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CHAPTER 1: INTRODUCTION  

1.1 Motivation 

In the development process of any product that subjects to mechanical excitation, reducing 

the radiated noise that is harmful to human health and environment is always a crucial concern. 

Due to the complexities of predicting the real vibro-acoustic behavior of a structure and utilization 

of idealistic properties as well as simplified boundary conditions, many noise control targets that 

are set a design stage cannot be achieved. This causes most noise control tasks, especially 

structure-borne noise control tasks, to be done at the final stage with respect to a prototype. So, 

experimental noise diagnoses are widely used in industry.  

The key factor of experimentally diagnosing the noise source is to find the interrelationship 

between structural vibration and resultant sound radiation, which may be summarized as: "While 

sound is produced by vibrations, not all vibrations can produce sound." This is because the majority 

of structural vibrations produce the evanescent waves whose amplitudes decay exponentially as 

they travel away from the vibrating structure. In fact, only a small portion of structural vibrations 

can produce sound waves that can travel to the far-field. So, identifying and then suppressing the 

components of structural vibrations that are directly related to sound radiation is the most cost-

effective way to reduce noise. 

However, many noise reduction strategies that are currently used in industry simply equate 

noise control to vibration control. Typically, these strategies aim at reducing the noise radiated at 

certain frequencies (or bands) by suppressing structural vibrations at the same frequencies. More 

specifically, these approaches attempt to suppress the natural modes or operating deflection shapes 

of a structure at or near the target frequencies. Such methods are effective for control of vibration, 

however, but not sound radiation. Because the vibration component that contributes most to noise 
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radiated at specific frequencies might not necessarily be the nature modes or operating deflection 

shapes at or near these frequencies. For example, the efficiency in sound radiation for any specific 

normal mode is often not the highest at its corresponding natural frequency. Therefore, we must 

first establish the interrelationships between sound and vibration at any frequency and then identify 

the specific vibration components that are directly related to sound radiation at this frequency. 

1.2 Objective 

The ultimate goals of this dissertation are to develop an innovative diagnosis technique that 

enables one to analyze vibro-acoustic responses of a complex structure, identify the most critical 

vibration components that are directly responsible for sound radiation, and provide guidelines on 

where to start and how far to go to suppress structural-borne sound, based on the time and resources 

available.  

To this end, we set to two specific tasks. First, we develop a general methodology that may 

be applicable to an arbitrarily shapes structure, yet convenient to use in practice to determine the 

interrelationships between structural vibrations and sound radiation. Second, we develop a tool to 

assess the effectiveness of each vibration components toward sound radiation, thus identifying the 

most critical vibration components that are directly responsible to the offensive sound radiation. 

The first goal is accomplished by reconstructing the vibro-acoustic field generated by an 

arbitrary shaped vibrating structure. There are many ways to reconstruct vibro-acoustic quantities 

that include the Fourier transform-based nearfield acoustic holography (NAH), boundary element 

method (BEM) based NAH, Helmholtz equation least-square (HELS) method-based NAH, as well 

as empirical approaches based on the reciprocity principle. In this dissertation HELS method-based 

NAH was selected over other method to identify the interrelationships between surface vibration 

and resultant sound radiation. The reason of using this approach is that it can handle any geometry 

with relatively few measurement points, and is suitable for a non-ideal test environment. However, 
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the original HELS method uses the nearfield sound pressure as input, which can be problematic in 

practice because more often than not, it is not possible to set an array of measurement microphones 

around a vibrating structure in a near field. Moreover, setting up a conformal array of microphones 

around an arbitrarily shaped vibrating structures is extremely time consuming. Scenarios get even 

worse when there are auxiliary parts around the test object, which makes nearfield sound pressure 

measurements impossible.  

To overcome these practical issues, a modified HELS-based NAH is developed uses a 

combination of the normal surface velocity and radiated acoustic pressure as inputs. The normal 

surface velocity distribution can be easily obtained by using a scanning laser vibrometer over the 

surface areas that are exposed to the laser beam. This strategy significantly simplifies the test setup 

and data acquisition, because laser measurements are noninvasive, noncontact and may be done at 

a remote location. For surface area of a target structure that is not accessible to a laser beam, the 

normal surface velocity distribution is obtained by using a modified HELS method. Meanwhile, 

in order to correlate surface vibrations to sound radiation, the field acoustic pressures are measured 

around the target structure. These acoustic pressure data can also be used to improve the accuracy 

in the reconstruction of the field acoustic pressure. Since the acoustic pressure measurements are 

taken at certain distances away from the vibrating structure, the measurement setup is very easy to 

make. Once these measurements are taken, we can reconstruct all vibro-acoustic quantities on the 

surface of a target structure and the radiated acoustic pressure field. Most importantly, we can 

establish a correlation between structural vibrations and acoustic radiation. 

To analyze relative contribution of each vibration component to sound radiation at various 

frequencies, a widely-used approach is to calculate the radiation efficiencies of individual normal 

mode of a vibrating structure. Since analytic solutions to the normal modes only exist for special 

geometry subject specific boundary conditions, most research papers are focused on calculating 
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the radiation efficiency of the normal modes of a baffled plate or a cylinder shell. No prior studies 

have been found on dealing with the radiation efficiency of an arbitrarily shaped geometry. Most 

importantly, since the normal modes of a vibrating structure are not related to sound radiation, the 

radiation efficiency calculated in terms of normal modes cannot reveal the true characteristics of 

sound radiation. 

In order to determine the correlations between structural vibrations of an arbitrarily shaped 

geometry, we propose to expand the transfer function that correlates structural vibrations to sound 

radiation in terms of the forced vibro-acoustic components (F-VAC). These F-VACs are mutually 

orthogonal, hence they can be used to uniquely describe sound radiation from an arbitrarily shaped 

vibrating structure. The efficiencies of all F-VACs are then calculated and ranked. In this way, we 

identify the most critical component of structural vibrations that is directly responsible for sound 

radiation. 

To validate this new concept, we then compare the effectiveness of noise reduction based 

on F-VAC analyses and experimental modal analyses of an arbitrarily shaped vibrating structure. 

1.3 Outline of Chapters 

In this dissertation, we start with reviewing the current techniques that are widely used in 

industry in Chapter 2. Most of these methods do not even consider the interrelationships between 

sound and vibration and simply equating noise control to vibration control. 

Chapters 3 and 4 present the modified HELS based NAH that takes combined normal 

surface velocities and radiated acoustic pressure as inputs. This is accomplished by using a laser 

vibrometer to measure the normal surface velocity on several discrete points that are accessible to 

a laser beam, and a simple array of microphones to measure the field acoustic pressure. The normal 

surface velocities over other surface areas that are not accessible to a laser beam are reconstructed 

by using the modified HELS method. Chapter 3 depicts the mathematical formulations of modified 
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HELS based NAH together with hybrid regularization techniques. Those theoretical discussions 

are followed by specific procedures to implement this modified HELS method. Chapter 4 

demonstrates a simulation study with respect to a simply-supported baffled plate under different 

excitation conditions. Meanwhile, the effects of various parameters on reconstruction results are 

examined through error analyses. These numerical simulation results are used to develop practical 

guidelines for selecting optimal parameters in using the modified HELS method.  

Chapter 5 presents the concept of F-VAC for analyzing the vibro-acoustic responses of an 

arbitrarily shaped vibrating structure and for identifying the critical vibration components that are 

directly responsible for sound radiation. Mathematical formulations and physical meanings of F-

VAC are discussed and illustrated in detail. 

Chapter 6 illustrates the experimental validations of using the concept of F-VAC to reduce 

sound radiation from an arbitrarily shaped cookies box. A Bluetooth speaker is used to excite this 

box from the inside and sound radiation from this box is measured by a simple array of 

microphones. Once the critical F-VACs that are directly responsible for sound radiation from this 

box are identified, damping tapes are applied at a few discrete locations to dampen specific F-

VACs. The modified structure is excited by the same signal from the inside, and the acoustic 

pressures at the same locations outside the box are measured by the array of microphones. The 

same noise reduction measures are applied to this box based on an experimental modal analysis 

and the radiated acoustic pressures at the same locations are measured. The effectivenesses of 

noise reduction using F-VAC and experimental modal analysis are compared. 

Conclusions of the present dissertation are drawn and presented in Chapter 7. Future work 

to further improve this innovative noise control strategy is outlined as well.   
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CHAPTER 2: LITERATURE REVIEW 

This chapter reviews current noise diagnosis and vibro-acoustic analysis techniques that 

target at the structural borne noise. The pros and cons of each involved technique are presented. 

This review is divided into three parts. First, traditional structural borne noise control approaches 

that widely used in industry are investigated. Then, characterization methods for vibro-acoustic 

responses of a vibrating surface are reviewed. Finally, based on analyses and comparisons of these 

current state-of-the-art techniques, we investigate the possibility of developing an innovative 

methodology to do structure borne noise control in a cost-effective manner. 

2.1 Structural borne noise control strategies 

Conventional experimental noise control strategies can be divided into three categories: 

pure modal analysis based noise control, acoustic radiation analysis based noise control and 

frequency response function (FRF) reciprocity based noise control. From section 2.1.1 to section 

2.1.3, I will only introduce the basic concepts and development histories of these methodologies. 

And in section 2.1.4, their advantages and limitations will be discussed. 

2.1.1 Modal analysis based approaches 

In many industrial applications, controlling structure-borne noise at certain frequencies/ 

bands is just simply equated to controlling vibration at the same frequencies/bands. Two well-

developed experimental vibration analysis techniques are: Experimental Modal Analysis (EMA) 

and Operational Modal Analysis (OMA).  

The traditional EMA1,2 is done in the laboratory and excited with known sources (impulse, 

broadband, sine wave, swept sine wave, chirp etc.). The vibration characteristics (natural 

frequencies, normal mode shapes, frequency response functions, damping factors etc.) then thus 

be determined through evaluation of transfer functions between the excitation source and measured 

vibration response. The main restriction of conventional modal analysis approach is that the test is 
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done out of the operating environment, the real operation conditions are difficult to simulate in the 

laboratory environment. What’s more, due to the complexity or size of certain structures, artificial 

excitations sometimes are hard to implement. 

To circumvent these difficulties, OMA is developed later3,4 . OMA aims at obtaining 

structural modal properties based on measurement of vibration information when the target 

structure is running at its normal working condition. Except for OMA’s capability of obtaining 

modal properties while the structure is running, another advantage of OMA is that it does not need 

any information of excitation signals. The vibration responses are the only input information of 

the determination process. 

2.1.2 Acoustic radiation analysis based approaches 

Unlike the widely used pure modal analysis based approaches, in academia, there is a 

consensus that reduction of sound radiation from vibrating structures should be based on analysis 

of structural acoustic radiation. 

The structure borne sound radiation is traditionally evaluated by the acoustic radiation 

efficiency. Acoustic radiation efficiency, especially regarding thin plate, has been studied 

extensively since the 1960s. Acoustic radiation efficiency is usually calculated with modal 

summation, so the radiation efficiency of a single mode is also called modal radiation efficiency. 

Note that, in literature, both the name “radiation efficiency” and “radiation resistance” are used. 

Radiation efficiency is just normalized radiation resistance with respect to surface geometry and 

medium characteristics. Mathematically, it is defined by 

 
2

,rad radR W

cS cS v


 
   

(1.1) 

where Rrad represents radiation resistance, Wrad represents sound power radiated from vibrating 

surface, S represents the area of the target surface, 〈𝑣2̅̅ ̅〉 represents the mean square of normal 
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surface velocities distribution on the vibrating surface, ρ and c are density and speed of sound in 

the propagating medium. 

In 1962, Oideon Maidanik 5  put forward statistical approach to estimate the structure 

vibrating response of ribbed panels to acoustic excitation. The radiation resistance of ribbed panel 

in the whole frequency range under different wavenumber regions are investigated. Effects of 

various boundary conditions are also studied theoretically and experimentally.  

Then, in 1972, numerical integrations seeking approximation solutions for single modal 

radiation efficiency of baffled beam and rectangular panel are presented by Wallace6,7 . The 

radiation resistance corresponding to the individual mode is calculated in terms of the acoustic 

power radiated to the far field. Approximations for modes of frequency above, about and below 

the critical frequency are clearly simulated. The effects of radiation efficiency of the inter-nodal 

areas and pertaining aspect ratio are also investigated.  

Thereafter, many other studies focus on different aspects are published. Gomperts 8 

examined the acoustic radiation efficiency of a baffled rectangular plate under general boundary 

conditions. The results show that enforcing constraints in edge areas might not always increase 

acoustic waves radiated into far field. He also found that the radiation efficiencies of two-

dimensional vibration patterns differ rather considerably from those for one-dimensional vibration 

patterns. Heckl9 analyzed radiation pattern of planer sources by using a Fourier transform approach 

in wavenumber domain. Leppinton etc. 10  published several asymptotic formulae to estimate 

radiation efficiency of different regions of plate wavenumber space, especially for the region near 

critical frequency and large structural wavenumber. Williams11 proposed a series of expansions in 

ascending powers of structural wavenumber k for analyzing sound power originated from planer 

sources. Mathematical model for approximating acoustic power radiated at low frequencies of 
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rectangular thin baffled plate under different boundary conditions are derived through Fourier 

transform of surface velocity and its corresponding derivatives in wavenumber domain. 

The above researchers focus on modal radiation efficiency of certain individual mode. Thus, 

the total radiation power is simply calculated by the sum of contributions from each involved mode. 

By ignoring cross coupling effects between each mode, the attendant side effects are obvious. This 

problem has long been realized and the main reason of still doing so is simply because of 

computational complicity. So many scholars developed various optimization algorithms that take 

modes coupling into consideration. 

Keltie and Peng12 published a paper specialized the modal coupling effects on the acoustic 

power radiation from panels with finite long and finite width. Their results show that cross 

coupling of modes play a more important role for acoustic waves radiated at low frequency and 

off-resonant frequencies. Targeted on low-frequency range same as that of the individual modal 

radiation efficiencies, Snyder13 derived a set of simpler formulations based on Fourier transforms. 

Later, Li etc.14 also examined in detail about physical characteristics of cross-modal coupling and 

their corresponding impacts on the radiation power. Based on those analyses, they show that the 

mutual terms caused by the cross-modal coupling can be calculated easily and accurately in the 

whole frequency range, even at resonant frequencies. 

Having the acoustic power radiation estimated in terms of the contributions from the 

individual normal mode, the results are used to design either passive or active structural borne 

control strategies. 

Passive noise control seeks to reduce sound radiation by the modification of the vibrating 

structure itself. Koorosh etc. 15 examined a material tailoring approach to optimize structure for 

minimizing sound power radiation. The first and foremost part of implementing this strategy is to 

establish a mathematical model of structure’s vibration-acoustic response in terms of material 
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properties desired to be optimized. The mathematical model is then combined with the vibro-

acoustic model to give out the radiated sound power for the optimization analysis. The variances 

of the acoustic radiation corresponding to structure property are used as indicators to determine 

optimum structure parameters which minimize the power radiated into the far field. The tailored 

structure with minimum acoustic radiation is designated as “weak radiator” by Koopmann and 

Fahnline. 16  They were the first few, among many others, scholars to examine the physical 

properties of the weak radiator. Thereafter, many other researches are conducted. 

Active structural acoustic control is a more recently developed technique utilizing vibration 

sensors and secondary actuators to reduce the sound radiation from vibrating structures. In the 

early 1990s, Fuller etc. applied time-domain least mean square adaptive feedforward control 

techniques to reduce sound radiation by using point force or acoustic control inputs analytically17 

and experimentally18. More recently, piezoelectric sensors and actuators mounted on the surface 

are used to control noise radiation not only from rectangular plates but also from cylinder shells19. 

Basically, most of the active structural borne noise control approaches focus on the development 

of control algorithms. For example, to tackle broadband structural actuation, the traditional least 

mean square algorithm need to be combined with a semi empirical model that related to input and 

output20. This method has been shown good noise reduction results, especially for the lightly 

damping structures. 

