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CHAPTER 1. INTRODUCTION 

 Austempered Ductile Cast Iron (ADI) has emerged as a major engineering material in 

recent years despite the vigorous energetic promotion of newer materials and alloys because of its 

exceptional combination of properties including high strength, good fracture toughness [1-3], 

good fatigue strength and excellent wear resistance [4-5] with good ductility [6-7]. Austempered 

ductile iron is an alloyed and heat treated ductile cast iron. Another advantage of ADI is that, it 

has low production costs due to its good castability, excellent machinability and shorter heat 

treatment processing cycles. The chemical composition and the heat treatment parameters 

determine the properties of the ADI. In order to take complete advantage of the engineering 

properties of ADI, the chemical composition and heat treatment parameters must be optimized 

[8]. ADI compete favorably with steel and aluminium castings and has been extensively used as a 

structural component in wide variety of industrial applications such as automotive, defense, 

agricultural, railways, mining, and construction [9].  

 The current demand for vehicle weight reduction, improved fuel economy, while 

maintaining the crush performance, requires innovative processing, for the creation of unique 

microstructures in the materials. While ADI has good mechanical properties, studies show that, 

with respect to toughness properties, the ADI ratings are certainly not the best. The bending 

strength of ADI is lower than that of the carburized alloy steel [10], the machining of thick 

section parts is difficult in the commercially available ADI due to its poor machinability. One of 

the way to improve the properties such as strength and toughness is by refining the grain size to a 

nanoscale range.  

 Nanostructured materials are the crystals with sizes less than 100nm. Those materials with 

the grain size >100nm but < 500nm are referred to as ultra-fine- grained materials [11-13]. The 
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grain boundary of the nanostructured materials accounts for about 50% of its total volume. The 

nanostructured materials are gaining importance in recent because of its attractive physical and 

chemical properties than the coarse-grained materials.  

 While a significant number of nanostructured materials has been developed in recent 

years, the application of nanotechnology in bulk structural materials like iron and steel has been 

rather limited. The literature details the development of nanostructured materials on steel and 

nonferrous alloys [14-22]. However, only limited investigations [23] have been carried out to 

produce nanostructured ADI. 

 Ductile cast iron is relatively inexpensive and has lower density than steel.  The ADI 

components are 10% lighter than forged steel and the overall production costs of ADI is 30-40% 

lower than the forged steel [24]. Considering the good combination of strength and toughness in 

ADI, it is believed that nanostructured ADI will be a potential substitute for structural materials in 

many critical applications where forged or wrought steels are being used.  

 The relation between grain size and strength is often expressed in terms of the Hall-Petch 

equation [25,26] 

                                                        σ y= σ0+k/(d)1/2
     (1.1) 

where σy is the yield stress, σo is a materials constant, ky is the strengthening coefficient and d is 

the average grain diameter. This equation shows that the reduction in grain size will significantly 

improve the strength and mechanical properties of the ADI. Thus, the reduction in the prior 

austenite grain size favors the improvement in mechanical properties of ADI. 

 The primary focus of this investigation was thus, to develop nanostructured austempered 

ductile cast iron. In this investigation, a unique heat treatment cycle has been proposed to create 

ADI with nanostructured grains with ausferritic structures in it. High temperature plastic 
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deformation will result in the refinement of the coarse grain into the nanometer regime. It was 

hypothesized that, by the deformation and refinement of the austenite grains, it will be possible to 

produce nanostructured carbide free ferrite and high carbon austenite, referred to as ausferrite in 

ADI.  

 The ductility of ADI generally diminishes as the grain size is reduced. However, the 

ductility of the ADI can be compensated to some extent by the producing proeutectoid ferrite in 

the microstructure of ADI along with the ausferrite by a process called intercritical austempering. 

It was also hypothesized that size of the austenite-ferrite lath spatial arrangement can be reduced 

by the two-step austempering process.  

 While the mechanism of transformation and microstructural features are well observed in 

ADI, the uncertainty regarding the stability of austenite remains a debate. Thus, the secondary 

objective of this investigation is to determine the thermal and mechanical stability of austenite.  

The cryogenic treatment allowed for the examination of the thermal and mechanical stability of 

the high-carbon austenite (γHC) in the ADI. This investigation also examined the microstructure 

and mechanical properties of ADI subjected to cryogenic processing.  Finally, the co-relation 

between the microstructure and mechanical properties ADI has been established in this 

investigation. 
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CHAPTER 2. LITERATURE REVIEW  

2.1 Cast irons 

 Cast irons are a class of ferrous alloy with the carbon contents above 2.14 wt% and silicon 

content ranging between 1 to 3%. Cast iron, in practice, often contains 3 to 4.5 wt% carbon, and, 

in addition, other alloying elements. Cast irons offer a wide range of properties [27] including 

strength, ductility, machinability, hardness, damping capacity, thermal conductivity, castability, 

wear resistance and corrosion resistance together with low cost. The chemical composition and 

the cooling rate determine the form that the graphite takes in cast irons. As the cooling rate 

increases, the tendency to form graphite decreases, whereas the increase in the concentration of 

carbon or silicon promotes graphitization in cast irons. The combined effect of elements such as 

carbon, silicon and phosphorous can be represented by a term called carbon equivalent (C.E)  

                                           C.E= %C+ 0.33(%Si+%P)       (2.1) 

C.E determines how close the given analysis is to that of the eutectic composition (C.E=4.3) for 

specific cooling rates [28]. The carbon and silicon content of the different types of cast iron is 

compared to that of the steel in Figure 1. Historically, cast iron was divided into two categories 

namely white cast iron and gray cast iron based on their fractured surface. With the advent of 

metallography, other classifications based on the microstructural features were established. The 

most common types of cast irons include white cast iron, gray cast iron, malleable cast iron and 

ductile cast iron. 
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Figure.1: Carbon and silicon content in cast iron compared to steel [29] 

2.1.1 Gray cast iron 

 The carbon and silicon content of gray cast iron vary between 2.5 to 4wt% and 1 to 3wt% 

respectively. During solidification, the graphite occurs in the form of flakes in these types of cast 

iron. The fractured surface of the gray cast iron takes on a gray appearance, because the fracture 

occurs along the graphite flakes. The microstructure of the gray cast iron consists of graphite 

flakes surrounded by ferrite or pearlite matrix as shown in the Figure 2(a). Gray cast iron exhibits 
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high damping capacity, high thermal conductivity, high wear resistance, moderate strength and 

low ductility. Gray cast iron is used in applications such as transmission cases, brake rotors, 

cylinders and liners [27-31]. 

2.1.2 White cast iron 

 When the C.E is below than the eutectic value, specifically due to lower silicon content or 

due to rapid cooling rates, most of the carbon are present in the form of cementite rather than 

graphite. In this type of cast iron, the fracture occurs along the iron carbide plates and exhibits 

white crystalline appearance, hence termed as white cast iron. The microstructure of the white 

cast iron consists of cementite and pearlite, which is a ferrite-cementite layered structure as shown 

in the Figure 2(b). White iron is extremely hard and brittle. White cast iron is used in applications 

that requires hard and wear or abrasion resistance such as the roller mills, grinding mills, shell 

liners and bearing surfaces [27-31]. 

2.1.3 Malleable cast iron 

 Malleable cast iron is the heat treated white cast iron. Prolonged high temperature 

annealing (between 800-900°C) of the white cast iron in a neutral atmosphere induces the 

decomposition of cementite into graphite. The graphite exists in the form of clusters or rosettes as 

shown in the Figure 2(c). The resulting microstructure of the malleable cast iron consists of 

graphite distributed in the pearlite or ferrite matrix depending on the cooling rate. Malleable cast 

iron has relatively high strength from 280 MPa to 800 MPa and good elongation from 2 to 18%. 

Some of the applications of malleable cast iron includes connecting rods, transmission gears, pipe 

fittings etc. [27-31].  

.  
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(a)      (b) 

  

   (c)           (d) 

Figure.2:Optical photomicrographs of cast irons (a)Gray cast iron (500X), (b)White cast iron 

(400X), (c)Malleable cast iron (150X), and (d) ductile cast iron (200X) [28] 
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2.1.4 Ductile cast iron 

 When alloying elements like magnesium or cerium is added to the gray cast iron, graphite 

flakes, which are the weakest structural features, takes the shape of nodules and imparts ductility 

to the material. The distinctive characteristic of ductile cast iron is the presence of graphite 

nodules in the microstructure matrix. The graphite nodule imparts ductility to the material, almost 

5 to 20% greater thean gray cast iron and hence the name ‘ductile cast iron’. The graphite nodules 

in the ductile iron must be as spherical as possible, else they act as stress raisers. The control of 

the graphite shape is important in nodular cast iron. The percent nodularity can be calculated per 

the ASTM standard E2567[32].  The nodularity of 80% can be easily achieved in ductile iron [8]. 

Ductile cast iron is also referred to as nodular or spheroidal graphite irons..  

 The mechanical properties of the ductile cast iron are determined by the matrix which may 

be ferrite or pearlite or mixture of both depending on the heat treatment as shown in the Figure 

2(d). To facilitate the dissolution of carbon into austenite during the heat treatment, it is 

recommended to have a pearlite as cast structure in ductile cast iron [27]. The ductile cast iron is 

extensively processed by various heat treatments such as annealing, stress relieving, hardening, 

normalizing and austempering. Typical applications of ductile cast iron include valves, gears and 

other automotive components[27-31]. 

2.2 Austempered ductile cast iron (ADI) 

 Austempered ductile cast iron is the most recent addition to the ductile iron family. 

Austempering is an isothermal heat treatment process in which the ductile cast iron is heat treated 

in the bainitic transformation range usually 260-400°C (500-750°F) after austenitization in the 

temperature range of 871-982°C (1600-1800°F). Austempering process is extensively used in 

ductile iron to obtain superior mechanical properties [33,34]. This results in austempered ductile 
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cast iron (ADI) with an exceptional combination of strength, toughness and wear resistance. ADI 

exhibits higher strength, good machinability, impact values much higher than pearlitic grades and 

comparable to that of ferritic grades. The comparison of mechanical properties [29] in Figure 3 

shows that the strength of the ADI is much higher than gray iron or the quenched and tempered 

ductile iron. 

 

Figure.3: Comparison of mechanical properties of various types of ductile cast iron [29] 

2.3 Chemical composition of ADI 

 The chemical composition of ADI is very important factor in determining the mechanical 

properties. Adequate control of chemical composition determines the optimum properties of 

ductile iron castings. Alloying elements like Mn, Mo, Ni and Cu are added to the ductile cast iron 
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mainly to increase the hardenability of the material, to avoid pearlite nose at the CCT curve [6]. 

The average concentration of manganese can be varied between 0.25 to 0.5wt % to prevent the 

segregation of manganese along the cell boundaries, which may result in heterogenous 

hardenability [35,36]. Molybdenum is the most potent hardenability enhancer in ADI. However, 

like Mn, Mo also segregates along the cell boundary and serve as the nucleation site or the 

propagation path for the cracks.  Thus, the concentration of molybdenum is usually limited to a 

minimum up to 0.2% and should be used in combination with Ni or Cu. The addition of Ni/Cu 

shortens the time required to complete austempering process. The Ni concentration may vary 

between 0.5 to 3.5 wt % and the Cu concentration may vary from 0.5 to 1.0 wt%. The carbon and 

silicon contents in ductile iron must be adjusted per the section size [36]. 

2.4 Processing of ADI 

 Melting, casting and heat treatment of ductile cast iron alloyed with elements such as Ni, 

Mo and Cu are the three major steps involved in the processing of ADI. Heat treatment is 

performed in ductile iron to improve the strength, toughness, ductility and increase the 

machinability by controlling the microstructure. The heat treatment of ADI involves three steps: 

1) Austenitizing, 2) Quenching and 3) Austempering. The final properties of ADI depend on all 

the three heat treatment cycles. 

 During austenitizing, the ductile iron casting is heated to a temperature ranging between 

1600°F-1800°F.  The casting is held at this temperature for 1-2 hours. The rate of austenitizing 

has very little effect on the final properties of the material. The alloy addition, segregation of 

alloying elements and the section size should be considered for optimizing the austenitization 

temperature and time [37]. During this process, the matrix microstructure of the ductile iron is 

completely transformed to face center cubic (FCC) austenitic (γ) phase saturated with carbon [37].  
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 After austenitizing, the ductile cast iron is quenched in a molten salt bath to avoid surface 

oxidation. The rate of quenching must be high enough to avoid the formation of pearlite as shown 

in the isothermal transformation diagram in Figure 4.  The molten salt bath is maintained in the 

austempering temperature range of 500°F to 750°F. The temperature and time of austempering 

have major effect on the final properties of the material.  

 Austempering is an isothermal heat treatment process and involves two stages [38-40]. 

During the first stage, the austenite (γ) is decomposed into ferrite (α) and high carbon austenite 

(γHC): 

     γ → α + γHC                                                               (2.3) 

 

Figure.4: Isothermal transformation diagram for unalloyed ductile cast iron together with time 

temperature transformation (TTT) curve 

 The ductile iron is held at the austempering temperature for a sufficient time to yield a 

microstructure whose matrix is mostly ausferrite and free of pearlite and martensite. If the ductile 
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cast iron casting is held at the austempering temperature for too long, undesirable second stage 

occurs in which the high carbon austenite can further decompose into ferrite and carbide: 

                                                                 γHC → α + ε     (2.4) 

ε carbide is undesirable and must be avoided, otherwise, it will make the material brittle. The 

period between the completion of the first reaction and the onset of the second reaction is called 

the "process window".  In general, addition of alloying elements such as Ni, Mo and Cu will 

significantly enlarge the process window in ductile cast iron and thus helps in achieving optimum 

combination of strength and ductility in ADI. 

2.5 Microstructure of ADI 

 Austempering of ductile cast iron produces a unique microstructure consisting of 

predominantly bainitic ferrite, high carbon austenite with graphite nodules dispersed in it.   Other 

constituents of the microstructure may include martensite and carbides. 

2.5.1 Bainite in ADI 

 Bainite is formed at isothermal transformation temperature range of 260 to 400°C (500 to 

750°F), which is below the pearlitic transformation temperature but above the martensitic start 

temperature. In this isothermal transformation temperature range, the bainite occur in two 

different forms, namely upper and lower bainite. 

2.5.2 Upper bainite 

 When the ductile iron is austempered in the upper bainitic temperature range above 600°F 

and up to 750°F, coarser carbide free ferrite and retained austenite along with graphite nodules 

occur in the microstructure. The resulting microstructure with carbide free ferrite and high carbon 

austenite (α+ γHC) is referred to as ‘ausferrite’ [41-43]. This structure is different from those of 

bainite in steel as shown in the Figure 5. The formation of cementite phase as in the bainitic 
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reaction of steel is generally suppressed in ADI or high silicon steels due to the presence of high 

concentration of Si and C content.  

 

Figure.5: Difference between ausferrite in ductile iron and bainite in steel [34] 

Additionally, carbon rejected from the ferrite does not form carbide in ADI because of the high 

concentration of Si. Instead the carbon enters the solid solution and enriches the austenite. When 

the austenite is sufficiently saturated with carbon, the martensite start temperature is moved below 

the room temperature resulting in stable austenite in ADI. 

2.5.3 Lower bainite 

 Austempering of ductile cast iron in the lower bainitic temperature range of 500°F to 

600°F results in the microstructure consisting of fine needle shaped bainitic ferrite and austenite 

along with graphite nodules. The major difference between the upper and lower bainite is that the 

carbide precipitates within the bainitic ferrite plates as represented in the Figure 6. However, in 
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ADI and high silicon steels, the carbide may occur in different forms such as carbides or other 

transition carbides [41-46].  

 

Figure.6: Schematic representation of upper bainite and lower bainite 

2.5.4 Austenite 

 Austenite is the gamma phase iron with a face centered cubic structure. The face centered 

cubic structure of austenite allows dissolution of high proportion of carbon in it [41].  Austenite is 

generally evident at temperatures above 723°C depending on the carbon content. The volume 

fraction of austenite and its carbon content mainly depends on the austenitizing temperature. 

During isothermal transformation process, bainitic ferrite nucleates at the grain boundary by 

enriching and saturating the austenite with carbon. When the austenite is sufficiently saturated 

with carbon, the diffusion of carbon ahead of ferrite becomes difficult and the growth of ferrite is 

arrested. After the course of isothermal transformation, remaining austenite can be retained at 

room temperatures and they occur as slivers between the ferritic needles [41-46]. 

2.5.5 Martensite 

 A portion of the high carbon austenite may transform into martensite up on cooling to 

room temperature or under conditions of suitable stress or strain. 

2.6 Nucleation and growth process of bainite 

 The bainitic transformation occur at the interfaces, where the transformation of austenite 

to ferrite takes place by the nucleation and instantaneous growth of bainitic subunits. 
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The transformation progresses with the formation of aggregates of subunits called sheaves.  

 

Figure.7: To curve construction on the Fe-C Phase diagram using free energy of austenite and 

ferrite  

 Review of the existing literatures shows that growth of bainite occur by diffusionless 

phenomena [45,46]. A thermodynamic model [47] for the phase transformation in steels, 

introduced by Zener shows that the growth of bainite occur by diffusionless phenomena in which 

the carbon is partitioned into the residual austenite after growth. Films of carbon enriched retained 

austenite gets trapped between the bainitic subunits. As the subunit of bainite continue to nucleate 

at the grain boundaries, the austenite becomes enriched and saturated with carbon. The next 

subunit must grow from the carbon enriched austenite. Figure 7 shows the equilibrium carbon 

concentration Ae1 and Ae3 curves of ferrite and austenite respectively. The growth of the new 

subunit is arrested when the austenite is completely saturated with carbon or when the carbon 
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concentration of austenite reaches T0 curve, the diffusionless transformation is thermodynamically 

unfavorable and remains untransformed. The remaining austenite can be retained to room 

temperature. 

2.7 Mechanical properties of ADI 

 Mechanical properties of ADI are dependent on various interlinked factors such as the 

chemical composition, austenitizing and austempering temperatures and times, as cast 

microstructure, microstructural features after the heat treatment.  

 The microstructural features prior to the heat treatment significantly influences the 

properties of the ADI. The prior pearlitic structure increases the toughness of ADI with respect to 

the holding time as longer holding time is necessary to decompose the relatively stable carbides 

around the eutectic cell boundaries [48].  

 Austempering temperature plays a significant role in defining the mechanical properties of 

ADI. At lower austempering temperatures near 500°F, fine acicular ferritic structure along with a 

smaller volume fraction of austenite provides high tensile strength up to 1600 MPa (260 Ksi) and 

hardness of about 60HRC. However, limited ductility with only 1% elongation and poor 

machinability is obtained at this lower austempering temperatures. At higher austempering 

temperatures near 725°F, a typical ausferritic structure consisting of coarser ferrite and higher 

volume fraction of austenite (up to 40%) provides substantial improvement in ductility with 

elongation of up to 14% and good machinability with relatively lower hardness value and limited 

strength in the range of 800MPa to 1200MPa [49]. Greatest amount of high carbon austenite 

provides maximum ductility to the material [50]. Thus, the mechanical properties of ADI are 

dependent on the fineness of ferrite and austenite in the ausferritic structure and the carbon 

content of austenite [49-52].  Recent studies [49] shows that the mechanism of strengthening of 
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ferrite is caused by strain hardening and the austenite strengthening is obtained by the solution 

hardening and grain refining.  

 The machinability of the ADI can be improved when the microstructure of ADI contains a 

considerable amount of ferrite in the matrix. Numerous studies [53-56] are being undertaken to 

develop dual phase matrix containing ferritic-ausferritic structures to enhance the machinability 

properties of ADI to compete with forged steels. 

2.8 Fracture toughness of ADI 

 The fracture toughness of the ADI is strongly dependent on its microstructural features 

such as the morphology of ausferritic structure, retained austenite and the carbon content of 

austenite [1,2, 57-60]. Studies [2,57,58] have shown that the following relationship is valid for the 

fracture toughness of ADI. 

     K1C
2= σy (XγCγ) 1/2                                                                   (2.5)     

where K1C is the fracture toughness, σy is the yield strength, Xγ is the volume fraction of 

austenite, Cγ is the carbon content of austenite. Other researchers have shown that the yield 

strength of ADI is dependent on the ferritic cell size and width of the ferrite [1, 58-60]. The 

maximum fracture toughness of 66MPa√m is obtained in conventional ADI with finer ferritic 

structure when the ADI is austempered at lower austempering temperatures [61-62]. In 

conventional austempered ductile iron [63-64]. Improvement in the fracture toughness is possible 

by reducing the ferrite particle size, stabilizing the retained austenite content and by increasing the 

carbon content of austenite which will increase the strain hardening ability in ADI. 

2.9 Intercritical austenitizing 

 A review of the literature indicates that the ductility of most nanostructured materials is 

low compared to the conventional microcrystalline counterparts [65-67]. The limitation of 
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conventional ADI includes the absence of proeutectoid ferrite in the microstructure as well as the 

predetermined amount of transformed ferrite content in the process window range. Intercritical 

austempering will produce dual matrix structure consisting of ausferrite (bainitic ferrite and high 

carbon austenite) and proeutectoid ferrite in the matrix. This material will exhibit much greater 

ductility than the conventional austempered or quenched and tempered ductile iron [65-67]. This 

can be achieved by austempering the ductile iron from the intercritical austenitizing temperature 

range as represented in Figure 8.  

 

Figure.8: A schematic diagram of intercritical austenitization process 

 During intercritical austempering, ductile cast iron is austenitized in the temperature range 

between A1 and α tranus (αT) where the austenite, ferrite and graphite (α + γ + graphite) co –exist 

[68-70], and then austempered. This will produce a microstructure consisting of bainitic ferrite 

and high carbon austenite together with proeutectoid ferrite. As predicted by the lever rule [71], 



 
 

19 
 

 

the holding in the intercritical austenitizing region determines the austenite carbon content before 

austempering as well as controls the volume fractions of austenite and proeutectoid ferrite based 

on the intercritical austenitizing temperature [72]. 

 Ductile iron with dual matrix structure (DMS) was introduced in the early 1980’s [73]. 

The DMS ductile iron consisted of ferrite as soft phase and either bainite or martensite as the hard 

phase. Existing literature shows that [74], the mechanical properties of ADI with DMS consisting 

of ferrite-bainite has better mechanical properties than the ferrite-martensite combination. It is 

also shown that the Stage 1 austempering reaction can be accelerated by lowering the 

austenitization temperature, resulting in mechanical properties that satisfies the ASTM standard 

[75-77].  

 Austenitizing the low alloyed ductile iron in the (α+γ) range, stabilizes the austenite phase 

by diffusing the austenite forming elements into the austenite phase, thereby improving its 

strength and toughness properties. This austenite is less likely to transform into martensite while 

cooling to room temperature or up on application of stress [78]. Rouns et al. [79] showed that for 

a given austempering temperature, the volume fraction of the untransformed austenite decreases 

with the decrease in austenitizing temperature. At lower austempering temperatures, the 

transforming percentage of ferrite from the austenite is higher in ADI when austenitized in the 

intercritical region [80]. The volume fractions of the proeutectoid ferrite and austenite, in turn will 

influence the tensile strength and ductility. Hence, these parameters can be successfully optimized 

by choosing the critical combinations of intercritical austenitizing and austempering temperatures. 

