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CHAPTER 1: INTRODUCTION 

1.1 INTRODUCTION: FIFTY SHADES OF FAT 

Adipose tissue is a versatile organ, crucial for maintaining homeostasis by storing and 

dispersing energy, producing and releasing adipokines and cytokines, with the ability to 

influence other cells of a body in autocrine, paracrine and endocrine fashion [1].  This 

highly metabolically active tissue is distributed throughout the body in discrete depots, 

and its development, expansion and energy balance are regulated by an integrated 

network of genetic, environmental, epigenetic and pharmacological factors [1, 2].  When 

unbalanced, or when caloric intake exceeds energy expenditure, adipose tissue becomes 

problematic and can detrimentally affect physiological processes.  

1.2 Different types of adipose tissue: Brown vs. White Fat 

Long-thought to have homogenous characteristics throughout the entire body, 

adipose tissue actually exhibits depot-specific differences in metabolic profiles, and these 

variations appear to correlate with susceptibility to obesity and specific metabolic 

disorders [1]. In addition to its localization-based classification, adipose tissue is also 

commonly categorized based on its coloration, and is divided into brown, white and beige 

tissues with distinct functional, metabolic and endocrine differences [1].  

The main role of brown adipose tissue (BAT) is to provide non-shivering 

thermogenesis by the means of energy expenditure. mitochondria and cytochrome 

content are abundant in BAT, a characteristic that attributes, in part, to the color and name 

of BAT [3]. Brown adipocytes are multilocular, meaning they contain multiple fat droplets. 

Uniquely, they express an uncoupling protein-1 (UCP1), the function of which is to 

uncouple respiratory chain proteins in the abundant cellular mitochondria.  The 
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uncoupling of respiratory chain proteins results in the metabolic substrates being oxidized 

purely for the purpose of heat energy dissipation [3]. The progenitors of BAT can be traced 

through the expression of myogenic factor 5 (Myf5) that is also expressed in skeletal 

myocytes [4].  In humans, BAT develops during the fetal stage and is the most abundant 

throughout the body at infancy and throughout the first decade of life. It eventually 

declines in its abundance and retires predominately to areas surrounding vital organs 

such as suprarenal and para-aortic [3, 5] and the supraclavicular area [6]. Cold 

temperature [6-8] and β-adrenergic stimulation [9, 10] can trigger the expression of UCP1, 

induction of substrate oxidation and activation of BAT. Increased expression of UCP1 in 

rodents caused by overfeeding sprouted a theory of the relevance of BAT in evading 

obesity. The fact that activity of BAT declines in overweight individuals [7, 11] supports 

the evidence of inverse correlation between propensity to obesity and abundance of BAT 

[12, 13].  

In contrast to BAT, the white adipose tissue (WAT) development begins in utero 

and continues to evolve throughout life [14, 15]. WAT serves as primary energy storage 

and based on its location in the body, it is often referred to as subcutaneous or visceral 

(intra-abdominal) fat that includes mesenteric, epididymal and perirenal depots. In 

humans, subcutaneous fat develops prior to visceral [16] and can be distinctively different 

in its pathophysiological processes [17]. Importantly, the morphology of white adipocytes 

differs from brown as they are unilocular cells containing less mitochondria and do not 

express UCP1 [18].  

“Browning” is a phenomenon described when adipocytes located in the typical 

WAT sites switch from anabolic to catabolic mechanism producing “beige” adipocytes 



3 
 

 

[19]. They do so by developing multilocular morphology with increased number of 

mitochondria and expression of UCP1.  This occurrence has been well described in 

rodents and is triggered by cold exposure and β3-adrenergic stimulation [20-22]. Although 

closely resembling the brown fat morphology, BAT occurring in the WAT depots does not 

express the same lineage marker, Myf5, as a “classic BAT” [23]. There has been a 

growing interest in understanding the capacity of brown and beige adipocytes to 

counteract obesity, diabetes and other metabolic diseases [19].  Strategies are being 

developed to selectively enhance respiratory uncoupling in adipose tissue to induce 

weight loss and reverse obesity-driven pathological processes. 

1.3 Bone marrow fat and its roles in physiological processes and disease 

Bone marrow fat, known as yellow adipose tissue (YAT), represents a depot 

dispersed throughout the bone marrow with primary localization to trabecular cavities [24, 

25], and often viewed as having mixed characteristics of both WAT and BAT [25-27].  No 

longer considered just a “space-filler”, YAT is recognized as a highly active organ, 

functions of which extend far beyond the storage of triglycerides and lipid metabolism, 

and they include systemic energy regulation and management of insulin sensitivity [28, 

29]. Importantly, the systemic changes related to adipose tissue homeostasis critically 

affect glucose and energy balance [30] and reciprocally influence bone health. If the 

stability in signaling pathways that integrate bone remodeling and energy metabolism 

gets perturbed by metabolic events related to age and obesity, the physiological 

processes in the bone, like osteogenesis and hematopoiesis are critically affected [25, 

28]. The latter results in susceptibility to pro-inflammatory events and dysregulated bone 

remodeling [24]. 
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It is well-established, that during the normal aging process, healthy, hematopoietically 

active red marrow of the bone is progressively replaced by the fatty yellow marrow [24-

26]. There is also increasing evidence that obesity and associated metabolic pathologies 

can have detrimental effects on bone health that go beyond age-driven changes in 

skeletal homeostasis [24, 31, 32]. Until recently, obesity was thought to have a protective 

effect on bone metabolism due to positive impact of body weight on bone formation [31, 

33]. Current evidence suggests that percent body fat, waist circumference, and waist-to-

hip ratio correlate with the risk of osteoporotic fractures, especially in men, who have 

larger amounts of marrow fat than age-matched women [34-36].  These epidemiological 

data are mirrored by the results of animal studies, where marrow adiposity has been 

shown to result in decreases in trabecular bone volume and overall reduced bone mineral 

density (BMD) [31, 37, 38]. Despite these findings, the relationship between adiposity and 

bone turnover remains controversial and additional, controlled studies are needed to truly 

understand the effects of obesity on bone health in humans. 

There is growing clinical and epidemiological evidence that metabolic syndrome 

(MetS), a cluster of metabolic abnormalities that include abdominal obesity, 

hypertriglyceridemia, low high-density lipoprotein (HDL) cholesterol, high blood pressure, 

and glucose intolerance [39-41] is a strong contributor to marrow adiposity.  This condition 

is highly prevalent in the United States as demonstrated by its presence in approximately 

25-30% of adults over the age of 18 years [42, 43], and is a strong risk factor for 

cardiovascular disease, diabetes and stroke [44, 45]. A study of metabolic syndrome in 

normal-weight individuals with only regional accumulation of fat (visceral/abdominal and 

inter-muscular) was associated with fasting hyperinsulinemia, a risk factor for type 2 
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diabetes mellitus (T2DM) [46, 47]. Importantly, general obesity was shown to correlate 

with accumulation of marrow fat in both control and diabetic individuals [48]; however, 

only in diabetic patients, marrow adiposity was correlated with visceral adipose tissue 

(VAT) [48]. This finding pinpoints the potential importance of visceral fat depot in bone 

health, and its implications for development of diabetes. This also underlines the 

importance of distinguishing VAT from other adipose tissues in studies investigating the 

impact of obesity and metabolic disorders on skeletal health, because using the central 

obesity measures continues to lead to inconsistent results [49].  

One specific metabolic consequence of excess adiposity is diabetes, a condition 

highly linked with marrow adiposity [48, 50] and profound effects on bone health [51, 52]. 

Numerous reports suggest that the following are potential biological links between obesity 

and diabetes:  changes in insulin levels, altered calcium metabolism, reduced renal 

function, vitamin D regulation, higher concentrations of inflammatory molecules and 

collagen glycation products, polypeptides, such as osteocalcin and osteopontin, and 

certain adipokines [27-29, 53, 54].  Increases in circulating levels of bone resorption 

markers such as Tartrate Resistant Acid Phosphatase (TRAP 5b) and Cathepsin K 

(CTSK) have been reported in diabetic patients [55] and animal experimental models of 

diabetes [56, 57]. Serum levels of osteocalcin, an osteoblast-specific polypeptide, were 

reported to be inversely correlated with adiposity and measures of insulin resistance [58, 

59]. In contrast, a positive association with insulin sensitivity and HDL cholesterol was 

demonstrated for osteoprotegerin, a known inhibitor of bone resorption, further evidence 

of clear association between the metabolic features and bone degradation [60]. It is 

noteworthy, similar to other fat depots, adipogenesis in the bone marrow is under the 
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regulation of PPARγ [28]. This has led to serious concerns in terms of treatment with anti-

diabetic thiazolidinedione drugs, which were shown to induce bone marrow adiposity [61], 

likely even further exacerbating the environment already altered by diabetes itself. It is 

also important to keep in mind that marrow adiposity associated with diabetes appears to 

be characterized by low unsaturation and high saturation levels of fats [48, 62]. This 

suggests that perhaps apart from overall increase in adiposity, the composition of marrow 

fat might be a more important factor in bone health, and potentially other physiological 

processes, a phenomenon that warrants further investigations.  

1.4 ADIPOCYTE ARTILLERY 

Contrary to the previous view of adipocytes being metabolically inert, growing 

evidence from the last decades of research has revealed that they are in fact metabolically 

active cells highly involved in the uptake, production, and secretion of many different 

factors with systemic implications [63].  Through the production of lipids and secretion of 

hormones, cytokines or adipokines, adipocytes have the ability to influence neighboring 

cells within their microenvironment and throughout the body as a whole, working as a 

functional paracrine and endocrine tissue [1, 2, 63].  \ 

1.4.1 Hormones 

The two most commonly studied hormones secreted by adipocytes are adiponectin 

and leptin. Adiponectin is a protein hormone responsible for regulating multiple metabolic 

processes [64].  This hormone is secreted primarily by adipocytes and is released into 

the bloodstream where it binds to adiponectin receptor 1 (AdipoR1), adiponectin receptor 

2 (AdipoR2), and has the potential to bind a membrane receptor, T-cadherin [65, 66].  

Adiponectin-receptor binding results in activation of AMP-activated protein kinase 
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(AMPK) and subsequent signaling through peroxisome proliferator-activated receptor 

(PPAR)-α transcription factor [67-69]. Adiponectin levels have been associated with many 

different metabolic diseases.  Interestingly, adiponectin is shown to be down-regulated in 

patients with obesity and/or diabetes and is upregulated upon treatment with insulin-

sensitizers [70, 71]. It was recently discovered that bone marrow adipose tissue (MAT), 

in response to caloric restriction and chemotherapy, secretes adiponectin at a much 

larger scale comparing to the levels secreted by WAT, suggesting that MAT-derived 

adiponectin is circulated throughout the body, exhibiting endocrine and metabolic effects 

on cells [72].  Circulating adiponectin is shown to be decreased in patients with T2DM, 

cardiovascular disease, liver disease, and hypertension [73-75].   In addition, adiponectin 

binding to AdipoR1 and AdipoR2 has been shown to have anti-diabetic effects, which 

further underlines positive effects of this hormone on metabolic homeostasis [76]. 

 Leptin, also known as the “satiety hormone,” is the other most commonly studied 

factor produced and secreted by adipocytes [77, 78]. Canonical leptin signaling occurs 

through the leptin receptor which, upon the binding of its ligand, dimerizes and induces 

phosphorylation and activation of Janus tyrosine kinase-2 (JAK2) [79].  This leads to 

STAT3 phosphorylation and downstream transcription of leptin target genes. Mutations 

in the gene encoding leptin or its receptors in the hypothalamus result in disturbed leptin 

signaling and consequently promote hyperphagic obesity, diabetes mellitus, and 

neuroendocrine dysfunctions [80].   Interestingly, although leptin is secreted by 

adipocytes to inhibit hunger, this adipokine is produced and secreted at high rates in 

obese individuals [81].  Enhanced leptin signaling has been implicated in many different 

cancers [82].  Leptin binding to its receptor on mammary cancer cells has been shown to 
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play a role in maintaining cancer stem cell phenotype and promoting stem cell-like 

properties of triple-negative breast cancers [83]. 

1.4.2 Inflammatory Cytokines 

 Obesity is characterized as a state of chronic inflammation.  It has been speculated 

that expansion of adipose tissue occurring in obesity results in oxygen deprivation of 

adipocytes which are most distant from the capillary network [84]. This hypoxia triggers 

the activation of hypoxia inducible factor 1-alpha (HIF-1α), which in turn, signals for the 

macrophage infiltration and induction of inflammation [85]. There is growing evidence that 

multiple pro- and anti-inflammatory cytokines in obese adipose tissue form a functional 

circuitry that regulates local and systemic glucose tolerance and insulin sensitivity [86].  

These cytokines are secreted by adipocytes, macrophages and other cell types residing 

in the inflamed tissue [86, 87]. 

TNF- was one of the first identified WAT-derived proinflammatory cytokines, 

thought to be primarily secreted by myeloid cells via activation of MAPK and NFB 

signaling pathways and stimulating the release of other inflammatory cytokines, such as 

IL-1 and IL-6 [88].  It has since been determined that adipocytes themselves are a 

significant source of TNF-, whose induction in fat cells occurs in response to free fatty 

acids (FFA), and activation of JNK signaling pathway [89]. TNF-α, in turn, via activation 

of ERK signaling pathway stimulates lipolysis, a process resulting in a positive feedback 

mechanism that further contributes to the chronic state of obesity-induced inflammation 

[90]. The abundant secretion of this TNF-α has been directly linked to obesity-associated 

insulin resistance [89, 91] and tumorigenesis [92]. 



9 
 

 

IL-6 is a pleiotropic cytokine, that is released in response to hypoxic stimulation  of 

adipocytes [93] and its secretion is associated with insulin resistance [94], immune 

responses and host defense mechanisms [88], as well as tumorigenesis and metastatic 

potential [95]. Approximately 30% of circulating IL-6 levels are thought to originate from 

adipose tissue, categorizing it as an adipokine [88]. Circulating levels of IL-6 appear to 

correlate with increased body mass, waist circumference and FFA concentrations; 

however, its functions in obesity and insulin resistance in regards to tissue and metabolic 

rate remain controversial [88].   

IL-1 is another important regulator of inflammatory responses whose levels are 

elevated in obesity and associated metabolic disorders [86]. A blockade of IL-1 activity 

in animal models and human subjects with neutralizing antibodies to this cytokine or its 

receptor improve insulin sensitivity and help to treat T2DM [86, 96, 97].  However, IL-1-

deficient animals have reported glucose intolerance, while IL-1RA-null mice are resistant 

to diet induced obesity, findings revealing the need for further investigations of pro-

inflammatory axes in obesity and metabolic disorders.   

1.4.3 Lipolysis 

Key components released by adipocytes that can influence metabolic processes 

in neighboring cells are glycerol and FFA. In times of excess energy, fatty acids are stored 

as triglycerides, forming lipid droplets that are housed in the specialized domains within 

the endoplasmic reticulum [98, 99].  Fat cells are constantly both synthesizing 

triglycerides, and breaking them down to glycerol and fatty acids during a catabolic 

process known as lipolysis [100].  This process is driven by activation of the rate-limiting 

enzyme, adipose triglyceride lipase (ATGL), phosphorylation and activation of hormone-
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sensitive lipase (HSL), and monoacylglycerol hydrolysis by monoglyceride lipase (MGL).  

Lipolysis and its rates are regulated by hormonal and biochemical signaling.  The process 

of lipid breakdown is stimulated through the binding of catecholamines, epinephrine and 

norepinephrine, to β-adrenergic receptors 1 and 2 and the α-adrenergic receptor [101]. A 

key process for lipolysis and lipase regulation occurs through activation or suppression 

of protein kinase A (PKA) [102, 103].  PKA has the ability to both activate HSL and also 

facilitate the trafficking of proteins involved in lipolysis [104].  ATGL, on the other hand, is 

not a direct target of PKA and has high affinity for triacylglycerides and no activity against 

either diacylglycerides or monoacylglycerides [105]. HSL-null mice exhibit severely 

impaired glycerol release and large accumulation of DAG in several tissues, confirming 

that this lipase is a rate-limiting enzyme in DAG hydrolysis [106].  In contrast to HSL, 

ATGL deficiency leads to severe lipid-associated phenotype with high lipid accumulation, 

poor lipid mobilization, reduced biochemically-induced lipolysis, and myopathy [107-112], 

indicating its essential function in lipolysis.  Absence of ATGL reduces fatty acid release 

from adipose tissue by 75% and a mutation in ATGL gene in humans causes lipid storage 

dysfunction called neutral lipid storage disease with myopathy (NLSDM) [113, 114].  

Because lipolysis is such a fundamental and crucial process for energy homeostasis and 

metabolism, dysfunction in this process has been suggested as a hallmark to the onset 

or maintenance of obesity [115]. 

1.5 OBESITY-CANCER LINK: THE CONCERNING PROBLEM 

Currently, obesity is a global epidemic characterized by excess adipocyte size and 

numbers. Recent reports indicate that more than two thirds of Americans are overweight 

or obese and this number has been increasing for decades [116, 117].  Obesity is a 
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serious health concern and a major risk for the development and onset of a multitude of 

different cancers [118-120].  Studies have demonstrated that the fraction of patients that 

have cancer caused by excess weight has reached about 20% of all cancers [120].  The 

Million Women Study reported that around 50% of cancers in postmenopausal women 

are linked to obesity [121].  For the high-risk obese patients in general, the most common 

malignancies appear to be esophageal adenocarcinoma, colorectal, postmenopausal 

breast, prostate, and renal cancers [122, 123].  Malignant melanoma, thyroid cancers, 

leukemias, non-Hodgkin’s lymphomas, and multiple myelomas have been associated 

with obesity but to a lesser extent [124, 125]. 

1.5.1 Role of Circulating Adipokines in Tumorigenesis and Tumor Progression 

As experimental and epidemiological evidence linking obesity with cancer risk or 

recurrence increases, the mechanisms behind this association are still largely unknown. 

It is becoming increasingly accepted that dysregulation of adipocyte function and obesity-

driven chronic inflammation are the main culprits in adiposity-induced tumorigenesis [118, 

126].  This is particularly evident in cancers that grow in adipocyte-rich environments like 

breast carcinomas, or cancers that have propensity to metastasize to fat-rich sites, such 

as ovarian or gastric malignancies [127]. In addition to acting as local paracrine signaling 

molecules, adipokines also exert systemic effects and allow for communication with 

distant sites.  The increased levels of adipose tissue-derived factors, such as TNF-α, IL-

6, IL-8, macrophage chemoattractant protein (MCP-1), and leptin and their role in tumor 

progression have been well-documented [82, 127].  

Levels of circulating leptin are enhanced in obese individuals, and elevated leptin 

is a poor prognostic factor for breast cancer patients, underlining the role of this adipokine 
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in tumor progression [128].  Leptin expression is higher in patients that have prostate 

cancer compared to benign prostate hyperplasia and higher in patients with advanced, 

metastatic disease compared to patients with localized, early stage prostate cancer, 

implicating leptin expression as a biomarker for prostate cancer staging and prognosis 

[129, 130]. Notably, a polymorphism associated with an overexpression of the mutated 

leptin in some patients has been suggested as a risk factor for prostate cancer [131]. 

Furthermore, increased levels of leptin receptor were reported in breast cancer tissue as 

compared to normal tissue and suggested to correlate with immune response, 

angiogenesis, reproduction, growth factor signaling and lipid metabolism pathways [132-

135]. In gastric cancer, leptin has been shown to increase tumor invasiveness by 

activating Rho/ROCK signaling pathways [136] while inhibitory effects of this adipokine 

on mitochondrial respiration have been linked with colon cancer progression [137]. 

In contrast to leptin, adiponectin, an adipokine with insulin-sensitizing effects, has 

been suggested to have anti-tumor effects [127, 138]. Low levels of adiponectin, as 

observed in obese individuals, have been correlated with an increased risk of prostate 

cancer [139].  Treatment with recombinant adiponectin has resulted in anti-tumor effects 

in some cancer types such as fibrosarcoma, myelomonocytic leukemia, and breast 

carcinoma [140-143].  Similarly, inhibitory effects of adiponectin on survival and 

proliferation of prostate cancer cells was reported, with anti-tumor effects linked to the 

high molecular form (HMW) of this adipokine, which is known to be responsible for its 

biological activity [144, 145].  These results were shown both in androgen-dependent 

LNCaP-FGC cells and androgen-independent DU145 cells, indicating a global effect on 

prostate cancer cells regardless of androgen receptor status.   
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1.5.2 Bone Marrow Adipocytes and Skeletal Metastases 

Although numerous studies have identified obesity as a risk factor for various 

cancers [146-149], it is only recently that accumulation of bone marrow fat has emerged 

as a risk factor for the development and progression of skeletal metastases, particularly 

from prostate cancer [24, 150].  Specifically, we and others have shown that marrow 

adipocytes mediate translocation of the lipids to the metastatic cancer cells [151, 152].  

These adipocyte-supplied lipids serve as an energy source for cancer cells, and 

consequently induce tumor cell proliferation, motility and invasion [150, 153].  Moreover, 

fatty acid binding protein 4 (FABP4), a lipid transporter expressed predominantly in 

adipocytes, macrophages, and endothelial cells [154], and originally identified as a key 

mediator of adipocyte-tumor interactions in ovarian cancer [127, 155], is highly 

upregulated in metastatic prostate cancer cells interacting with adipocytes [150].  We 

have shown that through its interplay with PPARγ and IL-1β, FABP4 is involved in driving 

the aggressiveness of prostate tumors in bone [150].  Our studies have also 

demonstrated that additional pro-inflammatory factors such as cyclooxygenase-2 (COX-

2) and MCP-1 are highly induced in metastatic tumor cells under conditions of high 

marrow adiposity [24].  This underlines the interaction between the lipid-driven and the 

inflammatory pathways in bone and offers new avenues for investigation of mechanisms 

behind development and progression of skeletal metastases.    

1.6 FEEDING THE ENEMY 

1.6.1 Warburg Effect 

The role of adipocytes in regulating tumor metabolism is largely understudied and 

not well-understood. The growth-, proliferation-, and survival-promoting effects of fat cells 
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on the tumor cells have been clearly demonstrated in breast, prostate, gastric, colon and 

ovarian cancers [127]; however, little is known about the contribution of altered tumor 

metabolism to these effects.  A recent publication by Nieman et al. showed that ovarian 

cancer cells utilize adipocytes to gain energy for rapid division by inducing fat cell-driven 

lipolysis and increasing availability of lipids for uptake by the tumor cells [155]. 

Subsequent to lipid uptake, there is an overexpression of fatty acid transporter, FABP4, 

and significant elevation of -oxidation, which can be blocked by the treatment with 

inhibitor of carnitine-palmitoyltransferase 1 (CPT-1), etomoxir [155]. Notably, -oxidation 

has also been shown to be a main source of energy in prostate cancer cells [156], further 

suggesting that metabolic reprogramming may be playing an important role in 

tumorigenesis.  

For most of the normal cells in the human body, glucose is an essential energy 

source.  In the presence of oxygen glucose is broken down to pyruvate, which enters the 

mitochondria and is further oxidized to carbon dioxide with the release of energy in the 

form of ATP [157].   In the absence of oxygen, normal cells will produce high rates of 

lactate and undergo a metabolic shift to a more glycolytic phenotype.  It has been well 

documented that unlike normal cells, tumor cells show high rates of glycolysis and lactate 

production, regardless of the presence or absence of oxygen [158].  This metabolic switch 

to aerobic glycolysis, also known as the Warburg Effect, provides energy and essential 

carbon sources for lipogenesis and nutrient production for the rapidly dividing cancer cells 

[159, 160].  This enhanced glycolytic phenotype was originally postulated to be a direct 

effect of mitochondrial dysfunction within cancer cells [161].  Under normal physiological 

conditions ATP is generated through oxidative phosphorylation in the mitochondria in 
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which acetyl-CoA is oxidized to CO2, releasing energy in the form ATP [162].  It has been 

shown that oncogenic transformation leads to an increase in glycolytic genes, while tumor 

suppressor proteins induce expression of oxidative phosphorylation (OxPhos) genes, 

showing the implications of glycolysis in carcinogenesis [163, 164].  

Many of the enzymes responsible for glucose metabolism have significant 

functions that are non-glycolytic and tumor promoting [165]. Specifically, it was revealed 

that hexokinase II (HKII) has an anti-apoptotic effect on the mitochondria by binding to 

the mitochondrial membrane, antagonizing interaction with pro-apoptotic factors Bad and 

Bax [166-168]. Along the same lines, pyruvate kinase M2 (PKM2) was shown to have 

non-glycolytic functions in facilitating tumor survival [169, 170].  PKM2 appears to be 

activated through epidermal growth factor receptor (EGFR) signaling and obese patients 

have higher levels of serum heparin-binding epidermal-like growth factor, which is able to 

activate EGFR [171, 172]. Other functions of PKM2 include the phosphorylation of histone 

H3 and releasing histone deacytelase 3, which leads to induction of many cell cycle genes 

including cyclin D and metabolic regulator c-MYC [173].  PKM2 is also known to act as a 

transcriptional regulator through its interactions with Oct4, a transcription factor that drives 

the expression of many genes in tumorigenesis and nuclear signaling [174, 175]. 