2.1.3 FRF-reciprocity based approaches 

FRF-reciprocity21 based approaches aim at controlling sound pressure levels at some pre-

selected filed point locations by suppressing vibration of localizing areas. Two representatives of 

these approaches are transfer path analysis (TPA)22 and panel contribution analysis (PCA)23. Of 

course, the fundamental of these approaches is frequency response function (FRF) between 

structural vibration and radiated acoustic waves at certain pre-selected filed point locations. 
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TPA enable one to identify the structure-borne as well as air-borne sound transfer path 

between excitation sources and targeted receiver locations in the sound reduction process. Instead 

of examining the whole structure, TPA restricts itself to carefully chosen measurement filed points 

including excitation source locations, transfer path locations, and receiver locations. Based on the 

measurement results, the contributions of each source locations to sound pressure levels at selected 

receiver locations, as well as sound transfer paths can thus be determined through reciprocity 

principle. PCA also based on FRF-reciprocity principle, however, unlike TPA, it takes 

measurements over the whole vibrating structure. Then the whole source surface is artificially 

divided into several panels/areas. Except for the difference of source measurement, PCA and TPA 

use the similar technique to identify the contribution of source points/panels to sound radiation at 

pre-selected field receiver locations. The noise control strategies based on these FRF-reciprocity 

analyses are simply to suppress vibration at dominant source locations or disturb the strongest 

transfer path of target propagated sound. 

2.1.4 Discussion 

There are many common beliefs in industrial areas. Since structural borne noise control 

can be accomplished through vibration control, they simply equate noise control to vibration 

control. More specifically, suppressing certain vibration at one frequency/band could effectively 

eliminate sound radiated at the same frequency/band. In particular, suppressing a flexural 

structure’s resonance can reduce the sound at corresponding resonant frequency effectively. These 

common concepts are obviously not true. Sound radiation from vibrating structure is totally 

different physical phenomenon from structural vibration. The sound radiation is related not only 

to distribution of surface vibration but also connected with surrounding radiation environment and 

geometry shape of the source structure itself. The previous mentioned EMA and OMA analysis 

are very useful for suppression of the vibration at certain frequencies, however, they could not 
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provide interrelationships between vibration and resultant sound radiation. So, the two widely used 

conventional vibration analysis techniques are always proved either ineffective or cost prohibitive. 

This problem has been noticed by almost all the peer-reviewed academic papers for a long 

time and this is also one of the main motivations for the development of radiation efficiency 

analysis. It is well known that acoustic radiation efficiency reveals the contribution of each 

vibration mode to overall sound radiation power at certain frequency/band. Based on these results, 

structural noise control of rectangular plates and cylinder shells have been achieved in both passive 

and active manner. However, what acoustic radiation efficiency provided is the comprehensive 

effect of all the factors mentioned above, the acoustic radiation behavior could not be completely 

reflected. In other words, acoustic radiation efficiency describes the contribution of vibration 

component to sound radiation in terms of normal modes, whereas the acoustic radiation of certain 

points on the structural surface cannot be shown. Thus, it cannot give out direct guide for noise 

control strategies. For example, it cannot answer the questions of how many actuators are needed 

and where they should be placed for active structural borne noise control. Structural noise control 

based on acoustic radiation efficiency analysis can only be effectively accomplished by 

suppressing many high radiation efficiency modes together. Noise control strategy with respect to 

only one or two dominant modes cannot provide you best noise reduction results. Also, although 

acoustic radiation efficiency has been studied for few decades, most of current available researches 

and applications are still restricted to regular geometry shape structures. Acoustic radiation 

efficiency analysis of arbitrary shape structures is seldom mentioned. 

Compared with pure vibration model analysis based noise control and acoustic radiation 

analysis, based vibro-acoustic analysis, the FRF-reciprocity based vibro-acoustic analysis do 

establish certain interrelationships between source vibration and resultant sound radiation and is 

not subject to geometry shape restrictions. However, TPA and PCA are restricted to the pre-
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selected measurement locations and not effective at other non-examined locations. The thus 

obtained interrelationships cannot be extended to the whole vibrating surface and all field points. 

In air-borne noise control, the noise sources can be abstracted into several discrete point sources, 

this may not be a big problem. However, for structural-borne sound, vibration behavior of the 

whole structure need to be considered, so accurately identify the dominant structural vibration 

component that responsible for sound radiation by using reciprocity method need an excessive 

number of measurement points. This is not practical and not cost-effective. 

After reviewing of the current state-of-the-art techniques and their pros and cons, we can 

found that establishing the interrelationships between sound and vibration in the most cost-

effective manner is crucially important to effectively control structural borne noise. So, in next 

subsection, vibro-acoustic analysis strategies could be used to correlate structural vibration with 

sound radiation will be reviewed. 

2.2 Vibro-acoustic analysis strategies 

To predict sound radiated from vibrating surfaces experimentally, we can do the following 

three analyses: acoustic radiation efficiency analysis, empirical approaches based on reciprocity 

principle, and nearfield acoustic holography (NAH).  

As discussed above, the first two approaches have already been applied to structural noise 

control for decades, whereas their limitations are obvious. Experimentally identification of model 

radiation efficiencies of arbitrary structure is difficult. Even radiation efficiencies are obtained, the 

results are of course expressed in terms of structure’s normal modes and which exact locations 

vibration contribute most to sound radiation at target frequency cannot be given directly. For 

reciprocity principle based vibro-acoustic analysis, the most significant advantage is its simplicity 

in formulation and flexibility in application. No matter how complex the test objects are and how 

many obstruct reflecting surfaces exist in the environment, the vibrating surface is all represented 
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by simple sound sources. However, regardless how many measurement points are taken to get the 

transfer matrices, the obtained acoustical quantities are discrete in space and only valid at 

measurement points. The transfer function between every surface point’s vibration and every field 

location’s sound pressure are not available. Thus, the dominant vibration component that directly 

responsible for noise radiation cannot be further identified. 

These above problems that conventional vibro-acoustic analysis techniques encountered 

can be overcome by NAH. Through NAH, every vibro-acoustic quantity includes the sound 

pressure, the normal component of the particle velocity, and acoustic intensity at any field point 

as well as the interrelationships between surface vibration and radiated sound can all be 

reconstructed. However, applications of NAH technology in structural noise control are seldom 

discussed previously. So, in this subsection, we focus on reviewing different current 

implementation approaches of NAH. Over the past several decades, several different NAH 

implementations have been developed, including Fourier transform based NAH, boundary element 

method (BEM) based NAH, and Helmholtz equation least-square (HELS) method based NAH as 

well as some other attempts trying to circumvent difficulties encountered in practice. 

2.2.1 Fourier transform based NAH 

Fourier transform based NAH is evolved from acoustical holography24 which uses similar 

approaches as those of laser holography and takes the measurement in the far field. From acoustical 

holography to NAH, the most significant progress is the inclusion of nearfield information. 

Without this nearfield information, which is physically expressed as evanescent waves, the spatial 

resolution is restricted to the wavelength of the interested acoustic wave. In other words, the 

acoustic waves originated within a distance less than a wavelength cannot be properly discerned. 

This is not a problem for laser holography, since the wavelengths of the laser are nanoscale, so its 

spatial resolution is extremely high even without nearfield information included. 



15 
 

 

In the early 1980s, the original Fourier transform based sound radiation analysis is 

theatrically illustrated and numerically simulated by Williams and Maynard.25,26 Then, in 1985, 

the concept of NAH27 is put forwarded and detail instructions for implementation28 is given. 

Thereafter, the original planner NAH is expanded to cylindrical shapes by using a so-called 

generalized NAH29. The application of Fourier based NAH was also extended to broadband low 

frequency excitation with respect to cylinder shells30. 

As its name suggests, Fourier transform based NAH reconstructs the vibro-acoustic field 

by using temporal and spatial Fourier transforms. The obtained time domain sound pressures are 

transferred to the corresponding frequency domain and then another spatial Fourier transform 

projects them onto wavenumber domain. In wavenumber domain, the sound pressures on 

hologram surface can be projected to any parallel surfaces in a source-free region through transfer 

functions. Once this is done, sound pressure at any filed points in the time domain can be 

reconstructed through inverse spatial and temporal Fourier transform. 

. However, Fourier transform requires an equal interval in each dimension. So, it is only 

applicable to standard surfaces with a constant coordinate no matter in Cartesian, cylindrical or 

spherical coordinates. More specifically, the planar surface with constant z coordinate, cylindrical 

surface and spherical surface with a constant radius. Also, it is only valid for an unbounded source-

free region. In other words, if a confined or partially confined space which includes several 

reflecting surfaces or a medium that contains other sources are desired, the Fourier transform-

based NAH will no longer be suitable. 

2.2.2 BEM based NAH 

For an arbitrarily shaped surface, no analytic solution of Helmholtz integral equation is 

available. A commonly used approach seeks to find the numerical solution is BEM-based NAH. 

It divides the target surface into several segments, each of which is represented by a finite number 
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of nodes and a set of element equations to the original Helmholtz integral equation. The vibro-

acoustic quantities anywhere in the field can be calculated by multiplying the inverse transfer 

matrix and the sound pressures on the measured surface. 

Gardner and Bernhard are among the first few scholars that investigate the potential of 

using a numerical method to reconstruct the acoustic quantities of an interior region bounded by 

arbitrarily shaped structures31. The formal theoretical derivation of using inverse finite element 

method based NAH to analysis interrelationships between structural vibration on the source 

surface and acoustic quantities at any field points in an interior region were given by Veronesi and 

Maynard.32 Then, the BEM-based NAH which is an improvement and expansion of previous 

works was developed by Huang.33 In 1992, a more complete deception of BEM-based NAH, as 

well as several numerical simulation examples were given by Bai.34 

The main advantage of BEM-based NAH is its capability of reconstruction of the acoustic 

quantities of an arbitrarily shaped structure. It does not need the measurement locations to be 

equally distributed on the holography surface so long as these measurement points are in the 

nearfield. Also, unlike Fourier transform based NAH which requires the reconstruction points 

located at plane parallel with holography plane, BEM-based NAH is suitable for any points on the 

source surface or in the free field. However, enormous numerical computation is its main 

disadvantage. Since the source surface is discretized into many elements, in order to acquire 

satisfactory reconstruction spatial resolution, one must ensure a minimum number of sampling 

points per wavelength. This is especially true when it tries to account for the nonuniqueness 

difficulties encountered at the characteristic frequencies. 

2.2.3 HELS method based NAH 

Unlike Fourier transform or BEM based NAH, HELS method seeks the best approximation 

of the vibro-acoustic field by expressing the solution of Helmholtz equation under spherical 
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coordinate as expansions of certain spherical basis functions. HELS approach greatly simplifies 

the reconstruction process, yet still, ensures its capability to tackle arbitrarily shapes source surface 

with relatively few measurement points. The expansion coefficients associated with these basis 

functions are determined by matching the assumed solutions to the measured sound pressures, and 

then the errors are minimized by least squares. 

In 1997, the theoretical foundation and two numerical examples of HELS based NAH were 

published by Wang and Wu.35 Later in 2000, numerical simulation with respect to a full-size four-

cylinder engine36 and experimental validations for acoustic radiation from a simulated front end 

of passenger vehicle37 were presented. Satisfactory results were obtained under both random and 

harmonic excitations. Thereafter, implementation of HELS theory has been expanded to many 

areas. It has been combined with BEM-based NAH to simply BEM approach’s measurement 

scheme.38 With sound pressures measured at relatively few nearfield locations, the more additional 

field points’ acoustic pressures were regenerated by using HELS approach, and then the whole 

data set is used as the input for BEM-based NAH to reconstruct the vibro-acoustic field. It has also 

been extended to reconstruct acoustic radiation from a spherical surface that subjects to transient 

excitations in the free field.39 A technique named panel acoustic contribution examination method 

based on HELS based NAH has been developed to simplify the determination process of critical 

vibration component that directly responsible for sound radiation from enclosed arbitrarily shapes 

structures.40 

HELS approach solves the Helmholtz equation directly and always lead to unique 

optimized solutions at all frequencies, so it is immune to the nonuniqueness difficulty encountered 

in BEM based NAH. HELS based NAH tackles that reconstruction problem by matching measured 

data with assuming form solutions, so its reconstruction accuracy heavily related to the quality of 

input data as well as whether the assumed solution fit the target vibro-acoustic field. This is where 
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the main limitations of HELS approach lay on. The measurement errors embedded in the input 

data and disturbance from background noise is inevitable in practice. There is also no one fit all 

set of assumed solutions that yield good reconstruction for all kinds of geometry surfaces. For 

example, the chosen spherical coordinate system is good for convex surface but not for some 

highly-elongated surface such as flat of slender bodies. All these difficulties can only be 

circumvented to some extent by applying suitable regularization techniques. 

2.3 Proposed F-VAC analysis based on modified HELS approach 

After reviewing current techniques available for structural borne noise control, we can 

confidently draw a conclusion that the core factor about finding the most cost-effective way to do 

noise control is establishing certain relationships between resultant sound radiation and structural 

vibration. More specifically, the components of structural vibrations that are directly responsible 

for unwanted sound radiation need to be identified based on vibro-acoustic correlations 

reconstruction.  

NAH is a perfect technique to acquire such interrelationship. For the implementation of 

NAH, HELS method based NAH is selected over the others for its simplicity in formulation, 

efficiency in computation and flexibility in application. The original HELS based NAH uses sound 

pressure acquired in the nearfield as inputs. In order to take sound pressure measurements in the 

nearfield with respect to arbitrary shape structure, it is necessary to design unique conformal 

microphone array for every different test object which is not economic. It is very time-consuming 

for engineers to assemble the special microphone array to ensure equal normal distance between 

each measurement points and source surface. An important rule of thumb of any technique that is 

intended for industry application is ease of use. To simplify its application, the original HELS 

algorithm is modified to utilize normal surface particle velocities as inputs. The normal surface 

velocity can be easily obtained by using a scanning laser vibrometer which significantly facilitates 
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test setup and data acquisition. What’s more, acoustic quantities measured just on the surface 

contains more nearfield effects that are very helpful for achieving accurate reconstruction of the 

whole vibro-acoustic field. 

 Through modified HELS based NAH, we can establish the interrelationships between 

structural vibration and acoustic radiation. These interrelationships can lead directly to transfer 

matrices between forced vibration and sound radiation, which are calculated but not measured. 

Then, this transfer matrices are further decomposed into several F-VACs, which indicate the 

dominant structural vibration of the undesired sound radiation.  

In summary, the vibration components that are directly responsible for sound radiation can 

be determined by expanding the surface vibration in terms of the F-VACs. The critical vibration 

component can be identified by calculating the relative contributions of F-VACs responsible for 

target noise radiation. Target noise reduction can be achieved by suppressing the critical vibration 

component (dominant F-VAC) thus identified. Such an approach will yield target noise reduction 

in the most cost-effective manner. 
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CHAPTER 3: THEORY OF MODIFIED HELS METHOD BASED NAH 

WITH NORMAL SURFACE VELOCITY AS INPUT 

In this chapter, the proposed modified HELS based NAH approach will be presented in 

detail, including mathematical model and specific implementation procedures. A complete 

derivation of fundamental spherical wave functions and original HELS algorithm could be found 

in previous publications. 41 , 42  This dissertation will focus on the modification part of how to 

reconstruct vibro-acoustic field by using normal component particle velocities measured just on 

the source surface. 

3.1 Introduction 

Since the early 1980s, many NAH implementation methods, including Fourier transform 

based NAH, BEM-based NAH, HELS method based NAH as well as other attempts trying to 

circumvent difficulties encountered in practice, have been developed. In the majority of these 

conventional NAH approaches, the inputs are sound pressures obtained in the nearfield.  

Attempts of using alternative acoustic quantities as inputs could date back to as early as 

1988. Loyau etc. proposed a so called broadband acoustic holography from intensity 

measurements (BAHIM). 43  The BAHIM method is implemented by means of energy 

measurements including acoustic intensity vector and potential energy density. Numerical 

simulations and experimental verifications all perform acceptable vibro-acoustic field 

reconstruction results.  

In 2005, Jacobsen and Liu first considered using particle velocities directly measured by a 

particle velocity probe as inputs to do planner NAH.44 The particle velocity in this approach is 

obtained by using particle velocity sensors take measurements in the nearfield. The numerical 

simulations indicate similar reconstruction accuracy to traditional pressure to pressure 

reconstruction. And the velocity to pressure reconstruction performs even better for backward 

reconstruction. Then, Leclère and Laulagnet 45  published a similar technique yet the particle 
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velocities were obtained by measuring vibration response of a light tensionless membrane 

artificially placed in the holography plane. Satisfactory reconstruction results are also obtained.  

