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CHAPTER 1 INTRODUCTION 
 
Background 

 
Precise regulation of spatio-temporal gene expression is orchestrated by the action 

of many key players that govern the organization and compaction of chromatin. The SIN3 

complex is one such important player that regulates several biological processes through 

activation or repression of a large repertoire of target genes. SIN3 was first discovered in 

1987 by two independent research groups studying mating type switching in 

Saccharomyces cerevisiae (Nasmyth et al., 1987; Sternberg et al., 1987). Both groups 

identified SIN3 as a negative regulator of the HO endonuclease (Homothallic switching 

endonuclease), which is essential for mating type switching in yeast. In the decade 

following its discovery, SIN3 was identified in independent genetic screens under five 

different aliases, primarily as a negative regulator of transcription (Hudak et al., 1994; 

Strich et al., 1989; Vannier et al., 1996; Vidal et al., 1990; Yoshimoto et al., 1992). SIN3 

itself does not possess any DNA binding or enzymatic activity and it was hypothesized 

that the transcriptional repression mediated by SIN3 was through its association with a 

histone deacetylase (Wolffe, 1996). In 1997 three separate studies, published 

simultaneously, showed that SIN3 associated with histone deacetylases HDAC1/2 in a 

multi-protein complex. (Hassig et al., 1997; Laherty et al., 1997; Zhang et al., 1997). The 

SIN3 complex therefore is canonically regarded as a repressor complex. 

 Increasing evidence over the years, however, points to a dual role in the regulation 

of transcription by the SIN3 complex. The transcriptional profile of a Sin3 deletion yeast 

strain showed upregulation of 173 transcripts confirming the role of SIN3 in gene 

repression (Bernstein et al., 2000). In addition, 269 transcripts were downregulated in the 
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absence of SIN3, suggesting a possible role in gene activation. A genome-wide study 

performed using a Drosophila cell culture system comparing wild type and Sin3A 

knockdown cells showed a similar result (Pile et al., 2003). Out of the 13,137 genes that 

were tested by microarray analysis, SIN3 was required for the repression of 364 genes, 

whereas 35 genes were activated by SIN3.  Further evidence for the dual role of SIN3 

came from a gene expression analysis in another important model system. Loss of SIN3 

in mouse fibroblast cells resulted in differential expression of 1308 genes, out of which 

977 were upregulated and 331 were downregulated (Dannenberg et al., 2005a).  

Although transcriptome studies revealed several gene targets that were 

downregulated upon loss of SIN3, the role of SIN3 in gene activation was not well 

understood and was commonly attributed to indirect effects. Though activation of 

transcription by SIN3 could possibly be a secondary effect, several gene-specific studies 

suggest otherwise. In embryonic stem cells, SIN3 regulates Nanog expression either 

positively or negatively, in a context-dependent manner. During embryonic stem cell 

differentiation, phosphorylated p53 suppresses Nanog expression by recruiting mSIN3A 

to the Nanog promoter (Lin et al., 2005). Conversely, under proliferating conditions, the 

mSIN3A/HDAC complex is recruited to the Nanog promoter leading to Sox2-mediated 

stimulation of Nanog expression (Baltus et al., 2009). SIN3 also plays a dual role in 

regulation of STAT transcriptional activity (Icardi et al., 2012). STAT1 and STAT3 perform 

opposing functions in the regulation of cell proliferation and survival. SIN3 interacts with 

STAT3 and acts as a repressor of STAT3 activity. In contrast, SIN3 is required for the 

transcription of ISGF3 (STAT1:STAT2:IRF9) complex regulated genes. The recent study 

by Saha et al. provides a clearer picture of the role of SIN3 in gene transcription, by 
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integrating transcriptome data with genome-wide binding data. This study performed in 

Drosophila S2 cells reports that 92% (243/263) of genes repressed by SIN3 and 46% 

(162/349) of genes that are activated by SIN3 were found to be direct targets, further 

highlighting SIN3 as a dual regulator of transcription (Saha et al., 2016b).   

