 

piglet subject was treated as the block factor and only its main effect was considered in the 

statistical model. Post Hoc analysis using Scheffe method was conducted to do pairwise 

comparisons to check the differences among the levels of a factor. If p ≤ 0.05, the compared pair 
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(two levels) was considered as significantly different to each other. Otherwise, they could be 

pooled for a larger number of specimens. 

6.2. RESULTS 

6.2.1. Test results overview 

Strain rates 

As mentioned in Tables 6-2 and 6-3, 65 specimens were included in the tensile property study 

and 48 specimens in the shearing property study. Due to the system compliance issue mentioned 

in Section 6.1.5, the actual strain rates varied with the stiffness of the GP for each specimen, hence, 

the individual strain rate within a group varied slightly around the preset value. Table 6-4 shows 

the calculated strain rates falling into three categories: low, medium, and high strain rates, for both 

tensile and shearing tests. Statistically, each strain rate level was significantly different from the 

other two levels (p < 0.001). 

Table 6-4: actual strain rates in tensile and shearing tests 

Loading 

mode 

Strain rate 

level 

No of 

specimens 

Mean train rate 

on GP (s-1) 

Standard 

Deviation (s-1) 

Tensile 

low 21 0.0053 0.0017 

medium 22 0.094 0.038 

high 22 1.907 0.776 

Shearing 

low 12 0.0085 0.0015 

medium 17 0.163 0.030 

high 19 3.037 0.415 
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GP Thickness 

The thicknesses of GP in each specimen were measured and the mean values were plotted by 

region as shown in Figure 6-6. The average thickness was 0.829 mm ( 0.159 mm) for the femoral 

head GPs, 0.918 mm ( 0.169 mm) for distal femur GPs, and 0.829 mm ( 0.157 mm) for proximal 

tibia GPs. A series of Student’s t-tests were conducted and the results showed a significant 

difference between the GPs located in the femoral head and distal femur (p=0.029), distal femur 

and proximal tibia (p=0.017), whereas GPs located in the femoral head and proximal tibia had 

similar mean thickness values (p=0.994). 

 

Figure 6-6: GP thickness measurement results. A “*” marking indicates a significant 

difference (p <0.05). (FMR HD: femoral head; Dist. FMR: distal femur; Prox. TBR: proximal 

tibia) 

Failure pattern 

After examining the fractured post-tensile-test specimens (excluding the cases with fractures 

occurred on the bony portion), it was found that 90% of specimens had most of the GP tissues 
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remained on the epiphysis, based on visual examination and HD camera image analysis. As 

previously shown in Figure 5-2, the hypertrophic zone is adjacent to the calcified trabecular bone 

of metaphysis. Based on these observations and the layered structure of a GP, it was deduced that 

most of the failures happened in the hypertrophic zone, where the chondrocytes began to enlarge. 

This was consistent with the fact that the strength is weaker near the hypertrophic zone because of 

the enlarged chondrocytes and lower density of the inter-territorial matrix (Cohen et al., 1992; Fujii 

et al., 2000; Peterson, 2007). However, no scanning electron microscopy (SEM) or histologic 

section analysis was performed in the current study, since the focus was placed on the mechanical 

behaviors of the GP. Consequently, the author was not able to observe any similarities or variations 

compared to other published studies, such as the chondral bundles got pulled out of the matrix as 

described in the work of Williams et al. (2001), or a clear separation between hypertrophic zone 

and proliferating zone as reported by Fujii et al. (2000). 

The failure modes observed after the shearing tests were similar to those after the tensile tests, 

but a higher probability of involving trabecular bones was noticed, especially when the roughness 

was large. After excluding these cases, the separation near hypertrophic zone was observed for 

most of the specimens. For some cases with more undulations, the cleavage plane passed through 

the reserve zone. These findings were consistent with the failure mode reported in the literature 

(Lee et al., 1985; Williams et al., 1999), although no detailed SEM or histologic image was 

provided in the current study. 
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Linearity 

The tensile and shearing moduli were obtained from the tensile or shearing engineering stress-

strain curves. The linear curve fitting of the curve segment from 20% to 80% of the ultimate stress 

resulted in an R2 of 0.995 for tensile tests, and 0.992 for shearing tests, which demonstrated the 

high goodness of fit, i.e. the selected segments of the tensile and shearing stress-strain curves 

showed good linearity. 

6.2.2. ANOVA results 

Factorial effects comparison 

The between-subject effects on tensile properties (E, σmax, εmax) and shearing properties (G, 

τmax, γmax) were tested using the Randomized block ANOVA. The p values for all independent 

variables are summarized in Table 6-5, where the critical significance level (α) is 0.05. 

Table 6-5: P values calculated using the Randomized-block ANOVA on the three tensile and 

three shearing mechanical properties  

Dep. Variables 

 

Indep. variables 

Tensile 

modulus 

Ultimate. 

tensile stress 

Ultimate 

tensile strain 

Shear 

modulus 

Ultimate 

shear stress 

Ultimate 

shear strain 

Strain Rate 0.020* <0.001* 0.555 0.001* 0.021* 0.918 

Anatomic Region 0.030* <0.001* 0.631 0.422 0.007* 0.729 

Region * Strain Rate 0.602 0.723 0.885 0.998 0.939 0.990 

* indicates that the p values < 0.05. 

For the tensile properties, the strain rate was a significant factor for the tensile modulus 

(p=0.02) and ultimate tensile stress (p < 0.001), while the anatomic region was a significant factor 
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for the tensile modulus (p=0.03) and ultimate tensile stress (p < 0.001). The interaction term of the 

region and strain rate was not significant for any of the three tensile properties. The ultimate tensile 

strain did not vary by any of the influencing factors studied. For the shearing properties, strain rate 

was significant for shear modulus (p=0.001) and ultimate shear stress (p=0.021). Anatomic region 

was not significant for shear modulus (p=0.422), but it is significant for ultimate shear modulus 

(p=0.007). The interaction term of region and strain rate was not significant for any of the three 

shearing properties. The ultimate shearing strain did not vary by any of the influencing factors in 

the current statistics model. 

Means for each level of independent variable 

The means of six mechanical properties (E, σmax, εmax and G, τmax, γmax) for the three anatomic 

regions and three strain rates are tabulated in Table 6-6 and Table 6-7, respectively, associated with 

the standard error of the mean (SEM). 

Table 6-6: Mechanical properties of GPs in tensile and shearing tests at different strain rates 

Strain rate 

 

Mat. property 

Low medium high 

Mean SEM Mean SEM Mean SEM 

E (MPa) 7.12 0.94 8.96 0.92 10.97 0.96 

σmax (MPa) 1.27 0.14 1.84 0.14 2.22 0.14 

εmax 0.255 0.018 0.282 0.018 0.275 0.019 

G (MPa) 1.68 0.33 2.11 0.25 3.16 0.24 

τmax (MPa) 1.32 0.13 1.48 0.10 1.75 0.09 

γmax 0.844 0.096 0.817 0.072 0.797 0.068 
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Table 6-7: Mechanical properties of GPs in tensile and shearing tests at different anatomic 

regions 

Region 

 

Mat. property 

Femoral head Distal femur Proximal Tibia 

Mean SEM Mean SEM Mean SEM 

E (MPa) 11.26 1.05 8.06 0.97 7.72 0.83 

σmax (MPa) 2.40 0.15 1.46 0.14 1.48 0.12 

εmax 0.286 0.020 0.259 0.019 0.268 0.016 

G (MPa) 2.51 0.30 2.02 0.28 2.42 0.24 

τmax (MPa) 1.82 0.12 1.28 0.11 1.44 0.10 

γmax 0.850 0.085 0.836 0.080 0.772 0.070 

Result of Post Hoc analysis 

Post Hoc analysis was conducted to examine the difference in each pair of the levels of an 

independent variable. The distributions of E, σmax, εmax and G, τmax, γmax by anatomic region and 

strain rate are shown by bar charts with SEM bars in Figure 6-7 for strain rate effect, and in Figure 

6-8 for anatomic region effect. After the Scheffe Post Hoc analysis, the pairs having significant 

differences (p ≤0.05) are marked by “ * ” in the following figures. 
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(a)       (b)        (c) 

   

(d)       (e)        (f) 

Figure 6-7: The effect of strain rate on tensile and shearing properties. The mean values are 

plotted as bars and the standard errors of the mean are also shown. A “ * ” marking indicates 

a significant difference 

Generally speaking, the tensile modulus, ultimate tensile stress, shear modulus, and ultimate 

shear stress increased when the strain rate increased. As for the average E (tensile modulus), the 

high-rate group had a significantly higher modulus than the low-rate group did (p=0.008), but no 

significant difference was observed between the high-rate and medium-rate groups (p=0.475), or 

the medium-rate and low-rate groups (p=0.134). For the average σmax (ultimate tensile stress), the 

high-rate and low-rate groups showed a significant difference (p < 0.001), while the high-rate and 

medium rate groups showed a marginally significant difference (p=0.076), and the medium-rate 

and low-rate groups showed a significant difference (p=0.008). For the average εmax (ultimate 

tensile strain), all groups of strain rate did not have significant differences. 
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The average G (shear modulus) of the high-rate group is significantly higher than that of the 

low-rate group (p=0.002), and a significantly higher shear modulus than that of the medium-rate 

group (p=0.006). No significant difference on G was observed between the medium-rate and low-

rate groups (p=0.718). For the average τmax (ultimate shear strain), the high-rate and low-rate 

groups showed a significant difference (p=0.005), while no significant difference was observed 

between the high-rate and medium-rate groups (p=0.178), or the medium-rate and low-rate groups 

(p=0.220). For the average γmax (ultimate shear strain), all groups of strain rate did not have 

significant differences. 

   

(a)       (b)        (c) 

   

(d)       (e)        (f) 

Figure 6-8: The effect of anatomic region on tensile and shearing properties. The mean values 

are plotted as bars and the standard errors of the mean are also showed. A “ * ” marking 

indicates a significant difference (FMR HD: femoral head; Dist. FMR: distal femur; Prox. 

TBR: proximal tibia) 
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The average E (tensile modulus) of the femoral head GPs (FH) was significantly higher than 

the proximal tibia GP (PT) (p=0.021), and marginally significantly higher than the distal femur GP 

(DF) (p=0.06). DF had similar E as PT (p=0.947). FH had significantly higher σmax (ultimate tensile 

stress) than DF (p < 0.001) and PT (p < 0.001). DF had similar σmax as PT (p=0.978). For εmax 

(ultimate tensile strain), all groups of anatomic region did not have significant differences. 

For the average shear modulus, none of the three pairs showed a significant difference. FH 

had significantly higher τmax (ultimate shear stress) than DF (p=0.001) and PT (p=0.017). DF and 

PT had no significant difference on τmax (p=0.499). For γmax (ultimate shear strain), all groups of 

anatomic region did not have significant differences. 