Harris etc. published a method with the representation of the pressure field at the 

holography plane obtained by a combination of near-field sound pressure and in-plane particle 

velocity measurements. 46  In this approach, the sound pressures and two orthogonal in-plane 

particle velocities are measured simultaneously by using a pressure-velocity (P-U) probe. Results 

show that with both sound pressure and particle velocity information available, total measurement 

locations can be decreased by approximately 70%.  

Zhang etc. compared the performance of implementing NAH based equivalent source 

method (ESM) with different types of input.47 Saying ESM based on measurement of sound 

pressure, ESM based on measurement of particle velocity and ESM based on hybrid measurement 

of both sound pressure and particle velocity. The numerical simulation demonstrated that the 

reconstructions using the hybrid P-U method agree better with benchmark data than that of only 

using sound pressure or particle velocity. 

In general, the input information of current NAH implementations is acoustic quantities, 

either acoustic pressure, acoustic intensity or particle velocity, that measured on a holography 

surface at a standoff distance to the source surface. For obvious reasons, the standoff distance is 

set as small as possible. Is it possible to set the standoff distance zero? In other words, is it possible 

to use acoustic quantities on the source surface, instead of on a holography surface, as inputs, yet 

still in a non-contact manner? If so, theoretically, more nearfield effects (evanescent waves) can 

be captured, thus might achieve better reconstruction results.  

To answer this question, first, we need to figure out what kind of acoustic quantities on the 

source surface could be measured directly. Currently, it is very difficult to obtain surface acoustic 

pressure and surface acoustic intensity directly, however, the normal component of particle 
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velocity on the surface is measurable by using scanning laser vibrometer taking measurements at 

a distance.48 Then after carefully studying the potential of using normal surface velocity as inputs, 

a modified HELS based NAH is developed. The description and application of this method have 

already been discussed by Zhu49 and Chen50 recently. In this and the following chapter, along with 

the same line as these previous works, more complete theory illustration and extensive numerical 

simulations are demonstrated. Based on these results, guidelines for selection of regularization 

parameters and implementation process are explained in detail. 

 

Figure. 3.1 Sketch illustrating the test setup 

The proposed normal surface velocity measurements based NAH is sketched in figure 3.1. 

Since spherical expansion functions are used to generate assumed solutions in HELS approach, 

the coordinate origin must be moved out of the vibrating surface and placed at a distance d0 from 

the vibrating surface on the opposite side of the surface where the vibro-acoustic field are to be 

predicted. The Cartesian coordinates are oriented in such a way that the z-axis is in the normal 

direction of the plate, and x and y axes are in transverse and longitudinal directions, respectively. 
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The normal surface velocities are certainly measured just on the vibrating surface. The prediction 

distance is designated as Δd. 

3.2 Mathematical model 

Consider a complex vibrating structure radiating sound at frequency ω into an unbounded 

fluid medium. The HELS model assumes that the radiated sound pressure can be expressible as a 

superposition of a finite number of spherical expansion functions that governed by the Helmholtz 

equation under Sommerfeld radiation condition. Mathematically, the radiated sound pressure at 

location �⃗� on the holography plane can be expressed in matrix form as 

 
  

1

ˆ ; ( ; ) ( ),i i

J

j j
j

p C   


x x  (3.1) 

where   ˆ ;
i

p x  represents the complex amplitude of the radiated acoustic pressures at desired 

reconstructed field points, ψj (𝐱𝑖;ω) represents jth expansion function that is particular solution to 

the Helmholtz equation and Cj (ω) represents unknown expansion coefficients related to 

corresponding expansion function and J is the number of expansion functions included.51 Assume 

that N number of points are targeted on the holography plane, for easy illustration later, equation 

(3.1) is rewritten in matrix form as 
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where 𝐱 = [𝐱1, 𝐱2, … 𝐱𝑁] represent the location vectors of all N prediction points; sound pressure 

 ˆ ;p x and expansion coefficients {C(ω)} are row vectors expressed as  

�̂�(x;ω)={ �̂�(𝐱1;ω), �̂�(𝐱2;ω), … �̂�(𝐱𝑁;ω)} and C(ω)={C1(ω), C2(ω), … CJ(ω)} respectively; the 

expansion function ψj (𝐱𝑖;ω) is the ith row and jth column entry of expansion matrix [Ψ(x; ω)]. 

Under spherical coordinates, the expansion functions are expressed in terms of spherical Hankel 

functions and spherical harmonics. The specific format of the assumed solutions will depend on 
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geometry shape of holography surface as well as if it is an interior or exterior problem. For exterior 

problem, the spherical Hankel functions of the first kind is involved  
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and for the interior problem, spherical Hankel function of the second kind is used 
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The normalized spherical harmonic is formulated by angle functions and expressed as 
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where 𝑃𝑛
𝑙(cos 𝜃) is Legendre function of the first kinds. The scripts  j, nj and lj are related via 𝑗 =

𝑛𝑗
2 + 𝑛𝑗 + 𝑙𝑗 + 1 with nj range from 0 to N* and  lj range from - nj to nj. Thus, for each combination 

of nj and lj, j could change from 1 to (N*+1)2. Hence, we have the maximum number of expansion 

functions J=(N*+1)2. 

The spherical Hankel functions of order nj of the first kind and second kind are represented 

in terms of spherical Bessel function of the first kind  
jn ikrj  and spherical Bessel function of the 

second kind  
jn iy kr  as follows 

    (1) ,( )
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    (2)
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Formulation of these spherical basic functions are readily available in many libraries, so 

they will not be given here. Having the assumed-form formulations, next, we will derive the 

reconstruction process for normal surface velocity, sound pressure, and acoustic intensity 

respectively. 
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3.3 Solution of reconstructing acoustic quantities 

3.3.1 Solution of reconstructing normal particle velocity 

Note that in this proposed modified HELS approach, normal surface velocity measured by 

laser vibrometer are used as inputs to predict the whole vibro-acoustic field. For continuous 

reasons, the measured normal surface velocity is equal to the acoustic particle velocity on the 

surface. The particle velocity is related to sound pressure through the Euler’s equation 
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where 𝜌0 is the ambient density of the fluid medium. Its Fourier transform yields 
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where n  is unit vector in normal direction on the source surface. Assume that normal surface 

velocities at L locations are measured by laser vibrometer. To this end, gradient in the direction 

orthogonal to the surface is taken with respect to equation (3.2) and combined with Euler’s 

equation lead to 
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x represents normal components of particle velocity on the surface at L 

locations. And J is the total number of expansion terms. The gradient of spherical expansion 

functions is given by 
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where ( , , )re e e   represent unit vectors in each spherical coordinate directions. The partial 

differentiation of  ;meas

l  x  with respect to r, θ and   can be calculated as follows 
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More specifically, partial differentiation of spherical Hankel function with respect to r and 

partial differentiation of Legendre function with respect to θ are given as follows 
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In equation (3.10), having the velocity measured by laser vibrometer   
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x  governed by source geometry 

shapes, the only unknown factor is expansion coefficients   
1J

C 


. Mathematically, equation 

(3.10) is an inconsistent system of equations consisting of L number of equations and J number of 

unknowns. When 𝐽 ≤ 𝐿, we have an overdetermined system and when 𝐽 > 𝐿, the problem turns 

out to be underdetermined. Although even the underdetermined system could be solved by singular 
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value decomposition, the reconstruction accuracy may be reduced. Therefore, the number of 

expansion terms is set to be no larger than that of the number of input points.52 

To solve this inconsistent system of equations, pseudoinverse approach is considered. 

Theoretically, the unknown expansion coefficients   
1J

C 


 can thus be obtained by taking a 

pseudo inversion of gradient of expansion functions, 
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where a superscript † implies a pseudo inversion of a rectangular matrix defined as 
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where the superscript H represents the Hermitian transpose of a matrix. Note that HELS 

method requires that the number of reconstruction points no more than number of measurement 

points. So, assume that the normal components of particle velocities at S (S ≤ L) locations need to 

be reconstructed. Regarding normal surface velocity at S reconstructed locations 
rec

sx , equation 

(3.10) can be rewritten as 
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Substituting equation (3.15) into equation (3.17) leads to the formulation that correlating 

particle velocities at L measurement points to other S reconstructed locations: 
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For simplicity, equation (3.18) can also be written as, 
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x x is the transfer function, which is given by 

        
†

ˆ ˆ | ; ; ; .
n n

rec meas rec meas

v v s l s l
S L J LS J

G   
 

         
     

x x x x  (3.20) 

Having the solution formulations determined from measured data and source geometry 

shape, the only unknown parameter need to be determined is the number of expansion terms J. 

Theoretically, the number of expansion terms should be determined with respect to the highest 

structural wave number. However, errors and background noised contaminated in the measurement 

data cannot be avoided. And error analysis proved that the errors contaminated in the high order 

terms are more easily to be exaggerated unboundedly during the reconstruction process. Also, as 

discussed above, to ensure reconstruction accuracy, the number of expansion terms are set no 

larger than the number of measurement points. For obvious reasons, an excessive number of 

measurement locations are impractical which is especially true for relatively small structures. So, 

determine an optimized number of expansion terms is essential. 

As the name suggests, one of the simplest regularization technique, least square method, is 

a built-in part of original HELS approach. The optimal number of expansion terms Jop is obtained 

by minimizing the least square errors between trail solutions and measured data in an iterative 

manner. To this end, the normal surface velocities at another S locations, designated as 

  
1

ˆ ;ver

n s
S

v 


x , are supplemented as verification data. Mathematically, the least square 

optimization process is expressed as 

 
   

2

, ,
2

1

ˆ ˆmin ; ; ,
S

rec ver

n s i n s i op
J

i

v v J 


  x x  (3.21) 

where  ,
ˆ ;rec

n s iv x  is the trail reconstructed particle velocity at the ith velocity verification location 

�⃗�𝑠,𝑖 calculated by equation (3.19). 
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3.3.2 Solution of reconstructing acoustic pressure 

Next, the sound waves radiated into the field are reconstructed based on normal surface 

velocity measurement. The interrelationship between radiated sound pressure and expansion 

functions are given in equation (3.2) and the expansion coefficients are calculated based on 

measured normal surface velocity in equation (3.15). So, predicting sound pressures at N field 

locations based on normal surface velocity measured at L locations can be easily achieved by 

substituting equation (3.15) into equation (3.2) and yield  

        ˆ ˆ
1 1

ˆ ˆ; | ; ; ,
n

rec rec meas meas

n pv n l n l
N LN L

p G v  
 

 
 

x x x x  (3.22) 

where  ˆ ˆ | ;
n

rec meas

pv n l
N L

G 


 
 

x x  is the transfer function that reveals the interrelationships between 

structural vibration and resultant sound radiation, which is given by 

       
†

ˆ ˆ 0| ; ; ; .
n

rec meas rec meas

pv n l n l
N L N J J L

G i   
  

        
     

x x x x  (3.23) 

As discussed above, to ensure reconstruction accuracy, the number of expansion terms J 

should be constrained smaller than the number of input normal surface velocities. The more points’ 

normal surface velocities are inputted, the larger the maximal number of expansion terms J could 

be, and the more details in the reconstructed results could be included. Thus, the potential of 

reconstruction accuracy is increased. However, an excessive number of measurement points might 

not be practical especially for small size structures. In order to increase the accuracy of 

reconstruction, normal surface velocities at more other locations on the surface are regenerated 

first. The input points can thus be increased from L to M (M >> L). It should be pointed out that 

the reason for doing so is just to increase the upper limit of J and such a process will not increase 

the accuracy of input data. Since the regenerated surface velocities are just mathematical products. 

Reconstruction of normal surface velocities at S locations based on L measurement normal 

surface velocities has already been given in equation (3.19). In order to obtain normal surface 
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velocities at M (M = k × S) locations, the reconstruction of S locations needs to be repeated for k 

times regarding point set S1, S2, … Sk. Mathematically, it can be written as follows, 
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(3.24) 

Next, the reconstructed normal surface velocities are used as input to predict sound 

radiation and equation (3.10) is then be rewritten as 

         0 11
ˆ ; ; .rec rec

n m m JM M J

i v C   
 

   
 

x x  (3.25) 

Similar to determining the velocity reconstruction expansion coefficients with respect to L 

measurement points in equation (3.15),   
1J

C 


can also be determined by taking a pseudo 

inversion of equation (3.25), 

 
        

†

01 1
ˆ; ; .n

rec rec
m mJ MJ M

C i v   
 

 
 

   x x  (3.26) 

Substituting equation (3.26) into equation (3.2) yields the acoustic pressures at N 

reconstructed field locations 

          0
1 1

†

ˆ ˆ; ; ; ,;rec rec rec

n n n m
N JN M

rec
m

J M

p i v   
 

   
   

 x x xx  

   (3.27) 

For simplicity, equation (3.27) is also rewritten with respect to transfer function 

        ˆ ˆ
1 1

ˆ ˆ; | ; ; ,
n n
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n n m mpv

N MN M
p G v  

 

 
 

x x x x  (3.28) 

where the transfer function  ˆ ˆ | ;
n

rec rec
n mpv

N M
G 



 
 

x x  is given by 



31 
 

 

       
†

0ˆ ˆ .| ; ; ;
n

rec rec rec rec
n m n mpv

N M N J J M

G i   
  

     
     

  x x x x  (3.29) 

Combine equation (3.24) with equation (3.28), the interrelationships between L measured 

normal surface velocities and sound pressures at N desired field locations can thus be derived as 

follows 

        ˆ ˆ
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where  ˆ ˆ | ;
n

rec meas

pv n l
N L
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x x  is the transfer function, which is given by 
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(3.31) 

Same as the reconstruction of normal surface velocity, given the geometry information of 

measured and reconstructed surface as well as measured normal surface velocities, the only 

unknown parameter will be the number of expansion terms J. 

In original HELS approach, same optimal number of expansion terms is used to predict 

both particle velocity and sound pressure. Actually, the optimal number of expansion terms 

obtained through comparing with measured normal surface velocities has proved to be very 

effective for velocity to velocity prediction. However, the thus obtained Jop may not be the best for 

velocity to pressure prediction. This is because errors contaminated in the measurement will be 

heavily amplified in cross prediction. Such errors include amplitude and phase mismatch, the 

background noise, interference signals, etc. To circumvent such problem, in this dissertation, 

different optimal J (Jopv and Jopp) are determined respectively to do velocity to velocity prediction 

and velocity to pressure prediction.  

In this section, only the simplest least square method is presented and more complex 

regularization techniques will be discussed in section 3.4. The optimal expansion terms Jopp is 
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obtained by minimizing the least square errors between trail reconstructed results and measured 

sound pressures in an iterative manner. To this end, acoustic pressures measured at N field 

locations, designated as  ,
ˆ ;ver

n ip x , are supplemented as verification information. Mathematically, 

the optimization process is expressed as 

 
   

2

, , opp
2

1

ˆ ˆmin ; ; ,
N

rec ver

n i n i
J

i

p p J 


  x x  (3.32) 

where  ,
ˆ ;rec

n ip x  is the trail reconstructed acoustic pressured at ith pressure verification location 

�⃗�𝑛,𝑖 calculated by equation (3.30). 

3.3.3 Solution of reconstructing time averaged acoustic intensity and sound power 

Having the sound pressure and particle velocity in the fluid field be reconstructed, other 

acoustic quantities including time averaged acoustic intensity and sound power can be easily 

calculated. 

The normal-component of time averaged sound intensity ˆ
nI  of any field location at 

frequency ω can be calculated through the product of the complex conjugate of the normal 

component of particle velocity and the complex amplitude of sound pressure at that field location, 

see equation (3.33). 

       *1ˆ ˆ ˆ; Re ; ;
2

rec rec rec

n nI p v  x x x  (3.33) 

The sound power radiated into far-field can be obtained by summation of contributions of 

sound power radiated from each the discretized surface element. Assume that the structural surface 

is divided into K discrete area elements 
kS , then the normal component of the time averaged 

normal intensity on the kth element area   
( )

ˆ ;rec

n
S k

I x  can be calculated by using equation (3.33). 