Amount of ferrite present can be varied from 5% to 85% by the intercritical austempering process. 

The intercritically austempered ADI with approximately 75% ausferrite exhibits best combination 

of strength and ductility compared with pearlitic grades [81]. Kobayashi et al. [82] attempted to 
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improve the strength and toughness by austempering the ADI from (α+γ) range. This intercritical 

austenitizing significantly improved crack propagation resistance in the Ni and Mg alloyed iron. 

 Tensile stress of about 1.15GPa with up to 16% elongation can be achieved by the 

intercritical austempering process [83-86]. The strength and hardness of this material is 

comparable to that of the pearlitic grades and much higher than the ferritic grades. The ductility of 

intercritically austempered ADI is four times higher than the pearlitic grades but like that of the 

ferritic grades adequate for most applications [69]. The intercritical austempered ADI finds 

applications such as suspension parts [87], which requires a good combination of strength and 

ductility. 

2.10 Two-step austempering 

 Two-step austempering process involves quenching the material from the austenitizing 

temperature to a lower austempering temperature to create larger supercooling to facilitate more 

ferrite nucleation. The transformation of austenite to ferrite by the isothermal treatment occur by 

nucleation and growth process [88-90]. Nucleation depends on supercooling and the high carbon 

content can be achieved by higher austempering temperature. Once the nucleation is complete, the 

material is then heated to a higher austempering temperature thus promoting growth of ferrite by 

faster diffusion of carbon and thus increasing the carbon content of austenite. [91-93].  

 Putatunda [91] proposed the two step austempering process in which the ADI samples 

were quenched to a low temperature range between 260°C and 375°C, at which the samples were 

held for 5 minutes and then held to a time of 2 hours austempering, at which the temperature was 

raised by14°C/h. Another variant of the two-step processing proposed by Yang et al [92], consists 

of quenching at low austempering temperature for 5 minutes and then holding for 2 hours by 

increasing the austempering temperature 30°C higher than the first austempering temperature.  
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 Existing literatures [91-94] reports that the ADI austempered by two-step austempering 

process produced higher strength and toughness than those ADI austempered by single step 

austempering process. The morphology of the ferrite, austenite and the carbon content of austenite 

play a major role in determining the mechanical properties of ADI. Two-step austempering will 

reduce the overall time for the processing of ADI, produces very fine grain ausferritic structure 

and simultaneously results in significant improvement the strength and toughness of ADI [91-94].  

 2.11 Cryogenic processing  

 Cryogenic processing is a heat treatment in which the work piece is subjected to 

temperatures below -190°C. Cryogenic processing is gaining significant interest in recent years as 

it results in improved mechanical properties in ADI as reported in several investigators [95-98].  

 Cryogenic treatment promotes the transformation of the residual austenite to martensite 

[96], therefore, wear resistance of the ADI is significantly improved by the cryogenic treatment 

[98,99]. Conventional cryogenic processing involves several steps such as (a) Ramp down, (b) 

hold, (c) Ramp up and (d) Tempering. During ramp down stage the material is slowly cooled 

down from an ambient temperature to a temperature ranging between -80 to -155°C.  This slow 

cooling prevents the temperature gradient and thus allows the stresses to be minimum. Then the 

material is held at the subzero temperature for a predetermined time and then ramped up to the 

ambient temperature followed by tempering at a slightly elevated temperature.  

 Cryogenic processing is applied to components such as brake rotors, gun barrels, racing 

motor components, cutting tools, tool steels, landing gear systems, turbine blades etc. 

2.12 Stability of austenite 

 Control of the heat treatment process mainly to produce the appropriate amount of 

austenite is important in determining the grade of ADI [97]. The amount and the stability of 
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austenite in ADI determine the final properties of the ADI castings [96].  The presence of 

mechanically unstable austenite aids the hardening process during manufacturing [99,100]. 

 Several published studies [96,100-104] have reported that the austenite is not 

mechanically stable and transforms to martensite by transformation induced plasticity(TRIP) 

phenomena. Such unstable austenite that transforms into martensite by the transformation induced 

plasticity (TRIP) phenomena results in excellent combination of strength and elongation in steels 

[103-104]. Cryogenic treatment results in conversion of unstable retained austenite to martensite 

without any mechanical tests in ADI [95].  

 Several other literatures [105,106] have reported no such transformations in ADI. The 

stability of the austenite also depends on the graphite nodularity. Greater stability of the austenite 

can be achieved by the higher fraction of graphite nodules in the microstructure of ADI [107]. 

Austenite stability is also affected by the austempering time. Shorter austempering times lead to 

the complete transformation of thermally unstable austenite to martensite up on cooling to room 

temperature. However, longer austempering time will lead to the increase in volume fraction of 

ferrite, while further transformation within the processing window range, will stabilize the 

austenite [108]. 

2.13 Nanostructured ADI 

 A review of the existing research shows that nanostructured materials produce better 

physical and chemical properties owing to their large number of crystallite interfaces. 

Nanostructuring of metals and alloys has been used in recent years to improve the mechanical 

properties of bulk materials [21].   

  During the last decade, number of studies have been carried out to produce ultra-fine 

grained metallic alloys with enhanced properties such as high strength, superplastic properties 
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than the coarse-grained materials [109]. However, the nano crystallinity affects the ductility of the 

material and hinders the use of these materials in structural applications This lack of ductility is 

not due to the brittleness but due to the lack of strain hardening [110, 111].  

 Nieman et al [112] performed the first mechanical test on nano crystalline metals.  Further 

literatures focused on the development of nanostructured materials in nonferrous alloys and steel 

[12-22, 113]. By now, nanostructures have been obtained in various pure metals, alloys and steels 

by the application of severe plastic deformation techniques. Plastic deformation is permanent 

deformation produced by the application of sufficient stress or strain beyond the elastic limit of 

the material. Plastic deformation has a significant effect on the microstructure and improvement 

of properties in a material. Several authors have tried to reduce the grain size by various plastic 

deformation techniques including equal channel angular pressing, torsion straining, multiple 

forging, alloying, repetitive corrugation and straightening [113-116]. There are several 

disadvantages associated with the above-mentioned plastic deformation techniques such as 

contamination, micro porosity resulting in brittleness of the material.  

 Refinement of the microstructure by transformation, rather than deformation lead to 

combination of increased strength, toughness and hardening of larger sections [117]. In steels 

with high carbon and silicon content, it is possible to produce high strength and toughness by 

isothermal transformation, inducing carbide free bainitic structures and high carbon austenite, 

both in the nanoscale dimensions [20, 52]. 

 Characteristics of ADI including the non-homogenous chemical composition in the micro 

regions, thickness of the specimen, presence of graphite has a significant effect on the heat 

treatment process. Therefore, it is difficult to obtain ferritic structures in the submicron range with 

characteristics like that of a nano bainitic steel [20,52]. Only, a very few investigations have been 



 
 

24 
 

 

carried out recently on the development of ultra-fine ADI. Azevedo et al [118] achieved 

refinement in austenite grain boundary by a process of rapid austenitization of prior martensitic 

structures. A recent study carried out by D. Myska et al. [23, 108] proposed that longer isothermal 

transformation time at lower ausferritic transformation temperature range, resulted in significant 

refinement of ferrite plates in less than 100nm range.  

 In ADI used in this study, it is hypothesized to produce nano grains by the deformation of 

the austenite grains. During high temperature plastic deformation in ADI, deformation energy 

produces simultaneous deformation and recrystallization of austenite grains.  As the austenite 

grain deform, austenite grain boundaries give more nucleation sites for the growth of finer ferrite 

as shown in the Figure 9. 

 

Figure.9: Plastic deformation of austenite grain. 

 During austempering or isothermal transformation, more ferrite nucleates at a shorter time. 

Therefore, it is also hypothesized that austenitization followed by the high temperature plastic 

deformation will result in much shorter time for austempering than the conventional austempering 

process. 
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CHAPTER 3. OBJECTIVES 

The objectives of this investigation are as follows 

• To develop a nanostructured austempered ductile cast iron. 

• To examine the effect of conventional austempering, cryogenic processing, intercritical 

austempering and plastic deformation on the microstructure, lath size, ferritic cell size and 

mechanical properties of the ductile cast iron.   

• To investigate the thermal and mechanical stability of austenite. 

• To establish the correlation between the microstructure and mechanical properties of ADI. 
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CHAPTER 4. EXPERIMENTAL PROCEDURE 

4.1 Material 

 A low alloyed ductile cast iron with the chemical composition detailed in Table 1 is used 

in this study. The material was originally cast in the form of KEEL blocks per ASTM standard A-

536[119]. The KEEL blocks measured 7.9"X 3.0"X4.0".  From these cast blocks, cylindrical 

tensile samples and compact tension sample blanks for fracture toughness tests were prepared as 

per ASTM standards E-8 [120] and E-399 [121], respectively.   

Table 1: Chemical composition of ductile cast iron 

 

 

 

 

 

 

 

 

 

 

 

 

Element Wt% 

C 3.44 

S 0.008 

P 0.016 

Si 2.46 

Mn 0.08 

Cr 0.05 

Cu 0.52 

Ni 1.03 

Mo <0.01 

V 0.017 

Al 0.018 

Ti 0.010 

Mg 0.043 

Ce 0.013 
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4.2 Heat treatment 

 After fabrication, the cylindrical tensile samples and compact tension blanks were divided 

into 4 sets (A, B, C, D and E) and heat treated as follows. 

4.2.1 Conventional austempering 

The first set of samples (A) were initially austenitized at 927°C (1700°F) for 2 hours and 

then quenched and austempered in a molten salt bath. Figure 10 shows the schematic diagram of 

the conventional heat treatment performed in this study. 

 

Figure.10: Schematic Diagram of the conventional austempering heat treatment 
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 The austempering temperatures were chosen in such a way that specific samples had either 

an upper or lower bainitic microstructure. As the demarcation between upper and lower bainitic 

temperature is 600ºF, the lower bainitic temperature range of 500ºF and 550ºF was chosen for 

specific samples and to ensure specific samples had upper bainitic microstructure, an upper 

bainitic temperature range of 700ºF, 725ºF and 750ºF were also chosen. 

4.2.2 Cryogenic processing  

 

Figure. 11: Schematic Diagram of the cryogenic heat treatment process 

 The austempered samples from the each of the first set were divided into two groups (A1 

and A2); one group from each is set aside. The second group of the samples (A2) were then 

cryogenically treated by cooling them from ambient to -238°F (-150ºC) over the course of eight 

hours as shown in the Figure 11.  The samples were held at -238°F(-150ºC) for four hours before 

allowing them to rise to ambient temperature again over the course of eight hours.  All the 

cryogenically-treated samples were then tempered at +238ºF (+150°C) for half an hour.  
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4.2.3 Intercritical austempering 

 

(a)                                                                             (b) 

Figure.12:  Schematic diagram of intercritical austempering process 

 An equation [97] developed by the Ductile Iron Society was used to predict the upper 

intercritical temperature (UCT) and lower intercritical temperature (LCT).  Based on the chemical 

composition of the ductile iron used in this study, it was determined to be 1520°F and 1404°F 

respectively. The second set of samples (B) were divided into four groups (B1, B2, B3, B4) and 

intercritically austenitized at temperatures between A1 and αT at 1520ºF,1472ºF,1436ºF,1418ºF 

and then quenched and austempered for 3 hours in a molten salt bath maintained at 680ºF as 

shown in the Figure 12(a). To determine the effect of austempering temperatures with respect to 

intercritical austenitization, several austempering temperatures (725°F, 680°F, 600°F, 550°F) 

were chosen for the same intercritical austenitizing temperature(1520°F) as shown in Figure 

12(b).  
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4.2.4 Plastic deformation and single step austempering 

 

(a)      (b)                                             

 Figure.13: Schematic Diagram of heat treatment involving (a) plastic deformation and single step 

conventional austempering process (b) plastic deformation and single step intercritical 

austempering process 

 Third set of samples (C) consisted of only cylindrical tensile specimens and was divided 

into two groups (C1 and C2). The first group of cylindrical tensile samples (C1) were 

conventionally austenitized at 1700°F for 3 hours in a furnace attached to the Instron 

Universal Testing Machine. The samples were then plastically deformed beyond the yield 

strength at a strain rate of 5 mm/min at the same conventional austenitizing temperature of 1700°F.  

Immediately following the plastic deformation, the samples were quenched in a molten salt 

bath maintained at specific austempering temperatures of 550°F, 600°F, 680°F, and 725°F for 3 

hours and then air cooled to room temperature as shown in Figure 13(a). 
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 The upper intercritical temperature of 1520°F was chosen for the austenitization of the 

second group of cylindrical tensile samples (C2). The samples were intercritically austenitized at 

1520°F for 3 hours and then plastically deformed beyond the yield strength at strain rate of 5 

mm/min at the intercritical temperature of 1520°F, followed by austempering in a molten salt bath 

maintained at a specific austempering temperatures of 550°F, 600°F, 680°F, and 725°F as shown 

in Figure 13(b). 

4.2.5 Plastic deformation and two- step austempering 

 Fourth set of samples (D) were divided into 2 groups (D1 and D2) and consisted of only 

cylindrical tensile samples. Different austenitizing temperature including the conventional 

austenitizing temperature of 1700°F and intercritical temperatures of 1520°F, 1472°F, 1436°F, 

1418°F were chosen.  

 After austenitizing, the cylindrical tensile samples were plastically deformed at a strain 

rate of 5mm/min beyond the yield strength and then the samples were initially quenched in a 

molten salt bath maintained at 500°F and while being kept in the salt bath for about 15 minutes, 

the temperature of the salt bath was increased to the following austempering temperatures for 

specific samples i.e. 725°F,680°F,600°F and 550°F and the samples remained in the salt bath for 

3 hours. The samples were then air cooled to room temperature as illustrated in the Figure 14. 
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(a)           (b)                                               

Figure.14: Schematic diagram of heat treatment involving (a) plastic deformation and single step 

conventional austempering process (a) plastic deformation and single step intercritical 

austempering process 

4.2.6 Plastic deformation at different strain rates 

 Fifth set of samples (E) consisted of only cylindrical tensile samples. These samples were 

initially austenitized at upper intercritical temperature of 1520°F, followed by plastic deformation 

beyond the yield strength at two different strain rates of 0.5mm/min and 10mm/min, Specific 

samples from each of the strain rate was austempered by single step conventional austempering 

process in which the samples were quenched in the molten salt bath maintained at 550°F. 

Similarly, some samples were processed by two-step austempering process in which the samples 

were initially quenched in a molten salt math maintained at 500°F and while being maintained in 

the salt bath for about 15 minutes, the temperature of the salt bath was raised to 550°F and then 
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the samples remained in the salt bath for 3 hours. After austempering, all the samples were air 

cooled to room temperature. 

4.3 Microstructural analysis 

 Metallographic samples were cut from each of the heat-treated samples.  These samples 

were mounted in a phenolic resin using hot compression mounting equipment and polished in 

accordance with standard procedures; silicon carbide abrasive discs of varying grit size 180 -2400 

were used to grind the sample surface. Final cloth polishing with suspended alumina powder 

resulted in a scratch free polished surface; all samples were etched with a 5% Nital. The 

microstructures of all the samples were examined by optical microscopy and photographed. The 

microstructures were also examined using a JEOL JSM-6510LV-LGS scanning electron 

microscope. 

 The volume fraction of the proeutectoid ferrite and ausferrite in the intercritically 

austenitized ADI samples was determined by point counting in accordance with ASTM standard 

E-562 [122].  

 The fractured surface of all the heat-treated ADI samples was examined by JEOL JSM 

6510 LV LGS scanning electron microscope to determine the mode of fracture.  

 X-ray diffraction (XRD) analysis was performed to estimate the overall amount of 

retained austenite and the carbon content of austenite in the heat-treated ADI samples. The 

thermal and mechanical stability of the austenite was also analyzed by the XRD data.  To examine 

whether any TRIP effects (austenite to martensite transformation) occurs in ADI, the samples 

were cut from the crack tip region of fracture toughness specimens. The fractured surface of the 

specimen is polished and examined with XRD. The analysis estimated the volume fraction of 

austenite in the austempered, cryogenically-treated, and mechanically-deformed samples.  The 
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volume fraction of retained austenite and carbon content of austenite were determined using a 

procedure of Rundman and Klug [123].  

 XRD was conducted using monochromatic copper Kα radiation at 30 kV and 10 mA with 

the Bruker Phaser II diffractometer. An angular 2θ range from 42°-46° and 72°-92°was chosen to 

obtain specific diffraction pattern for the austenite and ferrite peaks. The profiles were then 

analyzed using a Jade 5® software and Diffraction Eva software to obtain the peak positions and 

the integrated intensities for the {1 1 1} and {2 2 0} planes of FCC austenite as well as the {1 1 

0} and {2 1 1} planes of BCC ferrite.  The volume fractions of ferrite (Xα) and austenite (Xγ) 

were determined by the direct comparison method using the integrated intensities of the above 

planes. The intensity ratios are given by the following equation [124]: 

      Iγ(hkl)  Rγ(hkl)             Xγ(hkl) 
               ––––––   =     –––––– .   –––––––                          (4.1)  
      Iα(hkl)  Rα(hkl)        Xα(hkl) 

 
where Iγ(hkl) is the integrated intensity from a given (hkl) plane from the γ phase and Iα(hkl) is the 

integrated intensity from a given (hkl) plane from the α phase; Xγ and Xα is the volume fraction of 

austenite and ferrite respectively; Rγ(hkl) and Rα(hkl) are given by the following equation for 

respective (hkl) peak: 

                                                      R = 1/ν2 [F2. p. LP] e-2m                                                       (4.2) 

where ν is the atomic volume of the unit cell; F is the structure factor; p is the multiplicity factor; 

LP is the Lorentz-Polarization factor and e-2m is the temperature factor. 

The lattice parameter “aγ” of austenite increases linearly with interstitial carbon atoms. Therefore, 

the carbon content of austenite was determined from the following equation [125]: 

                                                       aγ = 0.3548+0.0044 Cγ                                                             (4.3) 
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where aγ is the lattice parameter of austenite in nm and Cγ is the carbon content of austenite in 

wt%. The {1 1 1} and {2 2 0} planes of austenite were used to estimate the lattice parameter.  The 

ferrite particle sizes (d) were determined using the well-known Scherrer equation [124].   

                                                                                                                                             (4.4) 

where λ is the wavelength, β is the breadth of ferrite peak at half height in radians and θ is the 

Bragg angle.  

4.4 Fracture toughness testing 

 After machining to the specified thickness of 0.745 inch (18.9mm) and dimensions as 

shown in the Figure 15, the compact tension (CT) samples were ground and polished through 600 

grid emery paper; a minimum of four compact tension specimens per heat treatment were tested 

as per ASTM standard E-399 [121]. 

 

Figure.15: Compact tension sample dimensions (inches). 

 



 
 

36 
 

 

 Fatigue pre-cracking was carried out on all the compact tension samples to obtain a 2-mm 

sharp crack front using a ΔK level of 20MPa√m with a load ratio of R=0.10. The pre-cracked 

samples were then loaded in tension using a MTS testing machine.  The clip gauge was placed in 

the knife-edge attachment to obtain load versus displacement plots.  Using the 5% secant 

deviation technique, PQ values were determined.  Using the standard stress intensity factor 

calibration function for the compact tension specimens, KQ values were calculated using the PQ 

values.  Since all the KQ values satisfied the requirements for a valid KIC test as per ASTM E-399 

[121], the KQ values are also valid KIC values. 

4.5 Tensile testing 

 Cylindrical tensile samples with the dimension shown in the Figure 16 were machined 

from the KEEL blocks as per ASTM standards E-8 [120].  

 

 
Figure.16: Cylindrical tensile sample dimensions (mm). 

 
 Tensile tests were performed on a servo-hydraulic MTS system at a constant strain rate of 

4×10-4 s-1. Load versus displacement plots were used to calculate the 0.2% yield strength, 

ultimate tensile strength, % elongation, and strain hardening exponent values. Since all the 
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samples are isotropic and homogeneous properties exists in the material, the mechanical 

properties measured were not dependent on the sample reference orientation or loading direction. 

Average values of these samples are reported here and the statistical analysis was carried out on 

the obtained data using student t-test with a confidence interval set at 95%. 

4.6 Hardness measurement 

 A Rockwell Type Hardness tester with 150 Kg load was used to measure the hardness of the 

ductile iron as cast and of all austempered samples per ASTM E-18 standard [126]. 

4.7 Transmission Electron Microscopy(TEM) 

 TEM analysis was carried out to confirm the presence of nanostructure in ADI and to 

identify the phases by indexing the diffraction patterns. Thin samples were cut from the gauge 

length of the heat treated cylindrical tensile samples using a precision diamond wafering cutter.  

These samples were then mechanically polished to 0.1mm thickness using a 180-grit silicon 

carbide paper.  Final polishing was done using a cloth and 0.05μm alumina powder solution and 

thickness of the samples were reduced to about 70μm. Discs of 3mm diameter samples were then 

punched from these sections. The 3mm discs were then ion beam thinned using a dual gun ion 

beam milling machine, initially under 9° inclination angle and ion gun voltage of 5kV until 

perforation is visible for time ranging from 3 to 5 hours depending on the initial thickness of the 

sample. After perforation, the ion gun voltage is reduced to 3 kV and the inclination angle is set to 

6° for about 20 minutes. These samples were then examined near the perforated area using a 

JEOL 2010 (LaB6 Filament Gun) transmission electron microscope at an accelerating voltage of 

200kV. 
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CHAPTER 5. RESULTS AND DISCUSSIONS- MICROSTRUCTURE 

5.1 Microstructure of the as-cast ductile iron 

 The microstructure of the as-cast ductile cast iron is illustrated in Figure 17. The optical 

microstructure of ductile cast iron shows lamellar pearlite with alternating layers of ferrite and 

cementite. The as-cast microstructure consisted of dispersed graphite nodules surrounded by 

ferrite in the form of typical bull’s eye structure. The ferrite phase is also referred to as 

proeutectoid ferrite. The graphite nodules in the as cast structure appears to be well rounded with 

85% nodularity. Figure10 (b) is the magnified image of the lamellar pearlite phase showing 

alternating layer of ferrite (α) and cementite(Fe3C).      

        
 

(a)       (b)                                   
Figure.17: As-cast microstructure of ductile cast iron (a) Optical microscope image (Mag 200x) 

b) Optical microscope image (Mag 1000x) 

5.1.1 Microstructures of conventionally austempered ductile cast iron samples 

 Figure 18(a) and (b) shows the typical microstructure of the conventional ADI 

austenitized at 1700ºF and austempered at lower and upper bainitic temepratures of 500ºF and 
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725ºF respectively. APPENDIX details individual micrograph for each austempering 

temperatures. 

 

Figure.18(a): Optical and SEM micrograph of ADI, Tγ=1700°F, TA=500°F 

 

Figure.18(b): Optical and SEM micrograph of ADI, Tγ=1700°F, TA=725°F 
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  The ductile cast iron samples were initially austenitized at 1700°F and then quenched and 

austempered in a molten salt bath maintained at specific temperatures of 500°F, 550°F, 700°F, 

725°Fand 750°F. Scanning Electron Microsopy (SEM) image  shows the morphology of the 

different phases at different austempering temperatures. 