The ability of SIN3 to repress or activate gene transcription is likely due to its 

interaction with a large repertoire of DNA binding factors. The SIN3 protein contains six 

highly conserved regions, four paired amphipathic alpha-helix motifs (PAH 1-4), a histone 

deacetylase interaction domain (HID) and a highly conserved region (HCR) (Figure 1.1) 

(Silverstein and Ekwall, 2005a; Wang et al., 1990). These domains, conserved from yeast 

to mammals, are essential for interaction with the core components of the SIN3 complex 

and other interacting partners that recruit the complex to its target genes. Interestingly, 

due to the presence of these protein-protein interaction domains, SIN3 is believed to be 

the scaffold that holds the complex together. Early studies describing the SIN3 complex 

suggest that the core complex consists of HDAC1, HDAC2, RbAp46/48, SAP30, SAP18, 

and SDS3 (Hassig et al., 1997; Laherty et al., 1997; Lechner et al., 2000; Zhang et al., 

1997). Over the years, a multitude of proteins including SAP130 and SAP180, ING1/2, 

RBP1, FAM60A, BRMS1, Pf1, KDM5A/B and MRG15 has been reported to interact with 

the SIN3 complex, suggesting that several SIN3 sub-complexes exist (Bansal et al., 2015; 

Kadamb et al., 2013b; Smith et al., 2012).  

Such interactions, with a variety of accessory factors and distinct enzymatic 

modules, contribute to the functional flexibility of the SIN3 complex (Silverstein and 

Ekwall, 2005a). It is also important to note that multiple isoforms of SIN3 and other 

complex components exist, which likely adds to the modularity of the SIN3 complex. 
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Intriguingly, several studies provide evidence that SIN3 isoforms perform non-redundant 

functions despite the presence of highly conserved protein interaction domains. This 

chapter focuses on understanding the structural and functional differences of SIN3 

isoforms.  

Isoforms of SIN3  

In yeast, there is a single Sin3 gene that gives rise to an acidic protein of approximately 

170 kDa (Wang et al., 1990). This protein contains four motifs consisting of paired 

amphipathic helices (PAH) that are important for protein-protein interactions. When the 

mammalian Sin3 gene was discovered, extensive similarity was observed with the four 

PAH domains in yeast (70% identity in PAH1, 56% identity in PAH2, 42% identity in PAH3 

and 17% identity in PAH4) and in a large region between PAH3 and PAH4 domains (42% 

identity) (Halleck et al., 1995). It was later found that there are two Sin3 genes in murine 

cells, Sin3a and Sin3b (Ayer et al., 1995). The SIN3A and SIN3B proteins are highly 

similar throughout their length, with highest homology at the PAH and histone deacetylase 

interaction (HID) domains. The HID is the conserved region between the PAH3 and PAH4 

motifs that binds to histone deacetylases (Laherty et al., 1997). Compared to SIN3A, 

SIN3B has a shorter N-terminal region (Ayer et al., 1995). Multiple variant isoforms of the 

two mammalian Sin3 genes have also been reported. The Sin3a gene can give rise to at 

least two alternatively spliced isoforms, SIN3A and SIN3A9. There is a nine amino acid 

 
 
Figure 1.1. Domain structure of SIN3. The SIN3 protein contains four paired 
amphipathic helix domains (PAH), a histone deacetylase interaction domain (HID) and 
a highly conserved region (HCR). 
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insert in the SIN3A9 isoform between amino acids 1205 and 1206 relative to SIN3A (Ayer 

et al., 1995). The Sin3b gene can also undergo alternative splicing. One splice form is the 

SIN3B protein that is 954 amino acids long and contains the conserved PAH1-4 and HID 

domains. The alternative form is a 293 amino acid protein, referred to as either SIN3BSF 

or SIN3B(293), which contains only the PAH1 and PAH2 domains and a unique stretch 

of 19 amino acids at the C-terminus (Alland et al., 1997; Yang et al., 2000). The shorter 

SIN3B isoform does not possess the HID region and therefore does not interact with 

histone deacetylases, but is still capable of repressing basal transcription (Alland et al., 

1997). This leads to an intriguing possibility that the mSin3B isoforms may exercise 

different mechanisms of gene repression.  