The total acoustic power can thus be calculated by 
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( )
1

ˆ( ) ; .
K

rec

k n
S k

k

P S I 


  x  (3.34) 

3.4 Regularization 

Theoretically, if all the vibration information on the surface can be measured without any 

error, then the predicted vibro-acoustic field obtained using the above formulations will be 

absolutely accurate as J approaches infinity.53 However, this is impossible in practice. The transfer 

functions that were given in Eq. (20) and Eq. (29) have extremely large condition numbers that 

indicate the reconstruction problems are severely ill-posed. Accordingly, even small background 

noise and/or other interfering signals contaminated in the measurements may lead to unbounded 

prediction results. Strategies used to ensure bounded results and to attain meaningful 

reconstruction can be summarized in one word: regularization. 54  The ultimate goal of all 

regularization techniques is to smooth the dependence of the output results on the input data. There 

is no specific regularization strategy that provides best optimization results for all inverse problems 

since different inversion approaches yield different physical characteristics.  

As discussed above, one of the simplest regularization techniques, least square approach, 

is a built-in part of original HELS method. The optimal number of expansion terms Jop is obtained 

by minimizing the least square errors between trail solutions and measured data in an iterative 

manner. To circumvent the difficulty that optimal number of expansion terms determined through 

velocity-to-velocity reconstruction is usually not best for velocity-to-pressure reconstruction, 

different optimal numbers of expansion terms are induced, designated as Jopv and Jopp. Their 

determination processes are given in subsection 3.3.1 and subsection 3.3.2. 

Although the simple least square approach ensures a bounded result, it cannot guarantee 

meaningful reconstruction. This is because that by excluding all expansion terms higher than Jopv 

and Jopp completely, not only the terms that severely affected by contaminated errors are truncated, 
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other high order terms that are essential for details reconstruction are also ignored. Due to low 

signal to noise ratio of input data or not properly chosen test parameters, what usually happens in 

practice is that the optimal number of expansion terms determined through simple least square 

method could be extremely small even target source is a complex structure under random 

excitations. Thus, the resultant reconstruction turn out to be superposition of first few low order 

expansion terms, saying monopole, dipole and quadrupole etc., which are obviously not what we 

expected. 

To circumvent this problem, before determining optimal number of expansion terms, the 

measured normal component of surface velocity should be regularized first by applying a filter or 

other weighting techniques to restrain the embedded perturbation. 55  Currently, various 

regularization techniques have been applied to NAH including standard Tikhonov (TR) method,56 

modified Tikhonov (MTR) method, Landweber iteration,57 and the conjugate gradient approach58 

etc. 

Generally speaking, all these regularization techniques aim at eliminating the effects of 

noise embedded in the detail evanescent waves by applying low pass filter in wavenumber domain. 

Different regularization techniques imply different shape of the low pass filter. Except for the 

shape of these filters, the break point of the filter also needs to be determined by other techniques. 

Such a break point is demonstrated by an undetermined parameter. The parameter selection 

techniques can be divided into two categories by whether the knowledge of noise information is 

needed. One of the most popular parameter selection technique that requires an estimate of the 

noise variance is the discrepancy principle of Morozov. Representatives of methods that do not 

require prior knowledge of noise variance include ordinary cross validation (OCV) and generalized 

cross validation (GCV). 
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Previous studies have indicated that the MTR with its regularization parameter determined 

from GCV provides the best regularization results for HELS algorithm. Mathematically, this 

hybrid regularization scheme is expressible as 
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,

, , opv,MTR
2
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S

rec ver
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  x x  (3.35) 
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where the trail reconstructed acoustic quantities  ,

,
ˆ ;rec

n s iv  x and  ,

,
ˆ ;rec

n ip  x with regularization 

parameter β and γ are calculated as follows 
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where ˆ ˆ[ ]
n nv vV  and ˆ ˆ[ ]

n nv vU  in equation (3.37) are the right and left unitary matrices, respectively, of 

the matrix  
1ˆ ˆ | ;

n n

rec meas

v v s l
S L

G 


 
 

x x  in equation (3.20), ˆ ˆ[ ]
n nv v  is the diagonal matrix that contains 

singular values of the corresponding matrix; whereas ˆ ˆ[ ]
npvV  and ˆ ˆ[ ]

npvU  in equation (3.38) are the 

right and left orthonormal matrices, respectively, and ˆ ˆ[ ]
npv  is the diagonal matrix containing 

singular values of velocity-to-pressure transfer function  ˆ ˆ | ;
n

rec meas

pv n l
N L

H 


 
 

x x  in equation 

(3.31). ˆ ˆ[ ]
n nv vF 

 and ˆ ˆ[ ]
npvF 

 are the low-pass filter containing the singular values εi in matrix ˆ ˆ[ ]
n nv v  

and ηi in matrix ˆ ˆ[ ]
npv , which are defined as, 
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 (3.40) 

where regularization parameters β and γ are determined by GCV through a minimization process 

given by, 
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where ˆ ˆ ,n nv v hF  
   and ˆ ˆ ,npv hF  

   are the high-pass filters determined by subtracting the low-pass filters  

ˆ ˆn nv vF  
   and ˆ ˆnpvF  

  from the unitary matrix, 

     ˆ ˆ ˆ ˆ, ( ) ( )
I [ ] , I ,

n n n nv v h v v S SS S L S L SL L
F diag F 

   

         
(3.43) 

   

     ˆ ˆ ˆ ˆ, ( ) ( )
I [ ] , I .
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         (3.44) 

Instead of directly using trail reconstruction results to match measured verification data, 

the hybrid regularization approach applies filtered results to determine the optimized number of 

expansion terms. For each value of the number of expansion terms, the transfer function is filtered 

by MTR first while the regularization parameter is obtained by using GCV. Then the regularized 

reconstructions are compared with verification data to identify an optimal number of expansion 

terms. 

By combining these two regularization methods together, the robustness of the proposed 

approach could significantly increase. As discussed previously, the error and background noise 
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contaminated in high order terms are more likely to be amplified unboundedly during the 

reconstruction process. Original least square approach truncates all terms higher than certain order 

to ensure bounded results, which often lead to many useful desired detail information be omitted. 

Whereas the hybrid approach utilized a low pass filter to constrain effect of noise disturbance, by 

doing so, many high order expansion terms could be included. In other words, with the help of 

MTR and GCV, the number of expansion terms could go much higher and thus increase 

reconstruction accuracy for detail evanescent waves.  
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3.5 Procedures for modified HELS approach 
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Figure. 3.2 Flowchart of modified HELS algorithm 
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Having the formulas and regularization techniques for the normal surface velocity based 

NAH, the detailed implementing procedures are given in this section. Flowchart of the process is 

described in figure (3.2). To illustrate the procedures, we also assume that normal surface 

velocities at L number of surface locations are measured as input and sound pressures at N number 

of field locations are desired. 

1. Measure normal surface velocities at L number of input surface locations 

  
1

ˆ ;meas

n l
L

v 


x  and S number of supplemented surface locations   
1

ˆ ;ver

n s
S

v 


x .  

Measure acoustic pressures at N number of supplemented locations   
1

ˆ ;ver

n
N

p 


x  in 

the field near desired prediction area. Also, collect coordinates of all the measurement 

and verification locations; 

2. Take   
1

ˆ ;meas

n l
L

v 


x  as the input to establish the HELS formulations Eq. (3.19) to 

reconstruct normal surface velocities on S supplemented surface locations 

  ,

1
ˆ ;rec

n s
S

v  


x . Then comparing with   
1

ˆ ;ver

n s
S

v 


x  and applying an iteration 

scheme to determine the optimal expansion term Jopv,MTR and corresponding 

regularization parameter β; 

3. Use   
1

ˆ ;meas

n l
L

v 


x  as the input to reconstruct normal surface velocities at other S 

locations with obtained regularization parameters Jopv,MTR and β. Then the 

reconstruction is repeated k times regarding point set S1, S2, … Sk. Finally, normal 

surface velocities at M (M = k × S) locations   
1

ˆ ;rec

n m
M

v 


x  are regenerated which are 

used as input to predict sound radiated from the vibrating surface; 
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4. Take   
1

ˆ ;rec

n m
M

v 


x  as the input to establish the HELS formulations to reconstruct 

acoustic pressures on N supplemented surface locations   ,

1
ˆ ;rec

n
N

p  


x . Then 

comparing with   
1

ˆ ;ver

n
N

p 


x  and applying an iteration scheme to determine the 

optimal expansion term Jopp,MTR and corresponding regularization parameter γ. 

5. Use   
1

ˆ ;rec

n m
M

v 


x  as the input to predict the acoustic pressures at as many points as 

necessary with obtained regularization parameters Jopp,MTR and γ. 

3.6 Conclusion 

Theory and implementation procedures of the modified HELS approach are illustrated in 

detail in this chapter. By substituting the sound pressure measured by conformal microphone array 

with normal surface velocity measured by laser vibrometer as inputs, the data acquisition process 

has been greatly simplified, while the advantages of HELS method are also retained. Through the 

application of hybrid regularization strategy, boundedness and meaningful reconstruction results 

are always desirable. 

With the input data changing from sound pressure to particle velocity, optimization process 

for many test parameters are also changed. The guidelines for implementing the modified HELS 

based NAH will be discussed in next chapter along with numerical simulation examples. 
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CHAPTER 4: NUMERICAL VALIDATION OF MODIFIED HELS 

METHOD BASED NAH WITH NORMAL SURFACE VELOCITY AS 

INPUT 

The forth illustrated formulas and procedures of the modified HELS method based NAH 

are validated numerically in this chapter. Implementation of the traditional sound pressured inputs 

based HELS and the proposed normal surface velocity approach share the same guidelines for 

most of the parameters. However, since individual optimal numbers of expansion terms are used 

for velocity-to-velocity and velocity-to-pressure reconstruction respectively, the determined 

optimal number of expansion terms are different from traditional HELS method. Also, since 

superposition of spherical waves is used to approximate arbitrary shape structures, the origin 

locations must be chosen carefully per special relationships between measurement surface and 

reconstruction surface. Such optimal processes will be demonstrated in detail with respect to 

different simulation scenarios.  

4.1 Introduction 

The simulation is conducted with respect to a simply-supported, unbaffled thin plate. The 

reason for selecting this test object is that the vibro-acoustic response of a simply-supported plate 

is readily available analytically. The measured surface particle velocities in normal direction are 

simulated by mode summation approach. Once the normal surface velocity distribution is obtained, 

the benchmark sound pressures in the field that are used to test reconstruction accuracy are 

calculated by Rayleigh integral.  

On the other hand, the simply-supported plate represents a series of geometries that hardly 

be completely approximated by the superposition of spherical expansion functions which is 

fundamental to HELS approach. So, the capability of reconstructing the whole vibro-acoustic filed 

that radiated from this highly non-spherical geometry is a strong proof that the proposed modified 

HELS approach is suitable for any arbitrary shape structure.  
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To make the task more challenging, except for simulating vibration of normal modes, 

vibration pattern with asymmetric velocity distribution at different frequencies are also examined. 

The impacts of reconstruction parameter include the number of expansion functions, the location 

of origin and reconstruction distance are also studied in detail. Based on this thorough investigation, 

implementation guidelines for the normal surface velocity based NAH approach are provided. 

4.2 Test apparatus 

y

x d0
Δd’

Vibrating surface  Verification surface

z

Prediction surface

Δd

 

Figure. 4.1 Schematic of the test setup 

Figure 4.1 shows the test setup of this numerical simulation in a Cartesian coordinate 

system. The origin of Cartesian coordinates is placed at a distance d0 from the vibrating surface on 

the opposite side of the surface where the vibro-acoustic field is to be predicted. The simulated 

test object is a steel plate with dimension 0.5×0.5 m2, and 5 mm thick. The first 9 natural 

frequencies and associated structural wavenumbers are summarized in Table 3.1.59 

TABLE 4.1. Natural mode, natural frequency, and structural wavenumber of simulated plate 
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Natural 

mode 

(μ, ν) 

Natural 

frequency 

(Hz) 

Structural wavenumber 

kx (m-1) ky (m-1) 

(1, 1) 98.1 6.28 6.28 

(1, 2) 245.3 6.28 12.56 

(2, 2) 392.4 12.56 12.56 

(1, 3) 490.5 6.28 18.84 

(2, 3) 637.7 12.56 18.84 

(3, 3) 883 18.84 18.84 

(2, 4) 981 12.56 25.12 

(3, 4) 1226.3 18.84 25.12 

In this simulation, the number of directly measured normal surface velocity locations is 

L=64 and normal surface velocities at other S=64 points are used as supplemented verification 

information to optimize regularization parameters Jopv,MTR and β. With these parameters, the 

velocity-to-velocity reconstruction is repeated k =4 times to regenerate normal surface velocity 

distribution with M=k × S=256 points. The new generated normal surface velocities are used as 

input to predict radiated acoustic pressures at N= 64 field locations at prediction surface which is 

located at a distance Δd from source surface. A virtual supplemented verification microphone array 

of the same dimension 0.5 × 0.5 m2 also with N= 64 microphones on sound pressure verification 

surface is placed at a distance Δd’ from vibrating surface along positive z-axis. In order to better 

evaluation of the reconstruction results, except for the discussion about impacts of reconstruction 

distance to reconstruction accuracy, all other simulations are carried out with sound pressure 

verification and prediction points located on the same plane. In other words, unless otherwise 

specified, we have Δd= Δd’. 

The simulation includes two parts: vibration-acoustic field caused by vibration at certain 

resonant frequencies and normal surface velocity field simulated by summation of several different 

modes. The summation of different modes will generate an asymmetrical vibration deflection 



44 
 

 

shape, which is much more challenging than simple symmetrical standard normal mode shape. 

Note that this is just a simulation and such a vibration pattern which only includes a sum of finite 

number of modes is hard to achieve in practice. It is because that except for the unlikely event of 

the structural vibration in which motion is excited coinciding exactly with one of the natural modes, 

all the modes with different weighting coefficients will be excited.  

In order to make the simulation more realistic, for all the measured quantities including 
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x and   
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n
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x , wide-band random white noise has been 

added to simulate a 20dB signal to noise ratio. 

To evaluate both the normal surface velocity and acoustic pressure reconstruction accuracy 

in an objective manner, normalized L2-norm errors with respect to benchmark data are used as an 

indicator. Consider acoustic quantities at R locations are reconstructed, the normalized L2-norm 

errors ξ is defined as: 
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 (4.1) 

where  , ;rec

r iQ x  represents reconstructed acoustic quantities at the ith location and  , ;bench

r iQ x  

represents corresponding benchmark data at the same location. 

4.3 Reconstruction results 

The analytic solutions of vibration responses of a thin simply-supported plate are given 

by60 
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where 
0

( , , )w x y z  is the complex amplitudes of the flexural vibration displacement of the plate. 

μ and ν are the index that represents order of certain normal mode along the x and y direction. A  

is the amplitude coefficient corresponding to (μ, ν) mode which is obtained from the initial 

conditions and boundary conditions. Lx and Ly are the width and length of the test object 

respectively and 
0z  is the position of the plate along the z axis. 

Having the vibration displacement, the corresponding normal surface velocity of the plate 

0
( , , )nv x y z  can be calculated as 

 0 0
( , , ) ( , , ),nv x y z i w x y z  (4.3) 

where ω is the targeted angular frequency. Given the normal surface velocity on source surface, 

the sound pressures at any field location (x’, y’, z’) can be calculated through Rayleigh integral as 

follows 
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where k is the acoustic wavenumber corresponding to angular frequency ω and 
0  is the ambient 

density of the fluid medium. R is the distance between desired field location (x’, y’, z’) and surface 

location (x, y, z0) and calculated as 

 
     

2 2 2

0' ' ' ,R x x y y z z       (4.5) 

Having the geometry information of vibrating surface as well as desired sound pressure 

prediction locations, vibration displacement and normal surface velocity distribution on the surface 

at specific resonant frequency can be easily calculated through equation 4.2-4.3 by setting μ and ν 

the corresponding normal mode index. Then, the radiated sound at desired field point can be 

calculated using equation 4.4. In this simulation example, vibroacoustic field generated at first 

eight modes are reconstructed. 
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As introduced before, to make the task more challenging, except for simulating vibration 

of normal modes, vibration pattern with asymmetric velocity distribution at different frequencies 

are also investigated. Such a case is simulated by summation of (2, 2) mode and (2, 3) mode with 

equal amplitude coefficients. Mathematically, substitute size of simulated surface which is 0.5 × 

0.5 m2 and mode index into equation (4.2), this vibration deflection shape is calculated as 
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 (4.6) 

Once again, no matter at which frequency, the vibration pattern with contribution only from 

2 normal modes is hard to achieve. In reality, except for the very unlikely event that the structure 

is excited at one of the resonant frequencies, the deflection shape must be formed with 

contributions from an infinite number of natural modes. The reason for doing so is just for 

generating a complex asymmetric velocity distribution. Rayleigh’s integral can handle any shape 

of normal surface velocity distribution at any frequency. So, such a simulation is totally practicable. 