 The microstructure of the conventionally austempered ductile cast iron consists of a 

ausferritic matrix with the dispersed graphite nodules. The ausferritic phase consists of bainitic 

ferrite (αB) and high carbon austenite(γ). Typical ausferritic microstructure structures consisting 

dark needles of bainitic ferrite and the austenite distributed as white phases in between the bainitic 

needles were observed. The bainitic ferrite is separated by thin layers of austenite. The coarseness 

of the ferrite increases with the increase in austempering temperature because the growth rate of 

ferrite is higher due to the higher energy supplied at higher austempering temperatures. Lower 

austempering temperature of 500ºF and 550ºF, resulted in very fine bainitic ferrite whereas the 

samples austempered at the upper bainitic temperature regions of 700ºF, 725ºF and 750ºF resulted 

in the coarse bainitic ferrite structures. 

5.1.2 tructures of cryogenically treated ADMicros I samples 

 Figure 19(a)-(b) shows the typical microstructures of the cryogenically treated 

austempered ductile cast iron samples with respect to the austempering temperatures. APPENDIX 

details the individual micrograph for each condition. Cryogenic treatment was subjected to the 

previously austempered ductile cast iron samples. The corresponding SEM image shows the 

morphology of the cryogenically treated  ADI. 
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Figure.19(a): Optical and SEM micrograph of cryogenically treated ADI, Tγ=1700°F, TA=500°F 

 

Figure.19(b): Optical and SEM micrograph of cryogenically treated ADI, Tγ=1700°F, TA=725°F 

 The microstructure of the cryogenically treated ADI samples consists of ausferritic 

microstructure in which dark bainitic ferrite is dispersed in the white austenite phase  along with 

graphite nodules. Cryogenic processing does not significantly alter the microstructure of the 

austempered ductile iron. The influence of austempering temperature still exists in the samples 

and the coarseness of these samples varies similar to that of the conventional ADI samples. 
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5.1.3 Microstructures of intercritically austempered ADI samples (constant TA= 680ºF) 

 Optical micrographs of the samples intercritically austenitized at 1520°F,1472°F, 1436°F 

and 1418°F and austempered at 680°F are shown in the Figures 20(a)- (d). The corresponding 

high magnification micrographs obtained from the scanning electron microscope shows of the 

morphology of the phases. The intercritically austempered ductile iron shows a mixed 

microstructure consisting of proeutectoid ferrite and ausferrite.  One of the unique feature of 

intercritical austempering compared with conventional austempering is that the amount of 

ausferrite and proeutectoid ferrite varies significantly with the increase in austenitizing 

temperature. The coarser ausferritic matrix along with a small amount of pro-eutectoid ferrite is 

observed in these intercritically austempered ADI samples austenmpered at 680ºF. Even though, 

unalloyed ductile cast iron is used in this study, appreciable amount of Ni, Si, Cu were present 

and they segregated around the graphite nodules and hence ferrite was found in the areas 

surrounding the graphite nodules of the intercritically austempered samples.  
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Figure.20(a): Optical and SEM micrograph of intercritically austempered ductile cast iron, 

Tγ=1520°F, TA=680°F 

  

Figure.20(b): Optical and SEM micrograph of intercritically austempered ductile cast iron, 

Tγ=1472°F, TA=680°F 
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Figure.20(c): Optical and SEM micrograph of intercritically austempered ductile cast iron, 

Tγ=1436°F, TA=680°F 

 

Figure.20(d): Optical and SEM micrograph of intercritically austempered ductile cast iron, 

Tγ=1418°F, TA=680°F 
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 The influence of austenitizing temperatures on the volume fractions of proeutectoid ferrite 

and ausferrite is represented in the Figures 21 and 22 respectively. Volume fraction of 

proeutectoid ferrite and ausferrite were point counted as per ASTM E562 standard [122]. During 

intercritical austempering where the ductile iron is heated in the intercritical temperature region 

where ferrite and austenite (α+γ) coexist, the pearlitic phase of the as cast ductile cast iron is 

converted into the austenite phase. Isothermal transformation at 680°F converts this austenite 

phase into ausferritic phase. The amount of proeutectoid ferrite that remains is dependent on the 

intercritical austenitizing temperature. The volume fraction of proeutectoid ferrite is lower at 

higher intercritical austenitization temperature, because pearlite and a large portion of ferrite is 

converted into austenite at higher austenitization temperatures. On the other hand, the ausferrite 

volume fraction increases as the austenitizing temperature is increased from 1418ºF to 1520ºF as 

predicted by the Lever rule [28,72].  

  

 

 

 

 

 

 

 

 

Figure.21: Volume fraction of proeutectoid ferrite as a function of austenitizing temperatures 
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Figure.22: Volume fraction of ausferrite as a function of austenitizing temperatures 

5.1.4 Microstructures of intercritically austempered ADI samples (constant Tγ= 1520ºF) 

 To determine the effect of austempering temperature on the intercritically austenitized 

ADI, some of the samples were quenched at different austempering temperatures as shown, for 

the same austenitizing temperature of 1520ºF. Typical optical microstructures and the 

corresponding high magnification SEM Micrograph (example: Tγ=1520°F, TA=725°F) of the ADI 

is shown in the Figures 23.  APPENDIX details the individual micrograph for other austempering 

temperatures (680°F, 600°F and 550°F). Higher austempering temperatures of 725ºF and 680ºF in 

the ADI samples austenitized at upper intercritical austenitization temperature of 1520ºF 

produced coarser ausferritic structure in the microstructure matrix. At lower austempering 

temperatures of 550°F and 600°F, due to large super cooling, more ferrite is nucleated, however, 

the grain growth of ferrite is low because of the lower diffusion rate of carbon out into the 

surrounding austenite, resulting in finer ferritic structures. The analysis of the microstructure 

shows that the austenite occurred as slivers between the ferritic needles. The width of the 
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austenite slivers reduced with the decrease in austempering temperature. Only small amount of 

proeutectoid ferrite was retained at this upper intercritical austenitization temperature of 1520°F. 

 

Figure.23: Optical and SEM micrograph of intercritically austempered ductile cast iron, 

Tγ=1520°F, TA=725°F 

5.1.5 Microstructure of plastically deformed, conventional ADI  

 Figures 24 shows the typical optical and the corresponding high magnification SEM 

image of the plastically deformed and conventionally austempered ductile iron samples. 

Invidivual micrographs for each austempering temperature is detailed in APPENDIX.  The 

samples were initially austenitized at 1700ºF for 3 hours, followed by plastic deformation at 

1700ºF and subsequent quenching in the salt bath maintained at specific austempering 

temperatures for 3 hours and then air cooled to room temperature. Plastic deformation 

significantly reduced the width of bainitic ferrite of the ADI samples. The effect of austempering 

temperatures was mainly observed in the volume fraction and the coarseness of bainitic ferrite and 

austenite. Higher austempering temperatures produced coarser ausferritic structures as the higher 

austempering temperatures limits the nucleation of bainitic ferrite. Higher austempering 

temperatures also produced bulky retained austenite in the microstructure. On the other hand, 
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since nucleation depends on super cooling, lower austempering temperature produced finer and 

higher volume fraction of bainitic ferrite and less volume fraction of retained austenite. It is also 

observed that the high temperature plastic deformation did not affect the nodularity of the 

graphite. 

         

Figure.24: Optical and SEM micrograph of plastically deformed ADI, Tγ=1700°F, TD=1700°F, 

TA=725°F 

5.1.6 Microstructure of plastically deformed, intercritically austempered ductile cast iron   

 Figure 25 shows the typical optical micrograph and the corresponding SEM micrograph of 

the ductile iron samples, intercritically austenitized for 3 hours at the upper intercritical 

temperature of 1520ºF, followed by plastic deformation at the same intercritical temperature 

before quenching into the salt bath maintained at specific austempering temperatures (example: 

TA=725ºF). Optical and SEM micrographs of the each austempering temperature is detailed in the 

APPENDIX. The microstructure of these samples consists of bainitic ferrite, austenite and 

proeutectoid ferrite along with dispersed graphite nodules. The ausferritic structures were 

distributed uniformly either as a continuous or network of ausferritic structure along the eutectic 

cell boundary. Plastic deformation of the ductile iron samples at the intercritical temperature of 
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1520°F, refined the width of bainitic ferrite, compared to the conventional austempering without 

plastic deformation, irrespective of the austempering temperatures. The effect of austempering 

temperature was observed in the volume fractions of ferrite and austenite. Larger undercooling 

produced finer bainitic ferrite structures at lower austempering temperatures of 550°F and 600°F. 

At higher austempering temperature of 725ºF and 680ºF, reduced nucleation of austenite led to 

the coarser feather like ausferritic structures. 

 

Figure.25: Optical and SEM micrograph of plastically deformed ADI, Tγ=1520°F, TD=1520°F, 

TA=725°F 

5.1.7 Microstructures of the plastic deformed, two-step austempered ductile cast iron  

 Figures 26 shows the typical microstructure of the ductile iron samples conventionally 

austenitized at 1700ºF, plastically deformed at 1700ºF and then austempered by two-step 

austempering process. In all these samples, the first austempering temperature was maintained at 

500ºF and the second austempering temperature was raised to 550ºF,600ºF, 680ºF and 725ºF for 

specific samples. 
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 Figure 27-29 shows typical microstructures of the ductile iron samples intercritically austenitized 

at 1520ºF, 1472ºF and 1436 ºF plastically deformed at corresponding austenitizing temperature 

and then austempered by two-step austempering process. The individual micrographs for each 

austempering temperature is reported in the APPENDIX.  

 

Figure.26: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1700°F, TD=1700°F, TA1=500°F, TA2=550°F               

 After plastic deformation, during recrystallization at the bainitic temperature range, the 

austenite grain boundaries provide more nucleation sites for the growth of ferrite. During the two-

step austempering process, the ductile cast iron samples were initially quenched to a lower 

temperature of 500ºF which facilitates higher super cooling and hence greater ferrite nucleation.   

As the austempering temperature is raised to the second austempering temperature mainly 

influenced the coarseness of bainitic ferrite and high carbon austenite in the microstructure 

matrix. Lower austempering temperature of 550ºF and 600ºF resulted in finer ferritic structures 

than those austempered at higher austempering temperatures of 680ºF and 725ºF.  
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Figure.27: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1520°F, TD=1520°F, TA1=500°F, TA2=550°F 

 In the intercritically austenitized and plastically deformed samples, the volume fraction of 

ausferritic phases increased whereas the volume fraction of proeutectoid ferrite decreased with the 

increase in austenitizing temperature as predicted by the Lever rule [28,72]. Even though low 

alloyed ductile cast iron is used in this study, appreciable amount of Si, Ni, Mn were present that 

segregated around the graphite nodules during solidification to stabilize the ferrite present in the 

microstructure matrix. As the austenitizing temperature is reduced, the ausferritic structures were 

observed along the grain boundaries. The proeutectoid ferrite appears around the graphite nodules 

irrespective of the austempering temperatures in these intercritically austempered ductile iron 

samples. The nodularity of the graphite is not affected by this heat treatment process 
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Figure.28: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1472°F, TD=1472°F, TA1=500°F, TA2=550°F 

 

Figure.29: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1436°F, TD=1436°F, TA1=500°F, TA2=550°F 

 In summary, the coarseness of the ausferrite increased with the increase in austempering 

temperature. The combination of simultaneous austenitizing and high temperature plastic 

deformation and the greater super cooling in two step austempering process resulted in finer 

ausferritic structure in the microstructure matrix irrespective of the austenitizing and 
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austempering temperatures. This unique heat treatment resulted in refinement of the bainitic 

ferrite and austenite. Due to Si segregation around the graphite nodules, the rate of formation of 

ferrite was interrupted and these ausferritic structures were absent near the areas surrounding the 

graphite nodules.  

5.1.8 Microstructure of ductile iron plastically deformed at different strain rate 

 Plastic deformation of the ductile iron was carried out at two different strain rate of 

0.5mm/min and 10mm/min respectively, at the intercritical austenitizing temperature of 1520ºF 

followed by either single step austempering at TA=550ºF or two step austempering process in 

which the first austempering temperature was maintained at 500ºF for 15 minutes and the second 

austempering temperature was raised to 550ºF and maintained for about 3 hours. 

 All theses samples resulted in a microstructure consisting of bainitic ferrite and high 

carbon austenite along with the graphite nodules irrespective of the strain rate. A typical 

microstructure and the corrrsponding SEM micrograph, obtained from this unique heat treatment 

process is shown in the Figure 30. The individual micrographs for each condition is reported in 

the APPENDIX. Very low amount of proeutectoid ferrite was observed in these samples. The 

high temperature deformation at strain rates of 0.5mm/min and 10mm/min significantly reduced 

the width of the bainitic ferrite and austenite in ADI. The ultra-fine grained structures in the range 

of nanoscale was obtained by this unique heat treatment process. 
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Figure.30: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1520°F, TD=1520°F, strain rate = 0.5mm/min, TA=550°F 

5.2 Lath size measurements 

 Lath size measurements was carried out to determine the variation in the width of bainitic 

ferrite, austenite and the proeutectoid ferrite as a function of heat treatment. TEM observation 

(discussed later in this chapter) shows that the grain size of the ADI has been greatly reduced by 

the unique heat treatment process combining both plastic deformation and austempering. An 

attempt has been made to measure the individual lath sizes of bainitic ferrite, inter lath austenite, 

islands of retained austenite and proeutectoid ferrite. The width of the phases was measured from 

the high magnification SEM images corresponding to different areas of the microstructure. Image 

pro plus 6 software was used for this purpose. The lath size measurements were made 

perpendicular to the longitudinal axis. Approximately 100 measurements of each phases were 

made for every ADI sample and the average values are reported here. 
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5.2.1 Lath size measurements of conventional ADI 

 Table 2 reports the measured lath sizes of bainitic ferrite, retained austenite and islands of 

retained austenite with respect to the conventional austempering. The width of the bainitic ferrite 

and the films of retained austenite reduces significantly from 750oF to 550oF. The islands of the 

retained austenite were present predominantly in the conventionally austempered ADI at all 

austempering temperatures except 500oF. Statistically, there is no significant difference in the 

width of the islands of retained austenite in the conventional ADI. The presence of islands of 

retained austenite promotes enhanced ductility to the ADI. 

Table 2: Lath size measurement of phases with respect to conventional austempering 

(samples austenitized for 3 hours at 1700ºF and austempered for 2 hours for temperatures shown) 

 

 Figure 31 shows the variation in the width of the different phases with respect to 

austempering temperature in conventional ADI. The width of the bainitic ferrite and the austenite 

is not proportional to the austempering temperature. As the austempering temperature increases 

Austempering 
temperature 

(oF) 

width of  
bainitic ferrite lath 

(μm) 

width of films of 
retained austenite) 

(μm) 

width of islands of 
retained austenite 

(μm) 

750oF 1.128 ± 0.429 0.677 + 0.220 3.307 ± 1.760 

725oF 0.835 ± 0.274 0.614 + 0.194 2.276 ± 0.590 

700oF 0.385 + 0.177 0.327 + 0.207 1.901 ± 0.770 

550 oF 0.294 + 0.093 0.261 + 0.090 2.791 ± 0.770 

500oF 0.207 + 0.053 0.206 + 0.055 - 
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above 700ºF, greater growth of bainitic ferrite structure is observed than the growth at lower 

austempering temperatures. At lower bainitic temperatures, only bainitic ferrite and retained 

austenite exist because ausferrite does not form at lower austempering temperatures. 

Comparatively, the lath size of the austenite and the bainitic ferrite was identical at lower bainitic 

austempering temperatures up to 550oF.  At upper bainitic temperatures, where the ausferritic 

structures form, the width of is bainitic ferrite is larger than the retained austenite structures.  As 

expected, the standard conventional austempering process did not produce any nanoscale bainitic 

ferrite in ADI.  

 

 

Figure.31: Variation of the width of bainitic ferrite (BF) and width of films of retained austenite 

(RA) with respect to austempering temperature in conventional ADI 
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5.2.2 Lath size measurements of cryogenically treated ADI 

 Table 3 reports the measured width sizes of different phases in ADI with respect to the 

cryogenic treatment. Islands of retained austenite was observed only in the cryogenically treated 

ADI samples austempered at upper bainitic temperature range. Figure 32 shows the variation of 

the width of bainitic ferrite, retained austenite and the islands of retained austenite with respect to 

the cryogenic treatment.  

Table 3: Lath size measurement of phases with respect to cryogenic processing 

(samples austenitized for 3 hours at 1700ºF and austempered for 2 hours for temperatures shown 

followed by cryogenic processing) 

Austempering 
temperature 

(oF) 

width of 
bainitic ferrite lath 

(μm) 

width of films of 
retained austenite) 

(μm) 

width of islands of 
retained austenite 

(μm) 

750oF 0.756 ± 0.306 0.865 + 0.372 2.891 ± 0.816 

725oF 0.436 ± 0.224 0.443 + 0.187 2.368 ± 0.897 

700oF 0.331 + 0.132 0.422 + 0.326 1.746 ± 0.824 

550 oF 0.296 + 0.119 0.305 + 0.309 - 

500oF 0.181 + 0.055 0.217 + 0.072 - 

  

 Due to the thermal instability of austenite, some portion of austenite is transformed to 

martensite. Cryogenic treatment significantly reduced the width of the bainitic ferrite (or newly 

formed martensite) and films of retained austenite of the ADI austempered at upper bainitic 

temperatures of 725°F and 750°F. However, no significant reduction in the width of bainitic 
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ferrite or austenite was observed in the cryogenically treated ADI austempered at lower 

austempering temperatures of 700°F, 550°F and 500°F. As shown in the Figure 32, width of the 

bainitic ferrite and austenite is mostly proportional to temperature up to 725ºF.  Beyond 725ºF, 

perhaps there occurs an additional mechanism that activates the increase in the width of austenite 

and bainitic ferrite structures. Compared to conventional austempering, approximately 33% and 

48% reduction in the width of bainitic ferrite was observed in cryogenic treated ADI austempered 

at upper bainitic temperatures of 750ºF and 725ºF respectively. Approximately, only 12-14% 

reduction in the width of bainitic ferrite was observed in cryogenically treated ADI austempered 

at lower bainitic temperatures. In summary, cryogenic processing alone is insufficient to produce 

nanoscale ausferritic structure in ADI. 

 

Figure.32: Variation of the width of bainitic ferrite (BF) and width of films of retained austenite 

(RA) with respect to austempering temperature in cryogenically treated ADI 
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5.2.3 Lath size measurements of intercritically austenitized ADI 

 Table 4 reports the measured width of the bainitic ferrite lath and films of retained 

austenite of ADI intercritically austenitized at 1520ºF with respect to austempering temperature.  

Table 4: Lath size measurement of phases with respect to intercritical austempering 

(samples austenitized for 3 hours at 1520ºF and austempered for 3 hours for temperatures shown) 

Tγ 
(oF) 

TA 

(oF) 

width of 
bainitic ferrite 

lath 
 (μm) 

width of films of 
retained 

austenite)  
(μm) 

width of 
islands of 
retained 
austenite  

(μm) 

width of 
proeutectoid 

ferrite 
(μm) 

1520oF 

725oF 0.582 ± 0.233 0.360 + 0.135 1.287 ± 0.310 1.2 ± 0.4 

680ºF 0.426 ± 0.158 0.360 + 0.154 - 3.9 ± 3.0 

600 oF 0.399 + 0.163 0.315 + 0.119 - 2.6 ± 1.0 

550oF 0.333 + 0.195 0.190 + 0.054 - 0.6 ± 0.2 

 

 In the ADI samples, intercritically austenitized at upper intercritical temperature of 

1520ºF, the average width of bainitic ferrite is higher than the retained austenite at all the 

austempering temperatures as shown in the Figure 33. The width of the austenite and ferrite laths 

was finer at lower austempering temperature of 550ºF. The coarseness of both the austenite and 

ferrite laths was observed as the austempering temperature increases from 550ºF to 725ºF in the 

intercritically austenitized ADI. Islands of retained austenite was present only at higher 

austempering temperature of 725ºF in the ADI austenitized at upper intercritical austenitizing 

temperature of 1520ºF. 
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Figure.33: Variation of the width of bainitic ferrite (BF), width of films of retained austenite (RA) 

of ADI with respect to austempering temperature from data in Table 4. 

 Table 5 details the measured width of the bainitic ferrite lath and films of retained 

austenite with respect to the austenitizing temperature for the austempering temperature of 680ºF. 

The width of the proeutectoid ferrite was higher for the samples austenitized at lower intercritical 

temperature of 1418ºF. The average width of the proeutectoid ferrite increased approximately up 

to 96% between the upper and lower intercritical temperatures of 1520ºF and 1418ºF respectively.  

 Figure 34 shows the dependence of the width of bainitic ferrite lath and the films of 

retained austenite laths with respect to intercritical austenitization temperatures. Minor effects on 

the width of the bainitic ferrite, austenite was observed as the austenitizing temperature was 

lowered from 1520ºF to 1436ºF. 
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Table 5: Lath size measurement of phases with respect to intercritical austempering 

(samples austenitized for 3 hours for temperatures shown and austempered for 3 hours for 680ºF) 

Tγ 
(oF) 

width of bainitic 
ferrite lath 

 (μm) 

width of films of 
retained austenite)  

(μm) 

width of proeutectoid 
ferrite 
(μm) 

1520oF 0.426 ± 0.158 0.360 + 0.154 3.9 ± 3.0 

1472oF 0.478 + 0.176 0.485 + 0.274 8.2 ± 6.6 

1436 oF 0.352 + 0.133 0.350 + 0.126 10.6 ± 8.2 

1418oF 0.689 + 0.204 0.844 + 0.309 88.4 ± 50 

 

 

 
Figure.34: Variation of the width of bainitic ferrite (BF), width of films of retained austenite (RA) 

of ADI with respect to intercritical austenitizing temperature from data in Table 5. 
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 The width of the bainitic ferrite and austenite was higher for the samples austenitized at 

lower intercritical temperature of 1418ºF. Islands of retained austenite was not observed in these 

samples. No significant variation was observed between the ferritic and austenite lath sizes of the 

conventional and intercritically austenitized ADI. Thus, it appears that intercritical austenitizing 

alone is not sufficient to produce nanostructured ADI. 

5.2.4 Lath size measurements of the plastically deformed ADI 

 Table 6 reports the lath size of the different phases observed in the plastically deformed 

ADI with respect to austenitizing temperature and austempering temperature. In these samples, 

the width of the bainitic ferrite lath decreases significantly as the austempering temperature 

decreases from 725ºF to 550°F. Approximately 35% reduction in the width of bainitic ferrite and 

austenite was observed in the plastically deformed ADI austempered at lower bainitic 

temperatures when compared to the conventionally austempered ADI. In these samples 

austenitized and plastically deformed at 1700ºF, below the austempering temperature of 725ºF, 

the bainitic ferrite is refined, therefore the change in temperature is not proportional to the change 

in the width of bainitic ferrite structures. This indicates that there exists an optimum temperature 

to control the growth of bainitic ferrite structures. However, no significant difference was 

observed in the lath sizes of bainitic ferrite and austenite between the traditional and the 

plastically deformed ADI at upper bainitic temperature ranges of 680ºF and 725ºF. 