Glycolysis is much less energy efficient compared to the OxPhos pathway as it 

generates two net ATP molecules, versus 36 molecules of ATP produced by the OxPhos 

pathway.  Consequently, cancer cells must undergo very high rates of glycolysis in order 

to generate a large amount of ATP quickly.  Interestingly, cells utilizing aerobic glycolysis 

have high ratios of ATP/ADP and NADH/NAD+ even when proliferating at high rates 

[176]. The aerobic glycolytic phenotype is important for tumor progression through the 
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following postulates:  1) high rates of lactate production and secretion can break down 

and degrade the surrounding extracellular matrix and aid tumor expansion and 

metastasis; 2) enhanced glycolysis supplies an abundance of ATP to the cancer cells; 

and 3) associated mitochondrial dysregulation inhibits or reduces apoptosis [177-179]. It 

has also been shown that aerobic glycolysis creates byproducts that increase the ability 

of the cells to produce precursors for biosynthesis of multiple different macromolecules 

essential for rapid division such as lipids, nucleic acids, and proteins [180]. Also, the 

generated lactate can create a toxic environment for immune cells, contributing to 

decreased immunosurveillance and thus the ability of the tumor to hide from an immune 

response within its microenvironment and prevent detection [181].  Excess lactate 

production has also been implicated in the stimulation of endothelial cells surrounding the 

tumor to allow vascularization of the tumor and to provide nutrients through the circulation 

[182, 183]. 

It is known that the transcription factor c-MYC acts as a master regulator of cellular 

metabolism by actively transcribing genes associated with glycolysis.  Specifically, it has 

been shown that c-MYC upregulates lactate dehydrogenase alpha (LDH-α), an enzyme 

crucial for the conversion of pyruvate to lactate during the Warburg Effect [184, 185].  The 

c-MYC transcription factor is also known to regulate key proteins involved in both nucleic 

acid synthesis and fatty acid synthesis, processes utilized by tumor cells to meet the 

demands of rapid cellular division, which underlines its role as a crucial regulator of 

cellular metabolism [186, 187].  Furthermore, overexpression of c-MYC has been 

correlated with upregulation of pyruvate kinase M2, the splice variant most commonly 

seen in tumor cells during aerobic glycolysis [188-190]. The M2 isoform of pyruvate 
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kinase is overexpressed in cancer cells through c-MYC-regulated overexpression of 

heterogeneous nuclear ribonucleoprotein 1 and 2 (hnRNPA1 and hnRNPA2).  These 

ribonucleoproteins preferentially splice the M2 isoform over the M1 isoform, which is 

critical for aerobic glycolysis [188, 191]. There is a proposed positive feedback in which 

PKM2 is upregulated by c-MYC and,  in turn, PKM2 is involved in the upregulation of c-

MYC [192]. Notably, c-MYC has been shown to be overexpressed in an estimated 50% 

of all human cancers [193, 194]. 

 Along with an enhanced glycolytic phenotype, tumorigenesis is often associated 

with mitochondrial dysfunction [195].  Mitochondria become dysfunctional when the 

mitochondrial DNA (mtDNA) is reduced or mutated and obese individuals have been 

shown to have a reduction in mitochondrial DNA in adipocytes [196].  Dysregulation in 

mitochondrial activity has also been shown to play a role in the inhibition of tumor 

suppressor protein p53, leading to aberrant proliferation checkpoints and tumorigenesis 

[197].  There is also emerging evidence demonstrating that obesity-induced adipokines 

promote mitochondrial defects and promote glycolytic phenotype in normal tissue, 

thereby driving tumorigenesis [198]. 

1.6.2 HIF-1α Signaling Pathways in Cancer 

Anaerobic respiration, a hallmark of tumorigenesis, drives a hypoxic phenotype in 

cancer cells even in the presence of oxygen [199].   Hypoxic signaling occurs when 

transcription factor HIF-1α becomes stabilized and translocates to the nucleus where it 

binds to and activates hypoxic response elements (HRE) [200].  In normoxia, prolyl 

hydroxylase domain (PHD) proteins hydrolyze HIF-1α, which is then ubiquitinated by Von 

Hippel-Lindau (VHL) and targeted to the proteasome. However, under hypoxic conditions, 



18 
 

 

PHD is inhibited and HIF-1α is stabilized and translocated to the nucleus where it 

dimerizes with HIF-1 to activate hypoxia-responsive genes [201].  In addition to the 

hypoxic effect seen in low oxygenated tissue, there is also an oxygen-independent HIF-

1α signaling in which HIF-1α becomes stabilized and activates target genes in the 

presence or absence of oxygen [202]. 

The role of HIF-mediated signaling pathway in tumorigenesis and clinical response 

to treatments is well established [203].  Many tumors have areas of low oxygenation or 

intratumoral hypoxia.  Patients with poorly oxygenated primary tumors have a higher risk 

of both metastases and mortality due to a more aggressive cancer phenotype [204].  

Elevated HIF-1α expression has been correlated to increased mortality risk in a plethora 

of different cancers including solid tumors of the bladder, brain, breast, colon, 

esophageal, head and neck, oropharynx, liver, lung, pancreas, skin, stomach, and uterus 

as well as acute lymphocytic and myeloid leukemias [205]. 

HIF-1α acts as a transcriptional activator and regulates the expression of many 

different glycolytic enzymes involved in metabolic reprogramming.  Specifically, LDH-α, 

the enzyme responsible for the high conversion of pyruvate to lactate in cancer cells, is 

trans-activated only through HIF-1α transcriptional regulation [206].  Along with HIF-1α, 

the HIF-2α isoform signals in a similar way, but trans-activates different target genes.  A 

study in renal cell carcinoma cells showed that HIF-1α and HIF-2α signaling converge at 

genes involved in glucose transport [207], lipid metabolism [i.e., adipose differentiation-

related protein (ADRP)], pH homeostasis (i.e., carbonic anhydrase IX (CAIX)), interleukin 

responses, (i.e., IL-6), and angiogenesis (i.e., VEGF) [208]. Interestingly, however, there 

were many significant differences in gene regulation between HIF-1α and HIF-2α.  This 
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study also revealed that HIF-1α but not HIF-2α is highly involved in a glycolytic response, 

functioning as a trans-activating factor for the following enzymes involved in glycolysis: 

hexokinase1, hexokinase2 (HK2), phosphofructokinase (PFK), aldolase A (ALDA), 

phosphoglycerate kinase 1 (PGK1), and LDH-α [208].  There has also been a proposed 

feed-forward mechanism in which the Warburg Effect-associated enzyme PKM2 can act 

as a co-activator for HIF-1α target gene transcription [209]. It was recently demonstrated 

that Jumonji c domain-containing dioxygenase (JMJD5), is upregulated through HIF-1 

signaling and that JMJD5 interacts with PKM2, enhancing its translocation to the nucleus 

and is recruited to the LDH- promoter [210, 211].  The inhibition of JMJD5 causes a 

decrease in glucose metabolism and lactate secretion associated with Warburg Effect 

[210, 211].   

HIFs do not only regulate glycolytic genes to promote a more glycolytic phenotype, 

but they are also involved in mitochondrial effects and decreased OxPhos activity.  

Among HIF target genes are microRNAs, particularly miR-210, which has been reported 

to be overexpressed in hypoxia [212].  MicroRNAs bind to sequences in messenger RNA 

and either inhibit their translation or, in some cases, initiate their degradation [213].  MiR-

210 targets the iron-sulfur cluster assembly enzyme (ISCU) gene, which is required for 

the activity of complex I in the mitochondrial electron transport chain during oxidative 

metabolism, the constituents of cytochrome c oxidase assembly protein (COX10), NADH-

dehydrogenase 1a subcomplex 4 (NDUFA4), and subunit D of succinate dehydrogenase 

complex (SDHD) [214-218].   Accordingly, miR-210 has been labeled as a biomarker of 

tumor hypoxia, and its high levels have been implicated in poor patient prognosis for 

several cancers [219].  Because many of the targets of miR-210 affect mitochondrial 
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activity, it is evident that this molecule plays a central role in cellular metabolism and 

homeostasis. Notably, it was also reported that there is a positive feedback loop between 

miR-210 and HIF-1α in human lung cancer cell lines, where miR-210 stabilizes HIF-1α 

[220].  This leads to increased transcription of HIF-1α target genes and establishment of 

hypoxic tumor microenvironment.  In addition, lung cancer cells that overexpress miR-

210 have been shown to have decreased mitochondrial activity and increased glycolytic 

phenotype, and exhibit elevated resistance to radiotherapy [217].  This decrease in β-

oxidation in parallel with increased HIF activity is important for tumor cell survival because 

it prevents malignant cells from developing high levels of reactive oxygen species (ROS) 

and allows them to survive under hypoxic stress. 

Another important effect of hypoxia on tumor cells is the initiation of angiogenesis, 

a process of formation of new blood vessels from pre-existing vasculature. Tumor growth 

and metastatic progression depend heavily on angiogenesis for the continuing supply of 

nutrients [221].  Accordingly, studies have shown that tumors with functional angiogenesis 

grow much larger than those without proper vascularization and blood supply, and that 

reduced blood supply often results in necrosis or apoptosis [222, 223].  The most well-

known pro-angiogenic factor regulated by HIF-1α is vascular endothelial growth factor 

(VEGF) [224]. It has been shown that VEGF transcript and protein levels are upregulated 

in response to hypoxia and that targeting HIF-1α with small-interfering RNA (siRNA) 

significantly reduces VEGF gene and protein expression [225]. Interestingly, we have 

previously demonstrated that treatment of tumor cells with media conditioned by bone 

marrow adipocytes in vitro, as well as in vivo establishment of skeletal tumors under 

conditions of high marrow adiposity result in significant upregulation of oxidative stress 
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markers and VEGF, suggesting potential activation of HIF-1 [150]. Particularly important 

to the obesity-cancer link might be the evidence, that obese patients have higher levels 

of HIF-1α activity in adipocytes due to rapid proliferation and expansion of the fat cells 

and an increase in VEGF expression [226-230].  VEGF alone has been implicated in 

tumorigenesis through the stimulation of proliferative signaling pathways through the 

vascular endothelial growth factor receptor (VEGFR) and through cancer stem cell 

maintenance [231, 232].  Further studies are required to elucidate the role of adipose 

tissue hypoxia and VEGF secretion in obesity on tumor initiation and maintenance.   

1.6.3 Adipocyte Artillery and their Effects on Metabolism 

Few studies have demonstrated the effects of adipocyte-derived factors on tumor 

metabolism.  The majority of reported studies focus on TNF-α, leptin, and lipids or lipolysis 

products [233, 234].  A study utilizing genetically obese ob/ob mice showed an 

association between TNF-α secretion and OxPhos dysregulation [235]. A marked 

decrease in mitochondrial respiratory chain activity in liver cells of ob/ob mice was 

reported. Also reported were elevated levels of TNF-α, inducible nitric oxide synthase 

(iNOS), and tyrosine nitrated proteins correlated with increased adiposity.  It was 

determined that ob/ob mice not only have diminished activity of OxPhos system, but also 

a reduction in the assembly of the OxPhos subunits in the mitochondria to about 50-60% 

[236].  Most of the decreases were seen in subunits transcribed by mitochondrial-DNA, 

which was reduced by approximately 60% relative to control mice.   

Along with TNF-α, adipocyte-secreted factors such as leptin and Wnt peptides can 

also cause mitochondrial impairment [237, 238].  The observed effects of leptin appear 

to not only result from canonical leptin signaling, but also from its non-canonical signals 
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associated with crosstalk with both the phosphatidylinositol 3-kinase (PI3-K) pathway and 

the Ras-dependent pathways [239].  These pathways are both commonly deregulated in 

cancers and affect cellular survival, growth, and metabolism [240, 241].   PI3-K activation 

leads to subsequent activation of the downstream target protein Akt, and PI3-K/Akt 

signaling has been shown to directly regulate cellular metabolism [241]. Induction of this 

pathway leads to the expression of glucose, amino acid, lipoprotein, and iron transporters 

at the cellular surface [158].  Additional effects include stimulation of glycolytic enzymes 

hexokinase and phosphofructokinase, increased transcription of glycolytic genes, and 

relative increases in protein synthesis essential for rapid cellular division [242, 243]. 

It has been recently demonstrated, that Wnt signaling, which, when elevated, is 

commonly associated with tumorigenesis and tumor survival, suppresses mitochondrial 

respiration and cytochrome C oxidase activity [244].  An enhanced Wnt signaling through 

the β-catenin pathway leads to the inhibition of cytochrome C oxidase subunits COXVIc, 

COXVIIa, and COXVIIc, and this inhibition of mitochondrial activity results in an enhanced 

glycolytic phenotype.  It has been postulated that with higher adipocyte content, levels of 

Wnt ligands are increased, leading to enhanced positive correlation with Wnt signaling in 

neighboring cells [245, 246]. 

Little is known to date on how adipocyte-derived lipids directly influence tumor 

metabolism; however, there is increasing evidence that lipids generated by the tumor cells 

during lipogenesis modulate metabolic pathways in cancer cells and stimulate the 

Warburg Effect.  One consequence of the Warburg Effect is an increase in lipid 

biosynthesis, and  de novo lipogenesis is, in fact, performed at high rates in cancer cells 

[236].  An example of a bioactive lipid with implications for prostate tumorigenesis is 
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sphingosine-1/2 phosphate (S-1/2P) [247, 248].  S1P is activated by the phosphorylation 

of sphingosine by sphingosine kinase 1 or 2 (SK1 or SK2). S1P has been shown to induce 

cell growth, survival, and migration and to play a role in variety of cancers [249].  Similarly, 

upregulation of SK1 has been associated with glioblastomas, lung, thyroid, and breast 

cancers [250-254].  Notably, S1P has also been shown to highly present in obese patients 

compared to lean patients [255] and its potential involvement in obesity-driven 

tumorigenesis calls for further investigations.  

1.7 CURRENT THERAPEUTIC OPTIONS IN TARGETING TUMOR METABOLISM 

1.7.1 Tools to Regulate Glycolysis 

Because tumor metabolism is deregulated in almost all cancers, targeting 

glycolytic intermediates has become a hot topic in therapeutic research.  One of the first 

inhibitors developed to target glycolysis was 2-deoxyglucose (2-DG), a glucose analog 

that  downregulates glucose metabolism through competitive inhibition [256].  2-DG is 

transported into the cell and phosphorylated by hexokinase to 2-deoxy-glucose-

phosphate (2-DG-P).  2-DG-P cannot be further metabolized and accumulates in the 

cells, leading to competitive inhibition of hexokinase during glycolysis [257].  In vitro 

studies have shown that this effect causes a decrease in cellular ATP production, and 

leads to the blockage of cell cycle progression and subsequent cell death [258].  A recent 

study has demonstrated that a combination of 2-DG treatment with photodynamic therapy 

induces tumor cell death in a synergistic manner [259]. Decreased cellular proliferation 

and increased apoptosis of cancer cells was also demonstrated upon 2-DG treatment in 

the N-diethylnitrosamine-induced rat hepatocarcinoma model [260].  Along with a 

decrease in glycolysis, there was an observable decrease in the tricarboxylic acid (TCA) 
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cycle activity, fatty acid and cholesterol biosynthesis, and ATP production, all pathways 

associated with tumor progression and metabolism. Other studies have shown that 

inhibiting glyoxylase 1, an enzyme responsible for the conversion of the glycolysis 

byproduct methylyglyoxyl to D-lactate, in a highly metabolically active tumor cells leads 

to an increase in apoptosis and a decrease in cellular proliferation [261, 262]. 

Targeting glycolysis in order to reverse the Warburg Effect has sparked interest as 

a potential anti-cancer therapy and has led to recent breakthroughs in therapeutics. One 

particularly intriguing target gaining a significant amount of attention from the 

pharmaceutical industry is LDH-α, an enzyme converting pyruvate to lactate, and a 

biomarker of advanced disease, poor prognosis, and resistance to therapy in many 

different cancers [263-265].  LDH-α inhibitors have a high specificity for cancer cells 

because of the high demand for lactate production in cancer cells during aerobic 

glycolysis [266].   It was recently reported that inhibition of LDH-α reduced ATP levels and 

led to an accumulation of reactive oxygen species (ROS) in lymphoma cells [267].  This 

accumulation of ROS resulted in increased incidence of apoptosis, suggesting that LDH-

α is critical for tumor maintenance and cancer cell metabolism [268, 269].  These results 

have been recapitulated in a variety of diverse cancer types including lung cancer, renal 

cancer, breast cancer, hepatocellular carcinoma, nasopharyngeal carcinoma, and 

pancreatic cancer [267, 270-276].    

There has been clinical success with drugs designed to target other enzymes in 

the glycolysis pathway, such as hexokinase II (HKII), phosphofructokinase (PFK), 

glyceraldehyde-3 phosphate dehydrogenase (GAPDH), and pyruvate kinase M2 (PKM2).  

Lonidamine, a selective HKII inhibitor, reached phase III trials in the 1990’s as a 
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therapeutic option for patients with lung cancer and was mildly successful but had toxic 

side effects [277, 278].  A novel approach by Wang et al. used the natural compound 

curcumin as a potential drug that could target HKII specifically and was shown to have 

anti-cancer effects in vitro [279].  The authors reported that colorectal cancer cells treated 

with curcumin in vitro have decreased mitochondria-associated anti-apoptotic HKII, 

leading to enhanced cell death.  3-bromopyruvate (3-BrPA), a selective inhibitor of 

another glycolytic enzyme, glyceralaldehyde-3-phosphate dehydrogenase  (GAPDH), 

has been shown to downregulate PI3K/Akt signaling axis, leading to induced apoptosis 

in breast cancer cells [280, 281]. This finding suggests potential benefits of dual targeting 

of glycolysis enzymes and PI3K/Akt-mediated cellular metabolism.  3-BrPA has been 

FDA approved for phase I clinical trials as a selective glycolysis inhibitor [282-284] and 

was shown to induce ER stress, inhibit global protein synthesis and thereby induce tumor 

cell death [285]. Attempts have also been made to target phosphofructokinase, 

particularly PFKB3, the isoform commonly upregulated in cancers. Specifically, the use 

of selective PFKB3 inhibitors, such as 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one 

(3PO) shown that inhibition of PFKB3 leads to autophagy and could be an effective anti-

tumor therapy [286].  3PO is currently being tested in clinical trials [287].   

1.8 CONCLUSIONS 

With obesity toll spreading to pandemic levels, it is critical that the underlying 

mechanisms linking obesity to metabolic pathologies and tumorigenesis are elucidated.  

It is clear that adipocyte-derived factors and lipolysis products have the capacity to alter 

cellular homeostasis in neighboring cells. Abnormal adiposity and chronic inflammation 

in obesity can lead to the secretion of a multitude of factors, all of which can influence 
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tumor metabolism. Our understanding of tumor metabolism over the last century has 

revealed a complex, integrated network of enzymes and metabolites cooperating together 

to facilitate tumor cell growth and survival.  The dynamic functions of metabolic proteins 

make tumor metabolism an intricate and attractive field of research.  Further 

understanding of the interactions between these metabolites and their oncogenic nature 

will provide insight into elucidating targetable mechanisms and development of novel 

therapies. Many leaps have been made in cancer therapies in a context of tumor 

metabolism.  It remains crucial to advance our understanding of adipose tissue and 

disease in order to determine the molecular mechanisms behind adiposity and 

pathologies and, specifically, cancer. 
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Table 1: Current, on-going clinical trials targeting different aspects of cellular 
metabolism in different cancer types. 
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Figure 1: The proposed schematic of possible mechanisms of metabolic regulation 
of tumor cells by dysfunctional adipocytes in obesity. The major consequence of 
obesity is adipose tissue inflammation and associated increases in circulating levels of 
lipolysis-generated lipids and pro-inflammatory cytokines and adipokines. Through 
paracrine, autocrine, and endocrine effects, adipocyte-derived factors activate metabolic 
pathways in tumor cells and facilitating growth and survival. Pathways of interest include 
the following: phosphoinositol 3-kinase (PI3-K) signaling cascade, hypoxia-inducible 
factor 1α (HIF-1α), increased glucose uptake and enhanced glycolysis, and the potentially 
oncogenic endoplasmic reticulum (ER stress) pathway. The stimulation of PI3-K pathway 
leads to downstream activation of Akt and mTOR, enhancing the transcription of genes 
involved in growth, proliferation and survival. PI3-K signaling can also activate c-MYC and 
lead to the induction of glycolytic genes. A potential crosstalk between the glycolysis 
pathway and the HIF-1α signaling axis potentiates HIF activity, and exacerbates the 
glycolytic and hypoxic phenotypes. HIF-1α signaling leads to the expression of miRNA-
210, which disrupts mitochondrial integrity, affecting cellular metabolism. Additionally, 
FFA have the ability to disrupt mitochondrial and ER membrane integrity and cause 
mitochondrial dysfunction and ER stress. The interactions of the ER stress response 
protein, XBP-1, with HIF-1α drive the expression of HIF- and glycolysis-targeted genes. 
This adipocyte-driven dynamic network of events results in metabolic adaptation of tumor 
cells, implicating adiposity in tumor aggressiveness and chemoresistance to therapy. 
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PI3K, phosphoinositide 3-kinase; AKT, protein kinase b; mTOR, mammalian target of 
rapamycin; c-MYC, myc proto-oncogene; HIF-1α, hypoxia-inducible factor 1; HK2, 
hexokinase 2; PKF, phosphofructokinase; GAPDH, glyceralaldehyde-3-phosphate 
dehydrogenase; PKM2, pyruvate kinase isoform; LDHα, lactate dehydrogenase; FFA, 
free fatty acids; miR-210, micro RNA 210. 
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CHAPTER 2: HYPOTHESIS AND SPECIFIC AIMS 

Bone is a preferential site of metastasis from prostate cancer (PCa). Around 90% 

of patients with metastatic disease present with skeletal lesions. Although there have 

been many advances in therapeutic options for patients suffering from metastatic PCa, 

this disease remains incurable with an estimated five-year survival of 33%. To design 

effective therapeutic interventions for metastatic PCa, it is essential that we elucidate the 

molecular mechanisms in which tumor cells adapt to and thrive within the bone metastatic 

niche. Age and obesity, conditions that increase adipocyte numbers in bone marrow, 

are risk factors for skeletal metastases from PCa. Marrow fat has a potential to influence 

neighboring cells in paracrine and endocrine fashion by releasing a plethora of molecules 

including lipids, cytokines, hormones, complement factors, fatty acids, and free glycerol. 

We have shown previously that the progression of experimental intraosseous tumors is 

accelerated in mice with increased marrow adiposity. We have also demonstrated that 

tumor cells can utilize adipocyte-supplied lipids to support their proliferation and 

invasiveness. Our novel preliminary results indicate that exposure of tumor cells to 

marrow adipocytes in vitro and in vivo enhances their glycolytic phenotype and promotes 

tumor hypoxia driven by HIF-1α. Stemming from these findings, our overall hypothesis 

is that adipocyte-supplied lipids within the bone microenvironment cause a metabolic 

switch to glycolysis in metastatic PCa cells by activation of HIF-1α, leading to increased 

aggressiveness and survival. We proposed to test this hypothesis in two specific aims: 

Specific Aim 1: Establish the contribution of adipocyte-supplied factors to 

metabolic changes in tumor cells. Our working hypothesis is that PCa cells stimulate 

lipid release and lipolysis in marrow adipocytes, a process that increases lipid availability 

for tumor cells and leads to an enhanced glycolytic phenotype and tumor hypoxia. We 
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propose to examine the interactions between adipocytes and PCa cells in vivo and in vitro 

to answer the following questions:  

a) Do adipocyte-supplied lipids affect cellular glycolysis and β-oxidation in tumor 

cells? 

b) Are the metabolic effects of adipocytes on PCa cells driven through the 

activation of HIF-1α? 

Specific Aim 2: Determine the adipocyte-induced changes in the PCa cell fatty acyl 

lipidome and identify key lipid metabolites contributing to altered tumor 

metabolism and hypoxia. Our working hypotheses are that: 1) PCa cells adapt to 

adipocyte-rich bone marrow and alter their lipidome to support own growth and survival; 

and 2) PCa cells influence the secretome of marrow adipocytes and stimulate them to 

release factors that promote tumor survival through metabolic regulation. Based on our 

findings, we proposed to: 

a) Characterize fatty acyl lipidomic profiles of metastatic tumor cells in the absence 

and presence of adipocyte-derived factors; 

b) Define the lipid secretome of marrow adipocytes interacting with tumor cells; 

c) Elucidate fatty acyl lipidomic signature associated with glycolytic and hypoxic 

phenotype in tumor cells 

The proposed aims were designed to unravel specific aspects of bone marrow 

adipocyte involvement in PCa progression in bone. Findings from this study demonstrated 

a functional relationship between marrow adiposity and tumor growth, metabolic adaption 

and survival in the metastatic niche, and implicated adipocyte-supplied lipids and tumor 

metabolism as novel potential therapeutic targets in metastatic disease. This work 
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establishes a basis for future exploration of 1) the mechanisms behind adipocyte-driven 

metabolic adaptation and chemoresistance of skeletal tumors, and 2) the potential options 

for targeting of tumor metabolism for improved therapy and/or prevention of aggressive 

disease. This work will have high relevance beyond PCa and extend to other bone-trophic 

cancers. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Materials 

Dulbecco’s modified Eagle’s medium (DMEM), RPMI-1640 medium and other 

chemicals, unless otherwise stated, were obtained from Sigma (St. Louis, MO). HyClone 

fetal bovine serum (FBS) was from ThermoFisher (Pittsburg, PA). Trypsin-EDTA, 

collagenase, BODIPY (493/503), Gentamicin (G418), Alexa Fluor 488-conjugated goat 

anti-rabbit IgG, and rabbit anti-human FABP4 were from Invitrogen (Carlsbad, CA). 