In the fission yeast Schizosaccharomyces pombe, there are three distinct Sin3 

genes, pst1, pst2 and pst3, encoding proteins that contain PAH and HID domains 

exhibiting high levels of conservation with the Saccharomyces and mammalian SIN3 

proteins (Dang et al., 1999; Silverstein and Ekwall, 2005a). Unlike fission yeast and 

mammalian cells, Drosophila has a single Sin3A gene, encoding a larger SIN3 protein as 

compared to the yeast and mammalian proteins. Drosophila SIN3 also possesses highly 

conserved PAH domains, the HID region and a conserved region beyond PAH4. 

Interestingly, there is a higher homology between PAH1 and PAH2 domains of Drosophila 

SIN3 and SIN3A than that between SIN3A and SIN3B (Pennetta and Pauli, 1998a). The 

Drosophila Sin3A gene produces three alternatively spliced isoforms that differ at their C-

terminus (Pennetta and Pauli, 1998a; Sharma et al., 2008b). These isoforms are named 

SIN3 220, SIN3 190 and SIN3 187, based on their molecular weights. All three isoforms 

possess the protein interaction domains, PAH 1-4 and HID, but have unique stretches of 
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amino acids at the C-terminus. SIN3 220 has 315, SIN3 190 has 31 and SIN3 187 has 5 

unique amino acids. SIN3 220 and SIN3 187 are the predominant isoforms and show 

differential expression during Drosophila embryogenesis (Sharma et al., 2008b). SIN3 

190 expression is only detected in embryos and adult females. Intriguingly, there is an 

interplay between the predominant SIN3 isoforms, wherein, overexpression of the lower 

molecular weight isoform, SIN3 187, can cause a reduction in transcript and accelerated 

proteasomal degradation of endogenous SIN3 220 (Chaubal et al., 2016). It will be 

interesting to see if an inter-isoform dependent regulation of SIN3 also occurs in other 

species.  

The mammalian SIN3 proteins, SIN3A and SIN3B exhibit distinct post-translational 

modifications. TOPORS is a nuclear protein that functions as a RING-dependent E3 

ubiquitin ligase and as a SUMO-1 E3 ligase for p53 (Rajendra et al., 2004; Weger et al., 

2005). SIN3A was identified and verified as a sumoylation substrate of TOPORS in a 

proteomic screen performed in Hela cells (Pungaliya et al., 2007a). Interestingly, although 

other SIN3 associated proteins including RbAp46, RbAp48, PSF, p54nrb and BRG1-

associated factor 170, were identified as putative TOPORS substrates, SIN3B was not 

detected in this screen. SIN3B was instead identified as a target for the E3 ubiquitin ligase 

RNF220, in a yeast two-hybrid screen (Kong et al., 2010b). Further experiments 

conducted using HEK293 cells showed that RNF220 can ubiquitinate the N-terminal 

PAH1 domain as well as the C-terminus containing PAH3 and PAH4 domains of SIN3B 

and target it for proteasomal degradation. Since the only other proteins identified and 

verified in the two-hybrid screen are E2 proteins, it is probable that RNF220 specifically 

ubiquitinates SIN3B and not SIN3A. It is also conceivable that the SIN3A isoform may be 
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ubiquitinated and the SIN3B isoform may be SUMOylated in a context-dependent 

manner. Differential post-translational modifications of SIN3 isoforms could presumably 

be an active mechanism to precisely regulate the function of SIN3 isoforms in different 

cell types and during critical biological processes. 

It is noteworthy that the different SIN3 isoforms described in various species have 

highly conserved protein-protein interactions domains that are responsible for the function 

of SIN3, and yet, as discussed below, these isoforms are non-redundant.  It is possible 

that the evolution of SIN3 isoforms to perform unique and specialized functions has 

contributed to increased flexibility of SIN3 proteins in regulation of gene expression and 

thereby critical biological processes. 