 In the ADI samples, austenitized and deformed at the upper intercritical temperature of 

1520ºF, significant reduction in the width of bainitic ferrite was observed at lower austempering 

temperatures of 550ºF and 600ºF. This reduction in width was approximately 35 to 55% when 

compared to the traditional ADI. However, only 2% reduction in the width of bainitic ferrite lath 

was observed at the higher austempering temperature of 725°F. Austempering temperature did not 
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significantly influence the width of proeutectoid ferrite in the ADI samples intercritically 

austenitized and plastically deformed at upper intercritical temperature of 1520ºF. 

Table 6: Lath size measurements of different phases in plastically deformed ADI with respect to 

single step austempering  

(samples austenitized for 3 hours at Tγ as shown, plastically deformed at corresponding Tγ s and 
austempered for 3 hours for tempertures shown) 

  

 Table 7 compares the width of various phases with respect to austenitizing temperature 

and two-step austempering in the plastically deformed ADI.  

Tγ 

(oF) 

TA 

(oF) 

width of 
bainitic ferrite 

lath 

 (μm) 

width of films 
of retained 

austenite) (μm) 

width of islands 
of retained 

austenite(μm) 

width of 
proeutectoid 
ferrite(μm) 

1700oF 

725oF 0.769 ± 0.265 0.634 + 0.234 3.289 ± 1.353 - 

680oF 0.421 + 0.157 0.321 + 0.147 1.781 ± 0.381 - 

600 oF 0.204 + 0.058 0.197 + 0.066 - - 

550oF 0.192 + 0.049 0.208 + 0.053 - - 

1520oF 

725oF 0.575 ± 0.194 0.407 ± 0.155 - 1.484 ± 0.463 

680oF 0.276 ± 0.099 0.278 ± 0.157 - 4.611 ± 1.640 

600 oF 0.219 ± 0.061 0.198 ± 0.060 - 2.290 ± 0.581 

550oF 0.156 ± 0.049 0.209 ± 0.605 - 2.450 ± 1.570 
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Table 7: Lath size measurements of different phases in plastically deformed ADI with respect to 

two-step austempering (samples austenitized at Tγ as shown for 3 hours, TA1= 500ºF for15 

minutes, TA2 at temperatures shown for 3 hours) 

Tγ 
(oF) 

TA2 

(oF) 

width of 
bainitic  

ferrite lath 
 (μm) 

width of films 
of retained 
austenite)  

(μm) 

width of 
islands of 
retained 

austenite(μm) 

width of  
proeutectoid 

ferrite 
(μm) 

 

1700oF 

 

 

725oF 0.283 ± 0.105 0.297 + 0.114 2.235 ± 1.143  

680oF 0.276 + 0.234 0.285 + 0.173 2.540 ± 1.110  

600 oF 0.204 + 0.068 0.211 + 0.062 1.767 ± 0.866  

550 oF 0.210 ± 0.058 0.283 ± 0.105 -  

1520 oF 

725oF 0.248 ± 0.082 0.238 + 0.060 - 1.325 ± 0.277 

680oF 0.222 + 0.061 0.272 + 0.074 - 2.903 ± 1.609 

600 oF 0.184 + 0.049 0.179 ± 0.049 - 0.841 ± 0.523 

550 oF 0.290 ± 0.088 0.218 ± 0.067 - 1.896 ± 0.820 

1472 oF 

725oF 0.168 ± 0.041 0.154 + 0.034 - 7.371 ± 6.976 

680oF 0.168 ± 0.033 0.177 + 0.063 - 6.006 ± 5.150 

600 oF 0.175 + 0.020 0.168 ± 0.040 - 8.256 ± 5.387 

550 oF 0.202 + 0.054 0.176 ± 0.036 - 4.458 ± 1.753 

1436 oF 

725oF 0.176 ± 0.045 0.167 + 0.030 - 7.017 ± 7.101 

680oF 0.205 ± 0.041 0.188 + 0.040 - 12.046 ± 6.192 

600 oF 0.164 + 0.038 0.179 ± 0.050 - 16.315 ± 10.796 

550 oF 0.174 + 0.036 0.220 ± 0.044 - 28.867 ± 14.817 
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 Islands of retained austenite was observed only in the conventionally austenitized ADI 

austempered in the higher austempering temperatures. The width of the proeutectoid ferrite 

significantly increased as the intercritical austenitization temperature varied from 1520°F to 

1436°F. Statistically, no significant effect of austempering temperature on the width of the 

proeutectoid ferrite was observed. 

 Figure 35 compares the variation of width of bainitic ferrite of the ADI samples 

austenitized and plastically deformed at 1700ºF with respect to single step and two-step 

austempering.  

 

Figure.35: Variation in the width of bainitic ferrite in the ADI samples austenitized and plastically 

deformed at 1700ºF with respect to single step and two-step austempering 

 The two step austempering along with the plastic deformation has significantly reduced 

the lath size of the bainitic ferrite in ADI samples austempered in the upper bainitic temperature 

range of 680°F and 725°F. However, no significant difference in the lath sizes was observed in 

the samples austempered at lower bainitic temperature range of 550°F and 600°F. When the 
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difference between the first and second austempering temperature is large during two-step 

austempering, the resultant bainitic ferrite structure is significantly smaller than the single step 

austempered ADI. Thus, it appears that the transformation of austenite to ferrite occur 

predominantly by nucleation rather than growth process. Figure 36 compares the variation of 

width of films of retained austenite in the ADI samples austenitized and plastically deformed at 

1700ºF with respect to single step and two-step austempering. The effect of two-step 

austempering in refining the width of austenite was observed ion the ADI samples austempered at 

upper austempering temperatures of 700ºF and 725ºF. However, no significant difference in the 

width of the retained austenite was observed in the ADI samples as the austempering 

temperatures varied from 700ºF to 550ºF. 

 

Figure.36: Variation in the width of retained austenite in the ADI samples austenitized and 

plastically deformed at 1700ºF with respect to single step and two-step austempering. 
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 Figure 37 shows the variation of width of bainitic ferrite in the ADI samples intercritically 

austenitized and plastically deformed at 1520°F with respect to single step and two step 

austempering. The reduction in the width of the bainitic ferrite lath with respect to two-step 

austempering is more noticeable in ADI as the austempering temperatures vary from 600°F to 

725ºF. 

 

 

 

 

 

 

 

 

 

 

Figure.37: Variation in the width of bainitic ferrite (BF) in the ADI samples austenitized and 

plastically deformed at 1520ºF with respect to single step and two-step austempering 

 Figure 38 shows the variation of width of films of retained austenite in the ADI samples 

intercritically austenitized and plastically deformed at 1520°F with respect to single step and two 

step austempering. Statistically, no significant difference was observed in the width of films of 

retained austenite between the single-step and two-step austempered ADI samples. 



 
 

68 
 

 

 

Figure.38: Variation in the width of films of retained austenite (RA) in ADI samples austenitized 

and plastically deformed at 1520ºF with respect to single step and two-step austempering 

 Figure 39 shows the variation of width of bainitic ferrite and austenite with respect to 

plastic deformation in the two step austempered ADI samples. The samples were intercritically 

austenitized at 1472°F and 1436°F respectively. Statistically, no significant difference in the 

width of bainitic ferrite or austenite was observed in these intercritically austenitized, plastically 

deformed ADI samples. Approximately 80% reduction in the average width of the bainitic ferrite 

and retained austenite laths was observed in the ADI austempered at upper bainitic temperature of 

725°F, whereas approximately only 40 % reduction in bainitic ferrite was observed in lower 

bainitic temperature austempered ADI with respect to plastic deformation in the ADI austenitized 

at lower intercritical temperatures of 1472ºF and 1436ºF austenitized followed by two-step 

austempered ADI when compared to traditionally austempered ADI samples.  
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Figure.39: Variation in the width of (a) bainitic ferrite (BF), (b) films of retained austenite (RA) 

with respect to intercritical austenitization at 1472ºF and 1436ºF in plastically deformed ADI 

 High temperature plastic deformation followed by two -step austempering makes the ADI 

more robust to variations in austenitizing temperature and austempering temperature in terms of 

width of bainitic ferritic lath, films of retained austenite and width of the proeutectoid ferrite.  

 Table 8 compares the lath size measurements of the bainitic ferrite and the films of 

retained austenite with respect to the heat treatment and plastic deformation. The average width of 

the bainitic ferrite reduces with the application of high temperature plastic deformation to the 

ductile iron samples. The plastically deformed samples austempered by two-step austempering 

process resulted in slightly higher width of bainitic ferrite structures at lower bainitic temperature 

of 550ºF compared to single step austempering with plastic deformation. During two-step 

austempering process, the samples were intially quenched to a lower austempering temperature of 
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500ºF to facilitate greater ferrite nucleation. As the temperature is raised to the second 

austempering temperature, mainly the growth of the bainitic ferrite occurred. Thus, two-step 

austempering process resulted in the increase in average width of bainitic ferrite structures at 

lower bainitic temperatures.   

Table 8: Comparison of lath size measurements  

Tγ 
(oF) 

 
Plastic 

deformation 

 
TA1 

(oF) 
TA2 

(oF) 

width of bainitic  
ferrite lath 

 (μm) 

width of films of 
retained austenite)  

(μm) 

 

1700oF 

 

n/a 550ºF n/a 0.294 + 0.093 0.261 + 0.090 

yes 550ºF n/a 0.192 + 0.049 0.208 + 0.053 

yes 500ºF 550ºF 0.210 ± 0.058 0.283 ± 0.105 

 

1520ºF 

 

n/a 550ºF n/a 0.333 + 0.195 0.190 + 0.054 

yes 550ºF n/a 0.156 ± 0.049 0.209 ± 0.605 

yes 500ºF 550ºF 0.290 ± 0.088 0.218 ± 0.067 

 

5.2.5 Lath size measurements of plastic deformed ADI with respect to strain rate 

 Table 9 reports the lath sizes of the bainitic ferrite lath and the width of films of retained 

austenite in the plastically deformed samples with respect to the strain rate and austempering 

process.  The average width of the bainitic ferrite in these ADI samples were in the nanoscale 

range i.e. approximately less than 100nm. The width of bainitic ferrite and austenite reduced 

significantly at the strain rates of both 0.5mm/min and 10mm/min in both the single step and two 

step austempered ADI indicating that the heat treatment process is robust to strain rates.  Thus, it 

appears that the strain rate can be optimized to obtain nanostructured bainitic ferrite in ADI. 
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Table 9: Lath size measurements of different phases in plastically deformed ADI with respect to 

two-step austempering temperature 

(samples austenitized at Tγ =1520ºF for 3 hours, TA1= 500ºF for15 minutes, TA2 =550 ºF for 2.5 
hours) 

Tγ 

(oF) 

TA1 

(oF) 

TA2 

(oF) 

strain 
rate(mm/min) 

width of bainitic 
ferrite lath (µm) 

width of films of 
retained austenite 

(µm) 

 

 

1520ºF 

 

 

   500ºF 

n/a  

0.5 

0.127 ± 0.023 0.130 ± 0.022 

550ºF 0.128 ± 0.027 0.130 ±0.024 

n/a  

10 

0.114 ± 0.015 0.120 ± 0.063 

550ºF 0.116 ± 0.020 0.119 ±0.020 

  

 In summary, the development of nanostructured bainitic ferrite can be achieved by the 

additional mechanical processing along with the austempering process. This additional energy, 

obtained from the high temperature plastic deformation process will enhance the nucleation rate, 

resulting in more nucleation sites for the growth of bainitic ferrite. During the growth process, the 

width of the bainitic ferrite lath is very much lower as they can grow only a small distance before 

they impinge on each other resulting in a refined microstructure.  

5.3 Ferritic cell size 

 Ferritic cell size (d) is the measure of mean free path for dislocation motion. Individual 

laths have numerous ferritic cells present in it. The ferritic cell size of the ADI samples was 

calculated from the XRD data using the Scherrer equation [125].  

5.3.1 Ferritic cell sizes of conventional and cryogenically treated ADI 

 Table 10 compares the ferritic cell size of the ADI samples with and without cryogenic 

treatments.  
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Table 10: Ferritic cell size of the ADI with respect to cryogenic treatment. 

(samples not given plastic deformation) 

 

 A comparison of data in Table 10 shows that, the average ferritic cell size of the ADI 

reduced after the cryogenic treatment. This reduction in ferritic cell size as observed from the X-

ray analysis is due to the transformation of retained austenite to martensitic structure during the 

cryogenic treatment. It is also interesting to note that the ferritic cell size of the ADI samples 

reduced as the austempering temperature varied from 750ºF to 500ºF. Average percentage 

difference of approximately 35% was observed between the ADI samples austempered at upper 

and lower bainitic temperatures of 750ºF and 500ºF respectively. Similarly, a percentage 

Austenitizing 
temperature 

 (ºF) 

Austempering 
temperature 

(ºF) 

Cryogenic treatment Ferritic cell size 
(nm) 

1700ºF 

 

750ºF 

No 27 ± 3.2 

Yes 22.1 ± 4.6 

 

725ºF 

No 26 ± 8.5 

Yes 23.6 ± 2.7 

 

700ºF 

No 24.3± 3.3 

Yes 23.6 ± 5.5 

 

550ºF 

No 19.7 ± 2.6 

Yes 20.3 ± 1.7 

 

500ºF 

No 17.5 ± 4.0 

Yes 14.7 ± 1.9 
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difference of approximately 33% was observed between the cryogenically treated ADI samples 

austempered at upper and lower bainitic temperatures of 750ºF and 500ºF respectively.  

5.3.2 Ferritic cell size of conventional ADI with respect to plastic deformation 

Table 11: Ferritic cell size of the ADI with respect to the plastic deformation and single/two-step 

austempering temperatures. 

Austenitizing 

temperature 

 (ºF) 

Austempering 

temperature 

(ºF) 

Plastic 

deformation at 

1700ºF 

Single step /two 

step 

austempering 

Ferritic cell 

size (nm) 

 

 

 

 

1700ºF 

750ºF  No Single step 27 ± 3.2 

 

725ºF 

No Single step 26 ± 8.5 

Yes Single step 19.7 ± 5.6 

Yes Two-step 21.8 ± 1.1 

700ºF No Single step 24.3± 3.3 

680ºF 
Yes Single step 19.5 ± 7.3 

Yes Two-step 22.1 ± 5.0 

600 ºF 
Yes Single step 17.3 ± 5.4 

Yes Two-step 18.3 ± 5.5 

 

550ºF 

 

No Single step 19.7 ± 2.6 

Yes Single step 17.0± 5.7 

Yes Two-step 18.4 ± 4.9 

500ºF No Single step 17.5 ± 4.0 
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 Table 11 details the ferritic cell sizes of the ADI samples conventionally austenitized at 

1700ºF, followed by either traditional austempering or plastic deformation and single step 

austempering or plastic deformation and two-step austempering.  

 The average ferritic cell sizes of the conventionally austempered ADI decreases as the 

austempering temperature decreases from 750 to 500ºF. High temperature plastic deformation 

followed by single step austempering reduced the ferritic cell size of the ADI by approximately 

13 to 24%. Statistically, no significant difference was observed between the single step and two 

step processing in the plastically deformed ADI. 

5.3.3 Ferritic cell size of intercritical ADI with respect to plastic deformation 

 Table 12 details the ferritic cell size of the ADI samples intercritically austenitized at 

upper intercritical austenitizing temperature of 1520ºF with respect to plastic deformation, 

single/two-step austempering and strain rates. The average ferritic cell size of the ADI samples 

reduced as the austempering temperature varied from 750ºF to 500ºF. Plastic deformation resulted 

in significant reduction in the ferritic cell sizes of the ADI samples austempered in the upper 

bainitic temperature range of 680ºF and 725ºF. However, no significant difference was observed 

in the ADI samples austempered in the lower bainitic temperature range of 600ºF and 550ºF. It 

was also observed that two-step austempering did not have any significant effect in reducing the 

ferritic cell size in the ADI samples intercritically austenitized and plastically deformed at 1520ºF.  

 Some of the ADI samples were plastically deformed at the lower and higher strain rates of 

0.5 and 10 mm/min respectively and austempered at lower bainitic temperature of 550ºF by single 

step as well as two-step austempering process. The average ferritic cell sizes of those samples lie 

within a small range of 17nm to 17.4nm. As mentioned earlier from Table 9, the the heat 
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treatment process is robust between 0.5 and 10mm/min. Therefore, no effect with the 5mm/min 

strain rate is expected. 

Table 12: Ferritic cell size of the intercritically austenitized ADI with respect to the plastic 

deformation, single/two-step austempering temperatures and strain rates 

 

Austenitizing 

temperature 

 (ºF) 

Austempering 

temperature 

(ºF) 

Plastic 

deformation 

at 1520ºF 

Strain rate 

(mm/min) 

Single step 

/two step 

austempering 

Ferritic cell 

size (nm) 

 

 

 

 

1520ºF 

 

725ºF 

No - Single step 24 ± 4.2 

Yes 5 Single step 21.9 ± 5.6 

Yes 5 Two-step 19.6 ± 3.4 

 

680ºF 

No 5 Single step 24.6 ±1.8 

Yes 5 Single step 17.1 ± 6.2 

Yes 5 Two-step 17.9 ± 3.4 

 

600ºF 

No 5 Single step 18.6 ± 3.0 

Yes 5 Single step 18.8 ± 6.8 

Yes 5 Two-step 16.5 ± 5.4 

 

 

550ºF 

 

 

No 5 Single step 16.5 ± 3.3 

Yes 5 Single step 17.0± 6.3 

Yes 5 Two-step 19.1 ± 6.7 

Yes 0.5 Single step 17.3 ± 1.6 

Yes 10 Single step 17.4 ± 3.1 

Yes 0.5 Two step 17.1 ± 2.4 

Yes 10 Two step 17 ± 1.9 
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 Table 13 compares the average ferritic cell sizes of the ADI samples intercritically 

austenitized at lower intercritical austenitization temperature of 1472ºF and 1436ºF, with respect 

to plastic deformation and single/two-step austempering temperatures.  

Table 13: Ferritic cell size of the intercritically austenitized ADI with respect to the plastic 

deformation, single/two-step austempering temperatures. 

  

 Single step austempering was carried out only in the ADI samples austempered at 680ºF. 

Comparatively, plastic deformation and two step austempering reduced the average ferritic cell 

sizes in these samples. Approximately 15% and 27% reduction in the average ferritic cell sizes 

was observed after plastic deformation and two-step austempering in these ADI samples 

Austenitizing 

temperature 

 (ºF) 

Austempering 

temperature 

(ºF) 

Plastic 

deformation  

Single step /two 

step 

austempering 

Ferritic cell 

size (nm) 

 

1472ºF 

725ºF Yes Two-step 21.5 ± 2.7 

680ºF 

 

No Single step 23.1 ± 1.4 

Yes Two-step 19.5 ± 3.5 

600ºF Yes Two-step 18.3 ± 3.5 

550ºF Yes Two-step 20.0 ± 2.1 

 

1436ºF 

 

 

725ºF Yes Two-step 26.0± 2.9 

680ºF 

 

No Single step 27.4 ± 0.5 

Yes Two-step 20.1 ± 1.5 

600ºF Yes Two-step 21.4 ± 1.3 

550ºF Yes Two-step 24.1 ± 0.6 
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intercritically austenitized at 1472ºF and 1436ºF respectively. As the austenitization temperature 

is reduced, the average ferritic cell size of the ADI increased. This can be attributed to the 

presence of higher volume fraction of proeutectoid ferrite in the ADI samples intercritically 

austenitized at lower austenitizing temperatures. 

 In summary, austempering temperature reduces the ferritic cell size. No significant 

changes were observed in the ferritic cell size with respect to plastic deformation. Bainitic ferrite 

and austenite laths must be refined heavily to obtain an increased resistance to the dislocation 

movement. The individual ferritic cell size doesnot yield nanostructured ADI. Thus, the ferritic 

cell size is not a key factor in determining the nanostructured bainitic ferrite or films of retained 

austenite in ADI. 
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CHAPTER 6. TRANSMISSION ELECTRON MICROSCOPY 

 Transmission electron Microscopy was carried out to study the microstructure of the 

austempered ductile cast iron in detail. Among all the heat treated ductile cast iron samples, only 

6 samples were used for the TEM analysis. Detailed summary of the samples analyzed with TEM 

are reported in Table 14. 

Table 14: Summary of ADI samples analyzed with TEM  

Tγ (ºF) Plastic deformation TA1(ºF) TA2 (ºF) 

1700 n/a 725 n/a 

1700 yes 725 n/a 

1700 yes 500 600 

1700 yes 500 680 

1520 yes 500 600 

1520 (strain rate: 
10mm/min) 

yes 500 550 

 

 The TEM Micrograph confirmed the presence of nanostructured ausferritic structure in 

specific heat treated ADI samples which is detailed below. Selected area electron diffraction 

patterns (SAED) were obtained and indexed to confirm the presence of bainitic ferrite and 

austenite phases. The SAED were indexed using the following equation 

                                                                                          (6.1) 

where dhkl is the lattice spacing of the plane, Rhkl is the distance of the spot from the center beam, 

λ is the wavelength of the electron beam and L is the camera length. The product  is calculated 

using the standard aluminium sample of known dhkl lattice spacing for the operating voltage of 
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200KeV as 117.57Å-pixels. The Digital Micrograph software was used to measure the lattice 

spacing of the ductile iron samples. 

 Figure 40 shows the TEM micrographs of the ductile iron sample conventionally 

austempered at 725°F. The bright field image in Figure 40 (a) and (b) shows the ausferritic 

structure where the bainitic ferrite appears bright with austenite present in between the bainitic 

ferrite as thin dark films.  

 

   (a)                           (b) 

Figure.40: TEM micrographs of conventional ADI a) Bright Field image b) Dark field image 

 The SAED pattern obtained shows the typical spot diffraction pattern with well-defined 

spacing and angles in the Figure 41 (a) and (b) and confirms the presence of bainitic ferrite and 

austenite phases respectively in the microstructure of the conventionally austempered ADI.  
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    (a)      (b) 

Figure.41.: TEM micrographs of ductile cast iron conventionally austempered at 725ºF (a) 

Indexed diffraction pattern for bainitic ferrite phase (b) Indexed diffraction pattern for austenite 

 

Figure.42: X-ray diffraction pattern of conventional ductile cast iron (Tγ=1700ºF for 2 hours, 

TA=725ºF for 2 hours) 

 The dark field image obtained from the α (110) bainitic ferrite reflection shows the coarse 

bainitic ferrites and retained austenite present in between the bainitic ferrite laths. This is in good 
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agreement with the X-ray diffraction profile of the conventionally austempered ductile cast iron 

showing the presence of both the ferrite and austenite phases as shown in the Figure 42. The 

bainitic ferrite occurs in a sheaf like morphology with some subunits in them. The average width 

of the bainitic ferrite occurred in the range of 33nm as measured with the image pro software.  