In this subsection, such a velocity distribution is simulated at 1350 Hz. In next subsection, when 

we discuss the impact of reconstruction frequency, reconstruction results at two other frequencies 

will be examined. 

The measurement locations and verification locations on the source surface that used in 

this section are shown in figure 4.2. The L=64 number of directly measured normal surface velocity 

points are indicated by red round dots and the equally distributed M=256 number of reconstruction 

points are indicated by green dots. It can be seen that in this case, the measurement surface area is 

approximately the same as source surface area. The scenario that area covered by measurement 

points is smaller than vibrating surface will be discussed in next section. Sound pressure 
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verification and reconstructed surface are simulated 0.2m away from vibrating surface, saying Δd= 

Δd’=0.2m. The verification microphones are also equally distributed on the 0.5 × 0.5 m2 

verification plane. 

In this section, the optimized origin distance d0 is optimized as 0.21m. The detailed 

determination process of all these parameters will be discussed in next section. 

 

Figure. 4.2 Sketch of 64 measurement locations (red round dots  ) and 256 reconstructed 

locations (green square dots  )on the vibrating surface 

At resonant frequencies, the comparisons between benchmark data and reconstruction 

results for velocity-to-velocity and velocity-to-pressure reconstruction are shown in figure 4.3 

and figure 4.4 respectively. 

0.5 m 

0
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Figure. 4.3 Comparison of normal surface velocities on source surface between benchmark data 

(left) and reconstructed results (right) for eight natural modes 

Mode (1,1) Mode (1,2) 

Mode (2,2) Mode (1,3) 

Mode (2,3) Mode (3,3) 

Mode (2,4) Mode (3,4) 
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Figure. 4.4 Comparison of sound pressure distribution on prediction plane (Δd = 0.2m) between 

benchmark data (left) and reconstructed results (right) for eight natural modes 

Generally speaking, the reconstructed normal surface velocities and sound pressures agree 

well with theatrical data in all these 8 modes, especially for the surface central area and for the 

lower frequency modes.  

For velocity-to-velocity reconstruction, the errors mostly occur near the boundary areas of 

the plate. What’s more, for higher modes, obvious distortion around the boundary can be found. It 

Mode (1,1) Mode (1,2) 

Mode (2,2) Mode (1,3) 

Mode (2,3) Mode (3,3) 

Mode (2,4) Mode (3,4) 
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is because that spherical expansion functions are used to approximate the velocity distribution on 

a plane surface and the distance between boundary areas and hypothetical spherical surface are 

larger than the central areas. This problem is more severe for high order expansion terms which 

are essential for reconstructing higher modes. This explains why the distortions are more obvious 

for higher frequency modes.  

The velocity-to-pressure reconstructions also provide acceptable results. However, the 

results are not as good as velocity-to-velocity reconstruction. The theoretical sound radiations are 

obtained from Rayleigh’s integral that utilizes all the surface vibrating information. The inputs of 

our simulation are just a finite number of velocities at discrete locations which are incomplete. To 

do sound pressure reconstruction from these incomplete data, our approach is to use superposition 

of a finite number of spherical expansion functions to approximate sound radiation. Such an 

approach will make errors embedded in measurement data be exaggerated heavily in the velocity-

to-pressure cross reconstruction. To eliminate this side effect, more high order terms which are 

necessary for accurately reconstructing details are truncated. Therefore, sound pressure 

reconstructions are a little worse than velocity reconstruction. 

Figure 4.5 & 4.6 depict reconstruction results for simulation of summation of (2, 2) mode 

and (2, 3) mode at 1350 Hz. Similar to simulations at resonant frequencies, the normal component 

of surface velocities yield a quite high reconstruction accuracy on the whole surface. The sound 

pressure prediction also shows satisfactory results except for some locations near edge areas. This 

is also because that the boundary areas are too far from the hypothetical sphere. In this simulation 

case, spherical expansion functions are used to approximate the vibro-acoustic field generated by 

a plane surface with asymmetric velocity distribution, thus many high-order terms are needed. 

However, to account for the distortion in the boundary areas and errors embedded in measurement 

data, high order terms and small scale information are removed through regularization process.    
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Figure. 4.5 Comparison of normal surface velocities on source surface between benchmark data 

(left) and reconstructed results (right) for summation of (2, 2) mode and (2, 3) mode 

 

Figure. 4.6 Comparison of sound pressure distribution on prediction plane between benchmark 

data (left) and reconstructed results (right) summation of (2, 2) mode and (2, 3) mode at 1350 Hz 

4.4 Effects of different parameters on reconstruction accuracy 

In this section, the effects of various reconstruction parameters will be addressed. Through 

these error analysis, recommended parameter determination strategies will be given. Guidelines 

for parameter determination for original HELS based method have been discussed a lot in previous 

publications.61,62 For many parameters, the new proposed normal surface velocity based modified 

HELS approach shares same determination guidelines with original HELS method. However, there 

are also many parameters optimization processes need to be changed and there are some more new 

induced variables. Such parameters include measurement locations, regularization parameters, the 
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location of the origin, prediction distance, relationship between acoustic frequencies and structural 

wavenumber etc. In this section, we will focus on these parameters. 

To evaluate the reconstruction accuracy in an objective manner, when analyzing the impact 

of certain parameters, only targeted parameter will change while the other variables being held 

constant. And the reconstruction errors are calculated by equation 4.1. 

4.4.1 Optimal number of expansion terms 

As illustrated in section 3.4, unlike original HELS based NAH, Jopv,MTR and Jopp,MTR are 

induced to do velocity-to-velocity and velocity-to-pressure reconstruction respectively. Here, we 

need to study the regularization process first. Take the simulation of summation of (2, 2) mode 

and (2, 3) mode at 1350 Hz as an example.  

The reconstruction accuracies under a different number of expansion terms for normal 

surface velocity reconstruction on the vibrating surface and sound radiation on the prediction 

holography surface are depicted in figure 4.7 and figure 4.8 respectively. 

 

Figure. 4.7 The normalized L2-norm errors curve with respect to different number of expansion terms for 

reconstruction of normal surface velocity at supplemented verification locations 
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Figure. 4.8 The normalized L2-norm errors curve with respect to different number of expansion terms for 

reconstruction of sound pressure at supplemented verification locations 

From figure 4.7, it can be seen clearly that with the increase of the number of expansion 

terms, the trend of L2-norm errors curve for velocity reconstruction behave a monotonic decrease. 

In other words, the more expansion functions are included, the more accuracy the reconstruction 

could be. This can be easily explained as follows. Many small-scale details are contained in the 

velocity distribution, which can only be reconstructed through high-order terms. With more 

expansion functions are utilized, more details will be included in the reconstruction results, thus 

will improve reconstruction quality. When the number of expansion terms reaches 64, the accuracy 

of velocity reconstruction is very high (L2-norm error under 10%). For this velocity-to-velocity 

reconstruction, the measurement locations and reconstruction locations are of course located on 

the same surface, thus the inevitable errors contaminated in the input data will be not amplified 

unboundedly in the high order expansion terms reconstruction process.  

However, velocity-to-pressure reconstruction with a propagating distance behaves 

differently with respect to a different number of expansion terms. The L2-norm errors decrease to 

a certain point than increases thereafter that form a U-shape curve. The decrease or increase of the 
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curve is all due to the evanescent waves. The more expansion terms are used, the more evanescent 

waves could be depicted, thus reconstruction error will naturally decrease. However, the errors 

contaminated in evanescent waves will also be exponentially exaggerated with the increase of 

propagating distance63, which might totally distort reconstruction results. So to ensure prediction 

accuracy, extra high order terms are truncated. On the other hand, these evanescent waves’ 

contributions are relatively small in the prediction plane, so discarding high-order terms will not 

stop us from getting acceptable prediction results. 

4.4.2 Measurement locations 

In HELS based NAH, the vibroacoustic field is estimated by matching trial reconstructed 

results with verification data. We know that any function defined on the holography surface can 

be uniquely and completely approximated by certain spherical expansion terms. There is a 

prerequisite that error free velocity measurement needs to be taken at every surface locations which 

is certainly impossible in practice. However, based on a finite number of discrete measurements 

and considering about embed errors, the proposed modified HELS approach also yields 

satisfactory results. In this section, we will discuss the discrete data acquisition strategy. The 

measurement locations are controlled by two factors: measurement interval distance and 

measurement covered area. 

To ensure reconstruction accuracy of target source, the minimum measurement interval 

needs to be larger than ¼ λs, where λs is the shortest structural wavelength of interest. Such 

recommendation is the same with original HELS and has been examined in many previous 

publications, so we will not talk about this in detail here. 

Except for measurement interval, to finally determine all the measurement locations, 

covered measurement area also need to be identified. In many cases, when analyzing large size 

structure such as vehicle panel, it may not that easy to take measurements at locations that all over 
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the surface. If the whole vibroacoustic field can be reconstructed precisely based on normal surface 

velocity measured from just a small part of the structure, the overall cost of the data acquisition 

process will decrease dramatically. To find out this problem, the relationships between ratio of 

measurement area to vibrating surface area ϛ and prediction errors ξ are investigated. 

The numerical simulation is conducted regarding first eight modes that same with section 

4.3. To do so, the ratio of measurement area to vibrating surface area’s impact could be revealed 

comprehensively. The number of measurement points is fixed at 64 and the measurement locations 

are equally distributed. Note that when changing the measurement area, the measurement interval 

will also be changed. When ϛ equals 1, the measurement interval is the largest which is 7 cm. The 

shortest wavelength of interest λs is 25cm. The largest measurement interval is larger than ¼ λs, 

which is 25/4=6.25 cm in this case. So, the measurement interval fulfills the requirement. To help 

readers better understanding how the ratio ϛ is changed, figure 4.9 listed 4 examples of 

measurement setups with different ϛ. 

 

Figure. 4.9 Sketch of measurement locations (red round dots  ) and reconstructed locations (green square 

dots  )on the vibrating surface with 4 different ratios of measurement area to vibrating surface area ϛ. 

ϛ=0.95 ϛ=0.66

ϛ=0.47 ϛ=0.32
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Figure. 4.10 The normalized L2-norm errors curve with respect to different ratio of measurement 

area to vibrating surface area at 8 natural modes. 

The interrelationships between ratio ϛ and reconstruction accuracy are shown in figure 4.10. 

On the whole, with the increase of ϛ, the reconstruction errors decrease for all 8 scenarios. That 

means that the larger area the measurement locations covered, the higher the reconstruction 

accuracy could achieve. The results are expected since the regularization process minimizes 

prediction errors at measurement locations whereas the prediction errors at the not covered portion 

of the surface are not guaranteed.  

For mode (1, 1) and mode (1, 2) the prediction errors remain relatively small even with 

smallest ϛ. That is because there are not many details in these two modes, data collected from a 

small portion of the surface are capable of reflecting overall velocity distribution. However, for 

those higher modes which contain much more small scale details, information captured from a 
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small portion of the surface is not enough. Take a closer look at those higher-order modes, you 

can find that the curves for mode (2, 2) and mode (3, 3) decrease faster. More specifically, for 

mode (2, 2) and mode (3, 3), the prediction errors decrease to below 10% at ϛ equals 0.45 and 0.6 

respectively whereas for other modes the prediction errors don’t decrease to 10% until ϛ larger 

than 0.8. The reason is that mode (2, 2) and mode (3, 3) are not only vertically and horizontally 

symmetry, they also have mirror symmetry along diagonal lines. Whereas, the other modes are 

only symmetry along vertical and horizontal lines. 

Therefore, to obtain better reconstruction results, the area covered by measurement 

locations should be as large as possible. However, in many real application scenarios, we cannot 

make measurements covering the whole vibrating surface for various reasons, such as obstacle 

parts around target object cannot be removed. For such cases, the measurement area could be 

reduced, however, the ratio of measurement area to vibrating surface area is recommended no less 

than 0.5. 

4.4.3 Location of the origin 

In the proposed velocity based HELS, recommended distance between the origin and 

vibrating surface is different from traditional sound pressure measurement based HELS. 

Since spherical holography surfaces are used to approximate arbitrary shape structures in 

HELS theory, the reconstruction quality is heavily affected by the location of the origin. If the 

origin distance compares with source surface size is too small, the reconstruction errors might be 

very large, as this will result in many reconstruction locations away from geometry center going 

beyond the region of effectiveness. Conversely, if the origin distance is too large, the large radius 

might make high order expansion terms that responsible for detail information cannot be properly 

defined on the hypothetical spherical surface, also resulting in reconstruction inconsistencies. 
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Therefore, the origin location must be carefully selected. However, there are no analytical formulas 

for determination of this optimal distance.  

Many numerical simulations have been conducted regarding original HELS based NAH64, 

indicating that the optimal position d0 falls within ± 10% of the characteristic dimension of source 

surface D, 

 0
(0.9~1.1) ,d D  

(4.7) 

where 𝐷 = √𝐿2 + 𝑊2, L and W are the length and width of source surface respectively. In original 

HELS based NAH, to capture as many nearfield effects as possible, the standoff distance between 

measurement microphones and source surface is always set extremely small. The distance between 

origin and source surface and the distance between origin and measurement surface are 

approximately the same. Thus, the above optimal position is appropriate for both measurement 

and source surface. 

In the proposed velocity based HELS, the above critical distance is good for velocity-to-

velocity reconstruction and nearfield sound pressure prediction, for the same reason that the 

distances between measurement surface and reconstruction surface are relatively small. However, 

it is no longer suitable for far-field sound pressure prediction. Note that the origin is placed on the 

opposite side of the source surface and the actual distance between origin and prediction surface 

is d0+ Δd, see figure 4.1. When determining optimal d0 for sound pressure prediction, both 

measurement surface and prediction surface need to be taken into consideration. 

Numerical simulations are carried out regarding summation of (2, 2) mode and (2, 3) mode 

at 1350 Hz to examine the effects of varying origin location to normal surface velocity and sound 

pressure reconstruction accuracy respectively. In this simulation, d0 varies from 0 to 1.5D, while 

the prediction distance Δd is fixed at 0.2m which is about 0.6D. The results are shown in figure 

4.11.  
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Figure. 4.11 The normalized L2-norm errors curves with respect to different origin locations. 

A local minimum that corresponds to optimal origin location for sound pressure prediction 

can be found at d0/ D ≈ 0.6, whereas the optimal origin location for normal surface velocity 

reconstruction locates at d0/ D >1. Which coincident with above analysis that the optimal position 

d0 appropriated for source surface may not necessarily best for far-field prediction surface. 

There is always a trade-off between the accurately reconstruction of far-field sound 

pressure and normal surface velocity. A possible solution to this dilemma is to utilize different 

optimal origin locations for pressure reconstruction on prediction plane and particle velocity on 

source surface. However, such a way will complicate the reconstruction process and increase 

computational load. Actually, as seen in Figure 4.11, when optimal distance for sound pressure 

prediction plane (d0≈ 0.6D) is used, the reconstruction of surface velocity also yields acceptable 

results with normalized L2-norm error ξ < 30%. When computation complexity is a concern over 
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accuracy reconstruction of surface vibration information, optimal distance for pressure prediction 

is recommended. 

Unfortunately, for far-field sound pressure prediction, since prediction distance Δd also 

affects optimal origin locations, there is no ‘one size fits all’ guidelines for different prediction 

distance. To weigh the effect of source surface and prediction surface, the most direct and simplest 

thinking is to optimize d0 with respect to a virtual surface located just in the middle of source 

surface and prediction surface by using guidelines for original HELS. More specifically, d0 and 

Δd should fulfill a linear correlation and d0 + Δd /2 should fall within ± 10% of D. Mathematically, 

the hypothesis relationship could be expressed as 

 0 (0.9 ~1.1) / 2,d D d   (4.8) 

In the example given in figure 4.11, the identified optimal d0 is 0.6D and the prediction 

distance is Δd = 0.2m ≈ 0.6D, which matches equation 4.8. Is this just an accidental coincidence? 