Based on the above findings, it is appropriate to group the results obtained from the distal 

femur and proximal tibia into one group to get a larger sample size representing the knee GPs. The 

femoral head GP should be treated separately in the material modeling. The factor that femoral 

head GP has higher moduli and ultimate stresses compared to the knee GPs could be explained by 

the dimensional and morphological differences between these GPs. For femoral head GP, the 

weight bearing function was realized by a smaller cross-sectional area and more inclined interface, 

when compared to the knee GPs. Therefore, it was reasonably to assume that the GP at the femoral 

head was mechanically stronger than the knee GPs. This turned out to be judicious based on the 

results of experimental study and human-porcine correlation in Chapter 6, and further observation 

from simulated human GPs responses using parametric constants determined from the GP material 

modeling described in Chapter 7. 
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6.3. HUMAN-PORCINE GP CORRELATION RESULT 

Data obtained from the tensile tests on porcine femoral head GPs at the low strain rate were 

correlated with the human subject tests. This selection was made because both series of tests had 

similar strain rates (0.0053 s-1 for piglets vs. 0.003 s-1 for children) under tension, and the 

specimens were obtained from their respective femoral heads. The engineering stress-engineering 

strain curves obtained from the porcine femoral head GPs tests were firstly modified to the finite 

strain scale to have consistent reporting format as those reported for human subjects in Williams 

et al. (2001), using Equation 6-3. The modified curves using finite strain were plotted in Figure 

6-9. The portion beyond the ultimate stress of each curve has been truncated, because after the 

failure point, the engineering strain on the GP calculated using Equation 6-5 became invalid. 

 

Figure 6-9: Relationship of the porcine femoral head GP engineering stress vs. finite strain. 

The average curve was derived using normalization, resampling, and averaging technique. 

Averaging of five porcine experimental curves were conducted according to a normalizing 

process reported by Jin (2009). The average ultimate stress and ultimate strain were first calculated, 
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and then each curve was scaled to the same failure point. It was noticed that the scaled curves had 

different intervals at the horizontal axis (finite strain). A resampling technique was conducted 

based on interpolation to convert all curves with identical intervals at the horizontal axis. Then the 

average curve was obtained by numerical averaging of the stress at each strain point. This 

averaging curve obtained from the five normalized curves was treated as the average engineering 

stress vs. finite strain curve to represent the porcine femoral head GP. The resulting average curve 

is also plotted in Figure 6-9. 

Based on the average curve calculated, the three tensile properties were extracted and 

compared to the human femoral head GP properties reported by Williams et al. (2001), as shown 

in Table 6-8. 

Table 6-8: Comparison of the human and porcine tensile properties on the femoral head GP 

Test subjects 
Tensile modulus 

(MPa) (S.D.) 

Max. tensile stress 

 (MPa) (S.D.) 

Max. tensile strain 

(S.D.) 

Human femoral head GP 

(10 YO) 
4.26 (1.22) 0.98 (0.29) 0.31 (0.07) 

Porcine femoral head GP 

(20 WO) 
8.356 1.820 0.32 

The optimal solution was found when the minimal value of the normalized root mean square 

error (NRMSE), as illustrated in Equation 6-8, was achieved. The NRMSE history along with the 

continuously changing conversion factor (X) is plotted in Figure 6-10. The conversion factor (X) 

was changed by an increment of 0.0001 to search the minimum NRMSE. It was found the minimal 

NRMSE was 0.029, and the associated conversion factor was the globally optimal solution, 
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Xopt=0.5234. This is the correlation factor used to transform the porcine GP mechanical properties 

to those of human GP. 

 

Figure 6-10: The normalized root mean square error (NRMSE) considering tensile modulus, 

ultimate tensile stress, and ultimate tensile strain. The minimal NRMSE was found as 0.029, 

and the optimal conversion factor Xopt was 0.5234 

 
Figure 6-11: The transferred porcine engineering stress-finite strain curve using the 

correlation factor Xopt. The estimated failure point for 10 YO was plotted together with the 

that from human GP tests (William et al., 2001). The ranges of stress and strain with 

plus/minus one standard deviation were given 
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6.4. ESTIMATED 10 YO HUMAN GP PROPERTIES 

Because there were no other human GP data available (Shearing test on human was reported 

by Chung et al. (1976), but it was on the whole femoral head, which was not similar in current 

porcine experiments), the same conversion factor (Xopt=0.5234) extracted from femoral head GP 

tensile tests was adopted to transfer the data obtained from 20 WO porcine GP to 10 YO human 

GP for the other two regions in tensile tests and all three regions in shearing tests. The tensile and 

shear stresses were both scaled by Xopt, while the tensile and shear strains stayed unchanged. This 

implementation was based on three assumptions. First, the relationship between porcine and 

human femoral head GPs would also be valid for the distal femur GP and proximal tibia GP. In 

other words, the mechanical properties variation pattern from the femoral head GP down to the 

proximal tibia GP were identical. The second assumption was the tensile properties scaling would 

also work for shearing properties, if both the tensile and shearing stiffness changes were caused 

by elastic difference between children and piglets. The third assumption was the ultimate strains 

(tensile and shearing) did not vary significantly despite the changing modulus. This assumption 

was based on the findings reported by Williams et al. (2001) that the ultimate strains were not as 

sensitive as the tensile modulus and ultimate tensile stress when the GP conditions were changed 

(anatomic site, loading rates). The same insensitivity was observed in the current tensile and 

shearing tests on porcine subjects. 

The estimated 10 YO human tensile stress-strain curves and shearing stress-strain curves (in 

engineering scale) for human 10 YO femoral head GP were plotted in Figure 6-12. Portions of the 



95 

 

 

curves beyond the failure points have been discarded due to the unrealistic stress and strain 

representation specifically on the GP. The same normalizing, resampling and averaging 

methodologies, as described in Section 6.3, were used. 

  

(a)                                           (b) 

Figure 6-12: The estimated 10 YO human femoral head GP tensile engineering stress- 

engineering strain relationship (a), and shearing engineering stress-strain relationship (b). 

The curves were transferred from 20 WO piglets’ mechanical properties of the same 

anatomic region. Three curves for the high, medium, and low strain rates were separately 

plotted for each loading condition. The curve portions beyond the failure points have been 

discarded 

The estimated 10 YO human tensile stress-strain curves and shearing stress-strain curves (in 

engineering scale) for human 10 YO knee (distal femur and proximal tibia) GPs were plotted in 

Figure 6-13. As for femoral head GP, the curve portions beyond the failure points have been 

removed. 
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(a)           (b) 

Figure 6-13: The estimated 10 YO human knee (distal femur and proximal tibia) GP tensile 

engineering stress - engineering strain relationship (a), and shearing engineering stress-

strain relationship (b). The curves were transferred from 20 WO piglets’ mechanical 

properties of the same anatomic region. Three curves for the high, medium, and low strain 

rates were separately plotted for each loading condition. The curve portions beyond the 

failure points have been discarded 

6.5. CHAPTER DISCUSSIONS 

6.5.1. Loading rate selection 

The strain rates in the current tensile tests ranged from 0.0053±0.0017 to 1.907±0.78, and 

the strain rates in shearing tests ranged from 0.0085±0.0015 to 3.037±0.415. They were 

compared to the tensile tests and shearing tests conducted in either animal subjects or human 

subjects, and the loading speeds or rates were listed in Table 6-9. 

 

 

 

 



97 

 

 

Table 6-9: Comparison of the loading speeds/rates of current study and literatures  

Literature Loading speed 

or strain rate 

Loading type Test subject 

Cohen et al. (1992) 0.004 mm/s tension Bovine GP 

Moen and Pelker 

(1984) 

0.5 mm/s tension Bovine GP 

Noble et al. (1982) 0.25 mm/s tension Rabbit GP 

Guse et al. (1989) 0.25 mm/s tension Rabbit GP 

Fujii et al. (2000) 0.0083 mm/s tension Rabbit GP 

Williams et al. 

(2001) 

0.0004, 0.004 and 

0.04 mm/s 

tension Bovine GP 

0.003 s-1 tension Human GP 

Current study 0.0053 to 1.907 s-1 

or equivalent to 

0.004 to 1.53 mm/s 

tension Porcine GP 

Literature Loading speed 

or strain rate 

Loading type subject 

Chung et al. (1976)* 0.033 mm/s shearing Human GP 

Moen and Pelker 

(1984) 

0.5 mm/s shearing Bovine GP 

Lee et al. (1985) 0.5 mm/s shearing Rabbit GP 

Williams et al. 

(1999) 

0.04 mm/s shearing Bovine GP 

Bright et al. (1974) 20 mm/s shearing Rat GP 

Current study 0.0085 to 3.037 s-1 

or equivalent to 

0.007 to 2.4 mm/s 

shearing Porcine GP 

*: The Chung’s study utilized the whole femoral head of human in their tests. As such, these tests 

were not comparable to the current study, hence the test results were not used to determine the 

conversion factor for shearing. 
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For the tensile tests, it can be found that the lowest strain rate level in the current study was 

comparable to the tensile test on human subject reported by Williams et al. (2001), and at the same 

level as the quasi-static experiments conducted by Cohen et al. (1992) and Fujii et al. (2000). The 

highest strain rate in the current study has been higher than those in early literature. For the shear 

tests, the lowest strain rate level in the current study was lower than those reported in the shearing 

experiments in literature. The highest strain rate in the current study was higher than most of those 

published in literature, except the shearing strain rates were lower than those reported by Bright et 

al. (1974). 

In order to investigate the rate effect, an interval of 20 times was set for the low to medium 

strain rate, and medium to high strain rate levels. The current strain rate selections covered a 

reasonable strain rate range as a pioneering in-depth GP mechanical study, including rate effect 

and anatomic region differences. It was noted that in the pedestrian impact to a human child, the 

human body might be exposed to a dynamic loading with a strain rate which is much higher than 

the those conducted in the current experiments. A discussion was made in Section 7.4 based on a 

whole-body pedestrian simulation. Although the accurate loading rate on a GP in a real-world high-

speed car-to-pedestrian impact accident is unknown. As a result, the tensile and shearing tests at 

higher strain rates would be demanded in the next stages of study on the GP material properties. 

6.6. CHAPTER SUMMARY 

Among all specimens harvested from four 20 WO piglets, 65 specimens were included in the 

tensile tests and 48 specimens in the shearing tests. Three levels of strain rate for tensile tests 
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(0.0053 to 1.907 s-1) and for shearing tests (0.0085 to 3.037 s-1) were conducted, and three anatomic 

regions were chosen: the femoral head GP (FMR HD), distal femur GP (dist. FMR), and proximal 

tibia GP (prox. TBR). The majority of tension failures were in the hypertrophic zone, while most 

of the shearing failures happening in the hypertrophic zone as well, although a larger variation of 

failure modes was observed in shearing. The findings were consistent with those reported in the 

literature. 