 The x-ray diffraction pattern was carried out in the 2θ range of 20º to 92° to obtain the 

ferrite and austenite peaks. All the conventionally austempered ductile cast iron samples showed 

similar diffraction pattern consisting of austenite and ferrite peaks. However, the volume fraction 

of the austenite and ferrite varied with respect to the austempering temperature. The measured d 

spacing for the obtained diffraction pattern is compared with the calculated d spacing and the 

percentage difference is reported in Table 15.  

 Table 16 reports the measured and calculated angle between the diffraction planes. The 

percentage difference is very low as the measured d spacing and the angle between the diffraction 

plane is comparable to the theoretical measurements.  

Table.15: Indexing details of diffraction pattern of ferrite phase (Conventional ADI, Tγ=1700ºF for 

3 hours, TA=725ºF for 2 hours) 

Spot Measured d spacing (Å) (hkl) Calculated d spacing (Å) % difference 

1 2.081 α (110) 2.029 2.6 

2 1.451 α (200) 1.435 1.1 

3 2.092 α (1 0) 2.029 3.1 

4 1.488 α (0 0) 1.435 3.7 
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Table.16: Indexing details of diffraction pattern of ferrite phase (Conventional ADI, Tγ=1700ºF, 

TA=725ºF) 

 

 Figure 43 shows the TEM micrograph of the ductile cast iron sample conventional 

austenitized at 1700ºF, plastically deformed at 1700ºF and austempered at 725ºF.  

 

Figure.43: TEM micrographs showing Bright field image of plastically deformed ADI 

(Tγ=1700ºF, TD= 1700ºF, TA=725ºF) 

 

Angles Measured angle (◦) hkl 
Calculated angle 

(◦) 

% difference 

1 2 44.31 α(110) α(200) 45 1.5 

2 3 45 α(200)  α(1 0) 45 0 

3 4 45 α(1 0)  α(0 0) 45 0 

4 1 45.67 α(0 0)  α( 0) 45 1.4 



 
 

83 
 

 

 Figure 44 shows the low magnification dark field image of the plastically deformed ADI 

where the morphology of the ausferritic structure is visible. The dark field image as shown in 

Figure 44(a) obtained using the bainitic ferrite reflection α (110) shows the bainitic ferrite 

structure which occurs as tiny subunits. Similar observation is obtained for the austenite reflection 

as shown in Figure 44(b).  

 Plastic deformation significantly refined the grain size of the ADI samples. The length and 

width of these bainitic ferrite structures are refined by the plastic deformation when compared 

with the conventional austempered ductile cast iron without plastic deformation. 

 

 

   (a)       (b) 

Figure.44: TEM micrographs of plastically deformed ADI (Tγ=1700ºF, TD= 1700ºF, TA=725ºF) 

(a) Dark Field image showing ferrite phase b) Dark field image showing austenite phase 
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(a)                                                               (b) 
Figure.45: Indexed diffraction of (a)ferrite phase (b) austenite phase of plastically deformed ADI 

(Tγ=1700ºF, TD= 1700ºF, TA=725ºF) 

 

Figure.46:  X-ray diffraction pattern of ductile cast iron plastically deformed ADI 

    (Tγ=1700ºF, TD= 1700ºF, TA=725ºF)  

  The corresponding X-ray diffraction profile is shown in the Figure 46. XRD analysis 

confirms the presence of both austenite and ferrite phases in this plastically deformed ADI. The γ 
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(111) is not prominent and the γ (220) peak is not present indicating the lower volume fraction of 

austenite in these plastically deformed samples. 

 In the conventional austempered ductile cast iron, the selected area electron diffraction 

(SAED) pattern showed a typical arrangement of the spot pattern along the zone axis, whereas, in 

the plastically deformed ADI, the ring like SAED pattern is observed as shown in the Figure 45. 

This continuous rings arise from the very fine grain structures. The diffraction pattern changes 

from spot to rings (example: Figure 41 and 45) when the refinement of the grains occurs as shown 

in the Figure 47.  The refinement of the grain obviously resulted in the refinement of the 

crystallites inside the grains. Thus, the plastic deformation of the ADI resulted in ultra-fine nano 

crystalline bainitic ferrite and austenite. 

 

Figure.47: Changes in diffraction pattern with respect to grain size 
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 The percentage difference between the measured and calculated d spacing of the obtained 

ring pattern for the bainitic ferrite and austenite phase is detailed in Table 17 and Table 18 

respectively.   

Table.17: Indexing details of diffraction pattern of ferrite phase (Plastically deformed ADI, 

Tγ=1700ºF, TD= 1700ºF, TA=725ºF) 

Ring Measured d spacing (Å) (hkl) Calculated d spacing (Å) % difference 

1 2.027 α (110) 2.029 0.1 

2 1.434 α (200) 1.435 0.1 

3 1.170 α (211) 1.172 0.2 

4 1.005 α (220) 1.015 1.0 

5 0.908 α (310) 0.908 0.0 

 

Table.18: Indexing details of diffraction pattern of austenite phase (Plastically deformed ADI, 

Tγ=1700ºF, TD= 1700ºF, TA=725ºF) 

Ring Measured d spacing (Å) (hkl) Calculated d spacing (Å) % difference 

1 2.157 γ (111) 2.078 3.8 

2 1.578 γ (200) 1.800 12.3 

3 1.251 γ (220) 1.272 1.7 

4 1.094 γ (311) 1.085 0.8 
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 The measured and calculated interatomic distance match well for the bainitic ferrite phase. 

The interatomic distance of the obtained diffraction pattern for the austenite phase has higher 

percentage difference than the calculated d spacing. This is due to the the possible overlapping of 

the ferrite and austenite rings and the weak SAED pattern obtained for this sample which made 

the location of rings unclear. 

 Figure 48 shows the TEM micrographs of the ductile iron of the conventionally 

austenitized, plastically deformed and two-step austempered ADI, (Tγ=1700ºF, TD= 1700ºF, 

TA1=500ºF, TA2= 725ºF).   

 

     )a(         )b(  
Figure.48: TEM micrographs of plastically deformed, two-step austempered ADI (Tγ=1700°F, 

TD= 1700°F, TA1=500°F, TA2= 725°F), a) Bright Field image b) Dark field image 

 The bright field image in the Figure 48 (a) shows the ausferritic phase in the plastically 

deformed ADI.  The corresponding dark filed image is shown in Figure 48(b). The bainitic ferrite 

appears as very fine subunits with the films of austenite between them. The SAED pattern of the 

bainitic ferrite phase is shown in the Figure 49(a). The plastic deformation along with the two-

step austempering in this ADI resulted in a ring like diffraction pattern which confirms the 
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nanoscale grains in this heat-treated ADI. The dark field image from the α (110) reflection shows 

the very thin bainitic ferrite structures.  

 

          (a)           (b) 

Figure.49: TEM micrographs of plastically deformed, two-step austempered ADI (Tγ=1700ºF, 

TD= 1700ºF, TA1=500ºF, TA2= 725ºF), (a) indexed SAED pattern (b) X-ray diffraction profile 

 The corresponding X-ray diffraction pattern is shown in Figure 49(b). Compared to 

conventional ADI, the γ (220) peak is not present for this sample indicating that the plastic 

deformation reduced the net amount of austenite present.  The SAED pattern for the autenite phse 

was not observed with TEM analysis for this sample. It is also possible for the overlapping of the 

ferrite and austenite phases in the ring diffraction pattern of this ADI because of the ultrafine 

bainitic ferrite and austenite phases present.  This could possibly the reason behind the slight 

variation in the percentage difference of the measured interatomic distance when compared with 

the theoretical interatomic distance as detailed in the Table 19. 
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Table.19: Indexing details of diffraction pattern of ferrite phase (Plastically deformed, two-step 

austempered ADI, Tγ=1700ºF, TD= 1700ºF, TA1=500ºF, TA2= 725ºF) 

Spot Measured d spacing (Å) (hkl) Calculated d spacing (Å) % difference 

1 2.081 α (110) 2.029 2.5 

2 1.547 α (200) 1.435 7.8 

3 1.238 α (211) 1.172 5.6 

4 1.022 α (220) 1.015 0.8 

5 0.933 α (310) 0.908 2.8 

 

 Figure 50 shows the TEM micrograph of 1520ºF-500ºF-600ºF sample. The bright field 

image shows the bainitic ferrite subunits with austenite laths in between them in the nanoscale 

range. The SAED pattern obtained from this plastically deformed ADI is intermediate which is 

neither a typical pattern for the polycrystalline material nor the nanocrystalline ring pattern. This 

is ultimately because there is a significant reduction in the grain size of this ADI with respect to 

the plastic deformation. The dark field image obtained from the α (110) bainitic ferrite reflection 

show the subunits of lath shaped bainitic ferrite however, the length and width of the bainitic 

ferrite structures are ultrafine unlike the conventional ADI.  

 The X-ray diffraction profile of the upper intercritical austenitized, plastically deformed, 

two step austempered ADI in Figure 51, show faint austenite peaks indicating the lesser volume 

fraction of austenite in these samples. The presence of austenite is also confirmed from the faint 

reflection spot from the SAED ring pattern.  The indexing details are given in the Table 20. 
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   (a)                                                                         (b) 

 

(c)                           (d) 

Figure.50: TEM micrographs of ductile cast iron intercritically austenitized, plastically deformed, 

two-step austempered ADI (Tγ=1520ºF, TD= 1520ºF, TA1=500ºF, TA2= 600ºF, a) Bright Field 

image, (b) and (c) Dark field image (d) SAED Pattern 
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Figure.51: X-ray diffraction pattern of ductile cast iron plastically deformed ADI ,(Tγ=1520°F, 

TD= 1520°F, TA1=500°F, TA2=600°F) 

  

Table 20: Indexing details of diffraction pattern of ferrite phase (Plastically deformed, two-step 

austempered ADI, (Tγ=1520ºF, TD= 1520ºF, TA1=500ºF, TA2= 600ºF) 

 

Ring Measured d spacing (Å) (hkl) Calculated d spacing (Å) % difference 

1 2.038 α (110) 2.029 0.4 

2 1.467 α (200) 1.435 2.2 

3 1.189 α (211) 1.172 1.5 

4 1.053 α (220) 1.015 3.7 

5 0.858 α (311) 0.908 5.5 
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 Figure 52 illustrates the TEM micrographs of the intercritically austenitized, plastically 

deformed, two-step austempered ADI sample (Tγ=1472ºF, TD= 1472ºF, TA1=500ºF, TA2= 680ºF). 

Bainitic ferrite in the form of  ultrafine nanocrystal morphology is observed in the bright field 

image in the Figure  52.  

    

                                (a)           (b)  

 Figure.52: TEM micrographs of ductile cast iron intercritically austenitized, plastically deformed, 

two-step austempered ADI (Tγ=1472ºF, TD= 1472ºF, TA1=500ºF, TA2= 680ºF), (a) Bright Field 

image, (b)Dark field image 

 The dark field image obtained  from the α (110) reflection shows the ultra-fine bainitic 

ferrite structures  as shown in Figure 52 (b). In Figure 53 (a), the ected area diffraction from thesel  

bright field image shows ring like pattern which confirms the nanostructured bainitic ferrite in 

this heat-treated ADI. The decrease in the volume fraction of austenite is observed at lower 
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austenitization temperature of 1472ºF which is evident from the X-ray diffraction profile in the 

Figure 53 (b). The indexing details are reported in Table 21. 

 

(a)      (b) 

Figure.53: TEM micrographs of ductile cast iron intercritically austenitized, plastically deformed, 

two-step austempered ADI (Tγ=1472ºF, TD= 1472ºF, TA1=500ºF, TA2= 680ºF, (a) Indexed SAED 

Pattern and (b) X-ray diffraction profile 

Table.21: Indexing details of diffraction pattern of ferrite phase (Plastically deformed, two-step 

austempered ADI, (Tγ=1472ºF, TD= 1472ºF, TA1=500ºF, TA2= 680ºF) 

Spot 
Measured d spacing (Å) 

(hkl) Calculated d spacing (Å) 
% 

difference 

1 2.027 α (110) 2.029 0.1 

2 1.434 α (200) 1.435 0.1 

3 1.170 α (211) 1.172 0.2 

4 0.992 α (220) 1.015 2.2 
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 TEM micrographs of the intercritically austempered, plastically deformed sample at a 

strain rate of 10mm/min followed by two step austempering, (Tγ=1520ºF, TD= 1520ºF, strain 

rate= 10mm/min, TA1=500ºF, TA2= 550ºF) is shown in the Figure 54. 

 

 

  (a)        (b) 

Figure.54: TEM micrographs of ductile cast iron intercritically austenitized, plastically deformed 

at higher strain rate, two-step austempered ADI Tγ=1520ºF, TD= 1520ºF, strain rate= 

10mm/min,TA1=500ºF, TA2= 550ºF a) Bright Field image, (b) Dark field image 

 The bright field image in Figure 54 (a) shows the appearance of bainitic ferrite structures 

which are in the nanoscale range. Plastic deformation significantly reduced the ferritic cell size in 

the nanoscale range leading to the ring like SAED pattern as shown in the Figure 55 (a).  The 

diffraction ring corresponding to the austenite phase is not found in the SAED pattern as the 

volume fraction of austenite is very low for this   high strain plastically deformed ADI sample 

which is evident from the X-ray diffraction profile shown in the Figure 55(b). There were also 
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traces of Fe3C carbides observed in these samples from the SAED pattern. The indexing details 

are reported in the Table 22. 

 

 

(a)                                  (b) 

Figure.55: TEM micrographs of ductile cast iron intercritically austenitized, plastically deformed 

at higher strain rate, two-step austempered ADI Tγ=1520ºF, TD= 1520ºF, strain rate= 10mm/min, 

TA1=500ºF, TA2= 550ºF (a) SAED Pattern (b) X-ray diffraction profile 

Table.22: Indexing details of diffraction pattern of ferrite phase (Plastically deformed, two-step 

austempered ADI, (Tγ=1520ºF, TD= 1520ºF, strain rate= 10mm/min), TA1=500ºF, TA2= 550ºF) 

Ring Measured d spacing (Å) (hkl) Calculated d spacing (Å) % difference 

1 2.501 Fe3C (020) 2.544 1.7 

2 2.045 α (110) 2.029 0.8 

3 1.470 α (200) 1.435 2.4 

4 1.147 α (211) 1.172 2.1 
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 In summary, TEM analysis provided a detailed overview of the ausferritic microstructure 

in the conventional and plastically deformed ADI. TEM observation clearly shows that the 

conventional ADI samples resulted in a typical crystalline spot SAED pattern with well-defined 

spacing and angles. It also confirms the presence of carbide free bainitic ferrite platelets separated 

by austenite laths. It is also observed that the plastic deformation resulted in the grain refinement 

in the nanoscale range which is evident from the ring SAED pattern obtained from the plastically 

deformed ADI samples. At lower austenitization temperatures, the volume fraction of austenite 

greatly reduced and the TEM observation resulted in a ring pattern for the bainitic ferrite 

reflections only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

97 
 

 

CHAPTER 7. AUSTENITE AND ITS STABILITY 

7.1 Volume fraction of austenite and its carbon content 

 Austenite that do not transform into bainitic ferrite or martensite up on quenching is called 

retained austenite. By controlling the volume fraction of retained austenite in ADI, the negative 

influences such as the crack growth, fatigue, excessive dimensional growth can be avoided. The 

volume fraction of the austenite and its carbon content is important as it determines the strength 

and ductility of the ADI. The volume fraction of austenite and its carbon content was determined 

by X-ray diffraction analysis. 

7.1.1 Variation in the volume fraction of austenite and its carbon content in conventional 

ADI 

 The volume fraction of the austenite was determined by X-ray diffraction analysis. Figure 

56 shows the effect of austempering temperatures on the volume fraction of austenite for the 

conventionally austempered ductile cast iron.  

 At lower austempering temperatures, the microstructure mainly consists of bainitic ferrite 

and retained austenite whereas at the upper bainitic temperatures, the microstructure mainly 

consists of reacted austenite as the ausferrite forms at upper bainitic temperatures. The total 

volume fractions of austenite (retained and reacted austenite) increases with the increase in 

austempering temperature.  

 While the ADI samples austempered at 700ºF and 725ºF had higher volume fraction of 

austenite, the samples austempered at 750ºF had lower volume fraction of austenite. This is due to 

the smaller processing window (the period between the end of the first reaction and the onset of 

second reaction) for the higher austempering temperatures of 750ºF. This, in turn, caused the 

partial decomposition of austenite to ferrite and carbides at this temperature. Moreover, the low 
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alloyed ductile cast iron is used in this study which had very little Mo% and Ni%. This apparently 

reduced the process window where the onset of the second reaction occurred resulting in 

decomposition of austenite into ferrite and carbide in the 750ºF austempered samples.   

 

Figure.56: Effect of conventional austempering on the volume fraction of austenite (Tγ=1700ºF, 

TA as shown) 

 Figure 57 shows the austenitic carbon content with respect to the austempering 

temperature for the conventional ADI. The initial carbon content of austenite before austempering 

can be estimated by the following equation [127]: 

    Cγ=(Tγ/420)-0.17(%Si)-0.95%                                     (6.1) 

where, Cγ is the carbon content of the austenite and Tγ is the austenitization temperature in °C 

The carbon content of the austenite before austempering for the conventional austenitization 

temperature of 1700°F (927°C) for the ductile cast iron used in this study was estimated to be 

0.84%. The average amount of dissolved carbon content of the austenite remains in the range of 

1.6% for the ADI austempered at higher austempering temperatures. At lower austempering 
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temperatures of 500ºF and 550ºF, where only retained austenite exists, austenite carbon content in 

the range of 0.9% is observed. 

 

Figure.57: Volume fraction of austenitic carbon with respect to conventional austempering 

temperature (Tγ=1700ºF, TA as shown) 

7.1.2 Variation in the volume fraction of austenite and its carbon content in intercritically 

austenitized ADI (with constant TA) 

 Figure 58 shows the influence of intercritical austenitizing temperatures on the volume 

fraction of austenite of the ADI austempered at 680ºF. The intercritical austenitization of ADI 

resulted in lower volume fraction of austenite than the volume fraction of austenite obtained from 

the conventional austempering process.  

 The amount of the parent phase that transform into austenite phase depends on the 

austenitization temperature. Thus, the parent austenite volume fraction can be adjusted by varying 

the austenitization temperature. At lower austenitization temperatures, only a limited 

transformation of as cast parent phase to the austenite phase occur. Thus, the volume fraction of 

austenite is very low for the ADI austenitized at lower intercritical austenitizing temperature of 
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1418ºF. With the increase in austenitization temperature from 1418°F to 1520°F, the volume 

fraction of austenite increases as predicted by the Lever rule. 

 

 

Figure.58: Influence of intercritical austenitizing temperatures on the volume fraction of austenite 

(Tγ as shown, TA=680ºF) 

 The carbon content of the austenite before austempering for the conventional 

austenitization temperature of 1700°F (927°C) for the ductile cast iron used in this study was 

estimated to be 0.84% from equation (6.1). Similarly, the carbon content of austenite before 

austempering for the austenitization temperature of 1520ºF, 1472ºF, 1436ºF and 1418ºF were 

estimated to be 0.60%, 0.54%, 0.49% and 0.46% respectively. The carbon content of austenite 

prior to austempering influences the stability of high carbon austenite during austempering. The 

carbon content of the austenite after austempering is calculated to be 2.3%, 2.9%, 2.2% and 1.6% 

respectively. Thus, there exists a potential to stabilize the high carbon austenite during 

austempering in intercritically austenitized ductile iron samples.  
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 Figure 59 represents the corresponding carbon content of the austenite calculated from the 

following equation [125]: 

     aγ = 0.3548+0.0044 Cγ      (7.2) 

where aγ is the lattice parameter of austenite in nm and Cγ is the carbon in wt%.          

 Higher the volume fraction of austenite allows the diffusion of more carbon into the 

austenite during austempering. As the austenitization temperature increases, the carbon content of 

the austenite also increases for a fixed time. This is in good agreement with the existing literatures 

[124-125]. 

 

Figure.59: Influence of intercritical austenitizing temperatures on the carbon content of austenite 

(Tγ as shown, TA=680ºF) 

7.1.3 Variation in the volume fraction of austenite and its carbon content in intercritical 

ADI (with constant Tγ) 

 Figure 60 shows the variation in the volume fraction of austenite with respect to 

austempering temperatures in the ADI intercritically austenitized at the upper intercritical 

temperature of 1520°F for the austempering temperatures shown.  
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Figure.60: Influence of austempering temperatures on the volume fraction of austenite in the 

intercritical ADI (Tγ =1520ºF, TA as shown) 

 As the transformation of austenite into ferrite and high carbon austenite depends on the 

transformation temperature during austempering, the volume fraction of austenite increases as the 

austempering temperature increased from 550 to 725°F. At lower austempering temperatures, 

there exists only retained austenite and lower bainite, as the ausferrite form only at upper bainitic 

temperatures. The volume fraction of the total reacted as well as retained austenite increases with 

the austempering temperature.  At lower austempering temperatures, the growth rate of ferrite is 

lower, the diffusion rate of carbon into the austenite is also slower, which results in lower volume 

fraction of austenite at lower austempering temperatures.  As the austempering temperature is 

increased, the volume fraction of austenite increases. This is because at higher austempering 

temperatures, the rate of diffusion of carbon into the austenite is faster and the growth rate of 

ferrite is also rapid.  
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 Figure 61 shows the variation of the carbon content of austenite in ADI intercritically 

austenitized at 1520ºF with respect to the austempering temperature. The carbon content of the 

reacted and retained austenite is unchanged and nominally 2.0%. 

 

 Figure.61: Influence of austempering temperatures on the carbon content austenite in the 

intercritical ADI (Tγ =1520ºF, TA as shown)  

7.1.4 Variation in the volume fraction of austenite and its carbon content in conventional 

ADI with respect to plastic deformation 

 Figure 62, shows the variation of the volume fraction of austenite in the ADI austenitized 

at 1700ºF, plastically deforemed at 1700ºF followed by austempering for the temperatures shown. 

Statistically, plastic deformation did not affect the volume fraction of austenite in the 

conventional ADI. The presence of islands of retained austenite in the ADI samples austempered 

at higher austempering temperatures resulted in the higher volume fraction of austenite at higher 

austempering temperatures. The retained austenite content was low at the lower austempering 

temperatures of 550ºF and 600ºF.   
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Figure.62: Influence of austempering temperatures on the volume fraction of austenite in the 

plastically deformed ADI (Tγ =1700ºF, TA as shown) 

 

Figure.63: Influence of austempering temperatures on the volume fraction of austenitic carbon in 

the plastically deformed ADI (Tγ =1700ºF, TA as shown) 

 The corresponding carbon content of the austenite is shown in the Figure 63. In contrast to 

the conventional austempering, the plastically deformed ADI samples had higher percentage of 

austenitic carbon at lower austempering temperature of 550ºF with lesser austenite content. 
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7.1.5 Variation in the volume fraction of austenite and its carbon content in intercritical 

ADI with respect to plastic deformation 

 Figure 64 shows the variation of the volume fraction of austenite in the ADI intercritically 

austenitized at 1520ºF, plastically deformed at 1520ºF followed by austempering for the 

temperatures shown. Plastic deformation in the intercritically austempered ADI resulted in 

significant decrease in the volume fraction of austenite in the range of about 21% to 36% when 

compared to the intercritical ADI without plastic deformation. The influence of austempering 

temperature on the volume fraction of austenite was also observed in these samples. 