PureCol® collagen type I was from Advanced Biomatrix (San Diego, CA). Mouse 

monoclonal E7 Beta tubulin antibody was from Developmental studies Hybridoma Bank 

(Iowa City, IA). StemXVivo Adipogenic Suppliment, was from R&D Systems (Minneapolis, 

MN). Rabbit anti-human/mouse ß-actin antibodies were from Novus Biologicals (Littleton, 

CO). Mouse anti-human neuron-specific Enolase was from Dako-Agilent Technologies 

(Denmark). Rabbit anti-human-pyruvate dehydrogenase kinase, lactate dehydrogenase 

alpha, rabbit anti-human hexokinase 2 were from Cell Signaling Technologies (Beverly, 

Massachusetts). Rabbit anti-human phosphorylated pyruvate dehydrogenase, rabbit 

monoclonal anti-carbonic anhydrase 9 antibody, and the fluorometric L-lactate detection 

kit were from Abcam (Cambridge, UK). Adipolyze lipolysis detection kit was from Lonza 

(Switzerland). RNeasy Mini Kits were from Qiagen (Valencia, CA). Immunoblotting 

“Western Lightning ECL Plus” detection kits were from Perkin Elmer LLC (Waltham, MA). 

Rosiglitazone and the Triglyceride Colorimetric Assay kit were from Cayman Chemical 

(Ann Arbor, MI). ImmPACT NovaRED Peroxidase Substrate and ImmPRESS Anti-Rabbit 

Peroxidase Reagent kit were from Vector Laboratories (Burlington, CA). Cobalt Chloride 

was from MP Biomedicals (Solon, OH). Atglistatin was from Axon Medchem (Groningen, 

Netherlands).  
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3.2 Cell lines  

PC3 cell line, derived from a bone metastasis of a high-grade adenocarcinoma 

[288], and DU145 cells, derived from human prostate adenocarcinoma metastatic to the 

brain [289], were purchased from American Type Culture Collection (ATCC; Manassas, 

VA). The ARCaP(M), an Androgen-Repressed Metastatic Prostate Cancer Cells M 

(‘Mesenchymal’ Clone) [290] were purchased from Novicure Biotechnology (Birmingham, 

AL). The human prostate cancer C4-2B cell line was kindly provided by Dr. Leland W. K. 

Chung, Cedars-Sinai Medical Center (Los Angeles, CA). PC3 and DU145 cells were 

grown in DMEM medium with 10% FBS, ARCaP(M) cells in RPMI medium with 5% FBS, 

and C4-2B cells in RPMI medium with 10% FBS. Cells were maintained in a 37°C 

humidified incubator ventilated with 5% CO2.  

Primary mouse bone marrow stromal cells (mBMSC) were isolated from femurs 

and tibiae of 6- to 8- week old FVB/N mice according to previously established protocols 

[291]. To induce bone marrow adipocyte differentiation, mBMSC cells were plated in 3D 

collagen I gels, grown to confluency for 48-72 hours and treated with adipogenic cocktail 

(30% StemXVivo Adipogenic Suppliment, 1 μM insulin, 2 μM Rosiglitazone; DMEM and 

10% FBS) for 8-10 days as previously described [150]. Differentiated bone marrow 

adipocyte cultures were washed 3 times with PBS and used in experiments.  

3.3 Animals  

All experiments involving mice were performed in accordance with the protocol 

approved by the institutional Animal Investigation Committee of Wayne State University 

and NIH guidelines. In vivo xenograft studies were performed in male mice in the FVB/N 
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background with homozygous null mutation in the Rag1 gene [FVB/N/ N5, Rag-1−/−]. All 

mice were bred in-house.  

3.4 Diets 

At 5 weeks of age, mice caged in groups of 4 were started on either a low-fat (LFD) 

diet (10% calories from fat; Research Diets no. D12450Ji) or a high-fat (HFD) diet (60% 

calories from fat; Research Diets no. D12492i). D12450Ji is a standard matched control 

diet for D12492i as recommended by Research Diets. Mice were maintained on 

respective diets for 8 weeks prior to the tumor implantation and continued on the diets for 

additional 6 weeks (PC3 tumors) or 8 weeks (ARCaP(M) tumors). Where indicated, mice 

were switched from HFD to LFD at time of tumor implantation and maintained on LFD for 

the remainder of the experiment.  

3.5 Intratibial and subcutaneous injections of prostate cancer cells  

Intratibial tumor injections were performed under isoflurane inhalational anesthesia 

according to the previously published procedures [150, 291, 292]. Briefly, a cell 

preparation containing 5 ×105 of PC3 /ARCaP(M) cells in PBS (20 μl, right tibia), or PBS 

alone (control, 20 μl, left tibia) was injected into the bone marrow. Mice were euthanized 

six weeks (PC3 cells) or eight weeks (ARCaP(M) cells) post-injection, and control and 

tumor-bearing tibiae were removed. For microenvironmental control, separate groups of 

LFD and HFD mice were injected subcutaneously with 50 μl of PC3 cell suspension (5 

x105 cells in PBS/Cultrex). Half of the intratibial tumor samples from each group and half 

of each subcutaneous tumor were fixed in Z-fix, bone tumors were decalcified, and all 

samples were embedded in paraffin. Remaining tissues were snap-frozen in liquid 
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nitrogen, powderized using a tissue pulverizer and RNA was isolated using Trizol and 

RNeasy Mini Kit.  

3.6 TaqMan RT-PCR analyses  

The cDNA from cells and in vivo samples was prepared from 1-2 μg of total RNA 

using High-Capacity cDNA Reverse Transcription kit (Applied Biosystems). The analyses 

of genes associated with glycolysis, lipolysis, hypoxia and mitochondrial markers were 

performed using TaqMan® Individual Gene Expression assays for Human ENO2 

(Hs00157360), LDHa (Hs00855322), HK2 (Hs00606086), PDK1 (Hs01561850), GLUT1 

(Hs00892681), CS (Hs 02574374), IDH2 (Hs00158033), HIF-1α (Hs00153153), CA9 

(Hs00154208), MAGL (Hs00200752), CD36 (Hs01567185), Perillipin 2 (Hs00605340), 

VEGF (Hs00900055), Il-1β (Hs01555410), EP1 (Hs00909194), and SPHK1 

(Hs00184211). Assays were done on three biological replicates using TaqMan® Fast 

Universal PCR Master Mix and 50 ng of cDNA/well and all reactions were run on an 

Applied Biosystems StepOnePlus™ system. Three biological replicates of each sample 

were pooled together and assays were run in at least triplicate. The same assays (ENO2, 

LDHa, PDK1, HK2, GLUT1, CA9 and VEGF) were performed on triplicate samples of 

PC3 bone tumors from LFD and HFD mice and normalized to human epithelial cell marker 

CD326 (EPCAM) (Hs00901885). Specificity of each Taqman probe was cross-checked 

against RNA from control mouse bones and murine adipocytes (Supplementary Table 4). 

For all human genes in vitro, data were normalized to hypoxanthine 

phosphoribosyltransferase (HPRT1; Hs02800695). For assessment of adipocyte-specific 

genes in adipocytes grown in co-culture with tumor cells, the following murine Taqman 

assays were used: HSL (Mm00495359), ATGL (Mm00503040), COX-2 (Mm00478374), 
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COX-1 (Mm00477214), SPHK1 (Mm004488416). Data were normalized to Adiponectin 

(Mm00456425). DataAssist™ Software (Applied Biosystems) was used for all analyses. 

CA9 and CD326 primers (IDT, Coralville, IA) for PCR were used according to 

manufacturer’s protocol. Human CA9 forward and reverse primer sequences are as 

follows: Forward: 5’-GGGTGTCATCTGGACTGTGTT-3’; Reverse: 5’-

CTTCTGTGCTGCCTTCTCATC-3’. CD326 forward and reverse primers are as follows: 

Forward: 5’- CTG GCC GTA AAC TGC TTT GT-3’; Reverse: 5’-AGC CCA TCA ATT GTT 

CTG GAG-3’. EP1 forward and reverse primers are as follows: Forward: 5’- CTT GTC 

GGT ATC ATG GTG GTGTC-3’; Reverse: 5’- GGT TGT GCT TAG AAG TG GCT GAGG-

3’.  EP2 forward and reverse primers are as follows: Forward: 5’- CCA CCT CAT TCT 

CCT GGCTA-3’; Reverse: 5’- CGA CAA CAG AGG ACT GAA CG-3’; EP3 forward and 

reverse primers are as follows: Forward: 5’- CTT CGC ATA ACT GGG GCA AC-3’; 

Reverse: 5’- TCT CCG TGT GTG TCT TGC AG-3’; EP4 forward and reverse primers are 

as follows:  Forward: 5’- TGG TAT GTG GGC TGG CTG-3’; Reverse: 5’- GAG GAC GGT 

GGC GAG AAT-3’.  S1PR primers were generously provided Dr. Meng-Jer Lee at Wayne 

State University [293]. 

In vitro models 

3.7 Transwell co-culture  

The mBMSC cells were embedded in Collagen, plated in 6-well plates, 

differentiated into adipocytes, and tumor cells were seeded on top of a Transwell filter 

(0.2 μm pore size) to allow sharing of soluble factors between the two cell types. After 48 

hours, tumor cells were washed with PBS, trypsinized and harvested for RNA and protein 

extraction. Adipocytes were collected using 1% collagenase. For protein analyses, 
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lysates were re-suspended in SME buffer with protease and phosphatase inhibitors [150, 

294]. For RT PCR analyses, cells were collected into RLT buffer and RNA was purified 

using RNeasy Mini Kit [150, 294]. 

3.8 Direct co-culture  

Adipocytes embedded in Collagen I were differentiated in 100 mm dishes as 

previously described [29]. 600,000 PC3 or ARCaP(M) cells were plated in co-culture with 

adipocytes and on top of Collagen I without adipocytes as control. After 48 hours, 1% 

collagenase was used to break down the Collagen I and isolate the cells. Human specific 

qPCR probes were used to measure transcriptional responses in glycolytic genes.  

3.9 Co-culture CM treatment  

Conditioned media was obtained from either adipocytes alone (Adipo CM) or from 

PCa-adipocyte direct co-cultures (CCM) and either stored in -80 °C or used fresh after 

collection. PCa cells were seeded at 200,000 cells per well in 6-well plates 24 hours prior 

to treatment, then treated with either fresh DMEM containing 10% FBS Adipo CM, or 

CCM. After 24 hours of treatment, the cells were washed with PBS and collected for RNA 

and protein as previously described.  

 Tumor conditioned media was collected the identically for treatment of adipocytes 

with PC3 or ARCaP(M) conditioned media.  Adipocytes were treated with either 

PC3/ARCaP(M) conditioned media or fresh DMEM containing 10% FBS and 1% P/S and 

collected for RNA as described above. 

3.10 Immunoblot analyses  

Lysate and media samples were loaded based on DNA/protein concentrations and 

the corresponding lysates were electrophoresed on 12% or 15% SDS-PAGE gels, 
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transferred to PVDF membranes and immunoblotted for human ENO2 (1:1,000), LDHa 

(1:1000), PDK1 (1:500), p-PDH (1:1000), HK2 (1:1,000), FABP4 (1:500), p-GSK3β 

(1:1000), total GSK3β (1:1000), β-catenin (1:1000), laminin A/C (1:500), cyclin D 

(1:1000), phosphorylated-Akt (1:1000), phosphorylated-ERK (1:1000), VDAC/Porin 

(1:1000) Tubulin (1:1000), and β-actin (1:1,000). To analyze the adipocyte protein 

expressions mouse COX-2 (1:1,000) was used. All horseradish peroxidase-labeled 

secondary antibodies were used at 1:10,000. Quantification and analyses of bands were 

performed using a Luminescent Image Analyzer LAS- 1000 Plus (Fujifilm, Stamford, CT).  

3.11 CA9 immunohistochemical analyses  

Tumor-bearing tibiae from LFD and HFD mice were fixed, decalcified, and embedded 

in paraffin. Deparaffinized and rehydrated tissues were then analyzed by 

immunohistochemistry for expression and localization of CA9 (rabbit anti-human CA9; 

1:250). ImmPRESS Anti-Rabbit Peroxidase Polymer Detection systems along with a 

NovaRED kit as a substrate were used for the peroxidase-mediated reaction.  

3.12 Immunofluorescence analyses  

Cells were plated on coverslips (50,000 per coverslip) in a 24-well plate, allowed to 

attach for at least 4 hours, and transferred to control or transwell wells. After 48 hours, 

cell were stained with BODIPY (493/503) by washing with PBS, fixing with 3.7% 

formaldehyde at RT for 40 minutes, and incubating with BODIPY (493/503) (1:1000) at 

RT for 1 hour. Coverslips were washed and mounted onto slides using Vectashield with 

DAPI (Vector Laboratories). Images were taken using a Zeiss LSM 510 META NLO 

confocal microscope (Carl Zeiss AG, Göttingen, Germany) and a 40 × oil immersion lens. 

For CA9 staining, cells were washed with PBS and fixed with cold methanol. Coverslips 
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were stained with rabbit monoclonal anti-CA9 antibody (1:50) at 4°C overnight. Alexa 

Fluor 488-conjugated goat anti-rabbit IgG (1:1,000) was used as a secondary antibody, 

and DAPI was used as a nuclear stain. Coverslips were mounted using Vectashield and 

imaged using a Zeiss LSM 510 META NLO confocal microscope using a 63 × oil 

immersion lens.  

3.13 ATP analysis  

Cells were seeded in 6-well dishes, cultured overnight and treated with either fresh 

media (control conditions) or CCM. At 12 and 24 hours, the cells were washed and 

scraped into PBS. The cells were collected in a timely manner to ensure reliability of the 

sample, snap frozen in liquid nitrogen and stored in -80 ºC. The ATP Bioluminescence 

Assay Kit HS II (Roche Applied Science) and the boiling method for ATP release were 

used [124]. Briefly, 700 μl of incubation buffer was added to the cells (100 mM Tris-Cl, pH 

7.75, 4 mM EDTA) and the solution was immediately transferred to a boiling water bath 

for 2 minutes. Samples were diluted 1:25 and 40 μl aliquots were used to determine the 

ATP concentration following the manufacturer’s protocol. The experiments were done as 

biological duplicates, and then two aliquots were taken from each sample and assayed in 

triplicate. The concentrations were normalized to total protein using NanoDrop 2000 

(Thermofisher Scientific). Data are shown as mean ± SD.  

3.14 Assessment of lactate levels in media  

Conditioned media was obtained from PC3 and ARCaP(M) cells alone and in 

transwell with adipocytes after 48-hour co-culture. The media was heat-inactivated at 65 

°C for 8 minutes. Abcam’s L-lactate Detection Kit was used and conditioned media was 

assayed using a TECAN plate reader (535nm/590nm) according to manufacturer’s 
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instructions. Data were normalized to the total DNA or RNA concentrations in cell lysates. 

Experiments were done in triplicate and reported as mean ± SD.  

3.15 Seahorse analysis  

PC3 and ARCaP(M) cells were plated on a Collagen I matrix at concentrations of 

30,000 cells per well in XF24 Cell Microplates and cultured overnight. The following day, 

cells were treated with fresh DMEM medium or Co-culture CM (CCM) for 12 and 24 hours. 

One hour prior to reading the plate, the media was changed to DMEM containing 10 mM 

glucose and 2 mM glutamine. Basal readings were performed on the Seahorse analyzer 

and the third reading of each experiment was used. Experiments were done in triplicate 

with at least three wells per sample condition and reported as mean ± SD.  

3.16 Determination of mitochondrial membrane potential/intrinsic apoptosis  

The JC-1 probe (Thermofisher Scientific) was used to assess mitochondrial 

membrane potential as a measure mitochondrial integrity [125] Cells were plated in 96-

well black plates at a density of 5,000 cells/well and grown overnight. The following day, 

media was replaced with either fresh DMEM or CCM and cells were allowed to incubate 

for 12 and 24 hours. JC-1 probe was then added at a final concentration of 1 μM to the 

media and the plates were incubated for 20 minutes. The plates were then read at 

excitation and emission wavelengths of 535 nm and 595 nm, respectively, for the red 

fluorescence and excitation and emission wavelengths of 485 nm and 535 nm, 

respectively, for the green fluorescence. Data were normalized based on cell viability. 

Experiments were done in triplicate with quadruplicate wells per condition at each time 

point and shown as mean ± SD.64872  

3.17 Determination of cell viability  
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Calcein AM Assay (Trevigen) was used to assess cell viability. Cells were seeded in 

black-walled 96- well plates at a density of 5,000 cells/well and grown overnight. The 

following day, media was removed and fresh DMEM or CCM was added to the wells and 

the cells were incubated for 12 or 24 hours. The plate was then read at excitation and 

emission wavelengths of 490 nm and 520 nm, respectively. Experiments were done in at 

least triplicate with quadruplicate wells analyzed per experiment and shown as mean ± 

SD.  

3.18 Free glycerol assay analysis  

Conditioned media was obtained from adipocytes alone, adipocytes in transwell with 

PC3 or ARCaP(M) cells, or adipocytes treated with conditioned media from PC3 or 

ARCaP tumor cells and analyzed using manufacturer’s protocol for the AdipoLyze 

Lipolysis Detection Kit (Lonza). Experiments were done in triplicate and reposted as mean 

± SD.  

3.19 Triglyceride assay  

Tumor cells were grown in transwell with adipocytes in the presence or absence of 

10 μM Atglistatin. After 48 hours, adipocytes were collected as previously indicated and 

re-suspended in the Standard Diluent (provided in the Triglyceride assay kit; Cayman 

Chemical). Samples were sonicated and centrifuged. The supernatant was then used for 

the assay. All steps were performed according to manufacturer’s protocol. Experiments 

were done in triplicate and reported as mean ± SD.  

3.20 Activation of HIF-1α in vitro  

PC3 cells were pre-plated in 6-well plates and allowed to settle overnight. For 

pharmacological HIF-1α activation, cells were treated the following day with 150 μM 
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cobalt chloride (CoCl2). After 24 hours, cells were lysed, and processed for RNA analyses 

as described above. For establishment of hypoxic cultures, cells were plated in 6-well 

plates and allowed to settle overnight in normoxia, and then either maintained in normoxia 

(control cells) or grown in Biospherix hypoxia chamber (Biospherix, Parish, NY) under 1% 

O2 (hypoxic cells). After 24 hours, all cells were processed for RNA isolation as previously 

described.  

3.21 siRNA Approaches  

PC3 or ARCaP(M) cells were pre-plated in 6-well plates or on Transwell filters and 

grown overnight. The following day, when the cells reached ~70% confluency, a unique 

27mer siRNA duplex targeting HIF-1α transcripts (OriGene-SR302102) or Trilencer-27 

Universal scrambled negative control (Origene-SR30004) were added using RNAiMAX 

transfection reagent (Thermofisher Scientific) at a final concentration of 20 μM (based on 

manufacturer’s protocol). After 6 hours, cells were washed and moved into transwell co-

culture with differentiated bone marrow adipocytes or grown alone. After 24 hours, cells 

were collected and processed for RNA analyses as described above. Two unique 27mer 

siRNA duplexes that efficiently knocked down HIF-1α transcripts were used.  

 Following the same protocol, we used a unique 27mer siRNA duplex targeting IL-

1β transcripts (OriGene-XM_017003988) and the Trilencer-27 Universal scrambled 

negative control (OriGene-SR30004). 

3.22 In silico analyses  

The Oncomine database (OncomineTM v4.5: 729 datasets, 91,866 samples) was 

used for the analysis of primary (P) vs. metastatic (M) tumors by employing filters for 

selection of conditions and genes of interest (prostate cancer; metastasis vs. primary; 
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genes). Data were ordered by ‘overexpression’ and the threshold was adjusted to P-value 

< 1E-4; fold change, 2 and gene rank, top 10%. For each database, only genes that met 

the criteria for significance were reported.  

3.23 Statistical analyses  

Data were presented as means ± SD and statistically analyzed using unpaired 

student T-test. For three or more groups, one-way analysis of variance was used.  

3.24 Lipidomics analyses 

PC3 and ARCaP(M) cells were plated in 6 well plates or transwell inserts for co-

culture with bone marrow adipocytes and allowed to grow for 48 hours in complete media.  

After 48 hours, the media was changed to serum-free DMEM overnight.  The subsequent 

day, media was collected from tumor cells alone, adipocytes alone, and tumor/adipocyte 

co-cultures and delivered to the lipidomics core facility at Wayne State University.  LC-

MS methods available through our Lipidomics core (http://lipidomics.wayne.edu) cover 

the entire range of fatty acyl lipidome. Using Information Dependent Acquisition (IDA) 

mass spectrometry, we collected the mass spectra of differentially biosynthesized lipids 

for further structural characterization and identification. The data was analyzed by 

MarkerView (a multivariate analysis software to analyze the mass spectral data by 

ABSCIEX) to identify compounds that significantly (p<0.05) differ between samples.  

Additionally, cell lysates were given to the lipidomics core to measure intracellular 

sphingosine-1-phosphate levels.  Cells were washed 3 times with PBS, trypsinized, 

collected, spun down, washed once with PBS, and then snap-frozen with liquid nitrogen 

and delivered to the core for analysis. 

3.25 IL-1β Treatment and Inhibition 
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 A-9-11-08 cells were differentiated in 6 well plates (See Cell Lines section above) 

into mature adipocytes.  Adipocytes were then treated with 5ng/mL recombinant IL-1β 

(R&D Systems) for 48 hours and collected for RNA analyses as described above.   

 To assess IL-1β inhibition with a blocking antibody or receptor antagonist, PC3 

cells were plates alone in a 6 well plate or in transwell co-culture in complete media in the 

presence or absence of an IL-1β Blocking Antibody (R&D Systems; 1 μg/ml) or IL-1R 

Antagonist (Sigma, 1 μg/ml).  Adipocytes were also grown in alone conditioned in 

complete DMEM with or without the blocking antibody or receptor antagonist in order to 

assess changes in adipocytes in response to IL-1β inhibition. 

3.26 EP Receptor Inhibitors  

 PC3 cells were grown in 6 well plates or in transwell inserts with bone marrow 

adipocytes as previously described in the presence or absence of the EP1-3 inhibitor, 

AH6809 (Cayman, 2 µM), the EP2 inhibitor, TG4-155 (Cayman, 1 µM), or the EP4 

inhibitor GW628368X (Cayman, 1 µM) for 48 hours.  Cells were collected for RNA and 

protein analysis as previously described. 

 

3.27 PGE2 and 15-(S)-15-Methyl PGE2 Treatment 

 PC3 cells were plated in 6 well plates and allowed to settle overnight in complete 

DMEM.  The following day, the media was removed and serum-free media was added 

after washing the cells with PBS.  The subsequent day cells were treated with either PGE2 

(Cayman, 1 µM) or 15-(S)-15-Methyl PGE2 (Cayman, 1 µM) or DMSO control in the 

presence or absence of the EP receptor inhibitors (described in 6.26) for 24 hours. After 
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24 hours of treatment, cells were collected and processed for RNA or protein expression 

as described above.   

3.28 SPHK1 Inhibition 

 PC3 cells were grown in 6 well plates or in transwell inserts overnight and allowed 

to settle.  Adipocytes were pre-treated with SKI2 (Sigma, 5 µM) overnight.  The following 

day, the tumor cells grown in the transwell inserts were moved into co-cultures with the 

adipocytes and fresh, complete media with the addition of DMSO or 5 µM SKI2 and 

allowed to grow for 48 hours.  Cells were harvested and analyzed for RNA and protein 

expression as described above.   

3.29 S1P Receptor Inhibition 

 PC3 cells were grown alone or in transwell inserts in co-culture with bone marrow 

adipocytes in complete medium containing DMSO, JTE-013 (Cayman, 1 µM), a selective 

S1PR4 antagonist, or VPC23019 (Cayman, 20 µM), a S1PR1-3 antagonist for 48 hours.  

After 48 hours, the cells were collected and processed for RNA and protein expression 

as previously detailed. 

3.30 S1P Treatment/S1PR Agonists 

 S1P (Cayman) was resuspended in ethanol in 20 µL aliquots of 10 µM. Samples 

were placed in a SpeedVac for 2 hours or until liquid evaporated.  Dry pellets of S1P were 

stored in -20°C and fresh S1P was used for each experiment.  For experimental treatment 

with S1P, aliquots resuspended in 20 µL of 0.04% BSA in PBS and sonicated for 5 

seconds to form micelles and added to PC3 cells plated in 6-well plates in serum-free 

media. For receptor agonist treatment, PC3 cells were grown in 6 well plates overnight 

and allowed to settle in complete medium.  The following day, the media was removed 
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and, after a PBS wash, was replaced with serum-free media overnight.  The following 

day, agonists for S1PR1 (SEW2857, Cayman, 1 µM), S1PR2 (CYM5520, Cayman, 3 µM), 

S1PR3 (CYM5541, Cayman, 1 µM), S1PR4 (CYM50308, Cayman, 1 µM), S1P, or DMSO 

were given to the cells for 24 hours.  Also, to assess the optimal concentration of S1P 

treatment, PC3 and ARCaP(M) cells were grown in 6 well plates overnight and allowed 

to settle.  The following day the complete medium was replaced with serum-free media 

after a PBS wash.  The next day, cells were treated with 100 nM, 1 µM, or 10 µM S1P for 

24 hours and collected for RNA analysis as previously discussed.  To assess S1PR 

signaling, PC3 and ARCaP(M) cells were grown in 60 mm dishes overnight and allowed 

to settle.  The following day the complete medium was replaced with serum-free media 

after a PBS wash.  The next day, cells were treated with 10 µM S1P for 0, 10, 20, and 30 

minutes and collected for protein analysis as previously described. Lastly, PC3 cells were 

grown in complete medium, complete medium with 10 µM S1P, Adipo CM, Adipo CM + 

10 µM S1P, or CCM for 24 hours and collected for RNA analysis. 