What if we place prediction surface closer or further to source surface? To address this problem, a 

series of numerical simulations are carried out at various prediction distances regarding different 

origin locations. 
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Figure. 4.12 Normalized L2-norm errors corresponding to various origin locations for different 

prediction distances. 

The iteration results are shown in figure 4.12. The virtually prediction distance Δd varies 

from 0 to 3.4D. At each prediction distance, origin distance is changed from 0 to 1.2D. The 

reconstruction performances are still evaluated by normalized L2-norm errors and indicated by the 

hot map. The thus optimized d0 for each prediction distance is indicated by a solid green line. To 

view this green curve as a whole, a negative correlation could be concluded between prediction 

distance and optimal origin distance. However, such negative correlation is non-linear. In the 

region of Δd= (0~1) D, the optimal origin distances decrease in a roughly linear manner and match 

the conjecture given in equation 4.8. However, when Δd is larger than D, the optimal d0 is 

constrained within 0.4D and 0.5D. This is expected since origin cannot be placed too close to the 

source surface and it, of course, cannot exceed vibrating surface (d0 >0). With prediction distance 
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increasing, the concomitantly decreased optimal d0 must stop somewhere on the opposite side of 

source surface. So, the recommended optimal distance is numerically identified as 

 
0

(0.9 ~ 1.1) / 2
,

(0.4 ~ 0.5)

D d d D
d

D d D

  
 

 
 or 0

/ 2
.

0.45

D d d D
d

D d D

  
 

 
  (4.9) 

4.4.4 Reconstruction at different prediction distance 

In the above simulations, the sound pressure prediction points and verification points are 

in the same plane. In this subsection, while still utilizing optimized parameters identified from 

supplement verification microphones, the sound pressure prediction accuracies at locations away 

from verification surface will be examined. The simulations are still conducted with respect to 

summation of (2, 2) mode and (2, 3) mode at 1350 Hz. The supplemented microphones are placed 

0.2m away from vibrating surface (Δd’=0.2m) and the prediction distance Δd is varied from 0.01m 

to 0.6m. The normalized L2-norm errors curve for each simulated case is in figure 4.13. 

 

Figure 4.13 The normalized L2-norm errors curve for reconstruction of sound pressure with 

respect to different prediction distances 

At Δd=0.2m, the minimum prediction error is achieved. This is reasonable since the utilized 

regularization parameters are optimized with respect to supplement microphones that are located 



63 
 

 

just at a plane 0.2m away from source surface. As indicated by shadows, when Δd changes from 

0.05m to 0.33m, the prediction yields satisfactory results with ξ <30%. However, for even larger 

prediction distance, the prediction error increases gradually and finally tend to infinity. From these 

simulations, we can conclude that the variables optimized from supplement microphones are not 

only effective at verification surface but also valid at a ‘small’ region around these verification 

locations. If further locations need to be reconstructed, regularization process needs to be 

reconducted at locations near targeted places. 

4.4.5 Reconstruction at different frequencies 

The reconstruction accuracy of NAH is highly related to how much near-field effects 

(evanescent waves) could be captured. Whether a sound wave radiated from a vibrating structure 

is evanescent depends on the interrelationships between its acoustic wavenumber and structural 

wavenumber. So, in this subsection, these interrelationships in k-space are analyzed and their 

effects on reconstruction results are studied. Unlike the simulation given in section 4.3, the 

simulations are conducted with respect to the summation of (2, 2) mode and (2, 3) mode at two 

other frequencies (1050 Hz and 500 Hz). The simulation results are shown in figure 4.14 & 4.15. 

 

Figure 4.14 Comparison of sound pressure distribution on prediction plane (Δd = 0.2m) between 

benchmark data (left) and reconstructed results (right) at 1050 Hz 
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Figure 4.15 Comparison of sound pressure distribution on prediction plane (Δd = 0.2m) between 

benchmark data (left) and reconstructed results (right) at 500 Hz 

The predictions at these two frequencies are not as good as 1350 Hz does (see figure 4.6). 

The reconstructed sound pressures don’t obtain good agreements with benchmark data. This is 

mainly caused by incompleteness of necessary nearfield information. 

Unlike traditional NAH which using sound pressures measured at a distance as an input, in 

this proposed approach, particle velocities obtained just on source surface are used as input. One 

may think that, theoretically, we captured all the nearfield effects. However, this might only be 

true when vibration information at every surface location is obtained, which is impossible in 

practice. In the data acquisition process, no matter how many points are measured, the obtained 

particle velocity distribution is always discrete. Thus, the missing information essential for 

evanescent waves cannot be reconstructed anyway. In order to restore detailed information, 

measurements at an excessive number of locations need to be taken. However, the increasing of 

sampling points will decrease transfer function’s robustness to interference errors. This explains 

why the prediction accuracies of such evanescent waves will not be that satisfactory. The 

interrelationships between simulated acoustic wavenumber and spatial wavenumber in k-space are 

shown in figure 4.16. 
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Figure 4.16 The relationships between acoustic wavenumbers and structural wavenumbers. The 

structural wavenumbers of simulated (2, 2) mode and (2, 3) mode are indicated by ‘’ and ‘•’ 

respectively. the radiation circles for three simulated frequencies 1350 Hz, 1050 Hz and 500 Hz 

are indicated by ‘──’, ’---’ and ‘-•-’ respectively. 

The spatial wavenumbers of simulated (2, 2) mode and (2, 3) mode are designated as (kx1, 

ky1) and (kx2, ky2) respectively. The acoustic wavenumber at simulated frequencies 1350 Hz, 1050 

Hz and 500 Hz are designated as k1, k2, and k3. At 1350 Hz, we have 𝑘1 > √𝑘𝑥1
2 + 𝑘𝑦1

2  and 𝑘1 >

√𝑘𝑥2
2 + 𝑘𝑦2

2 , so the corresponding wavenumbers of the radiated sound wave are real which means 

that neither (2, 2) mode nor (2, 3) mode will generate evanescent waves. Similarly, at 1050 Hz, 

propagating sound wave will be generated by the structural wave of (2, 2) mode whereas no 

radiated sound wave will be produced by the structural wave of (2, 3) mode. However, at 500 Hz, 
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both these two simulated structural waves will not radiate sound into the far field. This explains 

why sound radiated from (2, 2) mode at 500 Hz and sound radiated from (2, 3) mode at 500 Hz 

and 1050 Hz are not reconstructed very well. 

4.5 Conclusion 

In this chapter, the reconstruction accuracies of modified HELS based NAH are verified 

under different conditions for a highly non-spherical surface. Compare to traditional HELS based 

NAH, by changing the input data from nearfield sound pressures to normal surface velocities, 

many parameters optimization processes have been changed. Through numerical simulation, the 

new parameter recommendation guidelines are determined. Although in these simulations, wide-

band random white noise has been added to measurement signals, they are still not the real test. 

To validate the effectiveness in real life, series of real experiment validations are conducted in an 

anechoic chamber. Such results are demonstrated in chapter 6. 
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CHAPTER 5: FORCED VIBRO-ACOUSTIC COMPONENT (F-VAC) 

In this chapter, through vibro-acoustic analysis based on modified HELS approach, a new 

concept of F-VAC will be given. F-VAC reveals the critical vibration component that is directly 

responsible for noise radiation. Such information could further provide engineers guidelines about 

how to control structural borne noise in the most cost-effective manner.  

5.1 Introduction 

The conventional thinking that suppressing vibration at a certain frequency will eliminate 

the sound radiated at that frequency has already been proved wrong by many peer-reviews 

academic papers for a long time. However, we cannot deny the fact that structure-borne noise is 

produced by structural vibration and structural borne noise control can be accomplished through 

vibration control. In other words, structural borne noise control must by conducted with respect to 

critical vibration components that directly related to sound radiation. To achieve such a goal, the 

first and foremost task is to find the interrelationships between vibration and resultant sound 

radiation. 

One of the widely-used technique of find such relationship is FRF-reciprocity based vibro-

acoustic analysis. However, the transfer functions obtained based on FRF- reciprocity principle 

are only valid at selected measurement locations and cannot expand to other non-examined places. 

So, it’s a perfect technique for air-borne noise control, in which the vibrating structures can be 

treated as a finite number of point sources. As for structural-borne sound, the vibration behavior 

of the source structure need to be considered as a whole, So, an excessive number of measurement 

points are needed, which is obviously not practical. 

The concept of radiation efficiency could reveal interrelationships between vibration and 

sound radiation in terms of normal modes. The different mode will perform different ability to 

radiate sound into far-field. Such an ability is evaluated by the ratio of radiated sound power to 
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spatially averaged square velocity, known as radiation efficiency. The normal modes based 

radiation efficiency analysis can provide each mode’s contribution to sound radiation at a certain 

frequency. However, such results cannot tell engineers how to control structural borne sound in 

the most cost-effective manner. Since structural borne sound can only be effectively reduced by 

suppressing many high radiation efficiency modes together. By suppressing all those modes 

simultaneously, it is always cost too much. If you only control vibration of first dominant mode, 

it usually cannot provide satisfactory results. The optimal solution which locates somewhere in 

between cannot be revealed by modal analysis, for the simple reason that normal vibration modes 

are not directly related to sound radiation. As a set of orthogonal basis, normal modes are perfect 

tools for vibration analysis. However, they have nothing to do with sound radiation. 

To better analysis sound radiation from vibrating structure, it is necessary to find another 

set of orthogonal basis that obtained directly from interrelationship between sound and vibration 

and further identify their relative contribution to sound radiation. In previous chapters, through 

modified HELS based NAH, interrelationships between structural vibration and acoustic radiation 

have already been established. These interrelationships can lead directly to transfer matrices 

between forced vibration and sound radiation. Singular value decomposition (SVD) of these 

transfer matrices will give out the desired orthogonal basis system which we name them F-VAC. 

Having the mutually orthogonal basis, the contribution of the individual F-VAC to sound radiation 

can be obtained by projecting structural vibration (normal surface velocity) onto corresponding F-

VAC. By analyzing relative contribution of each F-VAC, the critical vibration component that 

directly responsible for sound radiation can be identified. 

5.2 Forced Vibro-acoustic Component (F-VAC) 

In this section, we will illustrate how to factorize the correlations between sound and 

vibration into an orthogonal basis system known as F-VAC. According to different application 
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requirements, there are two approaches to do the decomposition. If noise control targets at few 

particular field locations, F-VACs should be determined through spatially averaged square value 

of reconstructed sound pressures at desired locations. If noise control aims at reducing overall 

radiated acoustic power, F-VACs need to be evaluated with respect to the total radiated acoustic 

power. Next, these two approaches will be illustrated respectively.  

5.2.1 F-VAC decomposition regarding spatially averaged square value of sound pressures 

In modified HELS approach, the sound pressures at N field points  rec
nx  can be 

reconstructed based on normal surface velocity at M surface locations  rec
mx  through equation 

(3.28) which is duplicated below as equation (5.1). 

        ˆ ˆ
1 1

,ˆ ˆ; | ; ;
n n

rec rec rec rec
n n m mpv

N MN M
p G v  

 

 
 

x x x x  (5.1) 

where  ˆ ˆ | ;
n

rec rec
n mpv

G x x  donates the regularized transfer matrices that correlate surface normal 

surface velocities at M locations to sound pressures at N locations. Such transfer matrices are 

regularized per sound pressures measured at N supplemented field locations near reconstructed 

locations. If noise control just target at the areas near these reconstructed filed locations, we can 

simply use spatial averaged square value of reconstructed sound pressures to obtain F-VAC. The 

spatial averaged square value of sound pressures can be calculated as follows 

 
       2

1 1

1
ˆ ˆ ˆ; ; ; .

H
rec rec rec
n n n

N N
p p p

N
  

 
x x x  (5.2) 

For finding contribution of individual components,   
1

ˆ ;rec
n

N
p 


x  in equation (5.2) is 

replaced by equation (5.1). And for easy reference, spatial averaged square sound pressures 

 2ˆ ;rec
np x  is replaced with   . 
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  x x x x  (5.3) 

where  ˆ | ;n

rec rec
v n m

M M
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x x  is the transfer matrices that correlates normal surface velocity 

to averaged square value of sound pressures. It can be calculated as follows 
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The transfer matrix  ˆ | ;n

rec rec
v n m

M M
G 



 
 

x x  is calculated through multiplying 

 ˆ ˆ | ;
n

rec rec
n mpv

N M
G 



 
 

x x  by its complex conjugate transpose, so it is a Hermitian matrix. It is 

known that the singular value of this special matrix must be real, and the corresponding singular 

vectors are linearly independent with each other. Mathematically, singular value decomposition of 

 ˆ | ;n

rec rec
v n m

M M
G 



 
 

x x  is expressed as below 
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 x x  (5.5) 

where ˆnv
U

  is all unitary matrices and ˆnv
  is a M×M rectangular diagonal matrix with positive 

real numbers on the diagonal. To introduce the concept of F-VAC, suppose that matrices ˆnv
U

  is 

decomposed into its column vectors and ˆnv
  is written in matrix form, we have 
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where ˆ ,nv i
u
  is ith column of ˆnv

U
  and ˆ ,nv i


  is corresponding ith singular value. These 

columns of ˆnv
U

  represent the forced vibro-acoustic components for structural vibration, so the 

term F-VAC is used to represent these vectors ˆ ,nv i
u
 , i=1,2,3 …, M. Since F-VAC is just a set of 

orthogonal basis functions, the plotted individual F-VAC shape doesn’t directly shed light on what 

vibration component needs to be suppressed. Only when projecting normal surface velocity onto 

these F-VAC, can you obtain the target vibration deflection shape. 

The singular values ˆ ,nv i


  are ordering in descending manner, so it is seemingly that the 

first few F-VACs whose singular values are larger are dominant factors in sound radiation at 

frequency ω. However, there is more to it. The singular value alone cannot identify individual F-

VAC component’s contribution to sound radiation. This is because transfer matrices 

 ˆ | ;n

rec rec
v n mG  x x  are governed by geometry information of source surface, desired locations 

where the sound radiation are reconstructed and corresponding boundary conditions. It doesn’t 

include the effects of different vibration components radiation ability. F-VAC with larger singular 

value may not necessary radiate more acoustic energy than F-VAC component associated with 

smaller singular value. Hence, to evaluate the importance of each F-VAC, source structures 

vibration information must also be taken into consideration. So, in order to identify the importance 

of each F-VAC, we recast the transfer matrices  ˆ | ;n

rec rec
v n m

M M
G 



 
 

x x as products of these 

column vectors and corresponding singular value, 

 
 ˆ ˆ ˆ ˆ, , ,

1 1
1

.| ;n
n n n

M H
rec rec

v n m v i v i v i
M MM M

i

uG u    
 



     
    

x x  (5.8) 



72 
 

 

Substituting equation (5.8) into equation (5.3) yields the correlation between structural 

vibration and spatial averaged square value of sound pressure in terms of decomposed singular 

values and corresponding F-VACs 
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 (5.9) 

Equation (5.9) can be interpreted as projecting reconstructed normal surface velocities onto 

a basis system known as F-VACs and contribution of each projection to spatial averaged square 

value of sound pressure at interested field points is indicated by corresponding singular value 

combined with normal surface velocities. Thus, by comparing relative contribution of each F-VAC 

to    under certain excitation condition, critical vibration component for undesired sound 

radiation can be determined. Mathematically, the relative contribution of ith F-VAC to sound 

radiated at frequency ω can be expressed as below 
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x
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 (5.10) 

The theoretical noise control potential of each F-VAC is also indicated by the ratio ,ˆnv i

 . 

However, in practice, the theoretical value is hard to be achieved by suppressing identified 

vibration component. Since suppressing certain vibration component without changing other 

structural properties is impossible in reality. Even so, it doesn’t stop F-VAC analysis based 

structure-borne noise control to be the most cost-effective approach. Simply because the dominant 

vibration components to sound radiation are obtained through interrelationships between sound 

and vibration. 

5.2.2 F-VAC decomposition regarding sound power 
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If the objective is to control acoustic power radiated into the entire field, it is necessary to 

find the critical vibration component that contributes most to sound power radiation and suppress 

it. To this end, F-VAC needs to be identified through interrelationship between surface vibration 

and radiated sound power. 