Randomized block ANOVA was performed to investigate the effects of strain rates and 

anatomic regions on the six mechanical property parameters: E, σmax, εmax and G, τmax, γmax. For the 

tensile properties, anatomic region was a significant factor for E (p=0.03) and σmax (p < 0.001), 

while strain rate was a significant factor for E (p=0.02) and σmax (p < 0.001). For the shearing 

properties, anatomic region was not significant for G (p=0.422), but significant for τmax (p=0.007). 

Strain rate was significant for G (p=0.001) and τmax (p=0.021). The interaction term of anatomic 

region and strain rate was no significant for all six material properties. The ultimate tensile strain 

and shearing strain did not vary by any of the influencing factors. 

Paired comparisons were conducted using Scheffe Post Hoc analysis. As for the strain rate 

effect, the high-rate group had higher E than the low-rate group (10.97 MPa vs. 7.12 MPa, 

p=0.008); the high-rate group had higher σmax than the low-rate group (2.22 MPa vs. 1.27 MPa, 

p < 0.001) and the medium-rate group had higher σmax than the low-rate group (1.84 MPa vs. 1.27 

MPa, p=0.008); the high-rate group had higher G than the medium-rate group (3.16 MPa vs. 2.11 
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MPa, p=0.006) and the low-rate group (3.16 MPa vs. 1.68 MPa, p=0.002); the high-rate group 

had higher τmax than the low-rate group (1.75 MPa vs. 1.32 MPa, p=0.005). 

As for the anatomic region differences, FMR HD had a higher E than prox. TBR (11.26 MPa 

vs. 7.72 MPa, p=0.021); FMR HD had a higher σmax than dist. FMR (2.40 MPa vs. 1.46 MPa, p < 

0.001) and prox. TBR (2.40 MPa vs. 1.48 MPa, p < 0.001); FMR HD had a higher τmax than dist. 

FMR (1.82 MPa vs. 1.28 MPa, p=0.001) and prox. TBR (1.82 MPa vs. 1.44 MPa, p=0.017). Based 

on results of these comparisons, the distal femur and proximal tibia GPs were grouped together. 

The 10 YO human-20 WO porcine GP correlation was done and the optimal conversion factor 

was determined to be 0.5234 as to minimize the overall error for the tensile properties. Based on 

this scaling factor, the 10 YO human tensile and shear stress-strain curves at the femoral head GP 

and knee GP were estimated using the porcine experimental data. The curves were plotted and 

discretized at different strain rates, and these data could be taken for human GP material modeling 

to be described in the Chapter 7. 
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CHAPTER 7. HUMAN GROWTH PLATE MODELING AND 

PARAMETRIC STUDY 

In this chapter of GP modeling study, the three main focuses are: (1) Determine a material 

model and its parameters to mimic the human GP mechanical behavior based on the results from 

Chapter 6, (2) Establish a detailed FE model of a 10 YO child proximal femur with the femoral 

head GP embedded, and (3) Conduct a series of parametric study on the 10 YO pedestrian model 

with GPs in the hip and the knee regions by using an SUV-to-pedestrian impact scenario. It was 

noted that all the stresses and strains in this chapter were in engineering scale. 

7.1. 10 YO HUMAN GP MATERIAL MODELING 

7.1.1. Material model selection 

Selecting a constitutive model to mimic the human GPs was based on the resulting stress-

strain curves at different strain rates estimated for GPs of 10 YO Children as described in Chapter 

6. Significant strain rate effects have been observed on the tensile modulus, ultimate tensile stress, 

shear modulus, and ultimate shearing stress, based on the Randomized block ANOVA. These 

conclusions were consistent with the early studies reported by Williams et al. (1999), Sergerie et 

al. (2009) , and Wosu et al. (2012), etc. Therefore, proper modeling of the human GPs needs to use 

a material model capable of reflecting the strain rate effect. 

A quick review was performed to check the relationship between the tensile and shear moduli 

for the femoral head GP of a 10 YO child. The average stress-strain curves for the tensile and shear 

tests at the low strain rates previously shown in Figure 6-12 (a) and (b) were replotted, and a linear 
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fitting was conducted to quickly estimate the tensile and shear moduli, as shown in Figure 7-1. It 

was noticed that the engineering stress-strain curves were considered as close to the true stress-

strain when the deformation was small. Thus, the first halves of these curves were used to calculate 

the slope. The resulting Young’s modulus E was 3.29 MPa, and the shear modulus G was 0.75 

MPa from the linear curve fitting. 

      

(a)             (b) 

Figure 7-1: Linear fitting for the initial portion of the tensile stress-strain and shearing stress-

strain curves estimated for 10 YO child as shown previously in Figure 6-12. The Young’s 

modulus and shear modulus were estimated to be: E=3.29 MPa, G= 0.75 MPa 

Assuming the material is isotropic and elastic, the Poisson’s ratio (ν) can be calculated by 

Equation 7-1 (Young and Budynas, 2002): 

ν =
𝐸

2𝐺
− 1         7-1 

Using this equation, the Poisson’s ratio calculated from the estimated tensile and shear moduli 

was 1.19, which was unrealistic as the Poisson’s ratio lies between 0 and 0.5 for any isotropic 
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natural material. The relationship between the tensile modulus and shear modulus as calculated 

from Equation 7-1 invalided the isotropic assumption for the GP material. 

From biological structure of the GP tissues, a number of studies have suggested that the GP 

tissue has column-like arrangement of chondrocytes along the growth direction that serve as 

strengthening fibers surrounded by the ground substances. This architectural arrangement makes 

the GP to be out-of-plane anisotropic and in-plane isotropic and was called as a transversely 

isotropic, hyperelastic material by Cohen et al. (1998). 

Based on the above factors, the No. 92 material law, MAT_SOFT_TISSUE_VISCO (written 

as MAT_92 for short) available in LS-DYNA, was chosen, because it can represent the 

transversely isotropic hyperelastic features by using a directional strengthening theory. The 

viscosity option provided the capability of modeling the strain rate dependency. This material 

model would be used for the reverse engineering processes to determine the unknown material 

properties by optimizations. 

7.1.2. Material law and parameters 

As introduced in the theory manual of LS-DYNA (Hallquist, 2007), MAT_92 is a transversely 

isotropic hyperelastic model for representing biological soft tissues such as ligaments, tendons, 

and fascia. The representation includes an isotropic Mooney-Rivlin matrix reinforced by fibers to 

contribute as collagens. MAT_92 material law assumes a strain energy function as described in 

Equation 7-2： 
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     7-2 

The overall strain energy 𝑊 has four terms: two isotropic deviatoric matrix terms (associated 

with the Mooney-Rivlin coefficients C1 and C2), a fiber term 𝐹 (a function of 𝜆, which is the 

stretch ratio along the fiber direction, as shown in Equation 7-3), and a bulk term (associated with 

bulk modulus K). �̃�1 and 𝐼 ̃2 are the deviatoric invariants for right Cauchy deformation tensor, as in 

the isotropic terms. 𝐽 is the volume ratio, and K is the effective bulk modulus of the material (input 

parameter K). 

     7-3 

The fiber term is further divided into three segments: when 𝜆 <1, the added strain energy is 

zero, i.e. no extra stiffness added when compressed; when 1<𝜆 < 𝜆* the added strain energy is 

governed by an exponential function involving coefficients of C3 and C4; when 𝜆 > 𝜆*, the slope is 

determined by C5 and C6. 𝜆* is the boundary stretch between two segments. 

The viscosity is superposed via a convolution integral function for the time-dependent 2nd 

Piola-Kirchhoff stress 𝐒(𝐂, 𝑡), where 𝐂 is the right Cauchy-Green deformation tensor, as shown in 

Equation 7-4. 

        7-4 
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This material model can be approximated by a six-term Prony series kernel for the stress 

relaxation function. In this case, the hyperelastic strain energy represents the elastic (long-time) 

response. 𝐒𝑒 is the elastic part and not time dependent. G (𝑡−𝑠) is a reduced relaxation 

representation, written as a summation of a Prony series, as shown in Equation 7-5, which has the 

maximum of 6 as the number of the Prony factors Si and correlated time Ti. In this study, a two -

term Prony series were used: S1, T1, and S2, T2. 

        7-5 

7.1.3. Specimen tension and shearing simulation 

For the reverse engineering process to optimize the material properties, the specimen tension 

and shearing simulations were required as a step in an iteration. The simulation setting is 

introduced in this section. 

 A generic FE model of bone-GP-bone unit, with an element size of 0.17 mm along each 

direction, was built to represent the average porcine specimens, as shown in Figure 7-2. The 

average dimensions of porcine GPs tested and reported in Chapter 6 were 5.1 mm×5.1 mm 

(depth×width), while the average GP thickness was 0.85 mm. Tensile and shearing loadings were 

simulated using this generic model for the optimizations to be described in the next section. In 

tensile loading, the upper bone segment allowed translation at a constant speed in the +Z direction, 

while the lower bone segment was fully constrained, as shown in Figure 7-2 (a). In shear loading, 

the upper bone segment allowed translation at a constant speed in the +X direction, while the lower 



106 

 

 

bone segment was constrained in the manner that only the degree of freedom (DOF) in the Z axis 

was allowed, as shown in Figure 7-2 (b). 

               

(a)            (b) 

Figure 7-2: Tension and shearing simulations using the generic FE model of a specimen. (a) 

Tension in the +Z direction; (b) shearing in the +X direction 

The loading speeds in the experimental study and the simulations to be performed in the 

iterations of optimization for human femoral head GP are listed in Table 7-1. The tension was 

applied until the +Z displacement of 0.255 mm (engineering tensile strain of 0.3) and the shearing 

was applied until the +X displacement of 0.765 mm (engineering shear strain of 0.90). 

Table 7-1: Loading conditions of generic FE model representing the corresponding 

experiments on the femoral head GP specimens 

Optimization 

stage 

Tensile/shearing Average loading 

speed on the 

porcine femoral 

head GP (mm/s) 

Simulation loading 

speed (mm/s) 

Max. 

displacement 

(mm) 

Low-speed Tensile 0.003655  0.34 * 0.255 

Shear 0.006205  0.51 * 0.765 

High-speed Tensile 1.50  1.50  0.255 

Shear 2.70  2.70 0.765 

*: The quasi-static tensile and shear tests at low-speed were simulated at higher speeds, since no 

rate effect was considered at the stage 

Upper bone segment 

Lower bone segment 

Growth plate 
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The simulations were performed using LS-DYNA (v. 971, R6.1, Livermore Software 

Technology Corporation, Livermore, CA). The trabecular bones were modeled as MAT_RIGID, 

since the engineering stress-engineering strain had been transferred to the GP material in the 

process of system compliance compensation, as described in Section 6.1. The density for the GPs 

was set as 1.2×10-6 kg/mm3, the same as the cartilage as reported in literature by Li et al. (2006). 

The critical stretch 𝜆* was set as 1.15, after preliminary trials to match the curve trends. The values 

of the remaining material parameters in MAT_92 were changed and inserted as needed during the 

iterative procedure of the optimizations, to be described in the following section. 