3.31 Stable SPHK1 Overexpression in Tumor Cells 

PC3 cells were plated in 6-well plates. The following day, when the cells reached 

~70% confluency, a plasmid encoding an overexpressing vector for SPHK1 (Generously 

provided by Dr. M. Lee, WSU) was added using Lipofectamin3000 transfection reagent 

(Thermofisher Scientific) at a final volume of 3.75 µL or 7.5 µL (based on manufacturer’s 

protocol). After 48 hours, the cells were trypsinzed and re-plated into a 100 mm dish and 

the selecting agent, neomycin (Thermofisher Scientific), was added.  Cell growth was 

monitored and single cell clones were selected using cloning rings and re-plated into 24-

well plates with neomycin.  Once they became confluent in the 24-well plates, the cells 
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were trypsinized and re-plated into a 6-well plate with neomycin and grown to confluency.  

At confluency, the cells were collected for RNA expression as previously described. 

3.32 Colony Formation Assays 

 PC3 and ARCaP(M) cells were plated in 6 well-plates or transwell inserts with 

bone marrow adipocytes in complete media.  After 48 hours grown in alone conditions 

or with adipocytes, cells were trypsinized and re-plated in 6-well plates at a density of 

1,000 cells/well.  Cells were monitored and after 5 days of growth, media was changed 

to replenish nutrients and allowed to grow for 5 more days.  At the end of the 10 days, 

Crystal VioletTM stain (Sigma-Aldrich) was used to stain the cells and the colonies were 

imaged. 

3.33 Mitochondrial Fractionation 

 PC3 cells were plated in 6-well plates or in tanswell inserts with bone marrow 

adipocytes in complete DMEM.  After 48 hours cells were harvested for mitochondrial 

fractionation.  To isolate mitochondria, cells were trypsinzed and washed with PBS and 

centrifugated at max speed for 5 minutes to produce a cell pellet.  90 µL of Tris-buffer (10 

mM Tris. pH 7.6) was added to the cell pellet and sonicated to homogenize the mixture 

for 15 seconds.  Immediately after homogenization, 20 µL of 1.5 M sucrose in SEKT buffer 

(250 mM sucrose, 40 mM KCl, 20 mM Tris-HCL, 2 mM EGTA, pH 7.6) was added to the 

mixture.  Then, centrifuge at 600xg for 10 minutes at 4°C and remove the supernatant 

which is the mitochondrial fraction.  Add 70 µL of SEKT buffer to the remaining pellet and 

collect as the “non-mitochondrial” fraction.  Then, centrifuge supernatant mitochondrial 

fraction at 10,000Xg for 10 minutes at 4°C and discard the supernatant.  We then 

resuspended the mitochondrial pellet in 500 µL of SEKT buffer and centrifuged for an 
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additional 10 minutes at 10,000Xg at 4°C.  Finally, the mitochondrial pellet was 

resuspended in 70 µL of SEKT buffer and stored in -80°C. 

3.34 Chemotherapy Treatment 

 PC3 cells were plated in 96-well plates at a density of 5,000 cells/well and grown 

overnight.  The following day, Docetaxel (Generously provided by Dr. Elisabeth Heath) 

was given to the cells at various concentrations.  The cells were treated for 48 hours in 

normoxia or hypoxia (1% O2) and Calcein AM viability assays were performed (See 

Above).  
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CHAPTER 4: BONE MARROW ADIPOCYTES PROMOTE THE WARBURG 
PHENOTYPE IN METASTATIC PROSTATE CANCER CELLS THROUGH THE 

ACTIVATION OF HIF-1α 
 

4.1 Introduction: 

Altered metabolic phenotype and the ability to adapt and thrive in harsh 

microenvironments are features that distinguish cancer cells from normal cells [295, 296]. 

It is well-accepted that most tumor cells rely on accelerated glucose metabolism for 

support of anabolic processes such as lipid, protein and nucleic acid syntheses, and 

consequently for growth and survival [159, 297].  This phenomenon, known as the 

“Warburg Effect” is one of the hallmarks of cancer, and the glycolytic fueling of growth is 

thought to be the key feature behind the progression of most tumors [298].  However, it 

is becoming increasingly apparent that the metabolic phenotype of a cancer cell can vary 

depending on the tumor type and the stage of the disease.  The possession of a distinct 

metabolic phenotype is especially evident in primary prostate cancers, which unlike other 

solid tumors, do not undergo the classical “glycolytic switch” [127, 299].  Instead, these 

tumors generally exhibit activation of β-oxidation pathways as the means of supporting 

tumor cell viability under conditions of energy stress [156, 300-302].  Primary prostate 

cancer cells have unique abilities to exploit fatty acid metabolic pathways to foster 

malignant transformation.  The uptake of lipids from the microenvironment, aberrant de 

novo lipid synthesis and alterations in fatty acid catabolism and steroidogenesis pathways 

are now emerging as key mechanisms linking dysregulated lipid metabolism in the 

primary prostate tumor with subsequent progression and reduced survival [299, 303, 

304].  In contrast to the primary disease, however, metabolic phenotype of metastatic 

prostate cancers is not well-understood.  The acquisition of a glycolytic phenotype in 
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advanced stages of prostate cancer has been suggested by the reports of increased 

accumulation of fluorodeoxyglucose (FDG) [305] and the immunohistochemical evidence 

of expression of glycolytic markers and monocarboxylate transporters in advanced 

tumors. The mechanisms contributing to metabolic adaptation and progression of 

metastatic prostate tumors in bone has not, however, been previously explored and are 

not known.  

Metastatic growth in bone is a complex process involving reciprocal interactions 

between the tumor cells and the host bone microenvironment.  One of the most abundant, 

yet overlooked components of the metastatic marrow niche are the bone marrow 

adipocytes [24, 25, 27].  Adipocyte numbers in the marrow increase with age, obesity and 

metabolic disorders [26, 27, 52, 189, 306, 307], all of which are also risk factors for 

metastatic disease [308-312]. We and others have shown previously that marrow fat cells, 

as highly metabolically active cells, can serve as a source of lipids for cancer cells, and 

promote growth, invasion, and aggressiveness of metastatic tumors in bone [24, 150, 

313]. Based on the growing evidence from cancers that grow in adipocyte-rich tissues, it 

is becoming apparent that one way adipocytes can affect tumor cell behavior is through 

modulation of cancer cell metabolism [314]. Although direct effects of adipocyte-supplied 

lipids on tumor metabolism have not been investigated in a context of metastatic prostate 

cancer, there have been studies in other cancers demonstrating that some lipids do have 

the ability to enhance the Warburg Effect in tumor cells [315-319].  Reciprocally, tumor 

cells have been shown to act as metabolic parasites by inducing lipolysis in adipocytes 

[155, 320].  This is important in the context of tumor metabolism regulation as the lipolysis-

generated glycerol can feed into the glycolytic pathway [321-323] and the released fatty 
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acids can be oxidized through β-oxidation [324, 325].  As active and vital components of 

the bone tumor microenvironment, adipocytes are likely to be involved in the metabolic 

adaptation of tumors in the metastatic niche. However, the concept of metabolic coupling 

between marrow adipocytes and tumor cells leading to metabolic reprogramming in the 

tumor has not been explored before.   

One of the principal mechanisms behind metabolic reprogramming is hypoxic 

stress and activation of hypoxia inducible factor (HIF) [326].  HIF-1 stimulates the 

conversion of glucose to pyruvate and lactate by upregulating key enzymes involved in 

glucose transport, glycolysis, and lactate extrusion and by decreasing conversion of 

pyruvate to acetyl-CoA through transactivation of pyruvate dehydrogenase kinase 

(PDK1) and subsequent inhibition of pyruvate dehydrogenase (PDH) [326].  Regulation 

of lactate dehydrogenase (LDHa) and PDK1 by HIF-1 keeps the pyruvate away from 

mitochondria, and thus depresses mitochondrial respiration [297].  Under normoxic 

conditions HIF-1 is rapidly degraded by the ubiquitin-proteasome pathway [327]. 

Decreased oxygen availability prevents HIF-1 hydroxylation leading to its stabilization and 

activation of downstream pathways [296].  In cancer cells, HIF-1 stabilization and 

activation can occur during normoxia via multiple oxygen-independent pathways [328].  

This phenomenon, termed “pseudohypoxia” is thought to facilitate adaptation of tumor 

cells to harsh conditions and to promote survival and resistance to therapy [329-331].  

Whether HIF-1-dependent signaling plays a role in metabolic reprogramming of prostate 

tumor cells in bone is not known. 

The objective of this study was to elucidate the role of bone marrow adiposity in 

the modulation of tumor metabolism and adaptation within the bone microenvironment.  
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Using in vivo models of diet induced marrow adiposity in combination with in vitro models 

of paracrine, autocrine, and endocrine signaling between bone marrow adipocytes and 

prostate cancer cells, we show that bone marrow adipocytes are responsible for 

enhancing the glycolytic phenotype of metastatic prostate cancer cells. We demonstrate 

that bidirectional interaction between adipocytes and tumor cells leads to increased 

expression of glycolytic enzymes, increased lactate production, and decreased 

mitochondrial oxidative phosphorylation in tumor cells via necessary cancer cell-initiated 

paracrine crosstalk.  We also reveal that the observed metabolic signature in tumor cells 

exposed to adipocytes mimics the expression patterns seen in patients with metastatic 

disease.  These results offer potential mechanisms underlying metabolic adaptation of 

metastatic tumors in bone and implicate bone marrow adipocytes, a cell type so 

abundantly present in the skeleton especially in advanced age and obesity, as viable 

culprits in the progression of this currently incurable disease. 

4.2 RESULTS 

4.2.1 In silico analysis of glycolysis-associated genes in prostate cancer patients 

The metabolic phenotype of primary prostate tumors has been well-described 

[156, 300-302]; however, its characteristics in relation to the glycolytic pathway at the 

metastatic site are not well-understood. Therefore, we first performed an Oncomine 

analysis of primary and metastatic prostate tumors and compared mRNA expression of 

genes that encode for enzymes/proteins known to be involved in different aspects of 

glucose metabolism and Warburg metabolism. Specifically, thirteen available Oncomine 

datasets were examined for the expression of genes covering a broad spectrum of 

metabolic responses and associated with glucose transport 
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[glucose transporter 1 (GLUT1)], glycolysis [hexokinase 2 (HK2) and enolase 2 (ENO2)], 

Warburg metabolism [pyruvate dehydrogenase kinase 1 (PDK1) and lactate 

dehydrogenase (LDHa)], and hypoxia [carbonic anhydrase 9 (CA9) and vascular 

endothelial growth factor (VEGF)]. Our analyses revealed significant differences in the 

metabolic phenotype between primary and secondary sites observable in several prostate 

cancer datasets (Table 1). The Grasso Prostate dataset, which contains most metastatic 

samples, showed the most significant upward changes in the expression of PDK1, ENO2, 

HK2, GLUT1, and LDHa (Figure 1A), as well as many other genes associated with the 

glycolysis pathway (Table 1). Additional analyses of prostate datasets available through 

cbioportal.com revealed that copy number alterations/mutations/deletions in these genes 

are infrequent in prostate cancer (Figure 2), pointing to the mRNA overexpression as the 

main mechanism behind the acquisition of metabolic phenotype. In addition to glycolytic 

markers, HIF-1 target genes, CA9 and VEGF were also significantly upregulated in 

metastatic tissue (Figure 1A, Figure 2, and Table 2). Since HIF-1 is well-known to regulate 

glycolysis [326], these results further underscored the apparent metabolic differences 

between primary and secondary prostate cancer and prompted us to investigate the 

contribution of the metastatic environment to the tumor metabolic phenotype in bone. 

4.2.2 Bone marrow adiposity contributes to the in vivo glycolytic phenotype in 

prostate bone tumors 

One important cell type credited with the ability to alter tumor metabolism is the 

adipocyte, whose effects on the phenotype of a tumor cell have been predominantly 

reported for colorectal and ovarian cancers [315, 343, 344].  Given the abundance of 

adipocytes in bone marrow, we hypothesized that they are likely to have similar  
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Table 1: Oncomine gene analysis of 13 prostate datasets comparing upregulated 
genes involved in glycolysis and hypoxic response in prostate cancer patients with 
primary and metastatic disease. Enolase (ENO2), hexokinase 2 (HK2), and glucose 
transporter 1 (GLUT1) were upregulated in 3/13, 4/9, and 5/13 available datasets, 
respectively. Warburg-associated enzymes lactate dehydrogenase (LDHa) and pyruvate 
dehydrogenase kinase 1 (PDK1) were upregulated in metastatic sites of patients 
compared to primary prostate cancer in 8/13 and 8/12 of the datasets, respectively. 
Hypoxic responsive genes carbonic anhydrase 9 (CA9) and vascular endothelial growth 
factor alpha (VEGFA) were upregulated in 6/12 and 5/13 metastatic tumors when 
compared to primary tumors. (n = number of samples; P = Primary site; M = Metastatic 
site). 
 

Gene Prostate  Cancer  Fold 

Change 

P Value n 

 

ENO2 

(3/13) 

Grasso [332] 

LaTulippe [333] 

Varambally [334] 

2.22 

1.45 

6.122 

4.33E-4 

0.034 

0.009 

P: 59; M: 35 

P: 23; M: 9 

P: 7; M: 6 

LDHa 

(8/13) 

Grasso [332] 

LaTulippe [333] 

Holzbeierlein [335] 

Chandran [336] 

Ramaswamy 2 [337] 

Ramaswamy [338] 

Yu [339] 

Varambally [334] 

1.60 

1.78 

1.73 

1.68 

3.06 

2.60 

3.052 

2.176 

0.001 

0.008 

0.009 

0.003 

0.003 

0.009 

2.47E-7 

7.25E-4 

P: 59; M: 35 

P: 23; M: 9 

P: 40; M: 9 

P: 10; M: 21 

P: 10; M: 3 

P: 10; M: 4 

P: 64; M: 24 

P: 7; M: 6 

PDK1 

(8/12) 

Grasso [332] 

LaTulippe [333] 

Chandran 

[336][336][336][336][336][336][33

6][336][336][336][336] 

Lapointe [340] 

Vanaja  [341] 

Yu [339] 

Tamura [342] 

Varambally [334] 

2.96 

2.78 

1.44 

1.63 

1.114 

1.370 

2.152 

2.167 

1.27E-7 

0.005 

0.002 

0.015 

0.005 

9.99E-8 

0.021 

0.030 

P: 59; M: 35 

P: 23; M: 9 

P: 10; M: 21 

P: 62; M: 9 

P: 27; M: 5 

P: 64; M: 24 

P: 23; M: 12 

P: 7; M: 6 

HK2 

(4/9) 

Grasso [332] 

Varambally [334] 

Ramaswamy 2 [337] 

Chandran  [336] 

4.755 

4.427 

9.507 

3.291 

3.53E-9 

4.59E-4 

0.021 

3.40E-6 

P: 59; M: 35 

P: 7; M: 6 

P: 10; M: 3 

P: 10; M: 21 

GLUT1 

(5/13) 

Varambally[334] 

Ramaswamy[338] 

Ramaswamy 2[337] 

1.633 

2.049 

2.132 

5.74E-5 

0.017 

0.019 

P: 7; M: 6 

P: 10; M: 4 

P: 10; M: 3 
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Yu [339] 

Grasso [332] 

1.088 

2.048 

4.63E-4 

1.51E-5 

P: 64; M: 24 

P: 59; M: 35 

CA9 

(6/12) 

Ramaswamy [338] 

Ramaswamy 2 [337] 

Varambally [334] 

Yu [339] 

Grasso [332] 

Chandran [336] 

10.458 

11.031 

3.131 

1.109 

3.363 

1.487 

0.010 

0.010 

0.003 

0.003 

4.79E-6 

1.22E-4 

P: 10; M: 4 

P: 10; M: 3 

P: 7; M: 6 

P: 64; M: 24 

P: 59; M: 35 

P: 10; M: 21 

VEGFA 

(5/13) 

Grasso [332] 

Varambally [334] 

Tamura [342] 

Yu [339] 

Chandran [336] 

7.552 

3.750 

2.443 

1.594 

2.488 

1.55E-14 

1.10E-5 

0.014 

5.14E-5 

9.27E-4 

P: 59; M: 35 

P: 7; M: 6 

P: 23; M: 12 

P: 64; M: 24 

P: 10; M: 21 
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Figure 1: Warburg effect-associated genes are upregulated in patients with 
metastatic prostate cancer and in bone tumors from mice with enhanced marrow 
adiposity. A. Oncomine gene analysis comparing the expression of metabolic genes 
(VEGF, PKM2, HK2, PDK1, CA9, SCL2A1 (GLUT1), ENO2, LDHA) in patient samples 
collected from metastatic or primary sites.  Data were ordered by “overexpression” and 
the threshold was adjusted to P-value < 1E-4; fold change, 2 and gene rank, top 10%. B. 
Taqman RT-PCR (Life Technologies) analysis of expression of Warburg Effect-
associated genes ENO2, LHDa, PDK1, HK2, and GLUT1 in PC3 (left) and ARCaP(M) 
(right) bone tumors or C. subcutaneous tumors from LFD- and HFD-fed mice.  Data were 
normalized to human EPCAM and represent a mean of a minimum of 3 mice/group + SD.  
Values * P < 0.05; ** P < 0.01 are considered statistically significant. 
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Table 2: Oncomine gene analysis of Grasso Prostate database comparing 
upregulated genes involved in glycolysis in prostate cancer patients with primary 
and metastatic disease. Significantly upregulated genes are shown with a p value of p 
< 0.05. 
 

GENE FOLD 

CHANGE 

P-VALUE 

 

Triosephosphate Isomerase 1 (TPI1) 2.31 2.30E-13 

Pyruvate Kinase M2 (PKM2) 2.67 1.47E-9 

Hexokinase 2 (HK2) 4.75 3.53E-9 

Enolase 3 (ENO3) 2.85 1.05E-8 

Glucose-6-Phosphate Isomerase (GPI) 2.01 1.43E-8 

Aldolase C (ALDOC) 2.69 2.41E-8 

Dihydrolipoamide 5-Acetyltransferase 

(DLAT) 

1.95 3.02E-8 

Phosphoglycerate Kinase 1 (PGK1) 6.77 8.17E-8 

Aldolase A (ALDOA) 1.85 1.16E-7 

Transmembrane Protein 54 (TMEM54) 1.99 3.10E-7 

Pyruvate Dehydrogenase Alpha 1 (PDHA1) 1.69 6.20E-7 

Aldolase B (ALDOB) 12.85 1.99E-6 

Oxoglutarate Dehydrogenase (OGDH) 1.55 1.84E-5 

Phosphoglycerate Mutase 1 (PGAM1) 1.69 2.12E-5 

Hexokinase Domain Containing 1 (HKDC1) 2.37 1.23E-4 

Glyceraldehyde-3-Phosphate 

Dehydrogenase (GAPDH) 

1.57 2.63E-4 

Enolase 2 (ENO2) 2.22 4.33E-4 

Phosphoglycerate Mutase 2 (PGAM2) 1.79 4.99E-4 

Lactate Dehydrogenase Alpha (LDHA) 1.60 0.001 

Phosphofructokinase, Platelet (PFKP) 1.63 0.001 

Hexokinase 3 (HK3) 1.45 0.004 

IQ Motif Containing D (IQCD) 1.56 0.004 

Pyruvate Kinase, Liver and RBC (PKLR) 1.29 0.013 

Glucokinase (GCK) 1.28 0.020 

Glyceraldehyde-3-

PhosphateDehydrogenase, Spermatogenic 

(GAPDHS) 

1.68 0.021 

Lactate Dehydrogenase A-Like 6A 

(LDHAL6A) 

1.64 0.023 
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Figure 2: CBioPortal analysis of genetic copy number alterations (CNA) and 

mutations in glycolysis associated genes enolase (ENO2), lactate dehydrogenase 

alpha (LDHa), pyruvate dehydrogenase kinase 1 (PDK1), hexokinase 2 (HK2), and 

glucose transporter 1 (SLC2A1), and hypoxic response genes carbonic 

anhydrase 9 (CA9) and vascular endothelial growth factor A (VEGFA) across 

three different datasets of metastatic prostate cancer patients (126, 137-140). 

Vertical bars represent individual patients. If there are genetic alterations within the 

gene of interest, a red bar represents amplification of the gene, blue bars depict deep 

deletions within the gene, and green bars signify mutations within the gene. Gray bars 

represent unaffected patients. 
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metabolism-modulating effects on metastatic prostate cancer cells. To study effects of 

marrow fat cells on prostate tumor growth and progression in bone, we utilized a well-

documented approach of inducing marrow adiposity with high fat diet (HFD) [27, 37, 292, 

345].  We have shown previously that intratibial implantation of prostate cancer cells into 

this model results in accelerated tumor growth and extensive bone destruction, 

suggesting potential tumor-supportive effects of marrow adipocytes [294, 345]. To 

determine whether this adiposity-driven tumor progression in bone is associated with an 

altered metabolic phenotype, we analyzed mRNA expression of glycolysis-associated 

genes in intratibial PC3 and ARCaP(M) tumors from low fat diet (LFD) and HFD mice 

using human-specific Taqman probes. Our results revealed significantly increased 

transcript levels of PDK1, ENO2, HK2, GLUT1, and LDHa in tumors grown under 

conditions of HFD-induced marrow adiposity (Figure 1B), whereas the levels of 

mitochondrial enzymes citrate synthase (CS) and isocitrate dehydrogenase 2 (IDH2), 

remained unaffected by diet-induced marrow adiposity (Figure 10). Notably, this 

enhanced glycolytic phenotype was also observed in bone tumors from mice, in which 

marrow adiposity was induced with HFD, but the animals were switched to LFD upon 

tumor implantation into the tibia (Figure 3). This approach allowed for tumor growth in 

adipocyte-rich marrow without systemic effects of HFD and revealed that expression of 

Warburg genes in tumor cells does not appear to be a direct effect of HFD. Furthermore, 

in contrast to bone tumors, expression of glycolysis-associated genes was not 

significantly altered in subcutaneous tumors from HFD mice in comparison to LFD mice 

(Figure 1C), despite the fact that HFD enhanced the growth and progression of these 

tumors, as we have demonstrated previously [345]. Collectively, these findings suggest 
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that Warburg metabolism might be especially important for prostate tumor progression in 

bone and implicate marrow adiposity as a potential regulator of metabolic adaptation in 

the skeleton. 

4.2.3 Bone marrow adipocytes alter the metabolism of prostate cancer cells in vitro 

To determine if the glycolytic phenotype observed in intratibial tumors in vivo is 

indeed a direct effect of bone marrow adipocytes and to specifically investigate the 

mechanisms behind this metabolic regulation, we utilized in vitro models of tumor cell-

adipocyte interactions. First, using human-specific Taqman RT PCR probes, we 

examined the expression of glycolytic markers ENO2, LDHa, PDK1, HK2, and GLUT1 in 

PC3 and ARCaP(M) cells grown in direct contact co-culture with bone marrow adipocytes 

(Figure 4A). Transcript levels of nearly all investigated markers were significantly 

increased in tumor cells grown in co-culture as opposed to those cultured alone (Figure 

4B). Next, to determine if this change in metabolic phenotype requires direct interaction 

with adipocytes, we employed a transwell system in which adipocytes were differentiated 

in the bottom chamber and tumor cells were then plated on top of the insert and cultured 

together for 48 hours. This allowed the two cell types to share the media without direct 

interaction (Figure 4C). Mirroring the findings from the direct co-culture, gene expression 

of ENO2, LDHa, PDK1, HK2, and GLUT1 was significantly increased in both PCa cell 

lines co-cultured with marrow adipocytes (Figure 4D). Notably, PCa cells grown in 

transwell co-culture with bone marrow stromal cells that were not induced to differentiate 

into adipocytes had no effect on the expression of glycolysis-associated genes (Figure 

5), suggesting that this observed metabolic switch in tumor cells is indeed adipocyte-

driven. This enhancement of a glycolytic phenotype upon interaction with adipocytes was  
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Figure 3: Comparative RT-PCR analysis of Warburg Effect-associated genes in 

bone tumors from mice on LFD vs. mice with HFD-induced marrow adiposity that 

were switched to LFD upon tumor implantation into the tibia (HFD to LFD). Data, 

showing persisting glycolytic phenotype in ‘HFD to LFD’ mice were normalized to 

human EPCAM and represent a mean of a minimum of 3 mice/group ± SD. Values * p 

<0.05; ** p <0.01 are considered statistically significant.   
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Figure 4: Bone marrow adipocytes enhance a glycolytic phenotype of prostate 
cancer cells in direct co-culture and in transwell co-culture in vitro. A. Schematic 
representation of a direct co-culture of tumor cells and bone marrow adipocytes. B. 
Taqman RT-PCR analysis of ENO2, LDHa, PDK1, HK2, and GLUT1 expression in PC3 
(Top) and ARCaP(M) (Bottom) cells cultured directly with bone marrow adipocytes. Data 
are normalized to HPRT1 and shown relative to control. C. Schematic representation of 
transwell co-cultures of tumor cells and bone marrow adipocytes. D. Taqman RT-PCR of 
ENO2, LDHa, PDK1, HK2, and GLUT1 expression in PC3 (top) and ARCaP(M) (bottom) 
in transwell co-culture. E. Western blot for ENO2, LDHa, HK2, phospho-PDH, and PDK1 
in PC3 (left) and ARCaP(M) (right) exposed to bone marrow adipocytes in transwell co-
culture. Beta-actin was used as loading control. F. Analysis of lactate secreted (Abcam) 
by PC3 (left) and ARCaP(M) (right) cells exposed to bone marrow adipocytes in transwell 
co-culture. Results represent a mean of at least 3 independent experiments ± SD. Values 
* P < 0.05; ** P < 0.01, *** P < 0.001 are considered statistically significant. 
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confirmed by the marked increases in the protein expression of ENO2, LDHa, PDK1, and 

HK2 (Figure 4E). We also observed increased levels of phosphorylated pyruvate 

dehydrogenase (p-PDH) in cells grown in transwell co-culture, which indicates elevated 

PDK1 activity and a shift in glucose metabolism from pyruvate to lactate (Figure 4E). To 

test this functionally we performed lactate analyses of media conditioned by the tumor 

cells in the absence or presence of adipocytes as a conventional, well-accepted approach 

for measuring extracellular acidification and glycolytic shift [346, 347].  Our results 

revealed significant increases in lactate secretion by the tumor cells exposed to 

adipocytes (Figure 4F), while contribution of adipocytes to lactate secretion was not 

significant (data not shown). This provided further evidence of acquired Warburg 

phenotype in tumor cells exposed to adipocytes. We also observed an augmented 

expression of glycolytic genes in other prostate cell lines (i.e., DU145 and C4-2B) grown 

in transwell co-culture with fat cells (Figure 6), confirming the important contribution of 

marrow adipocytes to the metabolic phenotype of prostate tumors in bone. 