Assume that the vibrating surface is divided into K discrete elements and area of the kth 

element is ( )S k . There are M number of reconstructed locations  
1M

rec
m 

x on the entire surface 

and they are specially sorted per discretization process. The first discretized element contains 

points 
11 2, ,...rec rec rec

Sx x x and when k>1, 
1 11 2

, ,...
k k k

rec rec rec
S S S  

x x x  form the points set for the kth element. 

So, there are S1 number of points in the first element and there are Sk- Sk-1 number of points in the 

kth element. The sound power radiated from vibrating structure is calculated by summation of 

contributions of sound power radiated from each of the discretized surface element. 

Mathematically, such a relationship is expressed in equation (3.34) which is duplicated here as 

equation (5.11) 

 
 

1

ˆ( ) ( ) ; .
K

rec

n
k

k

P S k I 


  x  (5.11) 

where    
1 11

,1ˆ ˆ; ;
k

k

i

k k

S
rec rec

n n
k i SS S

I I 
  

 x x  donates the spatial averaged normal 

component of sound intensity on the kth element. The time-averaged acoustic intensities on the 

entire surface at locations 
rec
mx , m = 1, 2, … M, are calculated by the product of the complex 

conjugate of the normal surface velocity and the complex amplitude of sound pressure at the same 

locations 

 
         *

1 11

1ˆ ˆ ˆ; Re ; ; .
2

rec rec rec
n m m n m

M MM
I p v  

 
x x x  (5.12) 
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The M number of normal surface velocities on the entire surface are reconstructed from L 

number of measurement locations 
meas
lx  ,l = 1, 2, … L, through equations (3.24) and N number of 

sound pressures are further reconstructed from these normal surface velocities through equation 

(3.28). These two equations are duplicated here as equation (5.13) and (5.14) 

        ˆ ˆ
1 1

ˆ ˆ; | ; ; ,
n n

rec rec meas meas
n m m nl lv v

M LM L
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x x x x  (5.13) 

        ˆ ˆ
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n
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p G v  

 

 
 

x x x x  (5.14) 

Note that in equation (5.12), surface sound pressures and normal surface velocities at the 

same locations are needed. So, equation (5.14) is rewritten to equation (5.15) by replacing 
rec
nx  

with 
rec
mx  

       ˆ ˆ
1 1

,ˆ ˆ; | ; ;n

rec rec rec rec
pvm m m n m

M MM M
Gp v  

 

 
 

x x x x  (5.15) 

where  ˆ ˆ | ;n

rec rec
pv m m

M M
G 



 
 

x x  donates the transfer matrices for this special case that surface 

sound pressures at the same locations are desired. The reason of using a new term for this transfer 

function is not simply because of the differences in the number of reconstruction locations, its 

regularization process also differs from  ˆ ˆ | ;
n

rec rec
n mpv

N M
G 



 
 

x x .  

In chapter 3, the transfer function  ˆ ˆ | ;
n

rec rec
n mpv

N M
G 



 
 

x x  is regularized with respect to 

another set of verification or benchmark data. However, instead of surface acoustic pressure, it is 

field acoustic pressures that are reconstructed in chapter 3. To use the same approach to reconstruct 

surface acoustic pressure, the verification data must be acquired in the near field around target 

surface by using an arbitrarily shaped microphone array just as traditional NAH, which is against 

our original intention. So, we are in the position of regularizing ˆ ˆnpvG  without benchmark data. 
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Our solution is placing a constraining condition on the time-averaged acoustic power to determine 

the optimal number of expansion terms oppJ . Mathematically, the optimization process is 

expressed in equation 

 
       *

ˆ ˆ opp
1 1

ˆ ˆmin | ; ; ; ,n

H
rec rec rec rec

pv m m n m n m
J M M M M

G v v J  
  

 
 

x x x x  (5.16) 

Next, we do singular value decomposition to the transfer matrices and substitute them back 

into equation (5.15). Mathematically, it is expressed as below 
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Since  ˆ ˆ | ;n

rec rec
pv m m

M M
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x x is no longer a Hermitian positive matrix, unlike SVD of 

 ˆ | ;n

rec rec
v n m

M M
G 



 
 

x x  in equation (5.5), ˆ ˆnpv
V and ˆ ˆnpv

U are different. However, they still 

define two sets of orthogonal basis functions. Physically, ˆ ˆnpv
V represents the vibro-acoustic 

components for surface acoustic pressure whereas ˆ ˆnpv
U  represent the forced vibro-acoustic 

components for structural vibration. So, columns of ˆ ˆnpv
U  are F-VACs obtained through 

controlling total acoustic power radiated from vibrating structure. 

Similar to equation (5.8),  ˆ ˆ | ;n

rec rec
pv m m

M M
G 



 
 

x x  is decomposed as outer product 

summation as shown in equation (5.18)  
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x x  (5.18) 

where ˆ ˆ ,npv i
v , i=1,2, … M, are columns of ˆ ˆnpv

V and ˆ ˆ ,npv i
u , i=1,2, … M, are columns of ˆ ˆnpv

U . 

Substituting equation (5.18) into equation (5.17), and substituting the result into equation (5.12), 

we obtain 
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(5.19) 

As illustrated in previous section, the singular value ˆ ˆ ,npv i
  just indicates the rank of ith F-

VACs in the transfer matrix, hence singular values alone cannot identify F-VAC components that 

are mainly responsible for sound power radiation. However, the dominant F-VAC can be obtained 

by analyzing equation (5.19). The radiated sound intensity related to the ith F-VAC can be 

expressed as below 
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 x xx  (5.20) 

What needs illustration is that although the time averaged acoustic intensity is obtained 

from surface acoustic quantities, it naturally indicates acoustic energy which will propagate into 

far-field. It is because that contribution of evanescent wave which not propagates into far-field is 

represented by the imaginary part of 
*ˆ ˆ

npv , by taking real part of
*ˆ ˆ

npv , evanescent waves are 

excluded automatically. Substituting equation (5.20) into equation (5.11) could naturally lead us 

to the radiated acoustic power related to ith F-VAC 
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Having the individual F-VAC’s contribution to radiated acoustic power, the relative 

contribution of each F-VAC to sound radiation can be calculated as  
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5.3 Comparison between F-VACs and normal modes 

F-VACs provide us a powerful tool to analysis sound generated by vibrating structures and 

structure’s normal modes are very helpful for understanding structure vibration. They are totally 

different concepts. 

F-VAC is obtained from the transfer matrices between normal surface velocity and sound 

radiation, so it directly reveals the link between sound and vibration. Whereas structure’s normal 

modes themselves have nothing to do with sound radiation, they just represent independent 

vibration patterns. To establish a link between normal modes and sound radiation, the concept of 

radiation efficiency, which gives out certain mode’s ability to radiate sound into far-field, is 

induced. However, it still cannot change the fact that normal modes are not directly related to 

sound radiation. So, suppressing vibration of normal mode with highest radiation efficiency may 

not provide satisfactory results. In order to get the best noise reduction results, contributions from 

several dominant modes need to be considered together, which is obvious, not economic.  

Another difference is that natural modes are observable at resonant frequencies and each 

mode describes a unique vibration pattern. Quite the contrary, in terms of their shapes, F-VACs 

are non-observable and don’t have intuitive physical meanings. Although F-VACs sometimes may 

look like nature modes shapes or ODS, they are just a set of basis vector system which is 

established through mathematical manipulations. The physical value of F-VACs is that, through 

projecting surface vibration onto them and applying certain constraining conditions, critical 

vibration component related to undesired radiated sound can be identified. Such information will 

further cast light on controlling structural borne noise in an effective manner. 

Also, F-VACs are dependent on external excitation forces whereas nature modes are 

dynamic properties of a structure and are unconnected with excitation conditions. 
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5.4 Conclusion 

In this chapter, the concept of F-VAC is discussed in detail, including mathematic formulas 

and its physical meaning. Since in terms of plotted shapes, the projection of normal surface 

velocity onto F-VAC look quite the same with structure normal mode shapes, the differences 

between F-VAC and normal mode are also given. F-VAC directly correlates structure vibration 

with sound radiation, so, it naturally sheds lights on how to reduce sound generated by structure 

vibration. Experimental determination of F-VACs and validation of F-VAC analysis based noise 

control will be demonstrated in next chapter. 

  



79 
 

 

CHAPTER 6: EXPERIMENTAL VALIDATION 

In previous chapters, a modified HELS method based on combined normal surface 

velocities and field acoustic pressures and F-VAC analysis based structure borne noise control 

strategy are introduced mathematically. Here, in this chapter, a series of experiments are conducted 

to validate these theories.  

6.1 Introduction 

There are three main purposes of these experiments. First, the effectiveness of 

reconstructing the whole vibro-acoustic field based on normal surface velocities measurements by 

using modified HELS approach need to be verified. Then the dominant F-VAC responsible for 

specific radiated sound is required to be discerned by decomposition of the acquired transfer 

functions. Finally, comparison of noise reduction results between proposed F-VAC based 

approach and traditional modal analysis based approach is demonstrated. 

So, in subsection 6.3, reconstructed normal surface velocities and field pressures are 

compared with measured benchmark data. In subsection 6.4, critical vibration components 

responsible for target noise reduction are identified through F-VAC analysis. In section 6.5, we 

suppress vibration component according to model analysis and F-VAC analysis respectively. Then 

their noise reduction results are compared with each other. 

6.2 Test Setup 

The experiment is conducted inside a fully anechoic chamber. The test object is the top 

surface of a metal cookie box. During the test, a Bluetooth speaker which is placed inside the 

cookie box is acting as the excitation source. To ensure that most of the sound is radiated from the 

top surface, the cookies box is put into a wooden box and enclosed with sound absorption foams. 

The normal surface velocities are measured by laser vibrometer and the sound pressures in the 

field are collected by a microphone array. 
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Figure 6.1 Experimental setup 

Figure 6.1 shows the detailed experimental setup inside the anechoic chamber. The surface 

vibration of the top surface and its sound radiation is our target. Note that the top surface is not 

simple clamped plate, it’s a highly non-spherical surface and the round lid in the center make it 

even more complicated. The single channel laser vibrometer head is located on the top. So, in order 

to measure normal surface velocities distribution at 32 locations (Figure 6.4) on the surface, 32 

times of measurements are needed and the laser head are manually moved to next position each 

time. Therefore, phase discrepancy between different measurement exist. To compensate for these 

discrepancies, a reference microphone is put in the nearfield. There are another 12 microphones 

taking measurement in the far-field at a stand-off distance of 43 cm above the top surface. They 

Laser  

vibrometer 

Measurement 

microphones  

Reference 

microphone  

Test object 
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are used to determine optimal expansion coefficients and their measurements are also served as 

benchmark data to compare the noise reduction results. 

                   

         Figure 6.2 Test object                                              Figure 6.3 Excitation signals 

A Bluetooth speaker playing excitation signals inside the cookie box act as excitation 

source (figure 6.2). In order to make sure that most of the sounds detected by microphones are 

radiated from the top surface, adhesive vibration damping tapes are put onto the other 5 surfaces 

which dramatically constrain their vibrations. Also, inside the box, the gaps between speaker and 

those 5 surfaces are filled with sound absorption materials. What’s more, as can be seen in figure 

6.1, the cookies box is put into a wooden box and enclosed with sound absorption forms during 

the test. The excitation sound is a mixed signal with peaks at 36Hz, 53Hz, 240Hz, 340Hz and 

460Hz. Its waveform and corresponding spectrogram are shown in figure 6.3. 
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Figure 6.4 32 points measurement locations.  

Solid dots: input data points; open dots: validation points.  

                      

  

Figure 6.5 256 points reconstruction locations 

The 32 normal surface velocity measurement locations as well as 256 reconstruction points 

distributed on a 16 × 16 grid are shown in figure 6.4 and 6.5. Note that the laser vibrometer cannot 

provide reliable results on non-flat part of the surface, so 4 points of the 6 × 6 grid which just 

locate near the lid edge are discarded. As shown in figure 6.4, to find the optimal number of 

expansion terms in reconstruction of particle velocities, only half of the 32 points indicated by 

solid dots are used as input data and the other half indicated by open dots are used for verification. 

6.3 Reconstruction of vibro-acoustic field 

The experiment’s first and foremost task is to ensure that the proposed normal surface 

velocity based NAH could effectively reconstruct the whole vibro-acoustic field, including 

reconstruction of normal surface velocities and reconstruction of sound pressures. 
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Figure 6.6 Spatial average of the square of measured normal surface velocity 

Figure 6.6 demonstrates measured surface vibration response in terms of spatially averaged 

square value of normal surface velocity. It can be found that there are several obvious peaks at 36 

Hz, 53 Hz, 137 Hz, 185 Hz, 240 Hz, 340 Hz, 372 Hz, 460 Hz, 475 Hz and 577Hz. Now that the 

surface vibration concentrates on these frequencies, we just use these frequencies’ vibration to 

validate the effectiveness of modified HELS approach. 
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Figure 6.7 Comparisons of reconstructed normal surface velocities at 10 featured frequencies 

(Left: laser scanning results; Right: reconstructed results.) 

 

Figure 6.7 shows comparisons between directly measured normal surface velocity 

distribution and reconstructed velocity field at frequencies of interest. The reconstruction results 

match measured data perfectly at all these frequencies. Compared with 32 points of directly 

measured data, the reconstructed normal surface velocities, which consist of 256 points, are 

smother and reveal more details information without satisfying accuracy. Next, these smooth 

normal surface velocities are used as input to predict sound radiation at 12 measurement locations. 

36 Hz 53 Hz 

137 Hz 185 Hz 

240 Hz 340 Hz 

372 Hz 460 Hz 

475 Hz 577 Hz 
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Figure 6.8 Spatial average of the square of measured sound pressures 

The spatially averaged square values of sound pressures measured by 12 field microphones 

are shown in figure 6.8. The two obvious peaks locate at 240Hz and 460 Hz. Compared the 

spectrum of surface vibration (figure 6.6), it can be found that the vibrations at 36 Hz, 340 Hz and 

577 Hz did not radiate much sound into far-field. This proved that sound is caused by vibration, 

however, not all kind of vibrations will produce sound.  

For brevity, instead of comparing reconstruction results at all 12 benchmark microphone 

locations, we only show sound pressure prediction results at 4 microphone locations (see figure 

6.9). The reconstructed spatially averaged square of sound pressures at these 12 microphone 

locations are also compared with benchmark data in figure 6.10. 
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Figure 6.9 Comparisons of sound pressure reconstructions at four randomly selected far-field 

measurement locations 

 

Figure 6.10 Comparisons of reconstructed spatially averaged square of sound pressures 

The reconstructed sound pressures agree well with measured data at peak frequencies and 

their consistency are weaker at off-peak locations. This is because little energy is radiated out to 

the far-field at off-peak frequencies, undoubtedly leading to low signal to noise ratio (SNR). So, 

the errors embedded in the input data have more severe impacts on these low SNR frequencies. It 

can also be found that the prediction precision would become weaker with the increase in 
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frequency. This is because higher order expansion terms, essential for revealing vibro-acoustic 

field in higher frequencies, are removed through least-square minimization process. Note that the 

discrepancies indicated by green dotted lines from 0 to 20 Hz are due to the poor sensitivity of 

measurement microphones.  

The 32 measurement locations cover the whole vibrating surface, however, because laser 

vibrometer could not provide satisfactory results for non-flat surface, 4 points located just on the 

lid edge are excluded. These successful reconstructions demonstrate the proposed approach’s 

capability of using partial input data to reconstruct normal surface velocities over the entire surface 

and further correlate them to the sound radiation in the field. This is significant for practical 

implementation of NAH. Because there are always obstacles parts around the targeting surface 

which prevent us from getting vibration information over the entire surface, the flexibility of 

modified HELS approach could dramatically expand application of NAH theory. 

6.4 Determination of F-VACs 

Having the interrelationship between sound and vibration, next step is to further decompose 

these transfer functions into several F-VACs. The importance of each F-VAC is revealed by 

comparison of their relative contribution to sound radiation. After projecting normal surface 

velocities onto dominant F-VAC, pivotal vibration component that is accountable for sound 

radiation can thus be identified. 

From figure 6.8, it can be found that peaks at 240 Hz, 340 Hz and 460 Hz are the most 

obvious ones, so these three frequencies are undoubtedly chosen to be frequency of interest. 