From the FE simulations, the engineering stress was calculated by dividing the tensile force 

or shearing force by the cross-sectional area of the GP. The engineering strain was calculated by 

dividing the displacement by the original GP thickness. The calculation method is identical to that 

adopted in the experimental study. 

7.1.4. Optimization processes 

The optimization was conducted by using modeFRONTIER v. 4.5 (ESTECO, Italy). This 

software package can provide a multi-objective optimization platform coupling to the CAE 

software such as LS-DYNA. The unknown parameters needed for MAT_92 fell into two general 

categories: the hyperelasticity (bulk modulus, C1~C6) and viscosity associated parameters (Si, Ti.). 

Two stages of optimization were carried out to optimize these parameters for representing the 10 

YO femoral head GPs first. 
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In the first stage, the viscosity option of MAT_92 was switched off. In the second stage, the 

previously determined parameters, bulk modulus and C1~C6, were adopted into optimization to 

determine the viscosity parameters, S1, T1, S2, T2. 

The Objective function 

The two stages of optimization had two objective functions, OBJlow and OBJhigh. OBJlow was 

the normalized differences between the engineering stress-strain curves from the simulations and 

the corresponding curves estimated for 10 YO GP in low-speed tension and shearing loadings. 

OBJhigh was the same measurement for the high-speed curves. They were defined in the same 

manner, as shown in Equation 7-6. 

OBJ = ∑ (
𝜎.𝑡𝑔𝑡𝑖−𝜎.𝑠𝑖𝑚𝑢𝑖

𝜎.𝑠𝑖𝑚𝑢𝑖
)

2
𝑛
𝑖=1        7-6 

, where σ.tgti and σ.simui are the stress values (tensile or shear) for each data point from the 

target curves, and simulation result curves, respectively. n is the number of the discrete data points, 

and all the points were obtained at a constant time increment, i.e. constant strain increment. For 

example, for the femoral head GP in the 1st stage of optimization, the increment strain was 2% for 

tension and 6% for shearing, so that the number of discrete data points were both n=15. 

Optimization of the 1st stage 

The first step was finding the initial ranges of parameters K and C1~C6 for hyperelasticity, for 

design of experiments (DOE) space generation. The initial ranges of the parameters were obtained 

by referring to the studies that also used MAT_92 for modeling low limb ligaments (Li et al., 2007; 
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Yue et al., 2011) and pelvic cartilages (Li et al., 2007; Yue et al., 2011). A series of trials were 

conducted to further improve the selections of initial ranges, and the final selected ranges are 

shown in Table 7-2. It is expected that these selections covered the entire spectrum of possible 

ranges for the corresponding parameters. 

Table 7-2: Initial ranges of parameters in the 1st stage of optimization for 10 YO femoral 

head GP 

 K 

(Bulk 

modulus) 

MPa 

C1 

(MPa) 

C2 

(MPa) 

C3 

(MPa) 

C4 

 

C5 

(MPa) 

C6 

(MPa) 

Range 0.1~4 0.1~0.3 0.1~0.3 0.1~3 3~6 0.1~2 0~0.1 

Sobol method (Esteco, 2014) was applied to generate the DOE space which can distribute the 

DOE samples randomly and evenly. A total of 56 DOEs were generated to assure the global 

coverage with a reasonable processing cost. 

For each design in the DOE space, an adjacent local optimum was identified using the B-

BFGS (Broyden-Fanno-Fletcher-Goldfarb-Shanno) algorithm available in modeFRONTIER. This 

algorithm was known as a classic gradient based extremum-searching algorithm with a relatively 

high convergent speed (Esteco, 2014). The B-BFGS algorithm automatically generated additional 

designs to calculate a “gradient matrix” and an approximation “Hessian matrix”. Through these 

two matrices, a “Newton step” was calculated to initialize the iteration. A new design was 

generated by adding the changing step (vector) to the old design. The termination accuracy was 

set as 1×10-4 which allowed the algorithm to stop when it cannot find a better OBJ function with 
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improvements higher than this convergence value. More details of the theory of this algorithm can 

be found in the modeFRONTIER manual (Esteco, 2014) and their technical report (Rigoni, 2003). 

Upon termination, the local optimal result was obtained for this design. The same iterative 

process was performed for each of the other 55 designs in the DOE space. Among all the local 

optimal results, the one with the minimal OBJlow was then treated as the global optimal solution of 

the first stage. 

Optimization of the 2nd stage 

The determined hyperelasticity parameters from the first stage of optimization were then 

brought to the second stage of optimization by simulating high-speed tests. In this stage, the 

viscosity option of MAT_92 was switched on, and the parameters for the two-term Prony series, 

S1, T1 and S2, T2, were to determined. The initial ranges are shown in Table 7-3, which were based 

on preliminary trials. 

Table 7-3: Initial ranges / values of parameters in the 2nd stage of optimization for the femoral 

head GP of a 10 YO Child 

 S1 T1 (ms) S2 T2 (ms) 

Range 0.5~0.9 50 0.01~0.05 1000 

The optimization processes were similar to those in the first stage. The stress-strain curves in 

high-speed tensile and shearing loadings estimated for 10 YO femoral head GP were used as the 

target curves. The same Sobol method and B-BFGS algorithm were used. The original DOE 

number was 40. The termination criterion was set as 1×10-4. Among the optimal local results from 
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the 40 designs, the one with the minimal OBJhigh was treated as the global optimal solution for the 

viscosity parameters. 

After the viscosity parameters were determined, the overall optimization process for the 

femoral head GP of a 10 YO child was completed. At that time, all the parameters of the proposed 

material model of MAT_92 to represent the femoral head GP were determined. 

The optimization processes for identifying the material properties of human femoral head GP 

are summarized and shown in Figure 7-3. 
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Figure 7-3: The flow chart of the complete optimization process for human femoral head GP 

material properties. The left half is for the hyperelasticity associated parameters (bulk 

modulus, C1~C6) and the right half is for the viscosity associated parameters (Si, Ti) 

 



113 

 

 

Optimization process for the GPs at knee region 

The same set of optimization processes was conducted to optimize the material properties of 

10 YO knee GPs. The initial ranges of the parameters in both the first and second stages are shown 

in Table 7-4. 

Table 7-4: Initial ranges of parameters in both 1st and 2nd stages of optimization for the knee 

GP of a 10 YO child 

 K 

(Bulk 

modulus) 

MPa 

C1 

(MPa) 

C2 

(MPa) 

C3 

(MPa) 

C4 

 

C5 

(MPa) 

C6 

(MPa) 

Range 0.1~4 0.1~0.3 0~0.2 0.1~1 3~6 0.5~3 -0.1~0.1 

 

 S1 T1 S2 T2 

Range 0.85~0.99 1000 0.005~0.05 30000 

7.1.5. Material modeling results 

The optimization results for the femoral head GP of a 10 YO child are shown in Table 7-5. 

Table 7-5: MAT_92 parameters for the femoral head GP of a YO child  

LS-DYNA 

Keywords 

C1 

(MPa) 

C2 

(MPa) 

C3 

(MPa) 

C4 

 

C5 

(MPa) 

C6 

(MPa) 

Value 0.22 0.10 0.785 4.0 1.0 0 

LS-DYNA 

Keywords 

K 

(Bulk 

modulus, 

MPa) 

ρ  

(density, 

kg/mm3) 

S1 T1  

(ms) 

S2 T2  

(ms) 

Value 2.0 1.2E-6 0.80 50 0.02 1000 

The simulation results using this set of parameters in the high-speed and low-speed tension 

are plotted as solid lines, along with the solid-dotted lines estimated for 10 YO children reported 
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in Chapter 6 are shown in Figure 7-4 (a). The comparison in shearing material modeling results 

for the femoral head GP of a 10 YO child are shown in Figure 7-4 (b). 

    

(a)           (b) 

Figure 7-4: Engineering stress-strain curves of the femoral head GP of a 10 YO child, 

calculated by FE simulations with optimized GP material (market as “simu”), and estimated 

for 10 YO child from experimental study (market as “10 YO”). (a) tensile stress-strain curves 

comparison; (b) shearing stress-strain curves comparison 

To avoid excessive computational cost, the medium rate tensile and shear stress-strain curves 

were not used in the optimization process. The assumption was that the stress-strain curves in the 

medium rate would be between the low-speed and high-speed curves. A verification for the 

medium rate responses was conducted using the optimized parameter set. The results for the 

femoral head GP of a 10 YO child are shown in Figure 7-5. It was observed that the material stress-

strain relationships under the medium rate are close to those of the low rates, for both tension and 

shearing. The discrepancies were deemed acceptable. 
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(a)           (b) 

Figure 7-5: Verificatoin at medium rate. The red curves are calculated from the simulations 

of medium strain rates, using the parameter set determined from the optimization processes. 

The grey curves were the estimated curves for 10 YO child from Chapter 6 

The material optimization results for the knee GP’s of a 10 YO child are shown in Table 7-6. 

Table 7-6: MAT_92 parameters for the knee GP’s of 10 a YO child 

LS-DYNA 

Keywords 

C1 

(MPa) 

C2 

(MPa) 

C3 

(MPa) 

C4 

 

C5 

(MPa) 

C6 

(MPa) 

Value 0.174 0.095 0.295 4.0 2.33 0.075 

LS-DYNA 

Keywords 

K 

(Bulk 

modulus, 

MPa) 

ρ  

(density, 

kg/mm3) 

S1 T1  

(ms) 

S2 T2  

(ms) 

Value 1.0 1.2E-6 0.98 1000 0.01 30000 

The material modeling results for 10 YO knee GP is shown in Figure 7-6. 
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(a)           (b) 

Figure 7-6: Optoimzation result of the knee GP for a 10 YO child. (a) tensile stress-strain 

curves comparison; (b) shear stress-strain curves comparison. The solid lines were from the 

simulations, while the solid-dot lines were from experimental study 

7.2. MODELING OF PROXIMAL FEMUR WITH GPS 

In this section, the sub-model of proximal femur was extracted from the PLEX baseline model. 

The femoral head GP was modeled using the geometry from CT scans of a 9.5 YO boy and the 

material properties derived in Section 7.1. A shearing loading was simulated as the experiments 

conducted by Chung et al. (1976). The GP modeling settings, such as the GP geometry 

representation (mesh density), perichondrial cartilage thickness and Young’s modulus, the failure 

criteria of GP and cartilage, were investigated by parametric study. Since only one experimental 

study on human subjects was available serving as the correlation reference, the modeling 

techniques summarized from this section should be treated as preliminary results. 

7.2.1. GP model generation 

CT scanned images of the hip region from a 9.5 YO boy was acquired from ICAM during the 

collaborative anthropometric study. The height and weight of this subject were 1.46 m and 41.3 
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kg, respectively, which were higher than the current CHARM-10 whole-body FE model (i.e., 

namely 1.40 m and 35.0 kg). Based on the anthropometric study by Snyder et al. (1977), the 

standard deviations of height and weight of 9.5 to 10.5 YO children were 63 mm and 6.6 kg. 