Distinct protein-protein interactions exhibited by SIN3 isoforms 

SIN3 proteins serve as the scaffold for a histone-modifying complex (Grzenda et 

al., 2009a; Kadamb et al., 2013b). The PAH and HID regions described above provide 

interfaces for protein-protein interactions with complex components. The central region 

of SIN3, which includes the PAH3 and HID domains, interacts with so named core 

 
Figure 1.2. The functional domains of SIN3 are involved in several protein-protein 
interactions. The central region of SIN3 is involved in interactions with complex 
components including HDAC1/2, SDS3, SAP30, SAP 130 and SAP180, whereas the N-
terminus may play a role in recruiting the SIN3 complex to its target genes by interaction 
with factors such as SMRTER, Opi1 and HCF-1(Grzenda et al., 2009).  
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complex components (Figure 1.2) (Grzenda et al., 2009a). The N-terminal PAH domains, 

PAH1 and PAH2, bind to transcription factors that can recruit the SIN3 complex to target 

genes. Less is known about the interactions mediated by the PAH4 domain and the 

highly-conserved region (HCR) in the C-terminus. In Drosophila, the SIN3 220 isoform 

has a unique stretch of C-terminal amino acids relative to the other isoforms, which is 

predicted to be unstructured (Moore, 2017). It is possible that the C-terminus is involved 

in specialized interactions, which impact stability of the SIN3 protein and contribute to the 

flexibility of SIN3 function.  

Interestingly, the SIN3 isoforms can form different histone modifying complexes, 

despite the presence of nearly identical PAH domains. In S. pombe, the SIN3 proteins 

Pst1 and Pst2 form distinct complexes that perform non-redundant functions (Nicolas et 

al., 2007). Pst1 is part of complex I, which contains Clr6, Prw1 and Sds3 and regulates 

histone acetylation at promoter regions. Pst2 is associated with complex II that includes 

Clr6, Prw1, Alp13, Cph1 and Cph2. Complex II primarily deacetylates histones in gene 

coding regions. In Xenopus laevis, the methyl-CpG binding protein 2 (MeCP2) forms a 

complex with Sin3 and a histone deacetylase (Jones et al., 1998). MeCP2 binds to 

methylated DNA through its methyl-CpG binding domain and recruits the SIN3 complex 

to promote transcriptional silencing. Co-immunoprecipitation assays performed using 

oocyte extracts showed that MeCP2 immunoprecipitates with the Xenopus Sin3A variant 

but not the Sin3B variant.  In Drosophila, the predominant SIN3 isoforms SIN3 187 and 

SIN3 220 are part of distinct histone-modifying complexes (Figure 1.3) (Spain et al., 

2010b). Both complexes contain a common set of components that include RPD3, SDS3, 

ING1, Pf1, Arid4B, SAP130 and BRMS1. In addition to these components, the SIN3 220 
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complex also contains three unique interaction partners, p55, LID and EMSY. SIN3 187 

interacts with a single catalytic enzyme, RPD3, which is a histone deacetylase, whereas 

SIN3 220 interacts with the deacetylase and the histone demethylase LID. The Drosophila 

SIN3 isoforms thus associate with distinct histone modifying activities. It is possible that 

these SIN3 complexes establish distinct histone modification patterns on their target 

genes, which may be responsible for the non-redundant functions performed by the SIN3 

isoforms.  

Mammalian SIN3 isoforms also exhibit differential protein interactions. 

Interestingly, like the Drosophila SIN3 220 isoform, preferential interaction with a histone 

demethylase is exhibited by the SIN3B protein in mammalian cells. In differentiated 

myotube extracts, RBP2, which is a homologue of dKDM5/LID, co-immunoprecipitated 

 
 
Figure 1.3. The predominant SIN3 isoforms differ at their C-terminus and form 
distinct histone modifying complexes. A) SIN3 220 and SIN3 187 are identical 
throughout the length of the protein except at the C-terminus (Pennetta and Paulli,1998; 
Sharma et al., 2010). B) SIN3 220 and SIN3 187 form different complexes, wherein, 
SIN3 220 has three unique interaction partners, LID, Caf1-p55 and EMSY (Spain et al., 
2010; Moore, 2017). 
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with SIN3B but not with SIN3A (van Oevelen et al., 2008). A significant overlap in SIN3B 

and RBP2 binding on common target genes was also observed using high-density tilling 

arrays in these cells, indicating coordinated binding of these proteins. The SHMP 

complex, which consists of SIN3B, HDAC1, MRG15 and Pf1, is another example of 

distinct protein interactions exhibited by mammalian SIN3 proteins (Jelinic et al., 2011). 