 

Figure.64: Influence of intercritical austenitization on the volume fraction of austenite in the 

plastically deformed ADI (Tγ =1520ºF, TA as shown) 

 The corresponding carbon content of the austenite for the plastically deformed ADI is 

represented in the Figure 65. The carbon content of the austenite is unchanged and existed in the 

range of approximately 2%. 
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Figure.65: Influence of intercritical austenitization on the volume fraction of austenitic carbon in 

the plastically deformed ADI (Tγ =1520ºF, TA as shown) 

 The volume fraction of austenite for the intercritically austenitized, two step austempered 

ADI with respect to the plastic deformation is shown in the Figure 66.  At conventional 

austenitizing temperature of 1700ºF, the volume fraction of austenite is higher irrespective of the 

austempering temperatures. The volume fraction of austenite varied with respect to the 

austenitization as well as the austempering temperatures. Upper intercritical austenitization 

temperatures of 1520ºF and 1472ºF has higher volume fraction of austenite than the lower 

intercritical temperature of 1436ºF. At higher austempering temperatures, the volume fraction of 

austenite is higher as the ausferritic structures form at upper bainitic temperatures. At lower 

temperatures, predominantly bainitic ferrite and retained austenite exists leading to the lower 

austenitic content in the ADI. The carbon content of the austenite remained with a range of 1.5 to 

2.5% in this ADI samples 
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Figure.66: Influence of intercritical austenitization on the volume fraction of austenite with 

respect to plastically deformation and two step austempering 

7.2 Stability of austenite 

 Cryogenic treatment allowed for the investigation of the thermal and mechanical stability 

of austenite in ADI 

7.2.1 Thermal Stability of austenite 

 Table 23 shows the volume fraction of austenite with respect to the cryogenic treatment in 

the austempered ductile iron samples. Cryogenic treatment significantly reduced the volume 

fraction of austenite in the ADI samples for all the austempering temperatures and it is 

significantly stronger for the samples austempered at 725ºF or lower temperatures.  During 

cryogenic treatment, some of the high carbon retained austenite transformed into tempered 

martensite structures and hence the volume fraction of austenite decrease 
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Table 23: The Volume Fraction of Austenite in the ADI as a Function of Cryogenic Treatment 

 

Austempering 

Temperature 

(°F) 

 

Cryogenic 

Treatment? 

Volume Fraction of 

Austenite in the 

Untested Samples 

(%) 

Volume fraction of 

Austenitic Carbon 

content 

(XγCγ) 
 
 

500°F 

No 7.8 ± 4.2 0.143 

Yes 0.0 ± 0.0 0.000 

 
 

550°F 

No 8.3 ± 3.1 0.130 

Yes 0.0 ± 0.0 0.000 

 
 

700°F 

No 31.1 ± 5.8 0.506 

Yes 25.3 ± 1.8 0.430 

 
 

725°F 

No 32.7 ± 2.8 0.503 

Yes 24.4 ± 0.9 0.463 

 
 

750°F 

No 23.3 ± 3.5 0.372 

Yes 21.2 ± 1.0 0.275 

 

 Generally, it is known that the high carbon austenite is thermally unstable and transform 

into martensite. Because of this thermal instability, the high carbon austenite is prone to transfer 

to tempered martensite upon cryogenic processing. However, the degree of transformation of 

austenite to tempered martensite depend on the austempering temperature. The volume fraction of 

the austenite after cryogenic treatment in the ADI samples austempered at lower bainitic 

temperatures austempering were thermally unstable and transformed into tempered martensite. 
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However, cryogenic treatment of the samples austempered at upper bainitic temperatures resulted 

in thermally stable austenite which did not completely transform to tempered martensite when 

subjected to cryogenic processing. Apparently, the degree of transformation of austenite into 

tempered martensite depends on the carbon content of the austenite.  

 Table 23 also shows the austenitic carbon content as a function of austempering 

temperatures in the cryogenically treated ADI samples. The cryogenic treatment of ADI samples 

austempered at lower bainitic temperatures of 500ºF and 550ºF resulted in complete 

transformation of austenite into tempered martensite. This is due to the lower austenitic carbon 

present in these ADI samples prior to the cryogenic treatment. Lower austenitic carbon is prone to 

increase the martensitic start temperatures. It is evident that higher carbon content lowers the 

martensitic start temperatures (MS) in steels [128], this in turn increases the stability of the 

austenite. At higher austempering temperatures, the austenitic carbon content is increased and 

thus the degree of transformation of austenite to tempered martensite is reduced. 

7.2.2 Influence of cryogenic treatment on the mechanical stability of austenite 

 The mechanical stability of the austenite was determined by a series of tensile and fracture 

toughness tests. Tensile test allows for the free flow of the material allowing the strain induced 

transformation of austenite to martensite. In the fracture toughness tests, the material is subjected 

to mostly elastic deformation due to the very limited plasticity at the crack tip as well as the high 

constraint in the specimen geometry. Thus, in fracture toughness tests, the transformation of 

austenite to martensite occur by stress induced transformation process. The deformation 

mechanism associated with cryogenic treatment of ADI can be analyzed by the tensile and 

fracture toughness tests. 
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7.2.2.1 Strain induced transformation 

 Table 24 shows the volume fractions of austenite for the tensile tests performed on the 

conventionally austempered as well as cryogenically treated ADI samples. After tensile tests, the 

volume fraction of the austenite was calculated and significant reduction in the volume fraction of 

the austenite was observed in the conventional ADI. Thus, tensile test resulted in the strain 

induced transformation of austenite to martensite.  

Table 24: The Volume Fraction of Austenite in the ADI as a Function of Cryogenic Treatment and 

Testing 

 

Austempering 

Temperature 

(°F) 

 

Cryogenic 

Treatment? 

Volume Fraction of Austenite (%) in  

Pre-test (untested 
samples) 

Post-Test (tensile tested 
samples) 

 
 

500°F 

No 7.8 ± 4.2 0.0 ± 0.0 

Yes 0.0 ± 0.0 0.0 ± 0.0 

 
 

550°F 

No 8.3 ± 3.1 0.0 ± 0.0 

Yes 0.0 ± 0.0 
 

0.0 ± 0.0 
 
 

700°F 

No 31.1 ± 5.8 24.4 ± 4.6 

Yes 25.3 ± 1.8 12.5 ± 2.9 

 
 

725°F 

No 32.7 ± 2.8 22.8 ± 3.8 

Yes 24.4 ± 0.9 12.1 ± 4.2 

 

750°F 

 

No 

 

23.3 ± 3.5 

 

23.5 ± 6.3 
 

Yes 

 

21.2 ± 1.0 

 

16.3 ± 10.5 
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 The magnitude of the transformation of austenite to martensite in the mechanically tested 

(tensile test) ADI samples accounts to approximately 8% for samples austempered between 500°F 

and 725°F. 

 As illustrated in the Table 24, during cryogenic treatment, the retained austenite is 

transformed to martensite and the degree of transformation is dependent on the austempering 

temperature.  At lower bainitic temperatures of 500ºF and 550ºF, the cryogenic treatment resulted 

in the complete transformation of retained austenite to martensite prior to tensile testing. 

Therefore, no strain induced transformation of austenite to martensite is expected in these 

samples. In the samples austempered in the upper bainitic temperature and cryogenic treatment 

resulted in the partial transformation of austenite to martensite due to the thermal instability of 

retained austenite.  

 At the austempering temperature of 700ºF, approximately 18% of the austenite was 

transformed into martensite during cryogenic processing. In the samples austempered at 725ºF, 

approximately 25% of austenite to martensite transformation occurred during cryogenic 

processing prior to tensile testing Upon tensile testing the cryogenically treated ADI samples, the 

mechanical instability was obvious as the transformation of the retained austenite to martensite 

accounted for approximately 50%. The magnitude of transformation of austenite to martensite is 

greater for the cryogenically treated and tensile tested samples as opposed to the ADI that 

underwent either cryogenic treatment or tensile testing.  Thus, cryogenically treated ADI samples 

follow the same trend as the conventional ADI with lower amount of austenite present. 

7.2.2.2 Stress-induced deformation 

 Table 25 shows the volume fraction of austenite in the conventional ADI as well as 

cryogenic ADI both before and after the fracture toughness test. As detailed in the Table 25, the 
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stress induced transformation resulted in complete transformation of retained austenite to 

martensite in the conventional ADI austempered at lower bainitic temperatures of 500ºF and 

550ºF. However, in the upper bainitic temperature range, only partial transformation of austenite 

to martensite occurred. 

Table 25: The Volume Fraction of Austenite in the ADI as a Function of Cryogenic Treatment and 

Testing 

 

 

Austempering 
Temperature 

(°F) 

 

Cryogenic 
Treatment? 

Volume Fraction of Austenite (%) 

 

Average Volume 
Fraction of 
Austenite 

Transformed to 
Martensite (%) 

Pre-test 

(Untested 

Samples) 

Post test  

(Tested Fracture 

Toughness 

Samples) 

 

500°F 

No 7.8 ± 4.2 0.0 ± 0.0 7.8 

Yes 0.0 ± 0.0 0.0 ± 0.0 0.0 

 

550°F 

No 8.3 ± 3.1 0.0 ± 0.0 8.3 

Yes 0.0 ± 0.0 0.0 ± 0.0 0.0 

 

700°F 

No 31.1 ± 5.8 25.9 ± 5.2 5.2 

Yes 25.3 ± 1.8 21.2 ± 1.9 4.1 

 

725°F 

No 32.7 ± 2.8 19.8 ± 2.1 12.

Yes 24.4 ± 0.9 18.5 ± 1.5 5.9 

 

750°F 

No 23.3 ± 3.5 17.6 ± 2.4 5.7 

Yes 21.2 ± 1.0 16.8 ± 4.3 4.4 
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 In the samples, conventionally austempered at 700ºF, stress induced transformation 

resulted in approximately 17% transformation of austenite to martensite. In the ADI, 

conventionally austempered at 725ºF, fracture toughness test resulted in approximately 40% of 

the austenite to martensite conversion by stress induced transformation process. 

 In the ADI samples austempered in the lower bainitic temperature range and cryogenically 

treated, the retained austenite has been completely transformed to martensite prior to fracture 

toughness testing. Thus, there is no retained austenite to undergo stress induced transformation 

during fracture toughness tests. However, in the upper bainitic temperature range, only a partial 

transformation of austenite to martensite was observed due to the thermal instability of austenite 

that underwent cryogenic treatment. Greater magnitude of the austenite to martensite 

transformation by stress induced transformation was observed for the samples with both 

cryogenic processing and fracture toughness tests than those with either cryogenic processing or 

fracture toughness test. 

7.2.2.3 Analytical Model for the Crack Growth Process 

 The analysis of the volume fraction of austenite in ADI subjected to cryogenic treatment, 

tensile test and the fracture toughness tests show that the austenite is neither thermally nor 

mechanically stable. This instability of austenite led to the transformation of the high carbon 

retained austenite to martensite either thermally or by stress/strain induced transformation. This 

transformation of austenite to martensite would be expected to deteriorate the fracture toughness 

of ADI. However, the cryogenic treatment did not significantly deteriorate the fracture toughness 

of the ADI.  An analytical model has been developed to detail the phenomena occurring at the 

crack tip of the ADI.     
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 It is generally known that the stress concentration ahead of the advancing crack can lead to 

the transformation of austenite to martensite in iron alloys. Consider a compact tension sample 

used for the fracture toughness tests. As the crack propagates, the stress concentration ahead of 

the advancing crack tip induce the austenite to martensite transformation.  Thus, a portion of the 

energy supplied to the sample is used up for this γHC � M transformation. This stress induced 

transformation of austenite to martensite produces compressive stresses on the crack tip. This 

compressive stress on the crack tip must be overcome to propagate the crack further. This process 

lowers the energy available to continue the fracture the material. Thus, the dissipative process, 

occurring ahead of the crack tip should increase the fracture resistance of the material.  

 Statistically, there is no significant difference in the fracture toughness of the ADI with 

and without cryogenic treatment. While an austenite to martensite transformation is expected to 

increase the fracture resistance or the crack propagation, the martensite phase is more susceptible 

to the crack growth than the austenite phase.  Thus, the magnitude of change in the propagation of 

the crack will depend on the newly formed microstructure. In other words, the fracture resistance 

is dependent up on the volume fractions of the austenite and the martensite phases. 

A schematic model for the crack growth mechanism in ADI is proposed. Consider a compact 

tension sample with the crack tip consisting of ferrite and austenite a s shown in the Figure 67.   
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Figure.67: Area ahead of the Crack Tip 

 

 Let the stress concentration act on this compact tension sample containing a crack of 

length ‘a’ that is subjected to tensile load. 

 The stress intensity factor for a loaded specimen with a crack is given by  

    K = σ * (∏*a)1/2 * α      (7.3) 

where �is the stress, a is the crack length, and α is the geometry factor. 

 The force for the crack extension (or the strain energy release rate) is given by  

    G= .       (7.4) 

 Substituting (7.3) in (7.4) , yields the crack growth energy Gprop 

   Gprop=                                  (7.5)                          

 Now let Vα and Vγ be the volume fractions of ferrite and austenite respectively.  Thus, the 

total volume of the phases ahead of the crack tip is given by  

    V = Vα + Vγ             (7.6) 
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 Up on application of load or force, a portion of austenite is transformed to martensite by 

stress induced transformation process. Thus, the total volume of the phases ahead of the crack tip 

is given by 

                                                 V = Vα + VM + Vγ       (7.7) 

where VM is the volume fraction of the transformed martensite. 

 The transformation of austenite to martensite utilize a part of the energy supplied by the 

force. Thus, since a part of the energy is dissipated in transformation austenite to martensite, only 

the part of the energy is used for the crack propagation. 

 Therefore, the energy for the crack propagation can be represented as 

    Gprop = Gtotal - Gtrans       (7.8) 

 After the transformation, the new microstructure consists of ferrite, austenite and 

martensite. Martensite has low resistance to the propagation of the crack than ferrite and austenite. 

Thus, the crack propagated by a distance ‘da’ ahead of the crack tip as shown in the Figure 68. 

 

Figure.68: Area ahead of the Crack Tip during loading 
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 The transformation of austenite to martensite produces a volume expansion of about 3%. 

This in turn lead to the compressive residual stress in the material.  

 With the application of load, when the crack tip opens to propagate the crack, the 

surrounding material will resist the expansion or opening, resulting in a partial closure of the 

crack tip as well as reducing the effective crack length by a length Δa as shown in the Figure 69. 

 

Figure.69: Effective crack length 

 Therefore, the crack length ‘a’ can be replaced by an effective crack length ‘aeff’ and can 

represented as     aeff = a + da – Δa      (7.9) 

 The crack growth energy is directly proportional to the crack length ‘a’. The crack driving 

force will be reduced according to equation (7.9), thus the material should have higher resistance 

to the crack growth, despite the formation of martensite in the material. Similarly, the effective 

stress acting on the material to propagate the crack will also be reduced due to the compressive 

residual stress acting on the crack tip of the material. 

 Therefore, the stress ‘“σ” in the equation (3) can be replaced by  

    σnet = σ - σresidual                                           (7.10)                                             
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 The combination of the crack closure and lower effective stress should significantly 

improve the fracture toughness of the material. But there is no significant improvement in the 

fracture toughness of the cryogenically treated ADI. This can be explained as follows. 

 Case 1: Consider a material with higher volume fraction of austenite.  This will lead to 

transformation of more austenite to martensite by the stress induced transformation process.  

Thus, the value of Δa and σresidual will be higher resulting in lower aeff and σnet. Substituting these 

values in equations (7.3) and (7.5), results in significant decrease in both K and Gprop, indicating a 

higher resistance to crack growth and hence higher fracture toughness. 

 Case 2: Consider a material with lower volume fraction of austenite value. Lower volume 

fraction of austenite means a lesser volume fraction of transformed martensite. In this case, the 

value of Δa and σresidual will be smaller, and hence minor degree of decrease in the value of both K 

and Gprop. This indicates that there is only a minor change in the crack growth rate. Resulting in no 

significant improvement in the fracture toughness of the material. Case 2 was observed in the 

ADI used in this study. There is no significant improvement in the fracture toughness of the 

cryogenically processed ADI. An examination of the volume fraction of austenite before and after 

the test was observed to be less than 13%. This indicates that the transformation of austenite to 

martensite was not high enough to improve the fracture toughness of the material. Thus, there 

exists a threshold value, above which enough transformation of austenite to martensite occur to 

produce an observable effect on the fracture toughness of ADI. 

 

 

 

 



 
 

119 
 

 

CHAPTER 8. MICROSTRUCTURE-PROPERTY RELATIONSHIP 

8.1 Mechanical properties and fracture toughness of conventional and cryogenically treated 

ADI 

 The mechanical properties of ADI with respect to the conventional austempering and 

cryogenic treatment is reported in Table 26.  The fracture toughness and hardness of ADI with 

respect to cryogenic treatment are reported in Table 27.  

Table 26: Mechanical Properties of ADI with respect to cryogenic treatment 

Austempering 

Temperature  

Cryogenic 

Treatment? 

Yield 

Strength 

(MPa) 

Ultimate Tensile 

Strength (MPa) 

% 

Elongation 

500°F 
No 1390 ± 28 1594 ± 21 1.4 ± 0.1 

Yes 1359 ±18 1569 ± 29 1.2 ± 0.1 

550°F 
No 1199 ± 5 1329 ± 5 1.9 ± 0.1 

Yes 1303 ± 30 1466 ± 81 1.4 ± 0.2 

700°F 
No 898 ± 28 1078 ± 34 2.8 ± 1.3 

Yes 901 ±15 1100 ± 53 2.8 ± 0.3 

725°F 
No 819 ± 19 1013 ± 30 3.2 ± 1.1 

Yes 903 ± 13 1148 ± 42 1.8 ± 0.7 

750°F 
No 779 ± 38 1008 ± 11 4.2 ± 0.2 

Yes 887 ± 4 1096 ± 98 1.6 ± 0.4 
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 At higher austempering temperatures, the hardness and strength of the ADI samples are 

generally lower than the ADI samples austempered at lower austempering temperatures. This is 

due to the coarseness of bainitic ferrite structures at higher austempering temperatures. However, 

improvement in ductility is observed with the increase in austempering temperature. The fracture 

toughness of the conventionally austempered ADI increases to a maximum at 700°F, before 

decreasing. 

Table 27: Fracture toughness and Hardness of ADI with respect to cryogenic treatment 

Austempering 

Temperature  

Cryogenic 

Treatment? 

Fracture 

Toughness 

(MPa√m) 

Hardness 

(Rockwell C) 

500°F 
No 48.0 ± 0.8 48 ± 1 

Yes 48.2 ± 1.9 48 ± 1 

550°F 
No 59.7 ± 1.9 38 ± 1 

Yes 58.4 ± 0.3 41 ± 1 

700°F 
No 62.7 ± 1.8 33 ± 1 

Yes 66.3 ± 3.0 35 ± 2 

725°C 
No 61.3 ± 1.0 32 ± 1 

Yes 61.2 ± 2.2 37 ± 1 

750°F 
No 53.0 ± 2.1 29 ± 2 

Yes 49.7 ± 1.4 32 ± 1 
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 The examination of trends in the mechanical properties of the cryogenically treated ADI 

shows the same trend as the conventional ADI. In this case, the fracture toughness as well as 

ductility increases up to a maximum at 700°F, before decreasing.  The comparison of the 

mechanical properties of the ADI with and without cryogenic treatment shows that the cryogenic 

treatment slightly improved the hardness, ultimate tensile strength and yield strength of the 

conventional ADI. However, the ductility of the ADI is reduced after cryogenic treatment. This 

improvement in the hardness, ultimate tensile strength and yield strength as well as the reduction 

in ductility can be attributed to the changes in the microstructure of the ADI after cryogenic 

treatment, where the retained austenite transformed to martensite. However, cryogenic treatment 

did not affect the fracture toughness of the ADI.   

8.1.1 Fractographs of the conventional ADI 

 The mode of fracture is determined from the fractographs of the conventional and the 

cryogenically treated ADI. Figure 70 (a)-(e) shows the fractographs of the conventional ADI 

under different austempering temperatures. 

 

  (a) Tγ=1700°F, TA=500°F                      (b) Tγ=1700°F, TA=550°F 
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   (c) Tγ=1700°F, TA=700°F                                               (d) Tγ=1700°F, TA=725°F    

                                             

 

(e) Tγ=1700°F, TA=750°F 

Figure.70: SEM fractographs of  conventional ADI (CT) specimen, (a) Tγ=1700°F, TA=500°F, 

(b) Tγ=1700°F, TA=550°F (c) Tγ=1700°F, TA=700°F, (d) Tγ=1700°F, TA=725°F, (e) Tγ=1700°F, 

TA=750°F, DF- Dimpled ductile fracture, TC- Transgranular cleavage fracture, QC-Quasi 

cleavage  
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 The ADI austempered at lower austempering temperatures of 500ºF and 550ºF showed a 

mixture of predominantly transgranular cleavage type of fracture reflecting low ductility resulting 

in brittle failure in this material. The ADI austempered ta 700ºF and 725ºF showed predominantly 

dimple ductile fracture where the dimple depressions in the fracture surface is evident along with 

quasi cleavage pattern, reflecting the moderate ductility in the ausferritic structures. The ADI 

austempered at higher austempering temperature of 750ºF resulted in transgranular and quasi 

cleavage type of fractures and hence the lower fracture toughness. This variation in the fracture 

mode with respect to the austempering temperature corresponds to the fracture toughness of ADI. 

Dimple ductile fracture produced highest fracture toughness greater than 60 MPa√m. 

8.1.2 Fractographs of the cryogenically treated ADI 

 The fractographs of the cryogenically treated ADI are shown in the Figure 71 (a)-(e).  

  

                  (a)    Tγ=1700oF, TA=500oF                             (b) Tγ=1700oF, TA=550oF                         
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               (c) Tγ=1700oF, TA=700oF    (d) Tγ=1700oF, TA=725oF 

 

     (e) Tγ=1700oF, TA=750oF 
Figure.71: SEM fractographs of cryogenically treated ADI (CT Specimen) (a) Tγ=1700oF, 

TA=500oF, (b) Tγ=1700oF, TA=550oF (c) Tγ=1700oF, TA=700oF, (d) Tγ=1700oF, TA=725oF, (e) 

Tγ=1700oF, TA=750oF, DF- Dimpled ductile fracture, TC- Transgranular cleavage fracture, QC-

Quasi cleavage fracture 
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Cryogenic treatment did not significantly alter the mode of fracture in the previously austempered 

ADI samples. From this experimental data, it clear that the cryogenic treatment significantly 

improves the mechanical properties of ADI without compromising the fracture toughness of ADI.  