The fact that both direct and transwell co-culture with adipocytes induced a 

glycolytic phenotype in tumor cells suggested that this process does not require physical 

interaction between the tumor cells and adipocytes. Therefore, we next examined 

whether the media conditioned by the marrow adipocytes alone (Adipo CM; Figure 7A) 

can bring on similar metabolic changes in tumor cells as observed in transwell co-culture. 

Interestingly, no changes in the mRNA expression of ENO2, LDHa, PDK1, 

HK2, and GLUT1 were observed in either of the PCa cell lines in response to Adipo CM 

(Figure 7B). However, when the adipocytes were directly co-cultured with PC3 or 

ARCaP(M) cells for 24 hours prior to the collection of conditioned media, and then the co-
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culture conditioned media was used to treat the tumor cells (Adipo CCM; Figure 7C), a 

significant upregulation of glycolysis-associated genes was observed in both tumor lines 

(Figure 7D). This altered gene expression was mirrored by the increased levels of 

glycolysis-associated proteins (Figure 7E), suggesting that paracrine signaling is required 

between the adipocytes and tumor cells for the subsequent metabolic shift towards the 

glycolytic phenotype. Interestingly, inactivation of proteins in the co-culture media by 

boiling did not reduce the expression of glycolytic genes (Figure 8), suggesting that the 

observed Warburg phenomenon might be driven by lipid rather than protein mediators. 

4.2.4 Functional evidence of enhanced glycolytic phenotype in response to marrow 

adipocytes 

The increased expression of glycolytic genes and proteins in tumor cells exposed to 

adipocytes, and significantly elevated levels of lactate in transwell co-cultures, clearly 

indicated augmented glycolytic activity in tumor cells interacting with adipocytes. An 

enhanced glycolytic phenotype in cells undergoing Warburg metabolism can often be 

associated with dysfunction in mitochondrial activity and consequently reduced rates of 

oxidative phosphorylation (OXPHOS) [348].  To determine if this is true in our system we 

performed an XFe Seahorse analysis in tumor cells grown in the absence or presence of 

Adipo CCM and used oxygen consumption rate (OCR) as a tool to quantify OXPHOS. 

Significantly reduced OCR was detected in both PC3 and ARCaP(M) cells exposed to 

Adipo CCM for 12 hours. (Figure 9A). A decrease in OCR was also observable at 24 

hours and did not appear to be due to a reduction in mitochondrial integrity, since there 

were no significant changes in JC-1 fluorescence, indicating that membrane matrices 

remained intact (Figure 9B). This was further supported by the lack of significant changes  
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Figure 5. Bone marrow stromal cells (pre-adipocytes) do not induce Warburg 

Effect-associated genes. Taqman RT-PCR analysis of ENO2, LDHa, PDK1, HK2, and 

GLUT1 in PC3 cells grown in transwell co-culture with pre-adipocytes. Data are 

normalized to HPRT1 and shown as increase relative to control. Results represent a 

mean of at least 3 independent experiments ± SD. 
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Figure 6. Bone marrow adipocytes enhance Warburg Effect in DU145 and C4-2B 

cells. Taqman RT-PCR analysis of ENO2, PDK1, and HK2 in DU145 (top) and C4-2B 

(bottom) cells cultured alone or in transwell co-culture with bone marrow adipocytes. 

Data are normalized to HPRT1 and shown as increase relative to control. Results 

represent a mean of at least 3 independent experiments ± SD. Values * p < 0.05; ** p < 

0.001 are considered statistically significant. 



68 
 

 

 
 
 
 
 
 
Figure 7: Paracrine signaling between PCa cells and bone marrow adipocytes is 
required for the induction of glycolytic gene and protein expression in PCa cells. 
A. Schematic representation of tumor cells treated with media conditioned by bone 
marrow adipocytes (Adipo CM). B. Taqman RT-PCR analysis of ENO2, LDHa, PDK1, 
HK2, and GLUT1 in PC3 (top) and ARCaP(M) (bottom) cells in the presence or absence 
of Adipo CM. Data are normalized to HPRT1 and shown as increase relative to control. 
C. Schematic representation of tumor cell- adipocyte co-culture system (CCM). D. 
Taqman RT PCR analysis of mRNA expression of ENO2, LDHa, PDK1, HK2, and GLUT1 
in PC3 (top) and ARCaP(M) (bottom) cells in the presence of CCM. E. Western blot 
analysis of ENO2, LDHa, HK2, and phospho-PDH in PC3 (left) and ARCaP(M) (right) in 
the presence of CCM. Beta-actin was used as a loading control (bottom). Results 
represent a mean of at least 3 independent experiments ± SD. Values * P < 0.05; ** P < 
0.01 are considered statistically significant. 
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Figure 8. Warburg phenotype in prostate cancer cells is driven by adipocyte-

derived lipids. Taqman RT-PCR analysis of ENO2, PDK1, HK2, and GLUT1 in PC3 (top) 

and ARCaP(M) (bottom) in the presence or absence of co-culture conditioned media 

(CCM) and boiled co-culture conditioned media (boiled CCM). Data are normalized to 

HPRT1 and shown as increase relative to control. Results represent a mean of at least 3 

independent experiments ± SD. Values * p < 0.05; ** p < 0.01 are considered statistically 

significant. 
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in expression of two mitochondrial enzymes, CS and IDH2 in PCa cells exposed to Adipo 

CCM (Figure 9C), a result mirroring their unaltered expression in vivo (Figure 10). 

Since oxidative phosphorylation is much more efficient at producing copious 

amounts of ATP than glycolysis, a decrease in OXPHOS activity should expectedly result 

in a depletion of cellular ATP levels. Indeed, exposure of PC3 and ARCaP(M) cells to 

Adipo CCM for 12 hours led to a significant decrease in ATP concentration; however, 

further exposure to Adipo CCM for up to 24 hours led to a rescue of cellular ATP further 

suggesting an enhanced glycolytic phenotype upon Adipo CCM treatment (Figure 9D). 

This was further confirmed by additional recovery of ATP levels with 48-hour exposure to 

Adipo CCM (Supplementary Figure 8). It is important to note that the reduction in cellular 

ATP levels at 12 hours was not due to an enhanced proliferation induced by Adipo CCM 

as the Calcein AM assay showed no significant differences in cell numbers or viability of 

Adipo CCM-treated cells compared to cells grown under control conditions (Figure 9E). 

The uncompromised viability of Adipo CCM-treated tumor cells at 12 or 24 hours was 

further confirmed by the apoptosis assay showing no differences between control and 

Adipo CCM-treated cells (Figure 9F). 

4.2.5 Prostate cancer cells stimulate lipolysis in adipocytes 

Adipocytes store triglycerides and hydrolyze them into glycerol and free fatty 

acids via the process of lipolysis [320] and lipolysis-generated glycerol can feed into the 

glycolytic pathway [321-323]. Based on the above-presented evidence that bone marrow 

adipocytes induce metabolic changes in tumor cells, and the fact that these changes 

appear to require paracrine interaction between the two cell types, we sought to 

investigate whether this could be due to tumor cell-induced lipolysis in adipocytes, as  
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Figure 9: Decreased oxidative phosphorylation in prostate cancer cells exposed to 
bone marrow adipocyte-derived factors. A. Seahorse XFe24 analyzer (Seahorse 
Bioscience) analysis of the oxygen consumption rate (OCR) in PC3 (top) and ARCaP(M) 
(bottom) cells upon 12- and 24-hour incubation in the absence or presence of CCM. B. 
Mitochondrial membrane potential measured via JC-1 fluorescence. C. Taqman RT-PCR 
analysis of oxidative phosphorylation genes isocitrate dehydrogenase 2 (IDH2) and 
citrate synthase (CS) after 12 and 24 hours in culture in the absence or presence of CCM. 
Data are normalized to HPRT1 and shown relative to control. D. ATP levels in PC3 (top) 
and ARCaP(M) (bottom) cells cultured in the absence or presence of CCM. Significant 
decrease in ATP levels was observed after 12 hours. CCM exposure had no effect on 
viability as shown by Calcein AM assay E. and JC-1 apoptosis analyses F. Values *P < 
0.05; **P < 0.01 are considered statistically significant. 
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Figure 10: Expression of mitochondrial enzymes in intratibial prostate tumors is 
not affected by HFD-induced marrow adiposity. Taqman RT-PCR analysis of citrate 
synthase (CS) and isocitrate dehydrogenase 2 (IDH2) in PC3 bone tumors. Data are 
normalized to EPCAM and shown as increase relative to control. Results represent a 
mean of at least 3 independent experiments ± SD. 
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previously demonstrated in ovarian cancer [343]. We have shown previously that 

exposure to adipocyte-derived factors leads to lipid accumulation by prostate tumor cells 

[345] and lipids have been shown to contribute to the Warburg phenotype in tumor cells 

[315-319]. Indeed, our analysis of media from marrow adipocytes grown alone or in a 

transwell co-culture with tumor cells revealed significant increases in free glycerol levels 

under co-culture conditions (Figure 11A). Similar changes were observed when 

adipocytes were treated with media conditioned by PC3 or ARCaP(M) cells (Figure 11B). 

The master regulator and the rate-limiting enzyme driving lipolysis in adipocytes is 

adipose triglyceride lipase (ATGL) [349, 350]. Our analysis of gene expression of ATGL in 

adipocytes co-cultured with tumor cells or exposed to tumor cell-conditioned media 

showed significant upregulation indicating an induction of a lipolytic phenotype (Figure 

12) and suggesting that tumor cells may be secreting factors that induce lipolysis in fat 

cells. We next utilized a selective ATGL inhibitor Atglistatin, known to effectively block 

lipolysis in adipocytes [351] and recently shown to attenuate the growth of cancer cells 

[352]. A complete abrogation of free glycerol release by 10 μM Atglistatin (Figure 11C), 

mirrored by an accumulation of un-hydrolyzed triglycerides (Figure 11D) was observed 

for fat cells cultured in the absence of tumor cells. A very effective (~80%), but not 

absolute, reduction in free glycerol levels was also observed in transwell co-cultures 

(Figure 11C). This incomplete inhibition of lipolysis in adipocytes grown in transwell co-

cultures was reflected in overall lower triglyceride levels as compared to adipocytes grown 

alone (Figure 11D). This suggests a dynamic, paracrine interaction between the two cell 

types that results in ongoing hydrolysis, uptake and release of lipids.   
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Figure 11: Prostate cancer cells stimulate lipolysis in bone marrow adipocytes. 

Free glycerol release from adipocytes in transwell co-culture with PC3 or ARCaP(M) cells 

A. or adipocytes treated with conditioned media from PC3 and ARCaP(M) cells B. C. Free 

glycerol release by adipocytes cultured alone or in transwell with tumor cells in the 

absence or presence of 10µM Atglistatin. Samples were measured in triplicate and are 

representative of three separate experiments (shown as percent control). Data are shown 

as the mean ± SD. D. Intracellular triglyceride (TG) levels were measured in adipocytes 

cultured alone or in transwell with PC3 cells. Measurements were done in triplicate and 

are representative of three separate experiments. Data are shown as µmoles TG/µg 

protein in cell lysates (Mean ± SD). Values *P < 0.05; *** P < 0.001, and ****P < 0.0001, 

are considered statistically significant.
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Figure 12. Taqman RT-PCR analysis of adipose triglyceride lipase (ATGL) expression in 

adipocytes grown in transwell co-culture with PC3 or ARCaP(M) cells (A) or treated with 

PC3 or ARCaP(M) conditioned media (B). RT-PCR data are normalized to mouse 

adiponectin and shown relative to control. Results represent a mean of at least 3 

independent experiments ± SD. Values * p < 0.05; ** p < 0.01 are considered statistically 

significant. 
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Figure 13: Atglistatin does not prevent lipid accumulation by the tumor cells and is 

not sufficient to prevent the induction of Warburg phenotype. A. 

Immunofluorescence imaging of lipid droplets (BODIPY 493/503 nm) in PC3 cells alone 

(left panels) or in transwell co-culture with bone marrow adipocytes (right panels) and in 

the presence or absence of 10µM Atglistatin. DAPI was used as a nuclear stain; 40x 

images. Bar 100µm. B. Fluorescent intensity of the BODIPY 493/503 staining was 

quantified using Volocity (Perkin Elmer, Waltham, MA) and shown relative to PC3 cells 

alone. Results represent a mean of at least 3 independent experiments ± SD. C. Taqman 

RT-PCR analysis of ENO2, HK2, and PDK1 in PC3 cells in transwell co-culture in the 

absence or presence of 10µM Atglistatin. Data are normalized to HPRT1 and shown 

relative to control. Values *P < 0.05 are considered statistically significant.  
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Since lipolysis-generated glycerol can incorporate into the glycolytic pathway, we 

went on to determine whether inhibition of adipocyte ATGL with Atglistatin could reverse 

the Warburg phenotype in tumor cells. Our previous studies have shown that prostate 

tumor cells are capable of taking up adipocyte-supplied lipids [345]. To determine if this 

uptake can be reduced by inhibitors of lipolysis, we treated the tumor cells grown alone 

or in transwell co-culture with Atglistatin and performed BODIPY staining (Figure 13A). In 

agreement with our previous results [345], significantly increased lipid labeling was  

observed in tumor cells exposed to adipocytes in transwell co-culture (Figure 13A, right 

panels). Interestingly, treatment with Atglistatin had little effect on adipocyte-induced lipid 

uptake, as demonstrated by sustained BODIPY fluorescence (Figure 13A and 13B). This 

was further confirmed by significantly increased gene expression of lipid droplet 

marker perilipin 2 and lipid transporter CD36 in tumor cells exposed to adipocytes both in 

the absence and presence of Atglistatin (Figure 14A). 

Consistent with limited effects of adipocyte ATGL inhibition on lipid uptake by the 

tumor cells, only modest reduction in mRNA levels of ENO2 and HK2 was revealed 

indicating limited impact on glycolytic phenotype in the tumor cells. Even more 

surprisingly, the presence of Atglistatin in transwell co-cultures led to a small, but 

significant increase in the expression of PDK1 (Figure 13C). This upregulation at the gene 

level corresponded to sustained higher levels of p-PDH at the protein level, suggestive of 

enhanced PDK1 activity in tumor cells interacting with adipocytes (Figure 15). 

Interestingly, in addition to the effects on PDK1, Atglistatin treatment increased the 

expression of lipid transporter fatty acid binding protein 4 (FABP4) in tumor cells grown 

in transwell with adipocytes (Figure 15). We have shown previously that FABP4 levels  
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Figure 14. Inhibition of adipocyte lipolysis does not reduce the expression of lipid 
transporters and hypoxia-associated genes in tumor cells. Taqman RT-PCR analysis 
of Perilipin 2, CD36, and MAGL, expression (A) and CA9, VEGF, and GLUT1 expression 
(B) in PC3 cells alone or in transwell co-culture with bone marrow adipocytes. Cells were 
cultured in the presence or absence of 10 μM Atglistatin. Data are normalized to HPRT1 
and shown as increase relative to control. Values * p < 0.05; ** p < 0.01 are considered 
statistically significant.   
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Figure 15. Inhibition of lipolysis with Atglistatin enhances phosphorylation of 

PDH and increases expression of lipid transporter FABP4. Western blot analysis of 

phosphorylated PDH (top) and FABP4 (middle) in PC3 cells alone or in transwell co-

culture in the absence or presence of 10 μM Atglistatin. Tubulin was used as a loading 

control (bottom). 
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are significantly induced in tumor cells exposed to adipocyte-derived factors [345]. Given 

the known role of FABP4 in lipid transport and hydrolysis [353], its apparent induction by 

the inhibitors of lipolysis suggests a potential feedback response by tumor cells 

overwhelmed with adipocyte-supplied lipids. It is noteworthy that the expression of tumor-

derived monoacyl glycerol lipase (MAGL), a lipase previously implicated in prostate 

cancer progression [354, 355], was also induced in response to adipocytes and persisted 

upon inhibition of adipocyte ATGL with Atglistatin, suggesting an additional possible 

compensatory mechanism in tumor cells that might be contributing to the adipocyte-driven 

metabolic phenotype (Figure 14A). 

4.2.6 Marrow adipocytes induce HIF-1α signaling in prostate tumor cells 

One of the major mechanisms behind metabolic re-programming towards a 

glycolytic phenotype is the activation of HIF-1α signaling [326]. Hypoxia has been linked 

with aggressiveness and metastatic progression in prostate cancer [356] and we have 

shown previously that HIF-1α gene expression is increased in prostate bone tumors from 

HFD mice as compared to LFD mice [345]. To determine whether bone marrow adiposity 

might be contributing to HIF-1α activation in the bone microenvironment, we analyzed the 

mRNA levels of HIF-1α target genes, CA9 and VEGF, in intratibial PC3 tumors from LFD- 

or HFD-fed mice. Both target genes were significantly upregulated in bone tumors from 

mice on HFD as compared to LFD mice (Figure 16A), a result that complemented a 

significant increase in the levels of GLUT1 (Figure 1B), another direct target of HIF-1α 

activity [202]. Notably, no difference in CA9 and VEGF expression between LFD and 

HFD conditions was observed in subcutaneous tumors (Figure 16B), in line with our 

earlier finding demonstrating that an increase in GLUT1 and augmented levels of other 
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glycolysis-associated genes are observable only in metastatic tumors but not in primary 

tumors in PCa patients (Figure 1A), and in bone tumors but not in subcutaneous tumors 

in mice (Figure 1B and 1C). We next performed an immunohistochemical analysis of CA9 

expression (Figure 16C-16G). Our results showed weak, diffuse CA9 staining in bone 

tumors from LFD mice (Figure 7C, 7D), whereas an abundance of CA9 protein with its 

typical membrane localization was detected in tumors from HFD mice (Figure 16E, 16F), 

a result further confirming a glycolytic phenotype of bone tumors under conditions of high 

marrow adiposity. 

To determine whether bone marrow adipocytes are in fact capable of activating 

HIF-1α in PCa cells, we examined the expression of CA9 and VEGF in PC3 cells under 

transwell conditions. Indeed, expression of both genes was highly increased in cells 

grown in transwell co-culture with adipocytes (Figure 17A, 17B). In addition, 

immunofluorescence analysis of CA9 protein revealed a significant increase in expression 

and typical membrane localization of CA9 in PC3 cells exposed to adipocytes (Figure 

17C-17G). Notably, adipocyte treatment with Atglistatin had no effect on CA9, 

VEGF or GLUT1 expression in PC3 cells (Figure 14B), suggesting that inhibition of 

adipocyte lipolysis is not sufficient to reverse adipocyte-driven HIF-1α activation in tumor 

cells and offers a potential explanation for the persisting glycolytic phenotype. 

4.2.7 HIF-1α knockdown inhibits acquisition of a glycolytic phenotype in PCa cells 

exposed to adipocytes 

Activation and stabilization of HIF-1α is known to be a major event in metabolic 

transformation to a glycolytic phenotype [326]. Indeed, culture of PC3 cells under hypoxic 

(1% oxygen) conditions or treatment with HIF-1α inducer CoCl2 (Figure 18A and 18B)  
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Figure 16: Bone marrow adiposity enhances HIF-1α signaling in PCa cells in vivo 
prostate bone tumors. Taqman RT-PCR analysis of CA9 and VEGF in PC3 cells grown 
intratibially A. and subcutaneously B. in LFD and HFD fed mice. Data are normalized to 
EPCAM and shown relative to LFD tumors. C.-G. Immunohistochemical (NovaRED) 
staining for CA9 protein in prostate bone tumors from mice on LFD C. and HFD E., 10x 
images D.,F. High magnification (40x) images depicting membrane CA9 localization in 
HFD F. but not LFD D. tumors. G. No primary antibody control. Bar, 100µm. 
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Figure 17: Bone marrow adipocytes activate HIF-1α signaling in PCa cells in vitro. 

Carbonic anhydrase 9 (CA9; A. and VEGF B. gene expression (Taqman RT PCR) in PC3 

cells in transwell co-culture with bone marrow adipocytes. Data are representative of at 

least 3 separate experiments, normalized to HPRT1 and shown relative to tumor cells 

cultured alone. Values *P < 0.05 are considered statistically significant. C.-G. 

Immunofluorescence staining of CA9 (green fluorescence) in PC3 cells grown alone (left) 

or in transwell co-culture with bone marrow adipocytes (right); DAPI (blue) was used as 

nuclear dye; 63x images. Bar, 50µm. G. No primary antibody control was used as a 

control. 
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Figure 18: siRNA-mediated knockdown of HIF-1α abrogates bone marrow 
adipocyte-induced Warburg phenotype in PC3 cells. A. Taqman RT-PCR analysis of 
CA9, ENO2, LDHa, HK2, PDK1, GLUT1, and VEGF in PC3 cells cultured in normoxia 
(20% O2) or hypoxia (1% O2) B. mRNA expression of CA9, ENO2, LDHa, HK2, PDK1, 
GLUT1, and VEGF in response to treatment with 150 µM CoCl2. C. mRNA levels of HIF-
1α in PC3 cells grown under control conditions or treated with 20 µM scrambled siRNA, 
or 20 µM HIF-1α siRNA. D. Taqman RT-PCR analysis of the expression of HIF-1α target 
gene CA9 to further confirm HIF-1α knockdown from cells grown in the presence or 
absence of adipocytes. E-G: Effect of HIF-1α knockdown on the mRNA expression of 
glycolysis associated genes: PDK1 E., LDHA F., and ENO2 G. Data are the mean of 
analyses with 2 different siRNA constructs done in triplicate. Values *P < 0.05; **P < 0.01, 
and ***P < 0.001 are considered statistically significant. 
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Figure 19. Adipocytes induce HIF-1α signaling in ARCaP(M) cells. A: CA9 expression 

in ARCaP(M) cells alone or in transwell co-culture with bone marrow adipocytes as 

measured by semi-quantitative PCR. PCR products were resolved on 2% agarose gel. 

EPCAM (CD326) is used as a loading control (bottom). CA9 expression is not detectable 

under control conditions. B: Taqman RT-PCR analysis of VEGF expression in ARCaP(M) 

alone or in tranwell co-culture with bone marrow adipocytes. C: mRNA levels of HIF-1α 

in ARCaP(M) cells grown under control conditions or treated with 10 μM scrambled 

siRNA, or 10 μM HIF-1α siRNA. D: Taqman RT-PCR analysis of the expression of HIF-

1α target gene CA9 to further confirm HIF-1α knockdown fromcells grown in the presence 

or absence of adipocytes. Changes in CA9 mRNA levels are shown as ΔCT due to its 

low baseline expression under control conditions and upon HIF-

ARCAP(M) cells. E-G: Effect of HIF-

associated genes: PDK1 (E), LDHA (F), and ENO2 (G). Data are the mean of analyses 

with 2 different siRNA constructs done in triplicate. Data are normalized to HPRT1 and 

shown as increase relative to control. Values * p < 0.05; ** p < 0.01, and *** p < 0.001 are 

considered statistically significant. 
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Figure 20: Tumor cells exposed to bone marrow adipocytes have increased 

clonogenic potential.  A. Colony formation assay of PC3 (Left) and ARCaP(M) (Right) 

cells after grown alone or in transwell co-culture with bone marrow adipocytes after 10 

days. B. Western blot analysis of pro-survival proteins in PC3 cells cultured alone or in 

transwell with adipocytes. 
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efficiently increase the expression of glycolytic genes to levels comparable to those 

observed in tumor cell-adipocyte co-cultures (Figure 4B). This suggests that adipocyte-

driven Warburg phenotype in tumor cells is likely a downstream effect of HIF-1α activation 

under normoxic conditions. To test this, we downregulated HIF-1α in PC3 cells by siRNA 

and cultured control and knockdown cells alone or in transwell with marrow adipocytes 

(Figure 18C, 18D). A significant reduction in HIF-1α activity in siRNA-treated cells was 

evident by almost complete abrogation of CA9 expression (Figure 18D). This coincided 

with reduced expression of glycolytic genes PDK1, LDHA and ENO2 (Figure 17E-17G). 

Analogous to PC3 cells, ARCaP(M) cells also showed HIF-1α activation upon exposure 

to adipocytes, as evidenced by the increases in CA9 mRNA expression, which is 

otherwise undetectable under control conditions (Figure 19A). Exposure to adipocytes 

also led to augmented expression of VEGF (Figure 19B), as well as 

increased GLUT1 (Figure 4B). Upon siRNA-mediated knockdown of HIF-1α (Figure 19C), 

expression of CA9, PDK1, LDHA and ENO2 was significantly reduced (Figure 19D-19G), 

further underscoring the importance of HIF-1α signaling in marrow adipocyte-driven 

metabolic adaptation of PCa tumors in bone. 