Therefore, the height and weight of this subject were considered close to the average values of 10 

YO children. The CT scans had resolutions of 0.5075, 0.5075, and 0.625 mm in the lateral-medial, 

anterior-posterior, and vertical directions, respectively. Mimics (v. 12.0, Materialise, Leuven, 

Belgium) was used to view and preprocess the images, as shown in Figure 7-7 (a). Then the 3D 

CAD was reconstructed in Mimics and cleaned in HyperMesh. The external surfaces of the femur 

and the proximal surface of the GP were shown in Figure 7-7 (b) and (c), respectively. 

   

    (a)        (b)          (c)  

Figure 7-7: 3D reconstruction of the proximal femur and femoral head GP based on CT scans 

of a 9.5 YO boy. (a) One slice of CT scan in the coronal plane in Mimics. The dense regions 

were colored in bright green, while the non-bony tissue or cavities were colored in grey in 

Mimics; (2) Extracted outer surfaces of the left proximal femur bone, and (c) The proximal 

surface of the left femoral head GP, meshed by triangular elements in Mimics 

A measurement on the reconstructed CAD model was conducted. The proximal surface of the 

GP was then scaled and realigned to fit the proximal femur meshes of the current sub-model, as 

shown in Figure 7-9 (a). The GP surface was reconstructed to two models using two different levels 
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of mesh density: The lower density mesh had 72 quadrilateral elements with the length of sides 

from 2.10 to 5.62 mm, while the higher density one had 288 quadrilateral elements with the length 

of sides from 0.98 to 2.97 mm. The finer meshes demonstrated more details of the irregularity of 

the original surface, but would cost more computational resources. In both models, the 2D meshes 

were dragged along the femoral neck axis to build the 3D plates representing the GP, as shown in 

Figure 7-8 (b) and (c). The thickness was set as 1.35 mm, which was consistent with the thickness 

measurement on the child femoral head GP, conducted by Williams et al. (2001). 

      

     (a)             (b)            (c) 

Figure 7-8: Reconstruction and modeling of the femoral head GP. (a) The proximal surface 

of GP extracted from the CT scans was scaled and located to the correct place in CHARM-

10 proximal femur. 2D quadrilateral elements were used to reconstruct the GP proximal 

surface. A total of 72 elements (b) and 288 elements (c) were used to investigate which mesh 

density is better. The 3D plates of the femoral head GP were generated by dragging the 2D 

surface by 1.35 mm along the axial direction of the femoral neck 

The circumferential nodes were manually moved to the surface of the original cortical shells 

of the baseline sub-model. The trabecular bones surrounding the GP were then re-meshed while 

maintaining the nodal connections between the GP and surrounding bones. According to the 

measurements reported by Chung et al. (1976), the average thickness of the perichondiral cartilage 
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around the femoral head GP was 16.0% of the GP cross-sectional radius. The radius of GP in the 

current sub-model was 31.8 mm, so the thickness of cartilage would be 2.5 mm. The mid-sectional 

view of the proximal femur with the lower density mesh of GP is shown in Figure 7-9. 

 

Figure 7-9: Details of the proximal femur FE sub-model with the GPs embedded the GPs. 

The lower mesh density model is shown here 

The GP in the greater trochanter was modeled as a single layer of solid elements extracted 

from the preexisting solid elements. The same set of material properties of the femoral head GP 

was assigned to this GP since no experimental data on human greater trochanter GP were found in 

the literature. The material axis of the greater trochanter GP was set to be perpendicular to the 

cross-sectional surface of the meshed greater trochanter plane. 

7.2.2. Parametric study in shearing load 

The material properties of MAT_92 for the 10 YO femoral head GP (as shown in Table 7-5) 

were assigned to the updated proximal femur model. A pin loading in the anterior-posterior 

direction was modeled to simulate the experiment conducted by Chung et al. (1976), as shown in 
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Figure 7-10. Since the experiment applied an extremely slow quasi-static loading, the simulation 

in the same speed (2 mm/min, i.e. 0.003 s-1) would take days and was not feasible for the FE 

parametric study. A higher loading speed of 0.34 mm/ms was adopted and the viscosity terms of 

MAT_92 was disabled. It had been verified the viscosity effect in a higher loading rate (the medium 

rate of 0.163 s-1) was neglectable as shown in Figure 7-4 (b) and Figure 7-5 (b). Therefore, the 

viscosity effect in the quasi-static loading speed as used in the Chung’s tests would be neglectable. 

            

(a)          (b) 

Figure 7-10: The femoral head GP shearing test. (a) The FE model with a higher loading 

speed with the viscosity of the GP material disabled. (b) The setup of the shearing experiment 

carried out by Chung et al. (1976) 

The cartilage was modeled as solid elements using an elastic material. The Young’s modulus 

was estimated from literatures. In the tensile tests conducted on the bovine distal femur by Cohen 

et al. (1992), the measured Young’s modulus was 84 MPa for the articular cartilage and the 35 

MPa for the GP. A ratio of 2.4 between the cartilage and GP was derived and then implemented to 

estimate the Young’s modulus of the femoral head cartilage of a 10 YO child. As shown in Figure 
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7-1, the linear fit of the tensile stress-strain curve of the femoral head GP was 3.3 MPa. As a result, 

the Young’s modulus of this cartilage was approximated as 7.9 MPa (3.3 MPa×2.4). 

In Chung’s study, the perichondrial complex, i.e. the cartilaginous tissue surrounding the GP 

was dissected to investigate the influences of the complex on the shearing strength. It was found 

that, with the cartilage, the ultimate shearing force (Pt) would be 15% larger than that of the femur 

sample without cartilage (Pp). Therefore, in the FE model, the cartilage was also removed to 

simulate this shearing effect on the dissected femur samples. The ultimate shearing forces were 

captured from the models with and without cartilage (Pt-simu and Pp-simu). The shear strengthτmax 

was calculated by dividing the Pt by the original cross-sectional arear at the GP level. A linear 

fitting curve was drawn to estimate the relationship between shear strength and the age, as shown 

in Equation 7-7, which was derived by Chung et al. (1976). 

𝜏𝑚𝑎𝑥 = 6.56 + 0.55×Age          7-7 

τmax was in kg/cm2 and “age” was in year. For 10 YO groupτmax was 12.06 kg/cm2, i.e., 

1.195 MPa. The ratio of ultimate shear force (Pt/Pp) was also reported for each age group. Pt/Pp for 

10 YO group was 1.14. Since the displacement histories were not reported, the comparison was 

not performed for the deformation history in the whole process. The von Mises strain was used as 

the failure criterion of femoral head GP. This failure strain was tuned to match the two outcomes, 

namelyτmax and Pt/Pp at the failure point of the femoral GP. The maximum principal strain was 

taken as the failure criterion for cartilage, and it was tuned in a manner that the cartilage failure 
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and GP failure happened at the same time. The material parameters and the failure criteria tuning 

results are shown in Table 7-7. 

Table 7-7: Material properties of the major components in the upgraded proximal femur FE 

model for the PLEX modeling 

Part Properties Failure criterion 

Cartilage 

Elastic, E=7.9 MPa (2.4 times of the GP 

tensile modulus. The ratio was from Cohen et 

al. (1992), Thickness=2.5 mm (Chung, et al., 

1976)  

Max. principal strain: 

0.35 (from tuning) 

FH GP MAT_92, the estimated 10 YO femoral head 

GP material properties from Section 7.1 

Max. von Mises strain: 

0.80 (from tuning)  GT GP 

Note: FH: femoral head; GT: greater trochanter. 

The shearing force vs. displacement relationships were plotted for the models with and 

without the cartilage. The two models with lower and higher element densities were used in the 

shearing simulation. The results are shown in Figure 7-11 and Table 7-8. 
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Figure 7-11: Force displacement histories for the updated femoral head models. The solid 

curves are from the model with perichondrial cartilage, and the dot curves are from the 

model without perichondrial cartilage. Both the higher and lower mesh density models were 

used for this analysis 

Table 7-8: Simulation results compared to the test results by Chung et al., 1976 

  Shear Strength (τmax) Shear force ratio with & 

without cartilage (Pt/Pp) 

Chung et al., 1976 1.195 MPa 1.14 

FE model  

(lower mesh density) 

1.186 MPa 1.19 

Error -0.75% +4.4% 

FE model  

(higher mesh density) 

1.188 MPa 1.19 

Error -0.59% +4.4% 
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It was observed that that both the lower and higher mesh density FE models showed 

reasonable agreement with the experimental results as reported by Chung et al. (1976). It can be 

found that the differences between the FE models with higher and lower mesh density were not 

significant. Based on this finding, it was decided that the lower mesh density model would be 

embedded into the whole-body pedestrian model of 10 YO child, because it was considered as a 

balance between the modeling accuracy and computational cost. 

The other modeling settings as shown in this section was verified as valid, such as the GP 

geometry aligning, extracting a one-layer of elements to represent the GP and remeshing the 

surrounding bones, perichondrial cartilage thickness of 2.5 mm, cartilage’s Young’s modules of 

7.9 MPa, and the failure criteria for the GP (max. von Mises strain of 0.80) and cartilage (max. 

principal strain of 0.35). These techniques would be referenced for the following GP modeling in 

the whole PLEX model. 

7.3. WHOLE-BODY PEDESTRIAN MODEL WITH GPS IN THE PLEX 

The material models and modeling techniques were implemented into the baseline CHARM-

10 model as an application of whole-body child pedestrian impact. Similar to the modeling process 

of the GP at the proximal femur sub-model, the other GPs in the PLEX were modeled, so that the 

baseline PLEX model and the whole-body pedestrian model were advanced by including GPs. The 

updated whole-body pedestrian model was used in an SUV-to-pedestrian impact scenario, and the 

mechanical influences of the GPs were discussed. It should be noted that, because the whole-body 

pedestrian impact simulation was not validated to any realistic experiments, the findings obtained 
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from the simulation study of this section should be treated as technical applications with 

preliminary results thus far. 

7.3.1. GP closure age examination 

The closure ages of GPs were checked to confirm which GPs were not calcified by age of 10. 

The closure ages of the GPs for six different locations in the PLEX are summarized in Table 7-9. 

The ischiopubic ramus GP should be already calcified for a 10 YO child. Distal tibia GP was not 

included yet at the current modeling stage. the other GPs were included in the updated CHARM-

10 model. 