8.1.3 Influence of width of different phases on the yield strength of conventional ADI 

 Figure 72 (a),(b) and (c) represents the influence of the width of bainitic ferrite, films of 

retained austenite and the islands of retained austenite respectively on the yield strength of the 

conventional ADI. Significant reduction in the width of the bainitic ferrite and austenite is  

observd as the austempering temperatures is decreases from 750oF to 500oF. Lower the width of 

bainitic ferrite and retained austenite, higher the strength of ADI. The width of the bainitic ferrite 

and the austenite is stastistically similar at the lower austempering temperatures ranging from 

500oF to 700oF.  

 At higher austemperuing temperature of 725oF and 750oF, the width of the bainitic ferrite 

is less than the width of the films of retained austenite by approximately 33 and 48% respectively. 

The islands of the retained austenite is present in the samples austempered in the range of 550oF 

to 750oF. The presence of islands of retained austenite is detrimental to the mechanical properties 

of the ADI. The islands of the retained austenite are not sufficiently enriched with carbon when 

compared to the films of reatined austenite, resulting in its instability, leading to the 

transformation of austenite to martensite by either stress or starin induced transformation process.  
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  (a)       (b) 

 

   (c) 

Figure.72: Influence of the width of (a) bainitic ferrite lath, (b)films of retained austenite and (c) 

islands of retained austenite on the yield strength of conventional ADI( Tγ= 1700ºF, TA as shown) 
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8.1.4 Influence of ferritic cell size and austenite volume fraction on the yield strength of 

conventional ADI 

 Figure 73 shows the influence of ferritic cell size and the volume fraction of austenite on 

the yield strength of the conventional ADI. The average ferritic cell size of the samples at lower 

bainitic  austemepring temperature is slighly lower than those of the upper bainitic austempering 

temperature. Statistically, no significant variation in the ferritic cell size of the samples have been 

observed with respect to the austempering temperature as shown in Figure 73 (a).  Lower volume 

fraction of austenite at the lower bainitic austempering temperature range of 500°F and 550ºF 

resulted in higher strength in ADI. 

 

   (a)      (b) 

Figure.73: Influence of the width of (a)ferritic cell size, (b)volume fraction of  austenite on the 

yield strength of conventional ADI ( Tγ= 1700ºF, TA as shown) 
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8.1.5 Influence of width of different phases on the fracture toughness of conventional ADI 

 Figure 74 show sthe influence of the width of the bainitic ferrite lath, films of retained 

austenite and islands of retained austenite on the fracture toughness of conventional ADI with 

respect to the austempering temperature.  

 

(a)     (b) 
Figure.74: Influence of the width of (a) BF-bainitic ferrite lath, RA-films of retained austenite and 

(b) IRA- islands of retained austenite on the fracture toughness of conventional ADI( Tγ= 1700ºF, 

TA as shown) 

 The lath sizes of the retained austenite and bainitic ferrite is statistically similar at 

austempering temperatures up to 700ºF. The fracture toughness increases as the austempering 

temperature is increases from 500ºF to  a maximum at 700ºF before decreasing. At higher 

austempering temperatures of 725ºF and 750ºF, the width of the retained austenite is larger than 

the width of bainitic ferrite. This resulted in increased strength but lower fracture toughness in 

ADI.  There exists a optimum temperature for austempering for tuning the fracture toughness of 

ADI. Presence of islands of retained austenite causes adverse effect on the fracture toughness of 
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the material. During crack propagation, the large stresses at the crack tip, transforms the unstable 

islands of retained austenite to martensite resulting in  reduced fracture toughness value. 

8.1.6 Influence of width of different phases on the yield strength of cryogenically treated 

ADI 

 Figure 75 (a), (b) and (c) shows the influence of the width of bainitic ferrite laths, films of 

retained austenite and the islands of retained austenite respectively, on the yield strength of the 

cryogenically treated ADI. The average width of the bainitic ferrite is significantly reduced by the 

cryogenic processing. Statistically, there is no significant difference in the width of the films of 

retained austenite in ADI before and after the cryogenic processing. The influence of the 

austempering temperature on the strength of the ADI still exists after cryogenic processing. The 

average width of the bainitic ferrite and retained austenite reduces with the increase in 

austempering temperature. Lower the width of bainitic ferrite and retained austenite, higher the 

strength in cryogenically treated ADI. Cryogenic processing significantly increased the strength 

of the prior conventionally austempered ADI. This can be attributed to the presence of 

appreciable amount of martensite laths along with the bainitic ferrite laths in the cryogenically 

treated ADI.  

 The islands of retained austenite were present only in the cryogenically treated ADI, 

austempered in the upper bainitic tempearture range of 700ºF to 750°F in which the yield strength 

is lower than the samples austempred at higher temperatures. Thus, the presence of islands of the 

retained austenite is detrimental to the strength of the ADI. 
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    (a)      (b) 
 

 
 

(c) 
 

Figure.75: Influence of the width of (a)bainitic ferrite, (b) films of retained austenite and (c) 

islands of retained austenite on the yield strength of  the cryogenically treated ADI                                

( Tγ= 1700ºF, TA as shown)          

 
 
 
 
 



 
 

131 
 

 

8.1.7 Influence of ferritic cell size and austenite volume fraction on the yield strength of 

cryogenically treated ADI 

 Figure 76 (a) and (b) shows the effect of ferritic cell size and the volume fraction of 

austenite respectively, on the yield strength of cryogenically treated ADI. Cryogenic treatment 

resulted in decrease in average ferritic cell size of ADI. As expected, the samples with lower 

bainitic ferrite width had lower ferritic cell size and higher strength than those with higher ferritic 

cell sizes. 

  
   (a)       (b) 

Figure.76: Influence of the width of (a)ferritic cell size, (b)volume fraction of  austenite on the 

yield strength of the cryogenically treated ADI ( Tγ= 1700ºF, TA as shown)          

 The average volume fraction of retained austenite reduced significantly after cryogenic 

treatment in ADI. The reduction in the volume fraction of austenite at higher austempering 

temperatures from 700º to 750ºF resulted a increase in yield strength of the cryogenically treated 

ADI. No retained asutenite was observed in the cryogenically treated ADI, austempered at lower 

bainitic austempering temperatures of 500ºF and 550ºF resulting in higher yield strength. 



 
 

132 
 

 

8.1.8 Influence of width of different phases on the fracture toughness of cryogenically 

treated ADI 

 The influence of width of the bainitic ferrite lath , retained austenite lath and the width of 

islands of retained autenite on the fracture toughness of the cryogenically tretaed ADI as shown in 

the Figure 77 (a) and (b) respectively.  

 

(a)      (b) 

Figure.77: Influence of the width of (a) BF-bainitic ferrite lath, RA-films of retained austenite and 

(b) IRA- islands of retained austenite on the fracture toughness of cryogenically treated ADI           

(Tγ= 1700ºF, TA as shown)     

 Statistically there is no significant difference in the lath sizes of the austenite and bainitic 

ferrite laths, therfore, no conclusion could be drawn regarding the higher fracture toughness with 

respect to the lath sizes. There exists an optimum combination of lath size and temperature of 

700ºF at which fracture toughness is higher. Islands of retained austenite were present only in the 

cryogenically treated samples austempered at higher austempering temperatures from 700ºF to 

750ºF.This has resulted in higher fracture toughness in these ADI samples. 
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8.2 Mechanical properties and fracture toughness of intercritically austenitized ADI 

 Table 28 compares the mechanical properties of ADI with respect to the intercritical 

austempering. Table 28 also reports the mechanical properties of ADI intercritically austenitized 

at 1520°F with respect to the austempering temperature.  

Table 28: The Mechanical Properties of the ADI as a Function of intercritical austenitizing and 

Austempering Temperature. 

Austenitizing 
Temperature 

(°F) 

Austempering 
Temperature 

(°F) 

Yield Strength  

(MPa) 

Ultimate Tensile 
Strength  

(MPa) 

 

% Elongation 

1535°F 680°F 722.3 ± 163.8 919.1 ±127.5 5.9 ± 0.9 

 

 

 

 

1520°F 

725°F 887.9 ± 34.4 1052.3 ±6.2 6.0 ± 1.1 

680°F 634.4 ± 124.8 813.6 ±120.2 5.3 ±2.2 

600°F 1228.8 ± 14.6 1384.8 ± 33.8 3.1 ± 0.3 

550°F 1225.4 ± 10 1381 ± 31 2.0 ± 0.5 

1472°F 680°F 604.6 ± 95.2 823.1 ±86.8 8.2 ± 0.5 

1436°F 680°F 380 ± 0.9 490.3±6.2 12.3 ± 0.2 

1418°F 680°F 374 ± 39.3 497.7 ±17.9 12.6 ± 0.1 

 

 The yield strength and ultimate tensile strength of the intercritically austempered ADI 

increases with the increase in austenitization temperature. As the intercritical austenitization 
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temperature is lowered from 1520ºF to 1418ºF, the strength of the ADI decreases while the 

ductility increases. This can be attributed to the increasein volume fraction of proeutectoid ferrite 

with the decrease in intercritical austenitization temperature. 

 The influence of austempering temperature was observed for the samples austenitized at a 

constant intercritical austenitization temperature of 1520ºF. The yield strength and ultimate tensile 

strength was higher whereas the ductility is lower for the samples austempered at lower 

austempering temperatures of 550°F and 600°F. This is due to the presence of very fine ausferritic 

structure present at lower austempering temperatures. As predicted by the Hall-Petch equation [ 

25,26], the finer ausferritic structure contributed higher strength in the ADI austempered at low 

austempering temperatures. The coarse ausferritic microstructure in the ADI samples 

austempered in the upper bainitic region resulted in lower strength but increased ductility.  

 Table 29 compares the fracture toughness and hardness of the ADI with respect to the 

intercritical austenitization temperature. The hardness of the ADI samples decreased with the 

decrease in intercritical austenitization temperatures.  

 Table 29 also details the hardness and fracture toughness of ADI with respect to 

austempering temperature for a constant intercritical austenitization temperature of 1520ºF. The 

Rockwell C hardness of the ADI is higher for the samples austempered at lower austempering 

temperatures. The fracture toughness of the intercritical austenitized ADI increases with the 

increase in austempering temperature from 550ºF to 680ºF before decreasing. This represents that 

there exists an optimum austempering temperature for tuning the fracture toughness of ADI with 

respect to intercritical austenitization.  
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Table 29: The Fracture toughness and Hardness of the ADI as a Function of Intercritical 

austenitizing and Austempering Temperature. 

 

Austenitizing 
Temperature 

 

Austempering 
Temperature 

Fracture 
toughness(KQ) 

(MPa) 

 

Hardness 
(Rockwell C) 

1535°F 680°F 66.0 ± 2.7 34 ± 1 

 

 

1520°F 

725°F 56.6 ± 1.5 32 ± 1 

680°F 62.2 ± 2.0 32 ± 3 

600°F 59.0 ± 1.2 40 ± 1 

550°F 53.3 ± 2.0 46 ± 1 

1472°F 680°F 54.4 ± 4.1 22 ± 1 

1436°F 680°F 46.4 ± 0.3 11 ± 1 

1418°F 680°F 42.7 ± 2.0 7 ± 1 

 

8.2.1 Fractographs of the intercritical ADI 

 The change in fracture toughness value of the ADI with respect to intercritical 

austenitization can be associated with the variation of the fractured surface of the samples.  The 

SEM fractographs of the intercritical austenitized samples are shown in the Figure78 (a)-(d). The 

fractured sequence of the intercritical austempered samples is similar to the fracture sequence 

obtained for the ductile iron with uniform matrix structure. The sample austenitized at 1535ºF, at 

a temperature just above the upper intercritical temperature, shows dimple ductile fracture 
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throughout the fractured surface. Dimple ductile fracture produces a fracture toughness of 60 ± 5 

MPa√m in ADI [129].  

 

 (a)      (b) 

  

(c)                                                                                   (d) 

Figure.78: SEM fractographs of  intercritical ADI (CT) specimen  (a) 1535ºF -680ºF, (b) 1472ºF -

680ºF, (c) Tγ=1436ºF, TA=680ºF, (d) Tγ=1418ºF, TA=680ºF,  DF- Dimpled ductile fracture, TC- 

Transgranular cleavage fracture 
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 The 1535°F austenitized sample produced a fracture toughness of 66 MPa√m. This result 

is in favor to the literature data, where in, the conventional single step austempering process 

produced ADI with a maximum fracture toughness value between 60 and 66 MPa√m [1,130,131].  

 As the austenitizing temperature is reduced from the upper critical austenitization 

temperature of 1520°F to the lower intercritical austenitization temperature of 1418°F, the 

variation of the fractured surface occurs. The fractured surface is predominantly dimple ductile 

type, along with some transgranular pattern in the ADI austenitized at 1436°F and 1418°F, this 

has caused lower fracture toughness in these samples. Figure79 (a)-(d) shows the fractographs of 

the ADI intercritically austenitized at 1520°F with respect to the austempering temperature. The 

fracture toughness of the ADI increases with the increase in austempering temperature for the 

ADI intercritically austenitized at 1520°F up to a maximum at 680°F before decreasing.  This is 

due to the fineness of the ferritic structure with the decrease in austempering temperature as well 

the variations in the volume fraction of austenite [2,62,131]. 

 In this intercritically austenitized ADI, the sample austempered at 680°F showed dimple 

ductile fracture and therefore resulted in higher fracture toughness of 62.2 5 MPa√m. It is evident 

from the literature that higher strength at low austempering temperature as well as coarse 

ausferritic structure favor transgranular cleavage fracture. The samples austempered at 725ºF, 600 

ºF and 550 ºF had transgranular predominantly transgranular cleavage fracture rather than the 

dimple ductile fracture and that appears to be the reason for the lower fracture toughness in these 

samples. 
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   (a)           (b) 
 

  
(c)                                                                     (d) 

Figure.79: SEM fractographs of intercritical ADI (CT) oF, (a) Tγ=1520ºF, TA=725ºF and (b) 

Tγ=1520ºF, TA=680 ºF, (c) Tγ=1520ºF, TA=600ºF, (d) Tγ=1520ºF, TA=550ºF, respectively, DF- 

Dimpled ductile fracture, TC- Transgranular cleavage fracture 
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8.2.2 Influence of width of different phases on the yield strength of intercritical ADI 

(contant TA) 

  
   
                                               (a)     (b) 

 
 
   (c) 

Figure.80: Influence of the width of (a)bainitic ferrite, (b) films of retained austenite and (c) 

islands of retained austenite on the yield strength of intercritical ADI (Tγ as shown, constant 

TA=680ºF) 
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 Figure 80 shows the effect of the width of different phases on the strength of the ADI 

austempered at 680ºF with respect to the intercritical austenitizing temperature. Statistically, there 

is no significant difference in the lath sizes of bainitic ferrite and retained austenite with respect to 

austenitization temperature. Generally, the strength of the material increases as the lath sizes is 

reduced. The ADI intercritically austenitized at 1520ºF with the bainitic lath size of 0.360µm, had 

the maximum strength of 634 MPa, while the sample austenitized at lower intercritical 

temperature of 1418ºF with the bainitic ferrite lath size of 0.844 µm resulted in yield strength of 

only 374 MPa.  

 The lower yield strength in the intercritically austenitized ADI can be attributed to the 

presence of proeutectoid ferrite in the microstructure matrix. Figure 80(c) shows the variation in 

the width of proeutectoid ferrite with respect to the intercritical austenitization temperature. The 

width of the proeutectoid ferrite increases as the intercritical austenitization temperature decreases 

from 1520ºF to 1418ºF. The percentage difference of approximately 95% is observed in the width 

of the proeutectoid ferrite as the austenitiozation temperature reduced from 1520ºF to 1418ºF.  

8.2.3 Influence of ferritic cell size and austenite volume fraction on the yield strength of 

cryogenically treated ADI (contant TA) 

 Figure 81 (a) shows the variation of the ferritic cell size on the yield strength of the of the 

intercritically austenitized ADI. Statistically, there is no significant difference between the ferritic 

cell size of the intercritically austenitized samples and the ferritic cell size lie within a range of 

approximately 23 to 27nm. 
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(a)                                                                  (b) 
 

Figure.81 : Influence of the width of (a) ferritic cell size, (b)volume fraction of  austenite on the 

yield strength of intercritical ADI (Tγ as shown, constant TA=680ºF) 

  Figure 81(b) shows the influence of the volume fraction of austenite on the yield strength 

of the ADI with respect to the intercritical austenitization temperatures. In this case, relatively 

higher volume fraction of approximately 12% resulted in higher yield strength in the 1520ºF 

austenitized ADI. The average volume fraction of retained austenite significantly decrease as the 

austenitizing temperature is decreased from 1520ºF to 1418ºF. 

8.2.4 Influence of width of different phases on the fracture toughness of intercritical ADI 

(contant TA) 

 Figure 82 shows the influence  of the width of different phases on the fracture toughness 

of the intercritically austenitized ADI. Statistically, there is no significant difference in the width 

of bainitic ferrite and austenite in the ADI austenitized in th eintercritical austenitization 

temperature range. It generaly known that the increase in strength will decreae the fracture 

toughness of ADI. However, in the  intercritically austenitized ADI, the sample austenitized at 
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upper intercritical austenitizing temperature of 1520ºF had relatively higher strength as well the 

higher fracture toughness value. Width of the proeutectoid ferrite had a significant effect in 

determing the fracture toughness of intercritically austenitized ADI. Higher the width of the 

proeutectoid ferrrite, lower the fracture toughness of ADI. 

 

(a)       (b) 

Figure.82: Influence of the width of (a)ferritic cell size, (b)volume fraction of  austenite on the 

yield strength of  intercritical ADI (Tγ as shown, constant TA=680ºF) 

8.2.5 Influence of width of different phases on the yield strength of intercritical ADI 

(contant Tγ) 

 The influence of the lath sizes of the different phases on the yield strength of the ADI 

intercritically austenitized at 1520ºF with respect to the austempering temperatures is shown in 

the Figure 83.  
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   (a)       (b) 

 

   (c) 

Figure.83: Influence of the width of (a)bainitic ferrite, (b) films of retained austenite and (c) 

islands of retained austenite on the yield strength of intercritical ADI (Tγ= 1520ºF, TA as shown) 

 The width of the retained austenite is finer than the width of bainitic ferrite in these 

samples. The width of the bainitic ferrite lath as well as the width of films of retained austenite 

reduces as the austempering temperature is decreased from 725ºF to 550ºF. Finer width of bainitic 
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ferrite and retained austenite resulted in higher yield strength in the ADI austempered at lower 

bainitic austempering temperature ranges. Statistically, no significant difference was observed in 

the width of the proeutectoid ferrite of the ADI with respect to austempering temperatures.  

8.2.6 Influence of austenite volume fraction  and ferritic cell size on the yield strength of 

intercritical ADI (contant Tγ) 

 The effect of austenite volume fraction on the variation of the yield strength of the 

intercritically austenitized ADI is shown in the Figure 84.   

 

                 
 (a)                                     (b) 

 
Figure.84: Influence of the (a) volume fraction of  austenite, (b) ferritic cell size on the yield 

strength of intercritical ADI (Tγ= 1520ºF, TA as shown) 

 
 Lower volume fraction of austenite resulted in higher yield strength. Ferritic cell size of 

the intercritically austempered ADI decreases with the decrease in austempering temperature. 

Higher yield strength is obtained at lower austempering temperature of 550ºF and 600ºF where 

the ferritic cell size is in the range of approximately 16 to 18 nm. 
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8.2.7 Influence of width of different phases on the fracture toughness of intercritical ADI 

(contant Tγ) 

 In general, as the strength increases, the fracture toughness of ADI decreases. As the width 

of the bainitic ferrite and austenite laths increases, the fracture toughness of the intercritically 

austempered ADI increases to a maximum and then decreases as shown in the Figure 85. 

Statistically, there is no significant difference in the width of the proeutectoid ferrite and hence 

definitive conclusion regarding its effect on the fracture toughness cannot be drawn. 

 

(a)       (b) 
Figure.85: Influence of the width of (a)BF-bainitic ferriote, RA-films of retained austenite, (b) 

proeutectoid ferite on the fracture toughness of intercritical ADI (Tγ= 1520ºF, TA as shown) 
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8.3 Mechanical properties of plastically deformed ADI- single step austempering 

 In Table 30, the trends observed in the mechanical properties of the plastically deformed 

samples with respect to austenitizing and austempering temperatures.  

Table 30: The Mechanical Properties of the ADI as a Function of austenitization temperature, 

plastic deformation and   Austempering Temperature. 

  

 Plastic deformation was performed at the strain rate of 5mm/min.  The samples underwent 

plastic strain between 3% and 8% at the austenitizing temperature prior to austempering. The 

lower austempering temperature of 550°F and 600°F promoted the hardness, yield and ultimate 

tensile strength of the plastically deformed ADI irrespective of the austenitization temperature. 

The upper austempering temperature of 680°F and 725°F produced coarser and feathery ferrite 

and more austenite. This structural features are responsible for the lower strength in this ADI 

samples. It is also interesting to note that the samples austenitized in the upper intercritical 

Tγ TA 
Yield Strength 

(MPa) 
Ultimate Tensile 
Strength (MPa) 

Hardness 

 

1700°F 

725°F 708.6 ± 14 969.6 ± 24       35 ± 3 

680°F 750.4 ±30 1109.3 ±67 37 ± 3 

600°F 896.3 ± 6 971.0 ± 18 48 ± 8 

550°F 1158.7 ± 35 1243.9 ± 42  49 ± 5 

 

1520°F 
 

 

        725°F 783.1 ± 29 929.9 ± 18 44 ± 2 

         680°F 829.9 ± 18 1062.3 ± 23  47 ± 2 

600°F 1069.6 ± 36 1349.3 ± 28 49 ± 5 

550°F 1164.5 ± 42 1488.0 ± 37  50 ± 3 
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temperature of 1520°F yielded higher hardness, yield strength and ultimate tensile strength than 

those ADI samples austenitized at conventional austenitizing temperature of 1700°F. This can be 

attributed to the fact that the ADI austenitized in the upper intercritical austenitization temperature 

of 1520ºF resulted in lesser volume fraction of austenite leading to the higher strength than the 

ADI austenitized at higher conventional austenitization temperature of 1700°F. 

8.3.1 Influence of width of different phases on the yield strength of plastically deformed 

ADI- single step austempering 

 Figure 86 shows the effect of the different phases on the ADI conventionally austenitized 

at 1700ºF, subjected to plastic deformation and single step austempering. The yield strength of the 

plastically deformed ADI increases with the reduction in the width of bainitic ferrite lath and 

films of retained austenite as the austempering temperature is decreased from 725ºF to 550º F. 

Highest strength of 1158 MPa was obtained in the ADI austempered at 550ºF which had bainitic 

ferrite width of 0.192 µm and retained austenite width was 0.209 µm. Islands of retained austenite 

was present in the samples austempered at upper bainitic temperature range of 700ºF and 725ºF. 