4.2.8 Adipocyte-Driven Pro-Survival and Chemoresistance in PCa Cells 

 Metabolic adaptation within the bone microenvironment is important for prostate 

cancer growth and survival.  Stemming from the work showing the PCa cells exposed to 

bone marrow adipocytes exhibit enhanced Warburg metabolism and activation of HIF-1α, 

we sought to interrogate pro-survival pathways affected by enhanced glycolysis and 

hypoxic signaling.  We first performed a clonogenic colony formation assay and observed 

that tumor cells exposed to adipocytes have higher clonogenic potential indicative of the 



88 
 

 

activation of pro-survival pathways (Figure 20A), result confirmed by the increased 

expression of pro-survival factors Bcl-XL, Mcl1 and surviving (Figure 20B) Interestingly, 

many of the glycolytic enzymes not only perform functions in glycolysis, but have other 

functions that can affect cellular survival [357, 358].  One enzyme of particular 

importance, hexokinase 2 (HK2), has a known role of inhibiting apoptosis by binding to 

voltage-dependent anion channel (VDAC) as a competitive inhibitor of pro-apoptotic 

factors such as Bax [359].  As has been shown herein, HK2 expression is increased in 

metastatic tumors in patients compared to primary sites, in tumor cells intratibially injected 

into mice with elevated marrow adiposity compared to control mice, and in tumor cells 

exposed to bone marrow adipocytes in vitro through the activation of HIF-1α [360].  This 

led us to investigate the localization and binding of HK2 to the mitochondria in tumor cells 

exposed to adipocytes as a mechanism of survival within the bone microenvironment.  

We isolated mitochondria from PC3 cells grown alone or exposed to adipocytes in 

transwell, and immunoprobed for HK2.  We observed that HK2 levels increased in tumor 

cells in transwell co-culture with adipocytes in the non-mitochondrial fraction and, 

importantly, the mitochondrial fractions (Figure 21A).  Additionally, this was shown in 

hypoxic conditions as well, mimicking the pseudohypoxic phenotype in tumor cells 

exposed to adipocytes (Figure 21B).   

 Stemming from the induction of this pro-survival phenotype observed, we then 

assessed the sensitivity of these prostate cancer cells to standard chemotherapy agent 

for patients with metastatic disease, docetaxel [361-363].  Our preliminary data show that 

culture of PCa cells under hypoxic conditions makes them less sensitive to Docetaxel and 

that in hypoxia, Warburg genes are induced at similar levels as seen when cultured with 
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adipocytes, suggesting the activation of HIF-1α does confer chemoresistance to 

Docetaxel in these cells (Figure 22). 

4.3 Discussion: 

Adipocytes are metabolically active cells with the ability to regulate the phenotype 

and function of neighboring cancer cells through the processes of lipid transfer and 

lipolysis [127, 152, 343, 364, 365]. They have been linked to metabolic reprogramming 

and tumor progression in a handful of cancers, including tumors of breast, ovaries and 

colon, all with tendencies to grow in fat-enriched sites [127, 343, 366-368].In the context 

of prostate cancer, adipocytes from visceral and periprostatic tissues have been linked to 

the progression of localized disease [127, 369].  The data have been lacking, however, 

on how adipocytes that occupy bone marrow space might be influencing the metabolism 

and consequently the progression of prostate tumors that have colonized this fat-enriched 

metastatic niche. The results presented above reveal an important contribution of bone 

marrow adipocytes to the metabolic phenotype of metastatic PCa tumors. We show that 

marrow fat cells are capable of inducing the glycolytic phenotype in PCa cells through 

paracrine upregulation of glycolytic enzymes, increases in lactate secretion and reduction 

in oxidative phosphorylation. We also demonstrate that tumor cells are able to modulate 

the metabolism of a fat cell. They do so by stimulating adipocyte lipolysis in the effort of 

utilizing the fat cell-supplied lipids to fuel the glycolytic pathway. This speaks to the 

importance of the supportive host microenvironment in tumor progression and 

demonstrates the metabolic coupling between the tumor cells and host adipocytes. This 

adipocyte-tumor cell interaction ultimately shapes the metabolism of the tumor cell 

allowing for the adaptive survival in the metastatic niche [314].  
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Figure 21:  Hexokinase 2 localizes to the mitochondria in tumor cells exposed to 

bone marrow adipocytes or under hypoxic conditions.  A. Immunoblot analysis of 

HK2 expression and localization in PC3 cells alone or in transwell co-culture with bone 

marrow adipocytes in mitochondrial and non-mitochondrial fractions.  B.  Western blot 

analysis of HK2 expression and localization in normoxia and hypoxia (1% O2) in PC3 

cells in mitochondrial and non-mitochondrial fractions.  VDAC/Porin was used as a 

loading control for mitochondrial fractions.  Tubulin was used as a loading control for non-

mitochondrial fractions. 
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Figure 22:  PC3 cells are more resistant to Docetaxel treatment under hypoxic 

conditions.  Calcein AM viability assay of tumor cells grown in normoxia or hypoxia 

treated with 5, 10, 50, or 100 nM Docetaxel. 
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We focused on metabolism because of the important selective advantage an 

enhanced glycolytic phenotype can have on tumor aggressiveness and survival within a 

harsh metastatic niche [370, 371]. Glycolysis is not the most effective way, but it is the 

quickest way of creating ATP that allows the tumor cells to efficiently gain metabolic 

autonomy in the tumor microenvironment [371].  It permits the continuous supply of 

nutrients for biosynthetic processes, protection from oxidative stress, and, potentially, an 

activation of survival pathways [372, 373].  Warburg metabolism is often associated with 

a more hypoxic tumor signature, which is also a very well-documented facilitator of tumor 

aggressiveness and chemoresistance [374-377].  Glycolytic enzymes, such as ENO2, 

LDHa, PDK1, and HK2, and proteins involved in glucose uptake, such as GLUT1, are all 

regulated through HIF-1α [378-380].  In hypoxia, HIF-1α compromises oxygen-consuming 

OXPHOS by inducing the expression of PDK1 and preventing conversion of pyruvate into 

acetyl-CoA [381, 382].  The resulting production and secretion of lactate by highly 

glycolytic cells is known to increase tumor invasion, but it can also serve as an alternative 

carbon source for surrounding oxygenated cells [383].  Hypoxia is also known to induce 

acidosis via increased acid load in the tumor microenvironment, a process that leads to 

upregulation of enzymes, such as carbonic anhydrase 9 (CA9) that can regulate 

extracellular pH allowing the tumor cells to thrive in the acidic microenvironment [371]. It 

is the membrane-bound CA9, whose expression correlates with aggressive disease and 

poor survival in many cancers [371], that is thought to modulate pH through the interaction 

with bicarbonate transporters on the cell surface [384]. Notably in our study, evidence of 

clearly increased CA9 expression in human metastatic prostate cancer samples and 

experimental bone tumors from HFD mice, together with immunocytochemical data 
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showing its surface expression in response to adipocytes, suggest that metastatic PCa 

cells might be utilizing CA9-dependent mechanisms to adapt and grow in the metastatic 

niche.  

Bone tissue is intrinsically hypoxic [385, 386], with O2 concentrations ranging from 

~1.3 to 3% based on the proximity to the vessels and distance from the endosteum [387]. 

This makes bone an environment already prone to hypoxic stress. Our data presented 

herein show that PCa cells exposed to low oxygen concentration in a hypoxia chamber 

show the same glycolytic phenotype as cells interacting with marrow adipocytes under 

normoxic conditions. This suggests that adipocytes promote oxygen-independent 

mechanism of HIF-1α activation in PCa cells, known as ‘pseudohypoxia’ [331, 388, 389]. 

HIF-1α, under some circumstances, can be directly activated in well-oxygenated 

microenvironments [390], or its activation and stabilization can be a consequence of 

mutations in metabolic genes [331, 391]. The mechanisms behind its regulation by bone 

marrow adipocytes are currently unknown and are subject of ongoing investigations in 

our laboratory.  

One important consequence of hypoxia is the induction of HIF-1α-mediated 

accumulation of lipid droplets in tumor cells [392]. Hypoxic tumor cells have been recently 

shown to bypass lipogenesis and to rely on scavenging of unsaturated lipids from the 

microenvironment [393, 394].  

Hypoxia has also been linked to the upregulation of proteins that stabilize the integrity 

of lipid droplets, such as perilipin and adipose differentiation-related protein (ADRP), as 

well as members of the FABP4 family of lipid transporters [392]. This is of relevance to 

our study, as hypoxia and glycolytic phenotype in our PCa cells interacting with 
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adipocytes coincide with both an enhanced lipid uptake and an upregulation of lipid 

transporters and lipid droplet markers. Whether HIF-1α activation is a cause or a 

consequence of lipid accumulation in metastatic tumor cells remains to be uncovered. It 

is plausible that the initial exposure to adipocyte-supplied lipids triggers HIF- 1α 

stabilization and that consequent activation of HIF-1α signaling leads to further lipid 

uptake, perpetuating the hypoxic and glycolytic phenotype in tumor cells. The fact that 

hypoxia-mediated effects persist even upon the inhibition of adipocyte-driven lipolysis 

speaks to the importance of HIF-1α signaling in driving the Warburg phenotype in tumor 

cells. The mechanism by which tumor cells exposed to adipocytes in the presence of 

ATGL inhibitor continue to accumulate and utilize fat cell-supplied lipids remains to be 

elucidated. One potential player in this process might be the MAGL, an enzyme implicated 

in lipid remodeling and scavenging by tumor cells and shown recently to be associated 

with aggressive phenotype of PCa cells [354, 355, 395].  

Although the acquisition of a glycolytic phenotype appears to be the predominant 

metabolic change in PCa cells in response to marrow adipocytes, it is important to 

mention that some of the glycolytic enzymes we see upregulated in response to fat cells 

are also known to have non-glycolytic functions that are important for tumor cell growth 

and survival. Specifically, hexokinase-2 (HK2), an enzyme critical for first step of 

glycolysis, elicits its functions by binding to the outer mitochondrial membrane protein 

voltage-dependent anion channel (VDAC). This allows for receipt of newly synthesized 

ATP and rapid and efficient production of glucose-6-phosphate, which contributes not 

only to the glycolytic pathway but also to metabolite synthesis in the pentose-phosphate 

pathway and TCA cycle, both important for tumor growth and proliferation [396-399].  



95 
 

 

Intriguingly, interaction of HK2 with VDAC prevents pro-apoptotic proteins such as BAX 

and BAD from binding to the mitochondrial pores to facilitate apoptosis resulting in cells 

that are more resistant to cell death and chemotherapy [400-402].  Because around 80% 

of total HK2 is reported to be bound to the mitochondrial VDAC [403], and because we 

see elevated levels of HK2 in tumor cells that are exposed to bone marrow adipocytes, it 

is plausible to expect that the mitochondrial binding of HK2 is occurring in PCa cells, a 

process that could be promoting tumor cell survival via inhibition of intrinsic apoptosis in 

response to adipocyte-supplied factors.  

In this study we utilized an intratibial model of intraosseous tumor growth, a widely 

used in vivo experimental system designed to specifically study tumor-bone interactions, 

and tumor growth and expansion in the bone microenvironment [404-406]. We and others 

have used this system previously in combination with diet induced obesity (DIO) models 

to study effects of marrow adiposity on tumor progression in bone [24, 345, 407]. The DIO 

model is a well-documented approach to induce marrow adiposity [27, 37, 292, 345] and 

we have previously shown that eight-week exposure to HFD significantly augments 

adipocyte numbers in this system [24, 345]. We do acknowledge we cannot exclude 

potential systemic consequences of the diet itself on both the tumor growth and metabolic 

phenotype in bone. There is an ongoing debate on the role of dietary lipids in prostate 

cancer development and progression [408, 409] and future studies utilizing genetic 

models of obesity and age-induced models of marrow adiposity will provide a more 

detailed understanding of adipocyte impact on metabolic adaptation and survival of tumor 

cells in the bone marrow niche. An additional value will be added by the comparative 
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metabolic profiling of experimental bone prostate tumors and orthotopic primary prostate 

tumors.  

The rationale for our study was based on the Oncomine analyses of human prostate 

cancer samples suggesting clearly distinct metabolic phenotype of metastatic sites as 

compared to primary tumors. We recognize that currently available datasets do not allow 

for distinction of bone metastases from other potential metastatic sites. However, given 

the fact that more than 80% of metastatic patients present with bone lesions, it is highly 

likely that majority of these tumors represent skeletal lesions. Limited availability of bone 

metastatic tissues is certainly an ongoing, unresolved issue in prostate cancer research. 

We believe that this distinct metabolic phenotype in metastatic tissues revealed by our 

Oncomine analyses provides an important starting point for future studies investigating 

the contribution of tumor metabolism to progression and survival of metastatic prostate 

tumors in the bone microenvironment.  

Metabolic requirements of a tumor cell are much more complex than previously 

appreciated and they likely involve multiple pathways and nutrients that aid in malignant 

transformation and progression [410]. There is also no doubt that metabolic adaptation 

and consequent growth and survival of a tumor is the result of a complex interaction 

between the cancer cell and the surrounding host microenvironment. Data presented 

herein reveal marrow adipocytes as important players involved in shaping tumor 

metabolism in bone. To our knowledge, this is the first study demonstrating the 

importance of bi-directional interactions between marrow fat cells and tumor cells in 

activating HIF-1α signaling and driving the Warburg phenotype in metastatic prostate 

cancer cells. Adipocyte-supplied factors have been shown to enhance glycolysis in 
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primary cancer cells and render them more aggressive and resistant to therapy [167, 411-

413]. Understanding the molecular mechanisms behind this metabolic regulation in bone 

is of critical importance in terms of potential treatment options for metastatic disease. 
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CHAPTER 5: BONE MARROW ADIPOCYTE-DERIVED PROSTAGLANDIN E2 
ACTIVATES CANONICAL PGE2 SIGNALING METASTATIC PROSTATE CANCER 

CELLS 
 

5.1 Introduction 

 The uptake of lipids from the microenvironment, aberrant de novo lipid 

synthesis and alterations in fatty acid catabolism and steroidogenesis pathways are now 

emerging as key mechanisms linking dysregulated lipid metabolism in the primary 

prostate tumor with subsequent progression and reduced survival [299, 303, 304].  These 

lipids have the propensity to regulate signaling networks within cancer cells through 

receptor-mediated signaling pathways [414, 415]. Previous work stemming from our 

laboratory has shown that metastatic prostate tumors in bone both induce lipolysis in bone 

marrow adipocytes and also utilize lipids from adipocytes to fuel their own metabolic 

processes that are largely lipid-driven [345, 360]; therefore, it is crucial to understand 

what lipids are responsible for tumor growth and survival in bone.  

Prostaglandin E2 (PGE2), a bioactive lipid that has been implicated across many 

different cancer types in facilitating many of the hallmarks of cancer such as cell 

proliferation, angiogenesis, inflammation, immune surveillance, and apoptosis [416-418], 

is secreted by adipocytes [419-421].  PGE2, as a prostaglandin, is a member of the 

eicosanoid family of lipids and can be produced by all cell types within the body [422].  Its 

synthesis is catalyzed by a multiple step process involving the conversion of arachidonic 

acid (AA) to prostaglandin H2 (PGH2) by cyclooxygenases (COX) and then PGH2 to 

PGE2 with the aid of the enzyme prostaglandin E synthase [423].  There are two distinctly 

different cyclooxygenases, COX-1 and COX-2.  COX-1 is constitutively expressed in 

almost all tissues, while COX-2 needs stimuli in order to be induced [424]. Because COX-
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1 is constitutively expressed, its functions are thought to be more in maintenance of tissue 

homeostasis by regulating basal levels of prostaglandins.  The inducible COX-2, however, 

has a variety of stimuli such as cytokines, growth factors, and tumor-derived factors [425-

427].  Interestingly, we have shown previously that tumor cells secrete large amounts of 

IL-1β in response to exposure to adipocytes [154, 345] and IL-1β is a known inducer of 

COX-2 [428].  PGE2 produced from COX enzymes can signal in a paracrine or autocrine 

manner where it activates its receptors EP1-4 [429, 430].  EP receptors are G protein 

coupled receptors that are expressed ubiquitously throughout the body.  Deregulated EP 

receptor activity has been shown across many cancers including breast [431], colorectal 

[432, 433], and esophageal cancers [416, 434].   

Importantly, there have been some studies in prostate cancer showing PGE2/EP 

receptor signaling to play critical roles in proliferation [435], vascular endothelial growth 

factor expression and angiogenesis [436], and invasion [437].  Extending from our 

previous work, we have shown that bone marrow adipocytes induce vascular endothelial 

growth factor (VEGF) expression in metastatic prostate cancer cells and have increased 

invasion, both downstream indicators of EP receptor signaling [345, 360]. We have shown 

that HIF-1α is activated in tumor cells exposed to bone marrow adipocytes [360] and 

VEGF is regulated by HIF-1α signaling [438].  Intriguingly, PGE2 signaling has been 

shown to have the propensity to activate HIF-1α signaling through EP1, EP2, and EP4 

receptors [439, 440]. 

The objective of this study was to elucidate the role of bone marrow adiposity in 

the modulation of tumor signaling networks within the bone microenvironment.  Using in 

vivo models of diet induced marrow adiposity in combination with in vitro models of 
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paracrine signaling between bone marrow adipocytes and prostate cancer cells, we show 

that tumor-derived IL-1β activates COX-2 in bone marrow adipocytes.  COX-2 then is 

responsible for the synthesis and secretion of prostaglandin E2 that activates the EP 

receptors in tumor cells, leading to the induction of downstream signaling pathways.  

These results offer potential mechanisms underlying metabolic adaptation of metastatic 

tumors in bone and implicate bone marrow adipocytes, a cell type so abundantly present 

in the skeleton especially in advanced age and obesity, as viable culprits in the 

progression of this currently incurable disease. 

5.2 Results 

5.2.1 In silico analysis of prostaglandin E2 receptors EP1-4 and EP receptor 

signaling in metastatic prostate cancer patients 

Because COX-2 has been shown to be elevated in PCa and its signaling pathways 

are implicated in many cellular processes required for cancer cell survival and growth 

[441], we first performed an Oncomine analysis and compared mRNA expression of 

genes linked to PGE2 signaling in primary and metastatic prostate cancer samples 

(Figure 1A). A significant upregulation of the gene encoding the EP1 receptor was 

revealed in patients with metastatic disease compared to those with primary prostate 

cancer (Figure 1A).  In addition to the PGE2 receptor, genes involved in downstream 

signaling of EP1 activation such as cyclin d1 (CCND1) and c-myc (MYC) were also 

significantly upregulated in metastatic tissue.  These data link our previous observations 

showing a hypoxic phenotype in metastatic PCa compared to primary PCa, indicative of 

HIF-1α activation, suggesting a correlation between EP receptor signaling and HIF-1α 

activity in these patients [442]. These results further underscore the importance of 
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eicosanoid signaling between primary and secondary prostate cancer that might be 

playing a role in metastatic progression. 

5.2.2 Adipocytes exposed to intratibially injected prostate cancer cells have 

increased expression of COX-2 in vivo 

Although previous reports from our laboratory have focused on how bone marrow 

adipocytes are affecting PCa cells, it is of critical importance to study the effects of tumor 

cells on adipocytes as well.  To examine the effects of metastatic prostate cancer cells 

on bone marrow adipocytes, we utilized a well-documented approach of inducing marrow 

adiposity with high fat diet (HFD) [27, 37, 150, 292].  We have shown previously that 

intratibial implantation of prostate cancer cells into this model results in accelerated tumor 

growth and extensive bone destruction compared to normal diet (LFD), suggesting 

potential tumor-supportive effects of marrow adipocytes and that the tumor metabolism is 

altered to a more glycolytic and hypoxic state [150, 294].  To determine whether this 

observed pseudohypoxic phenotype in the tumor cells exposed to adipocytes was 

correlated with increased PGE2 secretion by adipocytes and EP receptor activation of 

HIF-1α signaling in the tumor, we analyzed mRNA expression of mouse COX-1 and COX-

2 genes in adipocytes exposed to intratibially injected PC3 and ARCaP(M) tumors from 

LFD and HFD mice. Our results revealed significantly increased transcript levels of both 

COX-1 and COX-2 in adipocytes in tumor bearing bone compared to control bone and in 

the effect was exacerbated in the HFD model compared to the LFD model, suggesting 

contribution of adipocytes to tumor-induced COX-1/2 expression in the bone [443].  These 

findings implicate tumor cells as a potential regulator of adipocyte PGE2 production 
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through the COX-2 pathway in bone and led us to further investigate the mechanism of 

this regulation in vitro. 

5.2.3 Adipocytes exposed to PCa cells have increased expression of COX-1 and 

COX-2 in vitro 

We utilized in vitro models of tumor cell-adipocyte interactions to determine if the 

activation of COX-2/PGE2 axis in adipocytes exposed to PCa cells as observed in 

intratibial tumors in vivo is a direct effect of tumor cells. We first examined COX-1/-2 

expression in adipocytes exposed to PCa cells by employing a transwell system in which 

adipocytes were differentiated in the bottom chamber and tumor cells were then plated 

on top of the insert and cultured together for 48 hours. This allowed the two cell 

types to share the media without direct interaction.  COX-2, the inducible cyclooxygenase 

involved in prostaglandin synthesis was significantly increased in adipocytes co-cultured 

with PCa cells (Figure 2A).  COX-2 was also upregulated at the protein level in adipocytes 

exposed to tumor cells (Figure 2B).  Interestingly, although COX-1 is constitutively 

expressed, its levels are still induced in adipocytes exposed to PC3 and ARCaP(M) 

prostate cancer cells (Figure 2C). Activation of COX1/2 signaling was further supported 

by significantly elevated levels of Prostaglandin E2 in media conditioned by transwell co-

cultures as opposed to adipocytes or tumor cells grown in alone conditions (Figure 2D).   

The fact that transwell co-culture with tumor cells caused the activation of COX-1 

and COX-2 and PGE2 production in adipocytes suggested that this process does not 

require physical interaction between the tumor cells and adipocytes.  Therefore, we next 

examined whether the media conditioned by the PCa cells alone (PC3/ARCaP(M) CM)  
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Figure 1: Gene targets of GSK3β/β-catenin signaling through the prostaglandin 
receptors are upregulated in patients with metastatic prostate cancer. A. Oncomine 
gene analysis comparing the expression of GSK3β/β-catenin target genes (VEGF, MYC, 
PPARD, and CCND1) in patient samples collected from metastatic or primary sites.  Data 
were ordered by “overexpression” and the threshold was adjusted to P-value < 1E-4; fold 
change, 2 and gene rank, top 10%. B.  Taqman RT-PCR analysis of expression of COX-
1 and COX-2 in adipocytes exposed to PC3 and ARCaP(M) tumors in LFD- and HFD-fed 
mice.  Data were normalized to human EPCAM and represent a mean of a minimum of 3 
mice/group + SD.  Values * P < 0.05; ** P < 0.01 are considered statistically significant. 
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Figure 2: COX-2 expression and activity increases in bone marrow adipocytes 
exposed to tumor cells in vitro.  A. Taqman RT-PCR analysis of COX-2 in adipocytes 
exposed to PC3 prostate cancer cells in transwell co-culture.  Data were normalized to 
mouse Adiponectin and shown as increase relative to control.  B. Immunoblot analysis of 
COX-2 in adipocytes alone or in transwell co-culture with PC3 cells.  C. Taqman RT-PCR 
of COX-1 expression in adipocytes exposed to PC3 or ARCaP(M) cells in transwell co-
culture.  D. Lipidomics analysis of PGE2 levels in media conditioned by PC3 cells alone, 
adipocytes alone, or PC3 cells and bone marrow adipocytes cultured together in 
transwell. E. Taqman RT-PCR of COX-2 expression in adipocytes treated with tumor cell 
conditioned media.  Results represent a mean of at least 3 independent experiments ± 
SD. Values * P < 0.05; ** P < 0.01, *** P < 0.001 are considered statistically significant. 
can bring on similar changes in adipocytes as observed in transwell co-culture.  
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Interestingly, treatment with either PC3 or ARCaP(M) conditioned media induced 

expression of COX-1 and COX-2 in adipocytes (Figure 2E), suggesting that paracrine 

signaling is required between the adipocytes and tumor cells for the subsequent 

phenotype.  

5.2.4 Adipocyte COX-1 and COX-2 are regulated by PCa cell secreted IL-1β 

stimulation of lipolysis 

 Because treatment of adipocytes with tumor cell conditioned media increases the 

expression of COX-1 and COX-2 and adipocytes exposed to tumor cells secrete 

elevated levels of PGE2, we then sought to determine what factors released from the 

tumor cells activate the COX/PGE2 axis.  Previously, our laboratory has published that 

prostate tumor cells secrete high levels of IL-1β when exposed to adipocytes [150].  

Additionally, IL-1β has been shown to have the propensity to activate COX-1 and COX-

2 and increase PGE2 production [428].  With this knowledge, we then treated 

adipocytes with recombinant IL-1β and observed a marked increase in COX-1 and 

COX-2 expression, suggesting the increased activation of the COX/PGE2 axis in 

adipocytes is driven by tumor-secreted IL-1β (Figure 3A).  We then used blocking 

antibodies against IL-1β (R&D Systems, 1µg/mL) and an IL-1R receptor antagonist 

(Sigma-Aldrich, 1µg/mL) to determine if increased expression COX-1 and COX-2 were 

due to IL-1β signaling between prostate cancer cells and bone marrow adipocytes.  

Intriguingly, using the blocking antibody against IL-1β or receptor antagonist against IL-

1R did not abrogate the induction of COX-1 or COX-2 (Figure 3B); however, levels of IL-

1β increased in tumor cells grown in transwell with adipocytes as a possible negative 

feedback mechanism to compensate for inhibition of IL-1β..  To resolve this issue, we 
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then performed a siRNA-mediated knock down of IL-1β (OriGene) and observed a 

substantial knockdown of IL-1β (Figure 3C).  Studies utilizing this siRNA-mediated 

knockdown of IL-1β in tumor cells to determine the requirement of IL-1β on COX-1 and 

COX-2 expression in adipocytes are currently ongoing. 