Table 7-9: Closure ages of the GPs in the PLEX 

No. Name Closure age Literature 

1 Triradiate cartilage  15-18 Peterson (2007) 

2 Femoral head GP  12-19 Scheuer et al. (2000) 

3 Greater trochanter GP 14-18 Scheuer et al. (2000) 

4 Ischiopubic ramus GP 4-7 Ogden (2000) 

5 Distal femur GP 14-20 Scheuer et al. (2000) 

6 Proximal tibia GP 13-19 Scheuer et al. (2000) 

7 Distal tibia GP 14-18 Scheuer et al. (2000) 

7.3.2. PLEX model updated with GPs 

The GPs at the distal femur, proximal tibia, and the acetabulum (triradiate cartilage) were 

additionally modeled using the same strategy as in the proximal femur sub-model, as described in 

Section 7.2. Generally, the GPs were modeled as one layer of 8-node solid elements. Modeling of 

these GPs were done by rebuilding a layer of elements at GP position in the baseline model, and 

assigning the corresponding GP materials. Necessary local remeshing was performed to maintain 
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the mesh connectivity and smoothness. Figure 7-12 (a) shows the result of the knee GPs modeling, 

where the shapes in anatomy books (Moore et al., 2011; Ogden, 2000) were referred to. For the 

triradiate cartilage, CT scans from the same subject of 9.5 YO body, as mentioned in Section 7.2, 

were used, and are shown in Figure 7-12 (b). The geometry from the CAD model was 

approximately referred to. The material properties estimated for the 10 YO child knee GPs, 

described in Section 7.1.5, were assigned to the knee GPs. The material properties of the 

acetabulum cartilage (hyperelastic rubber as shown in Table 4-7) were assigned to the triradiate 

cartilage, since they were essentially fused together. 

      

     (a)             (b) 

Figure 7-12: GP embedding: (a) GPs at the knee joint (distal femur and proximal tibia) (b) 

Triradiate cartilage. The shape and morphological details of these GPs were approximate 

and not as accurate as the femoral head GP 

The updated PLEX model is shown in Figure 7-13. In the pelvic region, the femoral head 

(FH) GP, greater trochanter (GT) GP, and triradiate cartilage (TC) were modeled. In the knee joint 

region, the distal femur (DF) GP, and the proximal tibia (PT) GP were modeled. The updates were 

also applied to the whole-body FE model, CHARM-10 pedestrian model. In the baseline CHARM-

10 pedestrian model, the elements at the location of a GP were included as a part of the surrounding 
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trabecular bone. The Young’s moduli ranged from 250 to 770 MPa for trabecular bones in the long 

bones in the PLEX, and was 44.8 MPa for the pelvic trabecular bone (as previously shown in Table 

4-7). Besides, there were cortical shells in the baseline model, whose Young’s moduli ranged from 

0.85 to 14.9 GPa. In the updated model with GP, the elements for previous trabecular bones were 

assigned with GP material models (with elastic moduli less than 10 MPa in quasi-static tension), 

and the cortical shell elements were replaced by perichondrial cartilages (Young’s modulus was 

7.9 MPa as determined in Table 7-8). The significant differences between the baseline and updated 

models, in terms of the material elastic moduli, implied the stress distributions should be 

remarkably different for the two models. 

    

(a)           (b) 

Figure 7-13: The updated PLEX model of the 10 YO child with GPs embedded: (a) The pelvic 

region and (b) The knee region. Some soft tissues were hidden for better viewing. TC: 

triradiate cartilage, GT: greater trochanter, FH: femoral head, DF: distal femur, PT: 

proximal tibia 

An SUV-to-pedestrian impact scenario was simulated for conducting the parametric study to 

investigate the mechanical influences of the GPs. The updated CHARM-10 was standing upright 

and the SUV struck from the lateral direction at a speed of 5.0 m/s (Figure 7-14). The SUV model 
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was downloaded from the website of NCAC (National Crash Analysis Center) and simplified to 

represent the front portion of a 2002 Ford Explorer. The simulation was performed using LS-

DYNA (v. 971, R6.1, Livermore Software Technology Corporation, Livermore, CA). 

 

Figure 7-14: Simulation setup of the SUV-to-pedestrian impact 

At this point, the failure criterion in MAT_92 in LS-DYNA is sensitive to the loading 

condition. As a result, the ultimate von Mises strain criterion of GP derived in Section 7.2 from 

the femoral head shearing may not be valid for complex loadings applying to the GPs in a real-

world pedestrian impact. Consequently, the 10 YO pedestrian model included GPs in the PLEX 

without failure settings. To quantitatively assess the mechanical influences of GPs in the PLEX, 

the baseline model of CHARM-10 without GPs was also used under the same SUV-to-pedestrian 

loading condition. Additionally, the deformations of the GPs during the impact were monitored for 

discussing the probability of material failure. 
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7.3.3. Pedestrian impact simulation results 

Contours of the maximum principal strain (MPS) for cortical bones at the pelvis (shell 

elements), femoral shaft (solid elements), and tibia shaft (solid elements) were shown for the 

baseline and updated CHARM-10 models. The contours of strain distribution were captured at 14 

ms from the initial contact for acetabulum and femoral shaft. The contours at 20 ms for the tibia 

shaft were plotted. The results of the baseline model are shown in Figure 7-15, while the results of 

the updated model are shown in Figure 7-16. 

       
  (1) 14 ms          (2) 14 ms     (3) 20 ms 

Figure 7-15: The Maximum Principal Strain (MPS) contours of the simulation using the 

basline CHARM-10 model. The unit of the countour is GPa. The four cirtical regions are: 

(A) bottom of acetabulum, (B) ischiopubic ramus, (C) the medial side of femoral shaft, and 

(D) the medial side of tibia shaft. Only cortical bones are presented in these figures 

 

A 

B 

C 
D 
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  (1) 14 ms         (2) 14 ms     (3) 20 ms 

Figure 7-16: The Maximum Principal Strain (MPS) contours of the simulation using the 

updated CHARM-10 model including the PLEX GPs 

Four critical sites where fractures may occur were monitored: (A) bottom of acetabulum, (B) 

ischiopubic ramus, (C) medial side of the femoral shaft, and (D) medial side of the tibia shaft. The 

MPS of the same elements at each site from the baseline and updated models were plotted in Figure 

7-17 to evaluate the strain changes. It should be remarked that the elements where the MPSs were 

measured were at least 10 mm away from the boundaries of the GPs in the updated model, to avoid 

capturing the MPS values from the elements with abrupt stresses change due to the boundary effect. 

 

A 

B 

C 
D 
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(a)            (b) 

       

(c)            (d) 

Figure 7-17: The MPS history comparisons between the baseline model (without GP) and 

updated model (with GPs), at four monitored locations. (a) at location A; (b) at location B; 

(c) at location C; (d) at location D 

It was noticed that the MPS histories for acetabulum bottom and femur shaft were changed 

in terms of the magnitude. With GPs, the peak MPS at the acetabulum bottom was reduced by 

23.0%, and it was reduced by 10.4% for location B at the medial side of femoral shaft. The peak 

value of MPS at the tibia shaft was not significantly changed after embedding the GPs (decreased 

by 0.7%), but the timing of the peak changed apparently (18 ms to 24 ms). Both the value and 
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timing of the peak MPS did not significantly change at the ischiopubic ramus after the embedding 

the GPs. 

The strain distribution in the GP was further analyzed. The MPS contours of the GPs in the 

proximal femur and knee are shown in Figure 7-18 (a) and (b), respectively. Nodal displacements 

of four elements with peak MPS within a GP were examined to analyze the strains. 

  

(a)           (b) 

Figure 7-18: MPS distribution of (a) proximal femur GPs (FH and GT), (b) knee GPs (DF 

and PT). t=22 ms. The elements under arrows are the elements of interest, and are used for 

local deformation analysis 

The ultimate strain (engineering) values from the experimental study in Chapter 6 were taken 

as references. The ultimate tension strain at the material axis was 30% and the ultimate shearing 

strain perpendicular to the material axis was 90%. Both criteria were implemented to evaluate the 

failure probabilities. 

For E1 element from the FH GP, the maximal engineering shear strain was 0.67, and the 

maximal tensile strain was 0.10, which were both below the aforementioned failure criteria. For 

E1 

E2 

E3 
E4 



133 

 

 

E2 element from the GT GP, the maximal shear strain of 0.56, which was below the shearing failure 

criterion. In the material axis, the normal strain was compression, which did not lead to a failure 

here. Both GPs at the proximal femur showed lower probability of failure. 

Similarly, for E3 from the DF GP, the maximal shear strain was 0.10 and the maximal tensile 

strain was 1.01. For E4 from the PT GP, the maximal shear strain was 0.54 and the maximal tensile 

strain was 1.16. The shear strains were below the shearing failure criterion. The tensile strains from 

the knee GPs were remarkably higher than the tensile threshold, i.e. 0.30 in the material axis.  

These findings suggested that, in this pedestrian impact scenario, the knee GPs would be 

failed due to excessive tension along the fiber direction, while the GPs in the proximal femur had 

lower risks of failure.  

It should be noted that if the striking vehicle is a sedan with a much lower height of the leading 

edge, the failure due to excessive shear strain is also possible. It has been preliminarily verified in 

an early study by Shen et al. (2015b), using simple elastic material models for the GPs. In that 

study, the sedan-to-pedestrian impact was at 10 m/s (similar as previously shown in Table 4-6), 

and the element deletion on the GPs apparently change the stress distribution significantly, 

avoiding the failures of the cortical bones in the long bones. 

It can be summarized that the presence of GPs in the PLEX would change the stress and strain 

distribution at the acetabulum bottom, femoral shaft and tibia shaft, in terms of the peaks or/and 

the phase in the time domain. The effect on the pelvic ramus would be minor. In an SUV-to-

pedestrian impact in 5 m/s, the knee GPs would be failed due to tension and the failures would 
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start from the medial side of these two GPs. The GPs in the proximal femur showed lower failure 

risks. In a sedan-to-pedestrian impact in 10 m/s, the knee GPs may be failed due to the shearing 

loads. Once a failure of GP happened, the stress distribution would be changed dramatically, and 

the risk of failures on cortical bones will be much reduced, compared to the baseline model without 

GPs. 

7.4. CHAPTER DISCUSSIONS 

7.4.1. Mesh convergence of the specimen FE model 

A mesh convergence study was performed to determine an appropriate mesh density 

considering both the simulation accuracy and computational cost. Three more specimen models 

with different mesh densities were built, and the numbers of the elements in the GP are 25, 675, 

4,500 (baseline), and 36,000, respectively (Figure 7-19). 

  

(a) Lowest      (b) Low       (c) Baseline     (d) High 

Figure 7-19: FE models of a specimen with different mesh densities. The numbers of elements 

for the GP only (shown as a layer of green elements in each model above) are (a) 25, (b) 675, 

(c) 4,500, and (d) 36,000, respectively 

The material property of human femoral GP determined in Section 7.1.5 was used to verify 

the mesh convergence by varying mesh densities. The tensile and shear simulations were 

conducted with loading speeds of 0.3 mm/ms. The tensile stress at 0.3 tensile strain, and the shear 
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stress at 0.75 shear strain were extracted for discussion. The results of the four models with 

different levels of mesh density are shown in Figure 7-20. For the tensile stress at 0.3 tensile strain, 

with the mesh density increasing from the lowest to the highest levels, the tensile stress increased 

by 2.6%, 0.028%, and 0.012% of the value obtained from model with the lowest mesh density. 