The Pf1-SIN3B containing complex binds to constitutively transcribed genes in Hela cells 

and regulates their level of expression. Endogenous Pf1 preferentially interacts with 

SIN3B but not with SIN3A in co-immunoprecipitation assays as well as on chromatin. 

Loss of Pf1 and MRG15 significantly affects the recruitment of SIN3B at these genes, but 

the level of SIN3A is unaffected, further emphasizing on the specificity of interactions 

within this complex. Surprisingly, SIN3A has been reported to interact with both Pf1 and 

MRG15 in HEK293 cells (Yochum and Ayer, 2002). These data clearly exemplify the 

versatility of SIN3 proteins in forming distinct complexes in a cell-type or context-

dependent manner, thereby broadening their scope of regulation of cellular processes.   

Like SIN3B, SIN3A also exhibits preferential interactions with chromatin 

associated factors. The hormone-sensitive transcriptional corepressor SMRT physically 

interacts with SIN3A, but no detectable interaction was observed between SMRT and 

SIN3B (Nagy et al., 1997). SIN3A also interacts with ATPases involved in chromatin 

remodeling, BRG1 and hBRM (Sif et al., 2001). The BRG1 complex consists of SIN3A, 

HDAC2 and RbAp48, while the hBRM complex contains HDAC1 in addition to these 

proteins. It is, however, unclear whether SIN3B associates with these complexes or was 

not detected in these experiments as no information on SIN3B was reported in this study. 

Many protein-protein interaction studies have focused on single SIN3 isoforms or do not 
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distinguish between the different SIN3 proteins. A detailed analysis of the diverse protein 

interaction networks mediated by SIN3 isoforms in different species is lacking. To 

understand the complete picture of the fine-tuned regulation of gene expression and 

downstream biological processes by the master transcriptional regulator SIN3, mapping 

these distinct networks regulated by SIN3 isoforms is critical.  

Differential regulation of biological processes by SIN3 isoforms 

As discussed above, the different SIN3 isoforms interact with a variety of common 

as well as distinct binding partners. The presence of multiple isoforms, with evolutionarily 

conserved functional domains, that are capable of unique protein interactions clearly 

suggests that these proteins perform non-redundant biological functions. Several studies 

provide clear evidence for the specialized roles of SIN3 isoforms in important cellular 

processes. The mammalian SIN3 proteins are critical for normal embryonic development. 

Distinct phenotypic effects, however, are observed upon loss of SIN3A or SIN3B (Cowley 

et al., 2005; Dannenberg et al., 2005a; David et al., 2008). The Sin3a null mouse embryos 

survive to embryonic day 3.5 (E3.5) but cannot be detected at E6.5, indicating that SIN3A 

is essential in early embryo development (Cowley et al., 2005; Dannenberg et al., 2005a). 

Surprisingly, the presence of the highly related SIN3B protein cannot compensate for the 

loss of SIN3A. Instead, Sin3b null embryos can survive to E15.5, implying that SIN3B 

function is required in late gestation (David et al., 2008).  

Differential roles during embryonic development can also be attributed to 

Drosophila SIN3 isoforms (Sharma et al., 2008b). In the initial stages of Drosophila 

embryogenesis, equivalent levels of the SIN3 isoforms are observed. The higher 

molecular weight isoform SIN3 220 gains predominance during stages 12-16 of embryo 
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development and is drastically reduced in stage 17, the final stage of embryogenesis. 

Conversely, the lower molecular weight isoforms SIN3 187 and SIN3 190 exhibit 

predominant expression during stage 17. This differential expression pattern of SIN3 

isoforms suggests that these proteins possibly target different gene sets and play distinct 

roles during embryonic development. Genome-wide recruitment and transcriptome 

analysis performed in Drosophila S2 cells, identified genes that are specifically regulated 

by the SIN3 187 isoform (Saha et al., 2016b). Interestingly, gene ontology (GO) analysis 

of SIN3 187 regulated genes shows enrichment for biological processes such as post-

embryonic development, metamorphosis and apoptosis, which is consistent with the 

observed prominant expression of SIN3 187 during later stages of embryo development. 