5.2.5 Adipocyte-derived PGE2 activates the GSK3β/β-catenin pathway through the 

EP receptors 

After confirming that the COX/PGE2 pathway is activated in adipocytes exposed to 

prostate cancer cells through tumor-secreted IL-1β activation of COX-1 and COX-2, we 

then examined the effects of PGE2 release on tumor cell signaling.   There are four 

receptors that can be activated by PGE2 (PTGER1-4) [444] and we first  performed a  

screen looking at the receptor expression in PCa cells grown alone and exposed to 

adipocytes in transwell co-culture (Figure 4A) using primers for each specific gene (Table 

1).  Our results showed that PTGER1 (EP1) was upregulated in PCa cells exposed to 

adipocytes in transwell co-culture, while there were no observable differences in 

expression of PTGER2 (EP2) or PTGER4 (EP4), and PTGER3 (EP3) was not detected 

in any of our samples.  Importantly, the increased expression of EP1 in PCa cells exposed 

to adipocytes in vitro was also observed in PCa cells intratibially injected in HFD mouse 

tibia compared to LFD tibia (Figure 4B), supporting our observations that adipocyte-

derived PGE2 is playing a role in tumor cell signaling.  Taqman RT-PCR confirmed this 

increase in EP1 expression in both PC3 and ARCaP(M) cells in tumor cells exposed to 

adipocytes in transwell co-culture in vitro (Figure 4C) and in vivo in HFD tumors compared 

to LFD tumors (Figure 4D). 
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Figure 3:  COX-1 and COX-2 are regulated by tumor-secreted IL-1β.  A. Taqman RT-
PCR analysis of COX-1 and COX-2 expression in bone marrow adipocytes treated with 
5ng/mL IL-1β. B.  Gene expression of COX-1 and COX-2 in adipocytes alone or exposed 
to PC3 cells in transwell co-culture in the absence or presence of an IL-1β blocking 
antibody (BA) or receptor anatagonist (RA). C.  Taqman RT-PCR of IL-1β in tumor cells 
alone or in transwell co-culture with bone marrow adipocytes with or without the IL-1β 
blocking antibody (BA) or IL-1R receptor antagonist (RA). D.  IL-1β gene expression upon 
knockdown using three different siRNA constructs compared to the nontransfected 
control and scrambled siRNA control. 
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We then examined the canonical PGE2 signaling in tumor cells exposed to 

adipocytes by looking at the activation of GSK3β and β-catenin and cyclin D.  We showed 

that tumor cells exposed to adipocytes have increased GSK3β activation as shown 

through a decrease in phosphorylated GSK3β (Figure 5A) and increased nuclear β-

catenin (Figure 5B).  Additionally, cyclin D, a target of β-catenin, was shown to be 

upregulated in tumor cells exposed to fat cells in transwell co-culture (Figure 5C).   

Lastly, to determine which receptor the PGE2 signaling is occurring through, we 

used specific inhibitors that target either EP1-3 (AH6809) or EP4 (GW627368X) in tumor 

cells exposed to adipocytes in transwell co-culture.  Looking at phosphorylated GSK3β 

as a marker of PGE2 signaling, there was an observable decrease in phospho-GSK3β in 

tumor cells exposed to adipocytes and with the inhibition of EP4 there was a slightly 

abrogated effect with little reduction in phospho-GSK3β, while AH6809 treatment 

completely inhibited the activation of GSK3β, showing this signaling pathway is mainly 

activated through EP1-3 (Figure 5D).   

5.2.6 Activation of the EP1 receptor in tumor cells by adipocyte-derived PGE2 leads 

to HIF-1α activation 

 Stemming from previous work from our laboratory showing that tumor cells 

exposed to adipocytes have enhanced HIF-1α activity [360] and knowing that there is a 

mechanism for β-catenin stabilization of HIF-1α [439, 445, 446], we then looked at PGE2 

signaling activating a hypoxic response in tumor cells similar to effects observed in tumor 

cells exposed to adipocytes in transwell co-culture.  We first treated PCa cells with PGE2 

and its non-metabolizable form 15-S-15 Methyl-PGE2, which is a more potent activator 

of PGE2 signaling, and assessed HIF-1α activation by analyzing expression of HIF-1α 
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target genes VEGF and CA9 [447].  Taqman real-time PCR analysis showed increased 

expression of CA9 in PCa cells treated with PGE2 and the methylated PGE2 metabolite, 

demonstrating that activated PGE2 signaling in our cells increases hypoxic signaling and 

HIF-1α activation (Figure 6A).  Unfortunately, however, inhibition of EP1 receptor with 

AH6809, EP2 receptor with TG4-155, or EP1-3 receptors with GW627368X did not alter 

CA9 expression levels, indicating inhibition of the receptors themselves is not sufficient 

to halt the psuedohypoxic phenotype in tumor cells induced by PGE2 signaling (Figure 

6B). 

5.3 Discussion 

Adipocytes are metabolically active cells with the ability to regulate the phenotype 

and function of neighboring cancer cells through the processes of lipid transfer and 

lipolysis [127, 152, 343, 364, 365].  In the context of prostate cancer, adipocytes from 

visceral and periprostatic tissues have been linked to the progression of localized disease 

[127, 369].  The data have been lacking, however, on how adipocytes that occupy bone 

marrow space might be influencing tumor cell signaling and consequently the progression 

of the disease for tumors that have colonized this fat-enriched metastatic niche. The 

results presented above reveal an important contribution of bone marrow adipocytes to 

the activation of the GSK3β/β-catenin pathway through PGE2-mediated EP receptor 

activation in metastatic PCa tumors. We show that marrow fat cells are capable of 

secreting prostaglandin E2 which activates the EP1, EP2, and EP4 receptors on the 

tumor cell surface, leading to the downstream activation of GSK3β/β-catenin pathway and 

a stabilization of HIF-1α. We also demonstrate that tumor cells are  
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Table 1: Primer sequences for PCR analysis of EP receptors 1-4 in human prostate 

cancer cells exposed to bone marrow adipocytes in transwell co-culture. 

Gene Forward Sequence Reverse Sequence 

EP1 
(PTGER1) 

CTTGTCGGTATCATGGTGGT
GTC 

GGTTGTGCTTAGAAGTGGCTGAG
G 

EP2 
(PTGER2) 

CCACCTCATTCTCCTGGCTA CGACAACAGAGGACTGAACG 

EP3 
(PTGER3) 

CTTCGCATAACTGGGGCAAC TCTCCGTGTGTGTCTTGCAG 

EP4 
(PTGER4) 

TGGTATGTGGGCTGGCTG GAGGACGGTGGCGAGAAT 
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Figure 4: EP1 is upregulated in PC3 and ARCaP(M) cells exposed to bone marrow 
adipocytes in vitro and in vivo. A.  Oncomine gene analysis comparing the expression 
of EP receptors 1-4 (PTGER1, PTGER2, PTGER3, PTGER4) in patient samples 
collected from metastatic or primary sites.  Data were ordered by “overexpression” and 
the threshold was adjusted to P-value < 1E-4; fold change, 2 and gene rank, top 10%. B.  
PCR analysis of EP1-4 expression status in PC3 cells alone or in transwell with 
adipocytes.  β-actin was used as a loading control. C. Gene expression analysis of EP1 
in tumor cells from LFD- or HFD-fed mice.  D. Taqman RT-PCR expression examination 
of PC3 cells (Left) or ARCaP(M) cells (Right) alone or in transwell co-culture with 
adipocytes or in LFD- or HFD-fed mice (E.).   
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able to modulate the secretion of PGE2 from a fat cell. They do so by releasing interleukin-

1β (IL-1β), which then induces the expression and activity of cyclooxygenase-2 (COX-2). 

This speaks to the importance of the supportive host microenvironment in tumor 

progression and demonstrates the crosstalk between the tumor cells and host adipocytes. 

This adipocyte-tumor cell interaction ultimately shapes the metabolism of the tumor cell 

allowing for the adaptive survival in the metastatic niche [314]. 

We focused on the COX-2/PGE2 pathway because activation of the EP receptors by 

PGE2 has been shown to facilitate tumor aggressiveness and survival within a harsh 

metastatic niche by inducing the expression of many proteins involved in cell survival 

[448, 449], proliferation [418], and hypoxia [439]. Activation of the β-catenin pathway has 

been associated with tumor aggressiveness and chemoresistance [450, 451]. 

Additionally, activation of HIF-1α has been linked to a poor prognosis and higher rates of 

chemoresistance [377, 452, 453].  The role of bone marrow adipocyte in mediating 

chemoresistance in PCa cells is currently unknown and is subject of ongoing 

investigations in our laboratory. 

Our study was founded upon the Oncomine database analysis of human prostate 

cancer samples of metastatic sites compared to primary sites.  Using this database 

allowed us to observe noticeable and significant increases in downstream targets of 

GSK3β/β-catenin signaling in metastatic prostate tumor, illuminating a clear translational 

relevance to the work presented within. Because the five-year survival of patients with 

metastatic disease drops from close to 99% in patients with localized disease to around 

29% in metastatic patients, it is of upmost importance to understand  
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Figure 5:  Bone marrow adipocytes activate the GSK3β/β-catenin pathway in PCa 

cells through the tumor EP receptors. A. Western blot analysis of phosphorylated and 

total GSK3β in PC3 cells alone or in transwell co-culture with bone marrow adipocytes.  

B.  Immunoblot expression examination of β-catenin in cytoplasmic or nuclear fractions 

in PC3 cells grown alone or in transwell with adipocytes.  Laminin A.C was used as a 

control for nuclear fractions and tubulin for cytoplasmic fractions.  C.  Cyclin D expression 

in PC3 cells cultured with or without adipocytes in transwell.  Tubulin was used as a 

loading control.  D. Western blot analysis of phosphorylated and total GSK3β in tumor 

cells grown alone or in transwell co-culture with adipocytes in the presence or absence 

of EP1-3 receptor inhibitor AH6809 and EP4 receptor inhibitor GW627368X.  Tubulin was 

used as a loading control. 
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Figure 6: Activation of the EP1 receptor in PCa cells leads to the activation of HIF-

1α signaling. A. Taqman RT-PCR analysis of CA9 and VEGF in tumor cells alone or 

treated with PGE2 or 15-S-15 Methyl PGE2.  B.  Taqman RT-PCR analysis of CA9 in 

tumor cells frown alone or in transwell with adipocytes in the presence or absence of EP 

receptor inhibitors AH6809 or GW6627368X or TG4-0155. 
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the signaling pathways responsible for the promotion of tumor growth and survival within 

the bone[454].  We believe that this distinct signaling network mediated by adipocyte-

provided PGE2 activation of the GSK3β/β-catenin pathway in metastatic tissues revealed 

by our Oncomine analyses provides an important starting point for future studies 

investigating the contribution of the COX-2/PGE2 axis to progression and survival of 

metastatic prostate tumors in the bone microenvironment.  

Data presented herein reveal marrow adipocytes as important players involved in 

shaping tumor cell signaling known to be involved in cell survival, proliferation, and 

chemoresistance in bone. To our knowledge, this is the first study demonstrating the 

importance of bi-directional interactions between marrow fat cells and tumor cells in 

activating tumor-secreted IL-1β activation of the COX-2/PGE2 axis in adipocytes, causing 

an activation of the tumor EP receptors and downstream signaling networks. 

Understanding the molecular mechanisms behind this regulation in bone is of critical 

importance in terms of potential treatment options for metastatic disease. 
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CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 

 
6.1 Conclusions 

 Metastatic prostate cancer (PCa) is currently a deadly disease that affects many 

men throughout the world.  When prostate cancer cells metastasize to the bone 

microenvironment, they come in contact with many different cell types present such as 

the commonly studied osteoblasts, osteoclasts, fibroblasts, and immune cells; however, 

one largely understudied component of the marrow space that tumor cells interact with 

are the bone marrow adipocytes.  Bone marrow fat cells were largely thought to be “filler” 

in the bone space but increasing evidence has shown that these cells have endocrine, 

and paracrine effects on neighboring cells [497, 498].   The original work presented within 

this thesis was the first to investigate the interaction between metastatic prostate cancer 

cells and bone marrow adipocytes in the context of adipocytes altering the metabolism of 

PCa cells through lipid signaling.  For our first project interrogating the effects of bone 

marrow adipocytes on tumor metabolism we were able to make the following conclusions: 

1) Patients with metastatic disease have increased expression of glycolytic and hypoxic 

genes compared to primary PCa tumors; 2) tumors grown intratibially in vivo in diet-

induced models of high marrow adiposity have increased expression of glycolytic and 

hypoxic genes compared to mice with fewer marrow adipocytes; 3) paracrine interactions 

between tumor cells and adipocytes in vitro induce expression of glycolytic and hypoxic 

proteins in tumor cells; 4) PCa cells exposed to adipocytes with increased expression of 

glycolytic markers exhibit enhanced Warburg metabolism with increases in lactate 

production, decreases in oxidative phosphorylation, and decreases in ATP production 

without perturbation of mitochondrial integrity or cellular viability; 5) tumor cells stimulate 
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lipolysis within adipocytes but the inhibition of lipolysis does not affect adipocyte-driven 

changes in PCa cell metabolism due to possible compensatory mechanisms; 6) metabolic 

effects are driven through the activation of HIF-1α in PCa cells as shown by increased 

expression of hypoxia-responsive genes and the reversal of adipocyte-induced metabolic 

changes upon knockdown of tumor cell HIF-1α.   

 Stemming from these results we aimed to elucidate the specific lipid mediators 

released by bone marrow adipocytes and involved in HIF-1α activation in our tumor cells. 

Literature searches and lipidomics analyses revealed PGE2 as a candidate bioactive lipid 

responsible for HIF-1α activation.  After investigating the potential role of PGE2 in hypoxia 

signaling, we were able to deduce the following conclusions: 1) metastatic prostate tumor 

cells had increased expression of downstream targets of PGE2/EP1-4 axis in patients 

compared to primary tumors; 2) mice with elevated marrow adiposity had higher levels of 

COX2, enzyme responsible for PGE2 synthesis; 3) adipocytes exposed to tumor cells in 

vitro had increased expression levels of COX-1 and COX-2 and elevated levels of 

secreted PGE2 and paracrine signaling was involved in COX-2  regulation by tumor cells; 

4) adipocyte expression of COX-1 and COX-2 was regulated by tumor-secreted IL-1B; 5) 

PGE2 receptor 1 (EP1) was upregulated in metastatic tumors in patients, in PCa cells in 

mice with elevated marrow adiposity, and in tumor cells co-cultured with adipocytes in 

vitro; 6) PGE2 from adipocytes activated the EP1, EP2, and EP4 receptors in tumor cells 

leading to downstream GSK3β/β-catenin signaling which are involved in cell growth ad 

survival; 7) PGE2 activated HIF-1α in tumor cells as shown by the activation of carbonic 

anhydrase 9. 
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 Lastly, while investigating PGE2 as a candidate lipid, we looked at sphingosine-1-

phosphate (S1P) an additional bioactive lipid responsible for the activation of HIF-1α in 

tumor cells.  Unfortunately, our studies with S1P did not yield positive results on HIF-1α 

activation; however inhibition of SPHK1 does indeed inhibit HIF-1α-mediated metabolic 

changes, showing that S1P may be  a necessary, but not sufficient molecule in metabolic 

regulation of tumor cells.  The following conclusions can be drawn from our work with 

adipocyte-supplied S1P and S1P receptor signaling in tumor cells: 1) the enzyme that 

synthesizes S1P from sphingosine, sphingosine kinase 1 (SPHK1) was upregulated in 

adipocytes exposed to intratibially injected prostate cancer cells and was increased in 

mice with high marrow adiposity; 2) SPHK1 was upregulated in adipocytes exposed to 

prostate cancer cells in vitro via paracrine interactions with the tumor cells; 3) inhibition 

of SPHK1 abrogated the glycolytic and hypoxic phenotype of tumor cells exposed to bone 

marrow adipocytes, suggesting a role of S1P in modulating tumor metabolism; 4) S1P 

receptors 5 and 2 (S1PR5 and S1PR2) were upregulated in metastatic prostate tumors 

in patients compared to primary sites, whereas S1PR status did not change and 

decreases S1PR5 were observed in tumor cells exposed to adipocytes in vitro; 5) 

inhibition of S1PR1-3 did not affect the metabolic response of tumor cells to adipocytes; 

6) treatment with S1P did not affect metabolic or hypoxic responses; 7) intrinsic S1P as 

shown by overexpression of SPHK1, did not make the cells more glycolytic or hypoxic; 

and  8) SPHK1 induction in adipocytes was shown to be partially mediated through tumor-

activated HSL-mediated lipolysis. 

6.2 Future Directions 
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Herein we show that major signaling pathways HIF-1α and GSK3β/β-catenin are 

activated in tumor cells exposed to adipocytes and is at least partially through 

prostaglandin E2 synthesis and release from adipocytes into the tumor microenvironment 

and activation of the EP receptors in tumor cells.  The HIF-1α and GSK3β/β-catenin 

signaling pathways have been implicated in many functions critical to cancer growth, 

survival, angiogenesis, and chemoresistance [377, 450, 499-503].  The work presented 

within this thesis can be extrapolated to multiple projects looking at sruvaival of tumor 

cells through the activation of pro-survival pathways and/or chemoresistance and drug 

response. 

6.2.1 Pro-survival Mechanisms/Chemoresistance 

 We have shown that interaction of PCa cells with marrow adipocytes increases 

their clonogenic potential and activates pro-survival pathways (Chapter 4, Fig 21 and 22), 

and this is coincident with upregulation of HK2, a glycolytic enzyme with pro-survival 

functions. Future work to extrapolate these findings would be to determine if HK2 bound 

to the mitochondria is critical for cellular survival through the inhibition of apoptosis.  We 

will be able to address this using apoptosis inducing agents on tumor cells that have been 

exposed to adipocytes in vitro with or without HK2 knockdown via siRNA techniques or 

using mutated HK2 that can no longer bind to the mitochondria.  Expected results would 

show that HK2 translocation to the mitochondria in tumor cells exposed to fat cells is 

required for resistance to apoptosis-inducing agents, effect abrogated by the disruption 

of mitochondrial binding of HK2.  Additionally, examining their response specifically to 

Docetaxel, and its next generation derivative Cabazitaxel, would shed light on possible 
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adipocyte-mediated mechanisms of chemoresistance and survival of PCa cells within the 

bone microenvironment. 

7.3 Clinical Relevance/Novel Targets 

 The work presented herein aimed to elucidate novel interactions between 

disseminated prostate cancer cells that have metastasized to the bone and residing bone 

marrow adipocytes.  There have been many efforts in the clinic to target HIF-1α signaling, 

the COX-2/PGE2 axis, and the SPHK1/S1P axis that we have shown are dysregulated in 

tumor cells via adipocyte-driven effects.  

 Targeting tumor metabolism has been a continuous effort over generations of 

scientists and has been a hot topic over the recent years [504, 505]. Because we have 

shown in our studies, that adipocytes activate HIF-1α in PCa cells, modulate their 

metabolism and increase HK2 binding to the mitochondria, it is imperative to consider 

HIF-1α and HK2 as potential therapeutic targets in metastatic prostate cancer patients.  

There are many drugs that have been found to target various steps in HIF-1α signaling 

such as its stabilization, translocation to the nucleus, binding to HIF-1β, and transcription 

factor activity [502].  Current therapies for targeting tumor metabolism are highlighted in 

Chapter 1 [506]. 

 The COX-2/PGE2 axis has been less of a challenge to target.  Given the 

inflammatory roles of COX-2 and PGE2 synthesis and action, there is extensive data 

using non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenase 

activity, on cancer progression and prevention.  In the context of metastatic prostate 

cancer, there have been conflicting reports of the benefits of NSAIDS as a treatment 

option.  Recently, it was found that giving NSAIDs to patients with localized disease 
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reduced the incidence of metastasis [507], while others have shown that NSAID treatment 

actually was associated with an increase risk in PCa-related mortality [508].  Additionally, 

a large ongoing STAMPEDE trial reported that adding celecoxib (COX-2 inhibitor) to 

standard hormone therapy for men with metastatic prostate cancer showed no advantage 

compared to the control group receiving the standard hormone therapy itself [509].  

Collectively, there have been largely inconsistent results from COX-2 inhibition in 

metastatic prostate cancer patients.  In vitro assays have shown that NSAIDs induce 

apoptosis in PC3 and LNCaP cells and G1 arrest [510-512], that COX-2 overexpression 

in LNCaP cells makes them more resistant to radiation therapy [513], and that celecoxib 

treatment in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice have 

delayed tumor growth and progression [514, 515], suggesting the COX-2 axis as a viable 

targetable network.  Additionally, preclinical work has been done using inhibitors of the 

prostaglandin receptors (EP1-4), showing benefits across many different cancer typed in 

vitro [444]. 

Lastly, emerging data have pointed to benefits of inhibiting SPHK1 and S1P 

signaling in cancer therapy.  Many of the targets were created for treatment of multiple 

sclerosis-related inflammation but recent work has shown that using anti-S1P antibodies, 

small molecule inhibitors of S1P signaling [516], or SPHK1 inhibitors [517], effectively 

halts tumor angiogenesis [518], growth and survival [519].  Two well-known antibodies 

have been created to target S1P: Sphingomab and Sonepcizumab.  Sonepcizumab 

(ASONEP) failed in phase II clinical trials for both Renal Cell Carcinoma (NCT01762033) 

and persistent pigment epithelial detachment in subjects with acute macular degeneration 

(AMD) or polypoidal choroidal vaculopathy (PCV) (NCT01334255).  Additional clinical 
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studies have attempted inhibiting S1P receptors in multiple sclerosis and have had 

promising clinical results [520].  FTY720 is now FDA approved as a S1PR antagonist that 

competitively binds to S1PR1 as a structural analogue of S1P for multiple sclerosis [521] 

and has been shown to have anticancer roles as a therapy in preclinical work [522].  

Specifically FTY720 has been shown to sensitize prostate cancer cells to radiotherapy 

[470], cause proteasomal degradation of SPHK1 in androgen-independent PCa cells 

[523], inhibit cell-cycle entry and induce apoptosis in prostate cancer cells [524, 525], 

inhibit in vivo tumor growth of androgen-independent PCa [526], inhibit invasion of 

androgen-independent PCa cells [527], and suppress overall aggressiveness of PCa cells 

[528].   

Collectively, there have been many reports that suggest HIF-1α signaling, the 

COX-2/PGE2 axis, and the SPHK1/S1P axis are targetable pathways that have now been 

implicated in the crosstalk between metastatic prostate cancer cells and bone marrow 

adipocytes to facilitate tumor growth and survival in the bone niche.  Future directions 

from the work presented within this thesis could use the aforementioned inhibitors to study 

PCa growth in bone as potential therapeutic targets in vivo to characterize the importance 

of these signaling networks for tumor growth in bone.  [497]   
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APPENDIX 

Adipocyte-Derived Sphingosine-1-Phosphate does not affect the Metabolic 

Phenotype of Metastatic Prostate Cancer Cells 

A.1 Introduction 

The uptake of lipids from the microenvironment, aberrant de novo lipid synthesis 

and alterations in fatty acid catabolism and steroidogenesis pathways are now emerging 

as key mechanisms linking dysregulated lipid metabolism in the primary prostate tumor 

with subsequent progression and reduced survival [299, 303, 304].  These lipids have the 

propensity to regulate signaling networks within cancer cells through receptor-mediated 

signaling pathways [414]. Previous work stemming from our laboratory has shown that 

metastatic prostate tumors in bone both induce lipolysis in bone marrow adipocytes and 

also utilize lipids from adipocytes to fuel their own metabolic processes that are largely 

lipid-driven [345, 360]; therefore, it is crucial to understand what lipids are responsible for 

tumor growth and survival in bone.  

There is increasing emerging evidence that the lysosphingolipid sphingosine-1-

phosphate (S1P), a bioactive lipid in the sphingolipid family, plays a role in cancer 

progression [455-457]. S1P is synthesized by the conversion of sphingosine to 

sphingosine-1-phosphate through its phosphorylation by the enzymes sphingosine 

kinase 1 (SPHK1) or sphingosine kinase 2 (SPHK2) [458, 459].  Once S1P is synthesized 

it can be exported out of the cell by specific sphingolipid transporters such as spinster 2 

(SPNS2) [460, 461] where it exerts its autocrine and paracrine effects.  Secreted S1P has 

the propensity to bind to five independent receptors known as S1PR1-5 [462].  S1P 

receptor signaling has been implicated in regulating a multitude of functions important for 

cancer progression such as autophagy [463], angiogenesis [464, 465], proliferation [466], 
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and many other processes [467]. S1P has an additional intrinsic function where SPHK1 

or SPHK2 can translocate to the nuclear envelope or endoplasmic reticulum and 

synthesize S1P locally [468, 469]. 

Importantly, limited studies in prostate cancer have shown S1P receptor signaling 

to play critical roles in tumor-promoting autophagy through S1PR5 [463], sensitization to 

irradiation [470] and to Docetaxel, the standard chemotherapeutic agent for hormone-

resistant PCa, docetaxel [471]. Re-sensitization of PCa cells was seen through the 

inhibition of SPHK1 and intracellular S1P production. One study examining effects of 

osteoblast-derived S1P on metastatic prostate cancer, ,showed its promoting effects on 

tumor cell growth and survival [472].  S1P has been shown to promote adipogenesis [473] 

and elevated serum levels of S1P were shown in obese patients compared to lean [474]; 

however, no studies have looked at the effects of bone marrow adipocyte-supplied S1P 

on prostate cancer cell growth and survival within the bone.  Extending from our previous 

work we have shown that HIF-1α is activated in tumor cells exposed to bone marrow 

adipocytes [360]. Intriguingly, S1P signaling has been shown to have the propensity to 

activate HIF-1α signaling [475] and HIF-2α expression and activity [476]. 