What’s more, in order to demonstrate the flexibility of F-VAC based noise control strategy, except 

these three dominant frequencies, we also choose another weaker peak at 272 Hz. So, in this 

experiment, F-VAC decomposition and noise reduction are aiming at three frequencies, 240 Hz, 

272 Hz, 340 Hz and 460 Hz. 
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As illustrated in chapter 5, there are two kinds of F-VAC decompositions. One regarding 

spatially averaged square value of sound pressures at certain measurement locations, such an 

approach is appropriate for directional noise control. Whereas the other decomposition target at 

controlling overall radiated sound power. In this experiment, both these two approaches’ 

effectiveness will be examined. 

 

Figure 6.11 First 4 critical vibration components for sound radiation at 240 Hz obtained from F-VAC analysis  

(a) regarding spatially averaged square of sound pressures; (b) regarding sound power. 

 

Figure 6.12 First 4 critical vibration components for sound radiation at 272 Hz obtained from F-VAC analysis  

(a) regarding spatially averaged square of sound pressures; (b) regarding sound power. 
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Figure 6.13 First 4 critical vibration components for sound radiation at 340 Hz obtained from F-VAC analysis  

(a) regarding spatially averaged square of sound pressures; (b) regarding sound power. 

 

 

Figure 6.14 First 4 critical vibration components for sound radiation at 460 Hz obtained from F-VAC analysis  

(a) regarding spatially averaged square of sound pressures; (b) regarding sound power. 

 

Figure 6.11 to figure 6.14 show first 4 crucial vibration components identified from both 

two kinds of F-VAC decompositions for 4 target frequencies respectively. These shapes are 

obtained by projecting normal surface velocity distribution onto individual F-VAC. It need to be 

emphasized again that these projections do look like normal mode shapes, however, they are totally 

different concepts. Their only common ground is that they all obtained from decomposition of 
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surface vibration. Except for this, these two concepts don’t have any connections. Normal modes 

are dynamic properties of a structure and they are observable physical quantities. Whereas the 

projections of surface vibration onto F-VAC are forced vibro-acoustic properties of a structure and 

they are not observable. As for applications, model analysis is powerful for vibration control and 

F-VAC analysis is effective for structure borne noise control. 

TABLE 6.1 Relative contributions of each vibration component obtained from 
F-VAC analysis regarding spatially averaged square of sound pressures  

 Frequency 

 240 Hz 272 Hz 340 Hz 460 Hz 

1st component 88.6% 94.3% 87.0% 51.2% 

2nd component 7.3% 5.6% 12.1% 48.7% 

3rd component 3.8% 0.1% 0.008% 0.1% 

4th component 0.2% 0.01% 0.001% 0.004% 

 

TABLE 6.2 Relative contributions of each vibration component obtained from  

F-VAC analysis regarding sound power 

 Frequency  

 240 Hz 272 Hz 340Hz 460 Hz 

1st component 36.7% 80.1% 70.1% 49.1% 

2nd component 22.0% 15.8% 18.2% 40.1% 

3rd component 20.0% 1.8% 2.6% 6.7% 

4th component 4.3% 0.4% 1.3% 1.3% 

These vibration components are ordered by their importance for sound radiation and their 

relative contributions calculated by equation 5.10 and equation 5.22 are listed in table 6.1 and table 

6.2. At frequencies 240 Hz and 272 Hz, for F-VAC analysis targeting at spatially averaged square 

of sound pressures, relative contribution of first vibration component are about 90%, so the noise 

reduction for these two cases are just focusing at the first vibration component. For other 6 cases, 

first two or three vibration components need to be combined to get best noise reduction results. 

The combinations of these individual vibration shapes are listed from figure 6.15 to 6.20. 
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Figure 6.15 Combine first three F-VAC components 

at 240 Hz (see figure 6.11 (b)). 

 

 

Figure 6.16 Combine 1st and 2nd F-VAC 

components at 272 Hz (see figure 6.12 (b)). 

 

Figure 6.17 Combine 1st and 2nd F-VAC 

components at 340 Hz (see figure 6.13 (a)). 

 

Figure 6.18 Combine 1st and 2nd F-VAC 

components at 340 Hz (see figure 6.13 (b)). 

 

Figure 6.19 Combine 1st and 2nd F-VAC 

components at 460 Hz (see figure 6.14 (a)). 

 

Figure 6.20 Combine 1st and 2nd F-VAC 

components at 460 Hz (see figure 6.14 (b)). 
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6.5 Comparison of noise reduction results 

In this chapter, we will examine F-VAC analysis’s application in structure borne noise 

control. In order to evaluate its effectiveness, the noise reduction results are compared with 

traditional modal analysis based approach. The dominant vibration shapes need to be suppressed 

are already determined in section 6.4. However, the corresponding normal mode shapes are still 

need to identified. 

In this experiment, normal modes of the test object are identified through experimental 

modal analysis based on normal surface velocities measured by laser vibrometer. The test setup is 

the same with F-VAC analysis (see figure 6.1). The difference is that the excitation signal is 

changed to white noise. The resonant frequencies are acquired by analyzing peaks of vibration 

response spectrum. The 32 directly measured normal surface velocities forms the corresponding 

modal shapes. In order to get more smooth mode shapes, normal surface velocities at 256 points 

are reconstructed by using equation 3.19. It need to be emphasize again that such an operation 

requires precise measurement of phase information. The reference microphone placed in the near-

field is crucial important for velocity reconstruction.  

Normal modes that are closest to certain frequencies of interest are chosen to be the 

vibration shapes that need to be suppressed. So, mode shape at 201 Hz are chosen to control sound 

radiation at 240 Hz, mode shape at 300 Hz are chosen to control sound radiation at 272 Hz, mode 

shape at 377 Hz are chosen to control sound radiation at 340 Hz and mode shape at 468 Hz are 

chosen to control sound radiation at 460 Hz. The vibration response of modal analysis and these 

selected normal mode shapes are shown in figure 6.21. 
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Figure 6.21 Selected normal modes of the test object 

 

 

Figure 6.22 Far-field measurement points for sound power 

calculation 

TABLE 6.3 Coordinates of sound power measurement locations 

Point index 

 

x 

cm 

y 

cm 

z 

cm 

1 -0.52 0.23 0.20 

2 -0.20 0.35 0.45 

3 0.08 0.56 0.20 

4 0.45 0.35 0.20 

5 0.40 0.00 0.45 

6 0.45 -0.35 0.20 

7 0.08 -0.56 0.20 

8 -0.20 -0.35 0.45 

9 -0.52 -0.22 0.20 

10 0.00 0.00 0.60 
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A common approach to vibration suppression without modifying structure is adding 

damping. So, to suppress the dominant vibration components obtained from F-VAC analysis and 

modal analysis respectively, several vibration damping patches are attached to the peak locations 

of corresponding shapes. See figure 6.23.  

 

Figure 6.23 Modifications with respect to 12 different scenarios 
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In figure 6.24, the spatially averaged square of sound pressures of modifications per F-

VAC analysis and modal analysis are compared with benchmark data in narrow bands. And in 

figure 6.25, total radiated sound power of modifications per F-VAC analysis and modal analysis 

are compared with benchmark data in narrow bands. Detailed dB changes of each comparison are 

listed in table 6.4.a and table 6.5.a. The positive value indicates noise reduction with respect to 

benchmark data, on the contrary, negative value indicates increase in sound radiation. By 

subtracting modal analysis’s dB changes from F-VAC’s results, the net differences are shown in 

the third row.  

TABLE 6.4.a dB changes of noise control targeting at spatially averaged square of sound pressures 

 240 Hz 272 Hz 340 Hz 460 Hz 

Modal analysis 7.2 dB 4.4 dB 0.3 dB -1 dB 

F-VAC analysis 11.9 dB 11.5 dB 6.3 dB 3.7 dB 

Net enhancement 4.7 dB 7.1dB 6 dB 4.7 dB 

 

TABLE 6.4.b Proportion of covered area for noise control targeting at spatially averaged square of sound pressures 

 240 Hz 272 Hz 340 Hz 460 Hz 

Modal analysis 16.4% 29.8% 29% 20.3% 

F-VAC analysis 30.3% 16.8% 18.3% 13.9% 

Net difference 13.9% -13% -10.7% -6.4% 

 

TABLE 6.5.a dB changes of noise control targeting at sound power radiation 

 240 Hz 272 Hz 340 Hz 460 Hz 

Modal analysis 3.2 dB 9.5 dB -5.1 dB -3.5 dB 

F-VAC analysis 4 dB 14.3 dB 2 dB 1 dB 

Net enhancement 0.8 dB 4.8 dB 7.1 dB 4.5 dB 
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TABLE 6.5.b Proportion of covered area for noise control targeting at sound power radiation 

 240 Hz 272 Hz 340 Hz 460 Hz 

Modal analysis 16.4% 29.8% 29% 20.3% 

F-VAC analysis 21.7% 14.5% 20.2% 14.8% 

Net difference 5.3% -15.3% -8.8% -5.5% 

 

In the first comparative test, for spatially averaged square value of sound pressures at 240 

Hz, 11.9 dB of noise is eliminated through F-VAC analysis whereas that the suppression of nearest 

normal mode only gets 7.2 dB drop. Similarly, for 272 Hz, vibration suppression based on modal 

analysis lead to 4.4 dB reduction, in contrast, F-VAC based approach provides 11.5 dB level 

reduction. For the other two cases, vibration control per nearest mode shape did not cause much 

dB changes. The sound radiation at 460 Hz becomes even louder than original benchmark case. 

However, F-VAC analysis give out much better noise reduction results. 

In the second comparative test, which targeting at reducing total radiated sound power, 

similar results are obtained, yet with lower level. For the comparisons at 340 Hz and 460 Hz, 

modifications based on modal analysis even increase the sound power by 5.1 dB and 3.5 dB 

respectively, which further proved the ineffectiveness of modal analysis’s application in structure 

borne noise control.  

Generally speaking, for both two group of experiments, the noise reduction results of 340 

Hz and 460 Hz is not as good as 240 Hz and 272 Hz. It is because that in the original cases, most 

of the energy is concentrated upon 200 Hz ~ 300 Hz, which undoubtedly provide greater noise 

reduction potential. In addition, by suppressing the vibration patterns in the form of adding 

damping tapes, the effect is limited. This also causes the relatively poor results at 340 Hz and 460 

Hz. 

Another factor needs to be considered is the percentage of area covered by damping pads. 

In these experiments, sizes and locations of damping pads are determined from corresponding 
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target vibration components, so, proportions of covered area are different. These percentages for 

12 scenarios are indicated in figure 6.23 and summarized in table 6.4.b and table 6.5.b. In the first 

group of experiments target at 240 Hz, modification according to modal analysis covered less area 

than F-VAC analysis cases. One may think that the better results of F-VAC analysis are because 

that more damping pads are used in those cases. However, in the other three groups of experiments, 

modifications per modal analysis utilize more damping pads than F-VAC analysis yet give out 

poor noise reduction results. So, the key factor is not how many damping pads are used, but 

whether these damping pads are placed in the right places. This from another perspective shows 

the importance of F-VAC analysis which could reveal the true vibration component needs to be 

suppressed. 

These results demonstrate that dominant vibration component responsible for sound 

radiation at certain frequency is not necessarily to be the dominant mode shapes. Instead, impacts 

of every vibration patterns to sound radiation must be taken into a “comprehensive consideration”, 

which can be achieved through F-VAC analysis. This is because that, theoretically, each F-VAC 

consists of contributions from infinite number of vibration patterns. 

6.6 Conclusion 

The series experiments demonstrated in this chapter show the flexibility of modified HELS 

based NAH and the power of F-VAC analysis in structure borne noise control. In the experiment, 

the whole vibro-acoustic field are reconstructed from partial normal surface velocity 

measurements supplemented with several verification sound pressure measurements. These 

successful reconstructions have profound influence on practical application of NAH because it 

broads NAH’s implementation in scenarios when you cannot obtain vibro-acoustic quantities over 

the entire surface. Recall from numerical simulation with respect to different measurement 

locations in section 4.4.2, the measurement locations should cover as large area as possible and 
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the ratio of covered area to entire area is recommended no less than 0.5. In other words, although 

the proposed approach could do reconstruction based on partial normal surface velocity 

measurement, the measurement area could not be too small. 
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CHAPTER 7: CONCLUSIONS AND FURTHER WORKS 

7.1 Conclusion 

This dissertation presents an innovative vibro-acoustic response reconstruction technique 

and further introduces the concept of F-VAC analysis. Combination of these two methods enables 

one to diagnose and control structure borne sound in the most cost-effective manner. 

The modified HELS method based on normal surface velocities supplemented with few 

field sound pressures is a new extension of HELS theory. By changing the input data from nearfield 

sound pressures to normal surface velocities, the data acquisition procedures are significantly 

simplified. What’s more, the proposed modified HELS approach also shows its ability to 

reconstruct vibro-acoustic field based on partial data of normal surface velocities. Such feasibility 

extends its application to situations when there are immobile obstacle parts around vibrating 

surface that stop us from obtaining either near-field sound pressures or normal surface velocities 

near these locations.  

Based on the interrelationships established by modified HELS method, the procedures of 

F-VAC analysis are introduced. The thus obtained F-VAC components give out intuitive guidance 

for engineers to solve structure borne noise problem in a smart way. An experimental study is 

conducted with respect to the top surface of a cookie box. Through comparison with benchmark 

data, the effectiveness of modified HELS approach is validated. Through comparison with 

traditional modal analysis based approach, the advantage of F-VAC analysis based structure borne 

noise control is shown. 

7.2 Future work 

As an inverse problem like NAH, no matter what kind of approach is used, when come to 

practical implementation, the first and foremost task is always regularization. The core content of 

HELS theory is making best approximation by matching measured data to priori assumptions. In 
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practice, no matter how many measurements are taken, what you could get are always limited 

discrete information. What’s more, the limited input data, including acoustic quantity and structure 

geometry information, are inevitably contaminated with measurement errors. During 

reconstruction, such discrepancies will be exaggerated and might lead to unbounded reconstruction 

results. Our current solution to this is to supplement several verification sound pressure 

measurements in the field and apply a low-pass filter in wavenumber domain. The numerical 

simulations and experimental tests show the effectiveness of this approach. However, the 

shortcoming of this approach is the increasing of computational load, which is especially true for 

large number of measurement points. So, future work should focus on developing new 

regularization strategy which could ease the computational load yet still maintain high 

reconstruction accuracy. 

Considering about time and resource available, the current experimental validation is 

conducted with respect to a cookie box, which is not a real industrial product. To further validate 

the effectiveness in industrial applications, more experiments could be conducted regarding real 

industrial parts such as gearbox, car engine, muffler etc. 
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ABSTRACT 

AN EFFECTIVE METHODOLOGY FOR SUPPRESSING  

STRUCTURE-BORNE SOUND RADIATION 

by 

LINGGUANG CHEN 

December 2017 

Advisor: Dr. Sean F. Wu 

Major: Mechanical Engineering 

Degree: Doctor of Philosophy 

This dissertation is primarily concerned with the development of an effective methodology 

for reducing structure-borne sound radiation from an arbitrarily shaped vibrating structure. There 

are three major aspects that separate the present methodology from all the previous ones. Firstly, 

it is a non-contact and non-invasive approach, which is applicable to a class of vibrating structures 

encountered in engineering applications. Secondly, the input data consists of a combined normal 

surface velocity distribution on a portion of a vibrating surface and the radiated acoustic pressure 

at a few field points. The normal surface velocities are measured by using a laser vibrometer over 

a portion of the structural surface accessible to a laser beam, while the field acoustic pressures are 

measured by a small array of microphones. The normal surface velocities over the rest surface of 

the vibrating structure are reconstructed by using the Helmholtz Equation Least Squares (HELS) 

method. Finally, the acoustic pressures are correlated to structural vibration by decomposing the 

normal surface velocity into the forced-vibro-acoustic components (F-VAC). These F-VACs are 

mutually orthogonal basis functions that can uniquely describe the normal surface velocity. The 

weightings of these F-VACs represent the relative contributions of structural vibrations into the 
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sound radiation. This makes it possible to suppress structure-borne acoustic radiation in the most 

cost-effective manner simply by controlling the key F-VACs of a vibrating structure. The 

effectiveness of the proposed methodology for reducing structure-borne acoustic radiation is 

examined numerically and experimentally, and compared with those via traditional experimental 

modal analyses. Results have demonstrated that the proposed methodology enables one to reduce 

much more acoustic radiation at any selected target frequencies than the traditional approach.    
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