 Analysis of SIN3 isoform function in specific cell types further emphasizes the 

differential regulation performed by these proteins. In myoblasts and skeletal muscles, 

inactivation of Sin3a leads to a severe phenotype as compared to loss of Sin3b (van 

Oevelen et al., 2010). Mice with a Sin3a deletion in the myoblast compartment died within 

24 hours after birth, while those with a deleted Sin3a in differentiated skeletal muscles 

did not survive beyond two weeks. Conversely, Sin3b deletion in myoblasts and skeletal 

muscles did not result in any obvious defects in development or survival as compared to 

control mice. Strikingly, inactivation of both Sin3a and Sin3b in skeletal muscles led to 

significantly shorter survival relative to the loss of each individual SIN3 protein. The 

mammalian SIN3 proteins also play a role in the suppression of neuronal phenotypic traits 

in pluripotent cells, however, SIN3A exhibits a higher degree of repression of neuronal 

genes as compared to SIN3B (Halder et al., 2017). Knockdown of Sin3a resulted in 

decreased expression of REST (repressor element-1 (RE-1) silencing transcription 
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factor) and consequent increase in the level of neuronal markers, leading to the 

differentiation of P19 cells into neurogenic cells. Sin3b silencing in these cells, however, 

caused a very small effect on the expression of neuronal markers and the differentiation 

into neuronal cells was less efficient relative to Sin3a knockdown. This suggests that 

SIN3A plays a predominant role in REST-mediated suppression of neuronal 

differentiation in pluripotent cells. Furthermore, SIN3A is also a player in the process of 

somatic cell reprogramming (Saunders et al., 2017). Knockdown of Sin3a significantly 

reduced the efficiency of Oct4, Sox2, Klf4, Myc (OSKM)-mediated MEF reprogramming. 

This study also showed that co-expression of SIN3A with NANOG in partially 

reprogrammed neural stem cells increased the efficiency of reprogramming more than 

three-fold as compared to NANOG alone. This reprogramming synergy with NANOG was 

not exhibited by SIN3B, indicating that this function is specific to SIN3A. Furthermore, 

SIN3A and SIN3B possibly regulate distinct pathways in hematopoietic stem cells 

(HSCs). Sin3a deletion in the bone marrow resulted in a significant loss in the number of 

HSCs and immediate progenitor cells (Heideman et al., 2014).  In contrast, inactivation 

of Sin3b did not affect HSC viability but instead caused a defect in the differentiation of 

HSCs into progenitor cells (Cantor and David, 2017).  

 SIN3 proteins are also important players in oncogenesis (reviewed in detail by 

(Bansal et al., 2016)). The role of SIN3 in cancer, however, is ambiguous since different 

studies attribute either tumor suppressive or oncogenic functions to SIN3 proteins (Bansal 

et al., 2016). Interestingly, a recent study showed that the highly related SIN3 isoforms 

perform opposing functions in breast cancer metastasis (Lewis et al., 2016). Loss of 

SIN3A caused a significant increase in the number of invasive colonies and metastatic 
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potential. In contrast, SIN3B knockdown substantially decreased breast cancer cell 

invasion and resulted in reduced metastatic potential. Surprisingly, dual knockdown of 

SIN3A and SIN3B behaved similar to loss of SIN3B. In that same study, the authors 

performed correlation analysis investigating SIN3A and SIN3B expression levels in a 

number of breast cancer subtypes. When all breast cancer subtypes were considered, 

longer relapse-free survival of patients correlated with high expression of either SIN3A or 

SIN3B. However, analysis of triple-negative breast cancer samples indicated that longer 

relapse-free survival is correlated with either high SIN3A or with low SIN3B expression. 

These data suggest that there may be functional differences between the SIN3 isoforms 

in different molecular subtypes of cancer. This study is especially interesting in light of the 

current interest in SIN3 as a potential therapeutic target (Bansal et al., 2016). Future 

efforts should be directed toward a better understanding of the precise mechanism of 

regulation by individual SIN3 isoforms in different cell types and especially during cancer 

progression. 