The objective of this study was to elucidate the role of bone marrow adiposity in 

the modulation of tumor signaling networks within the bone microenvironment.  Using in 

vivo models of diet induced marrow adiposity in combination with in vitro models of 

paracrine signaling between bone marrow adipocytes and prostate cancer cells, we show 

that tumor-stimulated activation of lipolysis in bone marrow adipocytes leads to induction 

of SPHK1 and subsequent secretion of S1P into the tumor microenvironment.  S1P then 

activates the S1P receptors in tumor cells; however, this does not modulate the 
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metabolism of the tumor cells or activate HIF-1α signaling as we had hypothesized.  

These results introduce a potential mechanism underlying other functions regulated by 

S1P in facilitating adaptation of metastatic tumors in bone and implicate bone marrow 

adipocyte, a cell type so abundantly present in the skeleton especially in advanced age 

and obesity, as a viable culprit in the progression of this currently incurable disease. 

A.2 Results 

A.2.1 Sphingosine Kinase 1 (SPHK1) is upregulated in adipocytes exposed to 

intratibially injected prostate cancer cells in vivo 

To determine whether the hypoxic phenotype observed in PCa cells exposed to 

adipocytes was correlated with increased S1P production in adipocytes leading to 

activation of the HIF-1α, we analyzed mRNA expression of mouse SPHK1 in adipocytes 

exposed to intratibially injected PC3 and ARCaP(M) cells in LFD and HFD mice. Our 

results revealed significantly increased host (mouse) transcript levels of SPHK1 in bone 

tumors from HFD mice as compared to LFD mice (Figure 1), suggesting a potential 

contribution of marrow adipocytes to this process.  These findings implicate tumor cells 

as potential regulators of adipocyte S1P production, which likely occurs through the 

activation of the SPHK1 enzyme in bone marrow fat cells.  This led us to further 

investigate the mechanism of this regulation in vitro. 

A.2.2 SPHK1 and S1P are upregulated in adipocytes exposed to prostate cancer 

cells in vitro 

 We utilized in vitro models of tumor cell-adipocyte interactions to determine if the 

activation of SPHK1/S1P axis observed in intratibial tumors in vivo is a direct effect of 

tumor cell action on adipocytes. We first examined SPHK1 expression in adipocytes 
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exposed to PCa cells by employing a transwell system in which adipocytes were 

differentiated in the bottom chamber and tumor cells were then plated in the traswell insert 

and cultured together for 48 hours. This allowed the two cell types to share the media 

without direct interaction.  SPHK1 was significantly increased in adipocytes co-cultured 

with PCa cells (Figure 2A).  Interestingly, lipidomics analyses of S1P levels in PCa cell 

lysates in transwell with adipocytes showed elevated levels of S1P (Figure 2B)  This 

corresponded with lower levels of intracellular ceramides and increased sphingosines 

(Figure 2C and 2D).  Additionally, adipocytes have elevated levels of sphingosine and 

S1P as well (Figure 2B) when exposed to PC3 cells in transwell co-culture.  Important to 

note, S1P was only detected in a small amount of samples and further analysis is crucial 

to conclude that S1P levels are significantly higher in cells PC3 cells or fat cells in co-

culture; however, these results suggest that adipocytes are synthesizing more 

sphingosine which is in turn converted to S1P and that this effect is also happening in 

tumor cells in which they are decreasing the balance of ceramide to sphingosine in favor 

of sphingosine synthesis. 

The fact that transwell co-culture with tumor cells caused the activation of SPHK1 

and increase S1P production in adipocytes suggested that this process does not require 

physical interaction between the tumor cells and adipocytes.  Therefore, we next 

examined whether the media conditioned by the PCa cells alone (PC3/ARCaP(M) CM) 

can facilitate similar changes in adipocytes as observed in transwell co-culture.  

Interestingly, treatment with either PC3 or ARCaP(M) conditioned media induced 

expression of SPHK1 in adipocytes (Figure 2D), suggesting that paracrine signaling is 

required between the adipocytes and tumor cells for the subsequent phenotype.  
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Figure 1: SPHK1 expression increases in bone marrow adipocytes exposed to 
prostate cancer in vivo.  Taqman RT-PCR analysis of mouse SPHK1 expression in 
adipocytes exposed to both ARCaP(M) and PC3 cells that were intratibially injected and 
allowed to grow in the marrow space in high fat diet- (HFD) or low fat diet (LFD) fed-mice.  
Data were normalized to mouse Adiponectin and represent a mean of a minimum of 3 
mice/group + SD.  
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A.2.3 Inhibition of SPHK1 abrogates the metabolic effect of adipocytes on PCa cells 

 Because SPHK1 is upregulated in adipocytes exposed to tumor cells in vivo and 

in vitro, we used a pharmacological inhibitor of SPHK1 activity, sphingosine kinase 

inhibitor 2 (SKI-2) [207, 477, 478] and assessed the hypoxic and metabolic effects of 

adipocytes on tumor cells in vitro.  We have previously shown that bone marrow 

adipocytes enhance the Warburg phenotype in PCa cells through the activation of HIF-

1α [360]; Therefore, we looked at the genes involved in activation of HIF1a and glycolysis 

in tumor cells interacting with adipocytes upon SPHK1 inhibition. Interestingly, we 

observed that treatment with SKI-2 abrogated the effects of the adipocytes on tumor 

metabolism, suggesting a role of S1P in regulating the hypoxic signature of tumor cells 

exposed to adipocytes (Figure 3A and B).  This effect was observed in both PC3 and C4-

2B cells (Figure 3C). 

A.2.4 Sphingosine-1-phosphate receptor expression status in patients with 

metastatic prostate cancer compared to primary prostate cancer 

 S1P is a bioactive lipid that has the propensity to activate cellular signaling through 

five different S1P receptors (S1PR1-5) [479].  We next performed an in silico Oncomine 

database analysis of S1P receptors in metastatic prostate cancer tumors compared to 

primary prostate tumors.  Of the five receptors, S1PR5 and S1PR2 were significantly 

upregulated in metastatic tumors (Figure 4A), showing a possible importance of individual 

S1P receptors in S1P signaling in bone tumors. 

A.2.5 S1P receptor 1-5 expression levels in tumor cells exposed to adipocytes in 

vitro 
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 Stemming from the in silico analysis fo S1P receptor expression in metastatic 

tumors compared to primary tumors, we then looked at the S1PR1-5 expression status in 

vitro in tumor cells exposed to adipocytes in transwell co-culture (Figure 4B).  Using 

primers designed to recognize each of the five S1P receptors, we observed no significant 

increases in S1PR1, S1PR2, or S1PR4, significant decreases in S1PR5, and 

undetectable levels of S1PR3 in tumor cells exposed to adipocytes in transwell co-culture.  

Although these results were disappointing, receptor expression levels do not always 

correlate with receptor activity. Therefore we used antagonists to different S1P receptors 

and assessed the hypoxic and metabolic activity of the tumor cells upon receptor 

inhibition.  Specifically, we utilized VCP23019 to inhibit the activity of S1PR1 and S1PR3 

[480-482] and JTE-013, to selectively target S1PR2 [482, 483]; however, we did not 

observe any changes in the induction of the hypoxia-associated gene CA9 or the 

glycolysis associated genes ENO2 and HK2 (Figure 5), suggesting that S1P may not be 

activating the HIF-1α pathway through S1PR1, S1PR3, or S1PR4.   

A.2.6 S1P may act as a necessary, but not sufficient, cofactor for HIF-1α activation 

in tumor cells 

 We then sought to determine which of the S1P receptors is involved in signaling 

leading to HIF1a activation.  We used pharmacological receptor agonists as well as 

synthetic S1P itself, to activate each of the receptors and look at both a hypoxic and 

metabolic response in the tumor cells (Table 1). Neither treatment with S1P itself nor any 

of the agonists activated a hypoxic or glycolytic response in the tumor cells (Figure 6A-

C), suggesting that S1P signaling through the S1P receptors is not sufficient for HIF-1α 

activation.  S1P has been shown to activate Akt signaling and as a control, we assessed 
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the phosphorylation of Akt.  We observed that upon exposure to S1P, Akt is being 

activated in the PC3 and ARCaP(M) cells suggesting that S1P is functionally active 

(Figure 6D).  We have previously shown that paracrine interactions between tumor cells 

and adipocytes are critical for regulation of tumor metabolism. This was determined by 

treating the tumor cells with media conditioned by a co-culture of tumor cells and 

adipocytes. Treatment with adipocyte conditioned media alone is not sufficient to induce 

metabolic changes in tumor cells therefore, we postulated that because tumor cells are 

required to increase S1P levels from adipocytes through the induction of SPHK1, S1P is 

the missing factor in adipocyte conditioned media compared to the co-culture conditioned 

media. Conversely, adipocyte conditioned media induces the expression of lipid 

transporters that are critical for the uptake of lipids such as S1P.  To test this hypothesis, 

experiments were performed in which tumor cells were treated with S1P that was added 

to adipocyte conditioned media. We saw that even though lipid transporters were 

increased under those conditions, they were not responding metabolically to the addition 

of S1P as us we have observed upon treatments with direct co-culture conditioned media 

(Figure 6E).  

A.2.7 Intrinsic SPHK1 overexpression does not activate a hypoxic or glycolytic 

phenotype in PCa cells 

S1P can signal through its receptors but also has cellular-intrinsic signaling [468].  

Because we see SPHK1 induction in adipocytes and the inhibition of SPHK1 using SKI-

2 abrogates the metabolic effects of adipocytes on tumor cells, a phenotype not inhibited 

by receptor antagonists, we pursued cellular-intrinsic signaling within the tumor  
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Figure 2:  SPHK1 expression and activity increases in adipocytes exposed to 

prostate cancer cells in vitro.  A.  Taqman RT-PCR analysis of SPHK1 expression in 

adipocytes in transwell co-culture with PC3 and ARCaP(M) cells in vitro.   Lipidomics 

analysis of sphingosine-1-phosphate (S1P) levels (B.), sphingosines (C.), and ceramides 

(D.) in tumor cells and adipocytes alone or in co-culture.  E.  Expression of SPHK1 in 

adipocytes treated with PC3 or ARCaP(M) conditioned media.  
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Figure 3: SPHK1 inhibition using SKI2 abrogates metabolic effects of adipocytes 

on prostate cancer cells.  A.  Taqman RT-PCR analysis of Warburg Effect associated 

genes ENO2, PDK1, HK2, GLUT1, and LDHa and hypoxic marker CA9 in tumor cells 

alone or in transwell co-culture with adipocytes in the absence (top) or presence (bottom) 

of SKI2, a SPHK1 inhibitor. Data are normalized to HPRT1 and shown relative to control. 

B.  Western blot analysis of Warburg Effect associated proteins HK2 and ENO2 and 

phosphorylated PDH, indicative of enhanced PDK1 activity in PC3 cells alone or in 

transwell with adipocytes with or without 5 uM SKI2.  Tubulin was used as a loading 

control.  C.  Taqman PCR of hypoxic and glycolytic genes in C4-2B PCa cells alone or in 

transwell in the presence or absence of 5 uM SKI2.  Results represent a mean of at least 

3 independent experiments ± SD. Values * P < 0.05; ** P < 0.01, *** P < 0.001 are 

considered statistically significant. 
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Figure 4:  S1P receptor expression status in patients with metastatic prostate 
cancer compared to primary prostate cancer and PCa cells exposed to bone 
marrow adipocytes in vitro.  A. Oncomine gene analysis comparing the expression of 
metabolic genes (S1PR1-5) in patient samples collected from metastatic or primary sites.  
Data were ordered by “overexpression” and the threshold was adjusted to P-value < 1E-
4; fold change, 2 and gene rank, top 10%. B. Qualitative PCR of S1PR1-5 in PC3 cells 
co-culture with adipocytes in transwell.  Actin was used as a loading control. 
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cells that is not receptor-mediated.  We first looked at SPHK1 levels in tumor cells to see 

if not only the adipocytes are increasing levels of SPHK1, but also tumor cells; however, 

Taqman real-time PCR results showed no significant changes in SPHK1 levels in PCa 

cells alone or exposed to adipocytes in transwell co-culture (Figure 7A).  We then stably 

overexpressed SPHK1 in the tumor cells to increase intrinsic S1P levels (Figure 7B) and 

assessed the metabolic effects of increasing SPHK1 expression in tumor cells (Figure 

7C).  Surprisingly, there was no effect of SPHK1 overexpression on the metabolic 

phenotype seen in tumor cells exposed to adipocytes, showing that intrinsic S1P signaling 

also does not have an effect on tumor metabolism. 

A.2.8 Activation of hormone sensitive lipase-mediated lipolysis by PCa cells 

enhances SPHK1 expression in adipocytes 

 Lastly, we pursued the regulation of SPHK1 in bone marrow adipocytes exposed 

to PCa cells.  Previous literature has shown that SPHK1 and the production of S1P is 

regulated by hormone sensitive lipase (HSL-)-mediated lipolysis in white adipose tissue 

[207].  We tested this in bone marrow adipocytes using a chemical inducer of lipolysis, 

forskolin.  Upon treatment with forskolin, we observed a large increase in SPHK1 

expression in bone marrow fat cells, suggesting that activation of lipolysis increases 

SPHK1 levels (Figure 8A).  We then used inhibitors of adipose triglyceride lipase (ATGL), 

Atglistatin, and hormone sensitive lipase, BAY59-9435 (BAY), and saw a marked 

decrease in SPHK1 expression with BAY treatment but not with Atglistatin, showing that 

this regulation of SPHK1 is mediated by HSL activation during lipolysis (Figure 8B) similar 

to studies in white adipose tissue [207].  Studies are currently ongoing to determine the 

contribution of the phosphorylation (activation) of HSL in  
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Figure 5:  S1PR inhibition does not abrogate effects of adipocytes on tumor 
metabolism.  Taqman RT-PCR analysis of hypoxic response marker CA9 and glycolytic 
genes ENO2, HK2, and PDK1.  Data were normalized to HPRT1 and shown as fold 
change relative to PC3 cells alone.  Experiment was done one time and experimental 
replicates are shown as SD. 
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Figure 6:  Treatment with S1P is not sufficient to induce Warburg phenotype in PCa 
cells as seen by bone marrow adipocytes. A.  Taqman RT-PCR analysis of glycolysis 
markers ENO2, GLUT1, and PDK1 after treatment with 500 nM S1P for 0, 0.5, 1, 2, 4, or 
6 hours.  B. Gene expression analysis of CA9 and ENO2 in tumor cells treated with S1PR 
agonists or S1P itself.  C.  Taqman RT-PCR of CA9 and ENO2 in PC3 cells (Left) or 
ENO2 in ARCaP(M) cells (Right) at multiple concentrations of S1P.  D.  Immunoblot 
measurement of phosphorylated Akt and ERK in tumor cells treated with 10 uM S1P over 
a time course in PC3 cells (Left) and ARCaP(M) cells (Right).  E. Taqman RT-PCR of 
CD326, ENO2, HK2, and PDK1 in PC3 cells treated with 10 uM S1P, Adipocytes 
Conditioned Media (Adipo CM), Adipo CM with 10 uM S1P, or Adipocyte tumor co-culture 
conditioned media (CCM). 
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adipocytes in co-culture with PCa cells and if this correlates with S1P synthesis.  It has 

been shown that HSL activation leads to upregulated c-Jun N-terminal kinase 

(JNK)/activating protein-1 (AP-1) signaling and SPHK1 induction [207], so we will 

examine the JNK/AP-1 pathway in adipocytes exposed to PCa cells to determine how 

HSL activation regulates SPHK1. Also, we will determine if BAY treatment completely or 

partially inhibits HSL activation because BAY only partially decreases the robust increase 

in SPHK1 expression levels in adipocytes exposed to tumor cells.  Additional experiments 

will be designed to use other specific inhibitors of HSL [484-487] to show the importance 

of this specific lipase to the regulation of SPHK1 expression. 

A.3 Discussion 

The results presented above reveal an important contribution of tumor cell-induced 

lipolysis in bone marrow adipocytes leading to sphingosine-1-phosphate (S1P) 

production and a possible regulation of tumor metabolism. We show that marrow fat cells 

are capable of secreting S1P that either binds to S1PR1-5 or is internalized and used 

within tumor cells but that S1P alone is not sufficient to cause a metabolic effect within 

tumor cells, even though it may be necessary. We also demonstrate that tumor cells are 

able to modulate the secretion of S1P from a fat cell. They do so by inducing lipolysis and 

the activation of specifically hormone sensitive lipase (HSL). This speaks to the 

importance of the supportive host microenvironment in tumor progression and 

demonstrates the crosstalk between the tumor cells and host adipocytes. This adipocyte-

tumor cell interaction ultimately shapes the cell signaling within the tumor cell allowing for 

the adaptive survival in the metastatic niche.  
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Figure 7: Overexpression of SPHK1 in PC3 cells does not affect the metabolic 
phenotype.  A.   Taqman RT-PCR analysis of SPHK1 expression in tumor cells alone or 
in transwell with adipocytes.  B.  Quantitative real time PCR of SPHK1 expression stably 
expressed in PC3 cells in control Neomycin vector (Neo) or with SPHK1 overexpressing 
vector (SPHK1) with two different concentrations of Lipofectamine3000 (3.75 and 7.5 ul).  
C.  Taqman RT-PCR of CA9, HK2, and PDK1 in PC3 cells overexpressing SPHK1 
compared to control cells.  Data were normalized to HPRT1 and shown as a fold change 
relative to control.   
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Figure 8:  Adipocyte SPHK1 expression is regulated by the induction of HSL-

mediated lipolysis by tumor cells.  A.  Taqman RT-PCR analysis of SPHK1 in 

adipocytes in the presence or absence of lipolysis inducing agent Forskolin.  B.  Gene 

expression analysis of SPHK1 in adipocytes exposed to tumor cells in traswell co-culture 

in the presence or absence of HSL inhibitor (BAY) or ATGL inhibitor (Atglistatin).  Data 

are normalized to Adiponectin and shown as fold change relative to control. 
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We focused on the SPHK1/S1P pathway because activation of the S1P receptors by 

S1P has been shown to facilitate tumor aggressiveness and survival by inducing the 

expression of many proteins involved in angiogenesis [465, 488], proliferation [[472[Hu, 

2010 #3960], migration [489] and many other hallmarks of cancer [490]. Additionally, 

microarray studies have shown that high levels of SPHK1 and S1P signaling are 

correlated with a poor prognosis in breast cancer [491] and other cancers such as lung 

and ovarian cancer [456]. Importantly, for the context of our studies, it has been shown 

that S1P can activate HIF-1α [475, 492]. Unfortunately, our data do not support these 

findings in prostate cancer cells, showing that S1P is not sufficient to activate HIF-1α 

signaling in PC3 or ARCaP(M) cells. 

Although our data did not support our hypothesis, we have shown that sphingosine 

and S1P levels are increased in both tumor cells and adipocytes in co-culture compared 

to alone conditions.  This S1P can be secreted into the tumor microenvironment and 

regulate many different signaling networks in tumor cells that aid in growth and survival 

within the bone.  Additionally there are many intracellular targets of S1P [468, 493] and it 

appears that tumor cells are also decreasing ceramide levels and increasing sphingosine 

and sphingosine-1-phosphate levels, indicative of a shift in balance toward sphingosine 

synthesis and away from ceramide.  This is important because it has been shown that 

increased ceramide levels correlate with induction of apoptosis and increasing the 

sphingosine levels serves as a pro-survival mechanism for tumor cells [494].  Surprisingly, 

we also observed that adipocytes exposed to tumor cells have increased production of 

certain ceramide species (Figure 2D).  This could possibly be due to the parasitic nature 

of tumor cells feeding off of the adipocytes inducing lipolysis and lipid transfer [345], 
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leading to apoptosis of the adipocytes.  Experiments will be performed to determine if 

adipocytes are undergoing early stages of apoptosis after tumor cells deplete them of 

their lipid and nurients. Future studies will also be utilized to assess the expression and 

function of ceramidase enzyme sphingolipid delta-4 desaturase (DES1) in tumor cells and 

adipocytes that are responsible for ceramide catabolism to sphingosine and ceramide 

synthase that converts sphingosine to ceramide.  Collectively, this work will show us if 

there are enzymes responsible for the accumulation of sphingosine and S1P, but also 

increases in ceramides in the adipocytes.  Also, lipidomics assays will be performed on 

media conditioned by adipocytes and tumor cells and adipo/tumor co-cultures to 

determine if this S1P is secreted and possible roles of S1P in the local or systemic tumor 

microenvironment. 

A future avenue that is worth consideration is the functional role of S1P in the 

activation of autophagy in tumor cells leading to a cytoprotective effect via activation of 

ER stress responses [463, 495, 496].  In the context of bone marrow adipocyte 

interactions with prostate cancer cells, S1P levels driven by tumor-induced lipolysis within 

the adipocytes could contribute to activation of ER stress and autophagy pathways within 

adipocytes, a crosstalk that is yet to be explored.   

The rationale for our study was based on the gene expression analyses of bone 

marrow adipocyte samples suggesting clearly distinct increases in SPHK1 expression 

and extensive literature showing SPHK1/S1P signaling has the propensity to activate HIF-

1α as a mechanism to explain the lipid-mediated crosstalk between bone marrow 

adipocytes and prostate cancer cells within the bone microenvironment. Unfortunately, 

however, we have shown that S1P itself is not sufficient to activate HIF-1α and induce 
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metabolic changes in the tumor cells.  We believe that showing that the SPHK1/S1P axis 

is dysregulated, although not sufficient to alter the metabolism of the tumor cells, provides 

an important starting point for future studies.  These findings illuminate novel avenues of 

investigation for elucidating the contribution of the SPHK1/S1P axis to progression and 

survival of metastatic prostate tumors in the bone microenvironment.  

Data presented herein reveal marrow adipocytes as important players involved in 

shaping tumor cell signaling known to be involved in cell survival, proliferation, and 

chemoresistance in bone. To our knowledge, this is the first study demonstrating the 

importance of bi-directional interactions between marrow fat cells and tumor cells in 

activating tumor-activated lipolysis, stimulating the expression and activity of the 

SPHK1/S1P axis in bone marrow adipocytes, causing an activation of the tumor S1P 

receptors or internalization, and activation of intracellular targets of S1P and downstream 

signaling networks. Understanding the molecular mechanisms behind this regulation in 

bone is of critical importance in terms of potential treatment options for metastatic 

disease. 
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Bone is a preferential site of metastasis from prostate cancer (PCa). Although 

there have been many advances in therapeutic options for patients suffering from 

metastatic PCa, this disease remains incurable with an estimated five-year survival of 

33%. To design effective therapeutic interventions for metastatic PCa, it is essential that 

we elucidate the molecular mechanisms responsible for tumor cell adaptation to and the 

ability to thrive within the bone metastatic niche. Age and obesity, conditions that increase 

adipocyte numbers in bone marrow, are risk factors for skeletal metastases from PCa; 

therefore, our laboratory is focused on the interactions between marrow adipocytes and 

PCa cells. 

We initially detailed the metabolic alterations that occur in prostate cancer cells in 

response to interactions with bone marrow adipocytes in multiple in vivo and in vitro 

models.  The following conclusions were drawn as a result of these experiments: 1) 

Patients with metastatic disease have increased expression of glycolytic and hypoxic 

genes compared to primary PCa tumors; 2) tumors grown intratibially in vivo in diet-

induced models of high marrow adiposity have increased expression of glycolytic and 
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hypoxic genes compared to mice with fewer marrow adipocytes; 3) paracrine interactions 

between tumor cells and adipocytes in vitro induce expression of glycolytic and hypoxic 

proteins in tumor cells; 4) PCa cells exposed to adipocytes with increased expression of 

glycolytic markers exhibit enhanced Warburg metabolism with increases in lactate 

production, decreases in oxidative phosphorylation, and decreases in ATP production 

without perturbation of mitochondrial integrity or cellular viability; 5) tumor cells stimulate 

lipolysis within adipocytes but the inhibition of lipolysis does not affect adipocyte-driven 

changes in PCa cell metabolism due to possible compensatory mechanisms; 6) metabolic 

effects are driven through the activation of HIF-1α in PCa cells as shown by increased 

expression of hypoxia-responsive genes and the reversal of adipocyte-induced metabolic 

changes upon knockdown of tumor cell HIF-1α.   

Additionally, we found novel signaling pathways are activated in tumor cells due to 

cross talk between tumor cells and adipocytes.  We observed a regulation of COX-2 in 

adipocytes by tumor-secreted IL-1β that leads to increased PGE2 synthesis and release 

and this PGE2 signals through the EP receptors on the tumor cells to elicit downstream 

GSK3β/β-catenin signaling and subsequent HIF-1α activation.   

We also observed increased SPHK1 in adipocytes exposed to tumor cells as an 

effect of tumor-stimulated lipolysis within adipocytes, but that S1P was not sufficient to 

activate HIF-1α signaling in tumor cells or downstream metabolic alterations.   

In summary, we have discovered novel crosstalk between metastatic prostate 

tumor cells and bone marrow adipocytes that cause activation of many pathways involved 

in tumor survival and growth within the bone.  We have revealed a functional contribution 

of bone marrow adipocytes to altered tumor metabolism and signaling in bone. The 
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expected outcome of this research is the validation of the significance of adipocyte-

derived lipids in growth and aggressiveness of metastatic PCa in bone. The ultimate goal 

is utilize findings from this study to explore whether adipocyte-driven metabolic adaptation 

contributes to chemoresistance of skeletal tumors and whether targeting tumor 

metabolism offers new options for improved therapy and/or prevention of aggressive 

disease. 
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