For the shear stress at 0.75 shear strain, with the increasing mesh density from the roughest mesh 

to the fine, the shear stress decreased by 5.02%, 0.53%, and 0.19% of the value obtained from 

the roughest model. This suggested that the convergence had been achieved when the “baseline” 

mesh density was adopted in both tension and shearing. 

 

Figure 7-20: Simulation results of FE models with different mesh densities 

 

Lowest           

                Low     Baseline    

High 
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7.4.2. Material axis 

There were six options in MAT_92 to define the material axes in each element, since the fiber 

orientation is critical. Two most usual methods to determine the material axes are: 1) by the element 

nodes, and 2) by a vector. For the first method, the keywords in MAT_92 should be set as AOPT=0, 

and the node numbers of every element need to be carefully ordered so that the material axis of 

this element could be automatically generated. In this case, the fiber orientations of different 

elements are not necessarily identical, since the element orientations could be different, as shown 

in Figure 7-21 (a). For the second method, the keywords in MAT_92 should be set as AOPT=2 

(using 2 pairs of nodes in the material), or AOPT=-CID (CID identifies a local coordination system) 

to define a common vector for the material axes. The material axes for all the elements are identical 

and defined by the same vector, as shown in Figure 7-21 (b). The fiber orientation of each element 

is indicated by the C axis of the local orthotropic coordinate system in the figure. It can be obverted 

that the GP part has element-dependent orientations in the first method (by element nodes) and has 

identical fiber orientations for all elements in the second method (by vector). When the GP 

elements have un-ordered element numbers, the material axes discrepancy between the first and 

second methods may become even larger. 
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(a)      (b)           (c) 

Figure 7-21: Material axes for elements in GP using different methods: (a) by element nodes, 

(b) by a vector. The local orthotropic axis for each element is shown by letter A, B, and C, 

while C is indicating the fiber orientation. It is noted that in both method, the fiber 

orientation in one element will be updated in each time step of the simulation. (c) is showing 

the shearing force difference between two GP models using these methods, respectively 

These two methods were used for the GP modeling under the shear loadings. The failure 

criterion was set if the maximum effective strain (V-M strain) exceeded 0.80. It was found the 

overall stress was not changed significantly, and the failure strain would be larger for the element 

nodes method. 

The histologic studies such as the ones conducted by Ogden (2000) and Peterson (2007) 

revealed that the GP material orientation is basically along the growth axis, and not sensitive to 

the local GP interface inclination. From this point of view, the second method provides a more 

reasonable numerical means to define the material orthotropic axes within the MAT_92 material. 

7.4.3. Strain rates measured from whole-body pedestrian simulation 

In the current experimental study on the porcine specimens, the highest tensile strain rate was 

1.91 s-1 and the highest shear strain rate was 3.04 s-1, which were not as desirable as the one 
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reaching high enough to that in a real-world pedestrian impact. Nevertheless, although the current 

whole-body model was not fully validated, the measurements based on this FE model can provide 

beneficial insights for estimating the strain rate levels of the GPs in the PLEX under such loading 

condition as that in Section 7.3, i.e. 5.0 m/s lateral impact. 

The 1st Principal strain rate was taken as the output parameter by using LS-PrePost (v.4.3, 

Livermore Software Technology Corporation, Livermore, CA). The highest peak value was 647 s-

1 for the triradiate cartilage, and the lowest peak value was 63.3 s-1 for the great trochanter GP. The 

complete results are shown in Table 7-10. 

Table 7-10: The maximum 1st Principal strain rates at the GPs in the PLEX in SUV-to-

pedestrian impact simulation (5.0 m/s) 

Region TC FH GT DF PT 

Strain rate 

(s-1) 
647 646 63.3 193 136 

As expected, the measured strain rates from the above simulation were higher than those of 

the porcine tests by several orders of magnitude. It suggested that the current material models from 

Section 7.1 would be unreliable in a high dynamic loading. The optimization results based on the 

current stage of experimental study should be treated as an initiative investigation of the GP 

material behaviors and subsequent material modeling. In the future phase of study, dynamic 

loading at higher strain rates, above 600 s-1, should be planned on further improving the material 

model under very high strain rates. 
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7.5. CHAPTER SUMMARY 

A transversely isotropic hyperelastic material model (MAT_92 in LS-DYNA) was chosen for 

the material modeling of GP. Through two stages of material optimization, the hyperelastic 

parameters of MAT_92 and the viscosity parameters were optimized, for both 10 YO femoral head 

GP and knee GPs. A good match for the shearing properties in all strain rates has been achieved 

between the stress-strain curves using the newly-obtained material and those estimated for 10 YO 

in Chapter 6. The tensile properties showed good matching at the low and medium strain rates, and 

acceptable matching at the high strain rate in this experimental study. 

A detailed sub-model of the proximal femur region was established, including the geometric 

data of GPs from CT scans. The femoral head anterior-posterior shearing was simulated to mimic 

the experiments conducted on human subjects as reported by Chung et al. (1976). A reasonable 

agreement was achieved in the parametric study, so the GP modeling techniques implemented in 

the sub-model should be considered as good preliminary references for future GP modeling studies. 

As an application for pedestrian simulation, other GPs in the PLEX were then modeled in the 

similar means of the femoral head GP as a technical application. All the unfused GPs in the PLEX 

were included in the updated PLEX model and further whole-body 10 YO pedestrian FE model. 

An SUV-to-pedestrian impact scenario was simulated at an impact speed of 5.0 m/s. The stress and 

strain distribution analysis revealed that: the presence of GPs in the PLEX would change the stress 

distribution and reduce the MPS at acetabulum bottom, femoral shaft. tibia shaft, but did not 

change the MPS at the pelvic ramus significantly. The deformation analysis on the elements 
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suggested that the knee GPs would have failed due to tensile strain along the material axes. The 

GPs at the proximal femur showed lower risks of failure. The knee GPs may be also failed due to 

shearing loads if the striking vehicle is a small sedan. The failure of the GPs would change the 

stress distribution dramatically and avoid the failure of cortical bones in the long bones. 
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CHAPTER 8. LIMITATIONS AND FUTURE WORK 

8.1. LIMITATIONS 

10 YO PLEX baseline modeling 

Due to regulatory and ethical concerns, the pediatric PMHS data were insufficient for 

comprehensive material modeling and FE model validation. As a result, the baseline 10 YO PLEX 

model and CHARM-10 should be considered as not completely validated. Some material 

properties were directly adopted from adult experimental studies. Some advanced material models 

in adult human body models were not applied to the current child model. Some material properties 

were scaled from adult data, and these scaling laws yet require more pediatric PMHS data for 

further validations. The MADYMO 10 YO pedestrian model, a numerical model using the multi-

rigid-body approach which was not fully validated, was used to provide responses for comparison 

with those from the 10 YO FE pedestrian model. The qualitative and quantitative comparisons 

provided indirect evidence about the prediction capability of the whole-body child pedestrian 

model, with obvious limitations. 

Experimental tests 

In terms of experiment design and investigation in the current study, the highest strain rate 

was still considered to be much lower than possible severe loading conditions on a child, such as 

the estimation in Section 7.4.3. It should be noted that some other influencing factors, such as the 

gender, the weight/size of a piglet, and the location of a specimen within one GP, etc., were not 

fully considered at this stage. But it should be pointed out that the effect of the location within one 
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GP had significant differences on shear moduli as reported by William et al. (1999) under the 

shearing loads. With an enlarged sample size (piglet number), more specimens tested and a full-

factorial DOE, the mechanical properties of the GP could be better understood, and the material 

models of GP could be consequently improved. 

The system intrinsic stiffness was calculated by an additional stepwise loading test using a 

trabecular bone held in the specimen position, with the two grip pairs in the average distance of 

the GP tests. This process was designed to compensate the system deformation including trabecular 

bone. It was assumed that the deformation of the system would mainly from the spring in the load 

cell and the compliance of the screw-nut connections, considering the Young’s modulus of the 

trabecular block was hundreds of megapascals. However, no quantitative measurement of material 

property of the trabecular bone was conducted. Besides, no repeated measurement was done using 

different trabecular blocks to investigate the potential influence. As a result, this is considered as 

a limitation during the system stiffness calculation, and should serve as a reminder for conducting 

similar test in the future. 

The load cell chosen in the shearing tests in the current study had a measuring capacity of 

500 lb. (±2223N), which was much larger than the measured ultimate shear force (130 N) of the 

specimens. Ideally a load cell with a range under 300N would be preferred. However, the one 

chosen was a dummy load cell with the lowest measuring capacity available at the time of test 

preparation. This might affect the accuracy of the shearing test results. The accuracy of the load 
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cell readings could be reduced, although the dummy load cell was calibrated prior to the shearing 

tests. 

The failure modes of the specimens after the tests were observed by visual examination and 

digital images. Since SEM or histologic section analysis was not conducted in this study, a remark 

is made that the failure modes mentioned previously in Section 6.2.1 was based merely on limited 

evidences collected during the current experimental study. 

GP FE modeling 

A generic specimen FE model was used in the GP material optimizations. In this FE model, 

the GP interface was modeled as a flat plane. This was an average and approximation of currently 

available specimens after qualitative and quantitative screenings. The microstructures, such as the 

undulations in micro-meter levels, have been taken into account as a portion of the mechanical 

strength of the GP material. Other macrostructures, such as the inclination angle and wavy 

interface of the GP in a specimen were ignored, assuming the degree of freedom in the specimen’s 

longitudinal axis could compensate most of these effects. Such an approximation would be one 

limitation of the current material modeling. Ideally, if the sample size is very large and the 

screening criterion of irregular structure could be set more strictly, or the specimen dimension 

could be further reduced using advanced cutting technology, the influences of the macro-structure 

could be minimized. 

In the GP material modeling, the material failure criterion was not available for an arbitrary 

loading condition, because of the limited capability of predicting the failure by using the current 
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material models in LS-DYNA. The sub-routine method could be used to develop the advanced 

material failure criteria. 

Additionally, it is valuable to investigate the GP damage progress and the fractures of the 

surrounding bones. This study requires high-definition of local geometry and accurate material 

property. In the microscopic scale, a GP consists of several layers with different properties. When 

the GP damage progress becomes the research focus, the inhomogeneous mechanical behaviors 

through the various layers should be a concern, and the detailed modeling of different layers would 

be demanded. A multi-scale FE modeling strategy could be implemented to address the excessive 

computation expense issue. Similar study could be found in Farzaneh et al. (2014). Inhomogeneous 

material modeling and microstructure of the trabecular bones will also be challenging. 

When embedding the GPs to the PLEX model, the geometries of the triradiate cartilage, and 

the GPs at the greater trochanter, distal femur and proximal tibia did not directly refer to accurate 

clinical images, as in the modeling of the femoral head GP. In the next stage of CHARM-10 

improvement, more efforts are needed to improve the geometric representation of the GPs. Besides, 

the finalized updated model will be subject to a new round of validations at various levels. 