As mentioned earlier, the presence of islands of retained austenite results in detrimental effects on 

the mechanical properties of ADI. 
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 (a)       (b) 

 

 (c) 

Figure.86: Influence of the width of (a)bainitic ferrite, (b) films of retained austenite and (c) 

islands of retained austenite on the yield strength of plastically deformed ADI, (Tγ=1700ºF, 

TD=1700ºF, TA as shown) 

8.3.2 Influence of ferrtic cell size and austenite volume fraction on the yield strength of 

plastically deformed ADI: Tγ=1700ºF and single step austempering 

The influence of the of ferritic cell size on the yield strength shown in the Figure 87 (a).  
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    (a)      (b) 

Figure.87: Influence of (a) ferritic cell size, (b)volume fraction of  austenite on the yield strength 

of plastically deformed ADI, (Tγ=1700ºF, TD=1700ºF, TA as shown) 

 Statistically, there is no significant difference in the ferritic cell size of the plastically 

deformed ADI with respect to austempering temperatures. However, plastic deformation reduced 

the ferritic cell size compared top conventional ADI samples. For instance, the ferritic cell size of 

the plastically deformed ADI is reduced by approximately 24% for the ADI samples austempered 

at upper bainitic temperature range of 725ºF.  The average ferritic cell size of the samples slightly 

decreases as the austempering temperature is decreased from 725ºF to 550ºF.  

 Figure 87 (b) shows the variation of yield strength with respect to the volume fraction of 

austenite. The volume fraction of austenite decreases as the austempering temperature decreases. 

Lower volume fraction of austenite promoted higher yield strength in plastically deformed ADI. 
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8.3.3 Influence of width of different phases on the yield strength of plastically deformed 

ADI-: Tγ=1520ºF and single step austempering  

 
(a)      (b) 

 
    (c) 

Figure.88: Influence of the width of (a)bainitic ferrite, (b) films of retained austenite and (c) 

islands of retained austenite on the yield strength of plastically deformed ADI, (Tγ=1520ºF, 

TD=1520ºF, TA as shown) 
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The effect of the width of different phases on the yield strength of the ADI intercritically 

austenitized at 1520ºF, subjected to plastic deformation and single step austempering is shown in 

the Figure 88. The intercritically austenitized, plastically deformed ADI followed the same trend 

as the conventionally austenitized, plastically deformed ADI. The yield strength of the plastically 

deformed ADI is higher when the width of the bainitic ferrite lath and the width of the films of 

retained austenite are lower. Statistically, no significant variation in the width of the proeutectoid 

ferrite is observed with respect to the autsempering temperature.  

8.3.4 Influence of ferritic cell size and austenite volume fraction on the yield strength of 

plastically deformed ADI-: Tγ=1520ºF and single step austempering  

      

                                      (a)                                        (b) 

Figure.89: Influence of (a) ferritic cell size, (b)volume fraction of  austenite on the yield strength 

of plastically deformed ADI, (Tγ=1520ºF, TD=1520ºF, TA as shown) 

 The ferritic cell size of the intercritical austenitized plastically deformed ADI as shown in 

the Figure  89(a) is slightly higher than the conventional austenitized, plastically deformed ADI. 
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As shown in the Figure 89 (b), lower volume fraction of austenite  resulted in higher yield 

strength of the plastically deformed ADI. 

8.4 Mechanical properties of plastically deformed ADI- two-step austempering 

 Mechanical properties of the ADI that underwent plastic deformation and two step 

austempering is reported in Table 31. Given that only one sample per condition was tested, 

definitive conclusions cannot be drawn; however, the results allow for an examination of trends in 

the ADI mechanical properties. Plastic deformation of the samples were performed at the rate of 

5mm/min. Each sample underwent a maximum plastic strain up to 5.5% beyond its yield strength.

 The yield strength and ultimate tensile strength of the samples austenitized at 1520°F had 

higher strength when compared to those austenitized at 1700°F. At lower austenitization 

temperature of 1472°F and 1418°F, the yield strength and tensile strength remain significantly 

low.  This is due to the differences in the microstructures and volume fraction of phases obtained 

in these samples. At higher austenitization temperature, the microstructure is composed of mostly 

ausferritic structure in the matrix yielding higher strength. As the austenitization temperature is 

lowered, the presence of more proeutectoid ferrite in the matrix reduces the strength of the ADI.  

Moreover, there is also a variation in the strength with respect to the austempering temperature of 

the ADI.  Higher austempering temperatures of 725°F and 680°F produced coarser ausferrite 

resulting in slightly lower strength than those fine ausferritic structures produced at lower 

austempering temperatures. This trend is not observed in the samples austenitized at lower 

austenitizing temperature of 1436°F indicating the requirement of statistical analysis.  
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Table 31: The Mechanical Properties of the ADI as a Function of austenitization temperature, 

plastic deformation and two- step austempering. 

 

   

Tγ TA1  TA2 
Yield 

Strength 
(MPa) 

Ultimate 
Tensile 
Strength 
(MPa) 

Hardness 

(HRC) 

1700°F 

       500ºF 725°F 
953 1065 34±2 

500ºF 680°F 
963 1093 37 ±2 

500ºF 600°F 
1199 1334 41 ± 2 

500ºF 550°F 
1208 1304 42 ± 2 

 

1520°F 

500ºF 725°F 
986 1097 36 ± 4 

500ºF 680°F 
1155 1227 33 ±7 

500ºF 600°F 
1168 1214 37± 5 

500ºF 550°F 
1313 1469 40±2 

1472°F 

500ºF 725°F 
453 622 19±1 

500ºF 680°F 
453 657 21±2 

500ºF 600°F 
600 685 20±1 

500ºF 550°F 
654 862 31±3 

 

1436°F 

500ºF 725°F 
343 523 16±3 

500ºF 680°F 
343 500 10±2 

500ºF 600°F 
366 644 15±2 

500ºF 
          550°F 401 622      18±1 
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8.4.1 Influence of width of bainitic ferrite on the yield strength of plastically deformed ADI-: 

two step austempering 

 

 (a) Tγ=1700ºF, TA1=500ºF, TA2 as shown          (b) Tγ=1520ºF, TA1=500ºF, TA2 as shown           

  

(c) Tγ=1472ºF, TA1=500ºF, TA2 as shown           (d) Tγ=1436ºF, TA1=500ºF, TA2 as shown   

Figure.90: Comparison of the effect of width of the bainitic ferrite on the yield strength of the 

plastically deformed, two-step austempered ADI with respect to the austenitization temperature. 

  Figure 90 compares the effect width of the bainitic ferrite on the yield strength in the 

plastically deformed, two-step austempered ADI, austenitized at different austenitizing 



 
 

155 
 

 

temperatures. The width of the bainitic ferrite lath slightly decrease as the austenitizing 

temperature decreases from 1700°F to 1436°F.   

8.4.2 Influence of width of retained austenite on the yield strength of plastically deformed 

ADI-: two step austempering 

    

   (a) Tγ=1700ºF, TA1=500ºF, TA2 as shown          (b) Tγ=1520ºF, TA1=500ºF, TA2 as shown    

  

(c) Tγ=1472ºF, TA1=500ºF, TA2 as shown           (d) Tγ=1436ºF, TA1=500ºF, TA2 as shown       

Figure 91: Comparison of the effect of width of films of retained austenite on the yield strength of 

the plastically deformed, two-step austempered ADI with respect to Tγ 
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 Figure 91 compares the width of the films of retained austenite to the yield strength of the 

plastically deformed, two-step austempered ADI samples Higher yield strength is obtained in the 

samples austenitized at 1520°F with plastic deformation and two-step austempering.  The samples 

austenitized in the lower intercritical austenitizing temperature region of 1472°F and 1436°F had 

lower retained austenite lath size. 

8.4.3 Influence of width of proeutectoid ferrite on the yield strength of plastically deformed 

ADI-: two step austempering 

 

Figure.92: Comparison of the effect of width of the proeutectoid ferrite on the yield strength of 

the plastically deformed, two-step austempered ADI with respect to the austenitization 

temperature. 
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 The larger width of the proeutectoid ferrite at the lower intercritical austenitizing 

temperature of 1472ºF and 1436ºF as shown in the Figure 92 was detrimental to the mechanical 

properties of the ADI. 

8.4.4 Influence of ferritic cell size on the yield strength of plastically deformed ADI-: two 

step austempering 

 Figure 93 compares the effect of ferritic cell size on the yield strength of the plastically 

deformed, two-step austempered ADI with respect to the austenitization temperature.  

 

Figure.93: Comparison of the ferritic cell size to the yield strength of plastically deformed, two-

step austempered ADI with respect to the austenitization temperature 

 The ferritic cell size of the ADI austenitized at intercritical austenitization of 1520°F had 

finer ferritic cell size than the ADI austenitized at 1700°F.At lower austenitization temperature of 

1436°F, the ferrite cell size of the ADI increased. Combined effect of the width of the bainitic 

ferrite lath, retained austenite lath, width of proeutectoid ferrite, volume fraction of austenite and 

the ferritic cell size determines the mechanical properties of the ADI. 
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8.4.5 Influence of austenite volume fraction on the yield strength of plastically deformed 

ADI-: two step austempering 

 
(a) Tγ=1700ºF, TA1=500ºF, TA2 as shown         (a) Tγ=1500ºF, TA1=500ºF, TA2 as shown 
 

 
(c) Tγ=1472ºF, TA1=500ºF, TA2 as shown      (d) Tγ=1436ºF, TA1=500ºF, TA2 as shown 
 

Figure.94: Comparison of the volume fraction of austenite to the yield strength of plastically 

deformed, two-step austempered ADI with respect to the austenitization temperature. 

 Figure 94 compares the volume fraction of the retained austenite to the yield strength of 

the plastically deformed, two-step austempered ADI with respect to the austenitization 

temperature. Lower volume fraction of austenite resulted in higher yield strength in the ADI 
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irrespective of the austenitization temperature. The volume fraction of the austenite decreased as 

the austenitization temperature is decreased from 1700 °F to 1436°F. 

8.5 Comparison of  yield strength with respect to the heat treatment 

 Figure 95 compares the yield strength of the conventional, cryogenically treated, 

intercritically austempered as well as the plastically deformed ADI with respect to austempering 

temperature.  

 

Figure.95: Comparison of yield strength of ADI with respect to the heat treatment 

 
 From the graph, it is evident that the yield strength of the ADI is significantly higher when 

austempered in the lower bainitic temperature ranges. In general, as the austempering temperature 

increases, strength decreases. Cryogenic treatment resulted in significant improvement in the 
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yield strength of the ADI. Intercritical austenitizing at 1520°F followed by plastic deformation 

and austempering had higher yield strength than the ADI intercritically austenitized at 1700°F 

followed by plastic deformation and austempering. However, the yield strength of either of the 

ADI is not significantly higher than the conventional ADI. Plastic deformation followed by two 

step austempering in the ADI austenitized at the conventional austenitizing temperature of 1700°F 

as well as in the upper intercritical temperature of 1520°F enhanced the yield strength slightly 

higher than the conventional ADI. Even though the samples austenitized at lower intercritical 

temperature of 1472°F and 1436°F subjected to plastic deformation and two-step austempering 

had finer lath size of bainitic ferrite and austenite, the presence of higher volume fraction of 

proeutectoid ferrite deteriorated its yield strength. 

8.6 Comparison of  ultimate tensile strength with respect to the heat treatment 

 Figure 96 compares the ultimate tensile strength of the conventional austempered, 

cryogenically treated, intercritically austempered as well as the plastically deformed ADI with 

respect to the austempering temperature. Cryogenic treatment of the ADI resulted in improvement 

in the ultimate tensile strength for all the austempering temperatures. This change in strength can 

be attributed to the transformation of austenite to martensite during cryogenic treatment. The 

ultimate tensile strength of the intercritically austempered ADI is lower at 680°F corresponding to 

the higher volume fraction and width of proeutectoid ferrite. Austenitizing at either 1700°F or 

1520°F followed by plastic deformation and austempering did not contribute to the increase in the 

strength of ADI at upper bainitic temperature ranges. Austenitizing at either 1700°F or 1520°F 

followed by plastic deformation and two-step austempering slightly improve the ultimate tensile 

strength of the ADI. The influence of higher volume fraction of proeutectoid ferrite deteriorated 

the strength of ADI austenitized in the lower intercritical temperatures of 1472°F and 1436°F 
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regardless of the finer lath sizes of bainitic ferrite and austenite in these plastically deformed, two-

step austempered samples. 

 

Figure.96: Comparison of ultimate tensile strength of ADI with respect to the heat treatment 
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CHAPTER 9. OBSERVATIONS 

• Conventional austempering produced austferritic microstructure consisting of bainitic ferrite 

and high carbon austenite. Feathery ausferritic structure observed in the upper bainitic 

austempering temperature resulted in decrease of the strengths of ADI.  

• Cryogenic treatment has been observed to improve the tensile strength and hardness of the 

prior austempered ductile iron samples, the elongation was observed to decrease, and fracture 

toughness was unaffected. Cryogenic treatment can be used to create ADI with improved 

strength properties without compromising the fracture resistance of the material. 

• The intercritical austempering of ductile cast iron produced a unique microstructure consisting 

of pro-eutectoid ferrite, bainitic ferrite and high carbon austenite in ADI. The small amount of 

proeutectoid ferrite present in the microstructure is beneficial to improve the ductility of the ADI. 

• The mechanical properties including the yield strength, ultimate tensile strength of ADI 

gradually reduced with the decrease in austenitizing temperature due to an increase in 

proeutectoid ferrite content. 

• A progressive increase in the ductility (% elongation) of the ADI samples was observed with 

the decrease in austenitizing temperature due to the larger volume fraction of pro-eutectoid ferrite 

in the microstructure of ADI austenitized at lower intercritical temperatures. 

• Fracture toughenss of the intercritically austenitized ADI was observed to decrease with the 

decrease in austenitization temperature. This can also be attributed to the presence of increasing 

amount of proeutectoid (polygonal) ferrite in the matrix microstructure. 

• Intercritical austempering close to the upper critical temperature (1520°F) resulted in improved 

mechanical properties (high yield strength, high ultimate tensile strength and ductility) with good 
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fracture toughness. Thus, austenitizing in the upper intercritical temperature of ADI resulted in 

the optimum combination of strength of toughness of ADI. 

• Intercritical austenitizing well below upper critical did not result in exceptional properties. The 

reason for this appears to be the coarse grained proeutectoid ferrite in the matrix microstructure of 

the intercritically austempered ductile iron. 

• The austempering at lower temperature (550°F) appear to produce lower bainite combined with 

low retained austenite content. It appears that low carbon austenite produced by austenitizing near 

the upper critical temperature produced fine ferrite cell size. 

•  The presence of large volume fraction of islands of retained austenite has been observed to 

cause detrimental effects to the mechanical properties of the ADI. 

• The austenite formed at the lower austempering temperatures of 500°F and 550°F was thermally 

unstable in ADI and transformed into martensitic under cryogenic treatment.  

• The austenite formed at upper austempering temperatures between 700 - 750°C had more 

thermal stability and was only partially transformed into martensite under cryogenic treatment. 

• Strain-induced transformation of austenite to martensite was observed in samples both with and 

without cryogenic treatment.  The amount of transformation depended upon the austempering 

temperature. 

• Stress-induced transformation of austenite to martensite also occurred in samples with and 

without cryogenic treatment.  Again, the degree of transformation depended upon the temperature 

at which austempering was performed. 

• Thus, it appears that adding suitable alloying elements can improve the thermal and 

mechanical stability of austenite by promoting more carbon partitioning into austenite. 
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• The width of the bainitic ferrite generally decreased with the decrease in austempering 

temperature. High temperature plastic deformation greatly reduced the width of bainitic ferrite in 

the ADI samples austempered in the upper bainitic temperatures.  

• High temperature plastic deformation and austempering in the lower bainitic temperature range 

resulted in ultra fine or nano sized laths of bainitic ferrite and retained austenite in ADI. 

• High temperature plastic deformation resulted in finer ferritic cell sizes in the nanometer scale 

in the ADI samples. 

• Plastic deformation resulted in the grain refinement in the nanoscale range which is evident 

from the ring SAED pattern obtained from the plastically deformed ADI samples. 
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CHAPTER 10. CONCLUSIONS 

• A unique heat treatment process consisting of austenitization and plastic deformation followed 

by austempering has been proposed and its microstructure and mechanical properties were 

analyzed. 

• High temperature plastic deformation and austempering in the lower bainitic temperature range 

resulted in ultra fine laths of bainitic ferrite and retained austenite in ADI. 

• It was confirmed that the plastic deformation resulted in the grain refinement from the 

observation of the ring shaped SAED pattern.  

• The ADI processed by austenitizing at 1520ºF followed by plastic deformation at a strain rate 

<=10mm/min and given an austempering treatment of either a single step/two-step resulted in an 

optimum combination of strength and toughness. 

• The selection of appropriate heat treatment parameters including the austenitization 

temperature, austempering temperature and time, for the given chemical composition of the 

ductile cast iron, enables the production of nanostructured ductile cast iron with excellent 

mechanical properties and improved ductility than conventional ADI. 

• The proposed unique heat treatment process involving a combination of high temperature 

plastic deformation and subsequent austempering has resulted in a robust process window that 

makes nano ADI with better mechanical properties, practically possible from production 

standpoint. 
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CHAPTER 11. FUTURE WORK  

Further research can be carried out on this low alloyed ductile cast iron to determine the vital 

material properties such as the fatigue strength, wear resistance, bending strength, and 

machinability. In this study, austenitizing and austempering time of 3 hours each is used for all 

the plastically deformed samples, which may not be an attractive feature from industrial point of 

view.  Therefore, research can be carried out to optimize the heat treatment parameters including 

the austenitizing and austempering temperature and time. The research can also be extended to 

study the effect of variation in the strain% on the microstructure and mechanical properties of the 

unalloyed ductile iron used in this study.  
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APPENDIX -MICROSTRUCTURES OF ADI 

Microstructures of conventionally austempered ductile cast iron samples 

 

Figure.A.1: Optical and SEM micrograph of ADI, Tγ=1700°F, TA=550°F 

 

 

Figure.A.2: Optical and SEM micrograph of ADI, Tγ=1700°F, TA=700°F 
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Figure.A.3: Optical and SEM micrograph of ADI, Tγ=1700°F, TA=750°F 

rostructures of cryogenically treated ADMic I 

 

Figure.A.4: Optical and SEM micrograph of cryogenically treated ADI, Tγ=1700°F, TA=550°F 
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Figure.A.5: Optical and SEM micrograph of cryogenically treated ADI, Tγ=1700°F, TA=700°F 

 
 

Figure.A.6: Optical and SEM micrograph of cryogenically treated ADI, Tγ=1700°F, TA=750°F 
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Microstructures of intercritically austempered ADI samples(Tγ=1700ºF) 

 

 Figure.A.7: Optical and SEM micrograph of intercritically austempered ductile cast iron, 

Tγ=1520°F, TA=680°F 

 

 
 Figure.A.8: Optical and SEM micrograph of intercritically austempered ductile cast iron, 

Tγ=1520°F, TA=600°F 
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Figure.A.9: Optical and SEM micrograph of intercritically austempered ductile cast iron, 

Tγ=1520°F, TA=550°F 

Microstructure of plastically deformed, conventionally austempered ductile cast iron 

 

 

Figure.A.10: Optical and SEM micrograph of plastically deformed ADI, Tγ=1700°F, TD=1700°F, 

TA=680°F 
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Figure.A.11: Optical and SEM micrograph of plastically deformed ADI, Tγ=1700°F, TD=1700°F, 

TA=600°F 

 

 

Figure.A.12: Optical and SEM micrograph of plastically deformed ADI, Tγ=1700°F, TD=1700°F, 

TA=550°F  
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Microstructure of plastically deformed, conventionally austempered ductile cast 

iron(Tγ=1520ºF) 

    

Figure.A.13: Optical and SEM micrograph of plastically deformed ADI, Tγ=1520°F, TD=1520°F, 

TA=680°F 

 

Figure.A.14: Optical and SEM micrograph of plastically deformed ADI,  Tγ=1520°F, 

TD=1520°F, TA=600°F 
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Figure.A.15: Optical and SEM micrograph of plastically deformed ADI, Tγ=1520°F, TD=1700°F, 

TA=550°F 

Microstructures of the plastic deformed, two- step austempered ductile cast iron 

 

Figure.A.16: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1700°F, TD=1700°F, TA1=500°F, TA2=725°F 
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Figure.A.17: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1700°F, TD=1700°F, TA1=500°F, TA2=680°F 

  

 

Figure.A.18: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1700°F, TD=1700°F, TA1=500°F, TA2=600°F 
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Figure.A.19: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1520°F, TD=1520°F, TA1=500°F, TA2=725°F 

  

Figure.A.20: Optical and SEM micrograph of plastically deformed, two step austempered 

ADI,Tγ=1520°F, TD=1520°F, TA1=500°F, TA2=680°F 
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Figure.A.21: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1520°F, TD=1520°F, TA1=500°F, TA2=600°F 

 

Figure.A.22: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1472°F, TD=1472°F, TA1=500°F, TA2=725°F 
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Figure.A.23: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1472°F, TD=1472°F, TA1=500°F, TA2=680°F  

 

 

Figure.A.24: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1472°F, TD=1472°F, TA1=500°F, TA2=600°F  
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Figure.A.25: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1436°F, TD=1436°F, TA1=500°F, TA2=725°F 

 

 

Figure.A.26: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1436°F, TD=1436°F, TA1=500°F, TA2=680°F 
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Figure.A.27: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1436°F, TD=1436°F, TA1=500°F, TA2=600°F 

Microstructure of ductile iron plastically deformed at different strain rate 

 

Figure.A.28: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1520°F, TD=1520°F, strain rate = 10mm/min, TA=550°F 
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Figure.A.29: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1520°F, TD=1520°F, strain rate = 0.5mm/min, TA1=500°F, TA2=550°F 

 

Figure.A.30: Optical and SEM micrograph of plastically deformed, two step austempered ADI, 

Tγ=1520°F, TD=1520°F, strain rate = 10mm/min, TA1=500°F, TA2=550°F 
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 Austempered Ductile Cast Iron is emerging as an important engineering materials in 

recent years because of its excellent combination of mechanical properties such as high strength 

with good ductility, good fatigue strength and fracture toughness together with excellent wear 

resistance. These combinations of properties are achieved by the microstructure consisting of 

acicular ferrite and high carbon austenite. Refining of the ausferritic microstructure will further 

enhance the mechanical properties of ADI and the presence of proeutectoid ferrite in the 

microstructure will considerably improve the ductility of the material.  

 Thus, the focus of this investigation was to develop nanostructured austempered ductile 

cast iron (ADI) consisting of proeutectoid ferrite, bainitic ferrite and high carbon austenite and 

to determine its microstructure-property relationships. Compact tension and cylindrical tensile 

test samples were prepared as per ASTM standards, subjected to various heat treatments and the 

mechanical tests including the tensile tests, plane strain fracture toughness tests, hardness tests 

were performed as per ASTM standards. Microstructures were characterized by optical 

metallography, X-ray diffraction, SEM and TEM. 

 Nanostructured ADI was achieved by a unique heat treatment consisting of 
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austenitization at a high temperature and subsequent plastic deformation at the same 

austenitizing temperature followed by austempering. The investigation also examined the effect 

of cryogenic treatment, effect of intercritical austenitizing followed by single and two step 

austempering, effect of high temperature plastic deformation on the microstructure and 

mechanical properties of the low alloyed ductile cast iron. The mechanical and thermal stability 

of the austenite was also investigated.  An analytical model has been developed to understand 

the crack growth process associated with the stress induced transformation of retained 

austenite to martensite. 
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