8.2. FUTURE WORK 

Optimization improvement 

Current optimization strategy could be further improved to achieve better overall curve 

matching. One improvement is to lower the weight of the shearing in the objective function. In 

current evenly-weighting strategy, the curve matching under tensile loading conditions was not as 
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good as that under shearing (as previously shown in Figure 7-4 and Figure 7-6). A larger weight 

of tension may lead to a better curve matching for tension, without significantly affecting the 

performance in shearing. An appropriate weighting ratio needs to be further studied to achieve an 

acceptable balance between the performances in the tension and shearing loading conditions. 

Another improvement can be made to perform extra low-speed and high-speed optimizations for 

tension and shearing, respectively. After the optimizations in the current strategy, the hyperelastic 

parameters and viscosity parameters could be used to an extra optimization problem including 

low-speed and high-speed tension. New ranges of variables should be determined accordingly. In 

this means, the curve matching in the high-speed could be further improved by changing the 

hyperelastic parameters. A similar improvement can be achieved for shearing by conducting an 

extra optimization including low-speed and high-speed shearing. 

Age effect on the GP material and structure 

The test results were used to estimate the GP material for children only around 10 YO in the 

current study. It would be of great interest to investigate the relationship between the GP properties 

and the age (or maturity level). An experimental study involving piglets from different age group 

could be designed to investigate the material property changes caused by the age. Additional 

geometric study would be also required to examine the dimension and shape changes. With such 

in-depth knowledge, the material correlation results and the modeling technique in current study 

could be broadly implemented into the GPs of children in other age groups. 
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Simulation of different types of GP fractures 

It is also valuable to investigate the GP damage progress and the fractures of the surrounding 

bones as previously shown in Figure 2-7, as the fracture involving GP could be classified into five 

different categories by Salter and Harris (1963). Although the GPs have been included in the 

current updated CHARM-10 model, it is not capable of simulating these complicated modes of 

fracture. To improve this prediction capability in the future study, following information would be 

required: high-definition local geometry, accurate material properties of the cortical and trabecular 

bones, as well as the GPs, and the failure criteria of these bony structures and the GPs. If necessary, 

the layered structure of a GP would also be modeled. A multi-scale FE modeling strategy could be 

implemented to solve the excessive computation expense issue. Similar study could be found in 

Farzaneh et al. (2014). With these advanced modeling techniques, the accurate stress distribution 

and crack propagation could be simulated. 

Continuous improvement of the biofidelity of the human model 

To further improve the model, efforts should be focused on three directions to: (1) Include 

pediatric volunteer tests for kinematic comparison, like the study on the kinematics of upper torso 

of children by Arbogast et al. (2009), (2) Reconstruct the traffic accidents involving pediatric 

pedestrians for injury outcome comparison, such as the preliminary studies by Zhu et al. (2015) 

and Li et al. (2017), (3) Further implement the adult PMHS data with the help of improved scaling 

laws, such as the explorations done by Shen et al. (2015b). These three directions, combined with 
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the reasonable GP modeling technique discussed in the current study, are expected judiciously to 

further improve the biofidelity of the child human body model. 
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CHAPTER 9. CONCLUSIONS 

Clinical images were implemented to build an average 10 YO child whole-body CAD model. 

An anthropometric study was conducted to adjust the CAD model to accurate geometric 

dimensions, based on which the PLEX FE model of a 10 YO child was established. The validations 

of the biofidelity were conducted on component level and sub-assembly level. All the validations 

showed reasonable agreement with the pediatric experimental data, or scaled adult test data. In 

addition, the PLEX was integrated with the other body parts to form a whole-body model, named 

as CHARM-10. A sedan-to-pedestrian impact was simulated using this model to verify its 

responses. The simulation results showed reasonable agreements with those from the MADYMO 

simulation. Therefore, the PLEX model was treated as limitedly validated and can be used for 

further applications and model improvement. 

To further include the GPs in the PLEX FE model, tensile and shearing tests were conducted 

by using 20 WO porcine specimens. Among all specimens harvested from four 20 WO piglets, 65 

specimens were included in the tensile tests and 48 specimens in the shearing tests. Three levels 

of strain rates for tensile tests (0.0053 to 1.907 s-1) and for shearing tests (0.0085 to 3.037 s-1) were 

conducted, and three anatomic regions were chosen: femoral head GP (FMR HD), distal femur GP 

(dist. FMR), and proximal tibia GP (prox. TBR). The majority of tension failures were in the 

hypertrophic zone, while most of the shearing failures happening in the hypertrophic zone as well, 

although a larger variation of failure modes was observed in shearing. The findings were consistent 

with those reported in the literature. 
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Randomized block ANOVA was performed to investigate the effects of strain rates and 

anatomic regions on the six mechanical property parameters: E, σmax, εmax and G, τmax, γmax. For the 

tensile properties, both anatomic region and strain rate were significant factors for E and σmax. For 

the shearing properties, anatomic region was not significant for G, but significant for τmax. Strain 

rate was significant for both G and τmax. The interaction term of region and strain rate was no 

significant for all six property parameters. The ultimate tensile strain and shearing strain did not 

vary by any of the influencing factors. 

Paired comparisons were conducted using Scheffe Post Hoc analysis. As for the strain rate 

effect, the high-rate group had higher E than the low-rate group (10.97 MPa vs. 7.12 MPa, 

p=0.008); the high-rate group had higher σmax than the low-rate group (2.22 MPa vs. 1.27 MPa, 

p < 0.001) and the medium-rate group had higher σmax than the low-rate group (1.84 MPa vs. 1.27 

MPa, p=0.008); the high-rate group had higher G than the medium-rate group (3.16 MPa vs. 2.11 

MPa, p=0.006) and the low-rate group (3.16 MPa vs. 1.68 MPa, p=0.002); the high-rate group 

had higher τmax than the low-rate group (1.75 MPa vs. 1.32 MPa, p=0.005). 

As for the anatomic region differences, FMR HD had higher E than prox. TBR (11.26 MPa 

vs. 7.72 MPa, p=0.021); FMR HD had higher σmax than dist. FMR (2.40 MPa vs. 1.46 MPa, p < 

0.001) and prox. TBR (2.40 MPa vs. 1.48 MPa, p < 0.001); FMR HD had higher τmax than dist. 

FMR (1.82 MPa vs. 1.28 MPa, p=0.001) and prox. TBR (1.82 MPa vs. 1.44 MPa, p=0.017). Based 

on results of these comparisons, the distal femur and proximal tibia GPs were grouped together. 
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The 10 YO human-20 WO porcine GP correlation was done and the optimal conversion factor 

was determined to be 0.5234 as to minimize an overall error for the tensile properties. Based on 

this scaling factor, the tensile and shear stress-strain curves at 10 YO human femoral head and 

knee GPs were estimated using the porcine experimental data. The curves were plotted and 

discretized at different strain rates, and these data were taken for the following material modeling. 

A transversely isotropic hyperelastic material model (MAT_92 in LS-DYNA) was chosen for 

the material modeling of GP. Through two stages of material optimization, the hyperelastic 

parameters of MAT_92 and the viscosity parameters were optimized, for both 10 YO femoral head 

GP and knee GPs. A good match for the shearing properties in all strain rates has been achieved 

between the stress-strain curves using the newly-obtained material and those estimated for 10 YO 

in Chapter 6. The tensile properties showed good matching at the low and medium strain rates and 

acceptable at the high strain rate in this experimental study. 

A detailed sub-model of the proximal femur region was established, including the geometric 

data of GPs from CT scans. The femoral head anterior-posterior shearing was simulated to mimic 

the experiments conducted on human subjects as reported by Chung et al. (1976). A reasonable 

agreement was achieved in the parametric study, so the GP modeling techniques implemented in 

the sub-model should be considered as good preliminary references for future GP modeling studies. 

As an application for pedestrian simulation, other GPs in the PLEX were then modeled in the 

similar means as the proximal femur sub-model. All the unfused GPs in the PLEX were included 

in the updated PLEX model and further whole-body 10 YO pedestrian FE model. An SUV-to-
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pedestrian impact scenario was simulated at an impact speed of 5.0 m/s. The stress and strain 

distribution analysis revealed that the presence of GPs in the PLEX would change the stress 

distribution in terms of both peaks and timing. The deformation analysis on the elements suggested 

that the knee GPs would have failed due to the tension strains along the material axes, and the 

failure would start from the medial side of a GP. The GPs in the proximal femur showed lower risk 

of failure. Once a failure of GP happened, the stress distribution would be dramatically changed, 

and the failures at long bones might be avoided. 
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ABSTRACT 
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Finite element (FE) model is a useful tool frequently used for investigating the injury 

mechanisms and designing protection countermeasures. At present, no 10 years old (YO) 

pedestrian FE model has been developed from appropriate anthropometries and validated against 

limitedly available impact response data. A 10 YO child FE pelvis and lower extremities (PLEX) 

model was established to fill the gap of lacking such models in this age group. The baseline model 

was validated against available pediatric postmortem human subjects (PMHS) test data and 

additional scaled adult data, then the PLEX model was integrated to build a whole-body FE model 

representing a 10 YO pedestrian. 

Additional investigations revealed that the immature tissues, growth plates (GPs), should be 

explicitly modeled because they have different mechanical properties than the surrounding bones. 
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Epidemiological data revealed that GP accounted for a large portion of pediatric fractures. To 

investigate the GP’s material property for further advancement of the baseline PLEX FE model 

for simulating impact mechanical responses, a series of tensile and shearing experiments on 

porcine bone-GP-bone units were carried out. The GPs from the femoral head, distal femur, and 

proximal tibia of 20-weeks-old piglets were tested, under different strain rates. Randomized block 

ANOVA was conducted to determine the effects of anatomic region and strain rate on the material 

properties of GPs. By comparing the porcine experimental data to the limited data obtained from 

tests on human subjects reported in the literature, an optimal conversion factor was derived to 

correlate the material properties of 20-week-old piglet GPs and 10 YO child GPs. 

A transversely isotropic hyperelastic material model (MAT_92 available in LS-DYNA) with 

added viscosity was adopted to mimic the GP tissues. After a series of optimization procedures, 

the material parameter sets needed for MAT_92 were determined to represent the GPs of a 10 YO 

child. To further explore the GP modeling techniques, a sub-model representing the proximal 

femur was extracted from the PLEX model. The femoral head GP in the sub-model was modeled 

using the geometry from CT scans and the material properties from early optimizations. FE 

simulations of femoral head shearing were conducted on the sub-model to determine other GP 

modeling settings. In the following technical application, similar GP modeling techniques were 

implemented to model the GPs at the hip and knee regions to update the baseline PLEX model, 

and further the whole-body model. An SUV-to-pedestrian impact scenario was simulated using the 
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updated whole-body model, the remarkable influences of the GPs on the stress distributions in the 

PLEX were quantitatively assessed. 
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