Conclusion 

 SIN3 was discovered as a transcriptional regulator three decades ago. Over the 

years, a plethora of studies have implicated SIN3 proteins in the regulation of several 

critical biological processes and revealed a large repertoire of binding partners. Despite 

the extensive research, we are far from understanding the complete picture of SIN3 

regulation. Several pieces of the puzzle are still missing. As discussed above, the SIN3 

protein consists of multiple protein interaction domains and hence is considered the 

scaffold that holds together the SIN3 histone modifying complex. To the best of our 

knowledge, however, no study has been conducted to analyze complex integrity upon 
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loss of SIN3. Careful biochemical analysis of SIN3 complex structure and stability will 

provide further insight into the scaffolding function of SIN3. Additionally, SIN3 complexes 

are canonically considered as repressor complexes that suppress gene expression 

through the activity of histone deacetylases. This model has been challenged with the 

acquisition of gene expression and chromatin binding data indicating that SIN3 is likely 

required for direct activation of a subset of targets. The gene activation function of SIN3 

histone modifying complexes is not at all understood. Genome-wide analysis of histone 

modification patterns established by the distinct SIN3 complexes at target genes may 

help us better understand the role of SIN3 in both activation and repression of gene 

expression.   

In this introduction, I have focused on isoforms of SIN3. There is a single SIN3 

protein in the budding yeast, Saccharomyces cerevisiae, a single gene that produces 

multiple isoforms in Drosophila and two separate genes that give rise to different isoforms 

in mammalian cells. Despite the diversity in the number and structure of genes, the SIN3 

proteins in different species contain evolutionarily conserved functional domains and form 

similar histone modifying complexes. It will be a worthy effort to investigate the evolution 

of SIN3 proteins and determine whether the presence of multiple isoforms in higher 

organisms contributes to the functional flexibility of SIN3. The SIN3 complexes are 

pleiotropic in nature and this in part contributes to their wide-range of regulation of 

biologically important processes. Significant efforts must be directed towards identifying 

the diverse common and unique interaction partners of SIN3 isoforms in different cell 

types. This will aid in understanding the intricate network of transcriptional regulators and 

in turn the critical cellular processes that may be impacted upon misregulation of SIN3. 
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There is also a gap in the existing knowledge regarding processes that regulate SIN3 

proteins. Understanding the mechanisms that regulate the global transcriptional regulator 

SIN3 are crucial, especially since altered levels of SIN3 have been detected in several 

types of cancer. Furthermore, the SIN3 isoforms may regulate distinct biological pathways 

in different cell types. It is imperative to carefully dissect the functional differences 

between SIN3 isoforms and identify gene targets that are differentially regulated. This will 

prove to be particularly important in designing therapeutics that are targeted for specific 

cancer subtypes.  

In summary, I have listed a few exciting avenues to further our understanding of 

epigenetic regulation of gene expression by SIN3 complexes. Although a great deal is 

known about the interactions of SIN3 proteins and the biological processes regulated by 

them, the current need is to delve deeper into the intricacies of this network. Ascertaining 

the overlapping and specialized functions of individual SIN3 isoforms will not only unravel 

novel strategies of gene regulation but will also expand the current repertoire of 

therapeutic targets. 

Project outline 

SIN3 is a widely studied global transcriptional regulator. A large repertoire of genes 

is regulated by SIN3. Transcriptome analyses have revealed that more than 3% of the 

annotated genes in the Drosophila genome are regulated by SIN3 (Gajan et al., 2016; 

Pile et al., 2003). Surprisingly, although the role of SIN3 in gene regulation has been well 

documented, the mechanisms regulating SIN3 itself are still not well known. In my PhD 

thesis research, I have studied factors affecting the regulation and stability of SIN3 
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isoforms in Drosophila. I have also analyzed the functional differences between the 

histone modifying complexes formed by the SIN3 isoforms. 

 To understand the regulation of SIN3, I explored if there was a feedback between 

the predominant SIN3 isoforms that controlled the level of SIN3 in the cell. In Chapter 2, 

I demonstrated that there is an interplay between the SIN3 isoforms, wherein, 

overexpression of SIN3 187 reduces the level of the endogenous SIN3 220 transcript and 

affects the stability of the protein by targeting it to the proteasome. This is a novel 

mechanism of regulation, which might ensure that a specific level of SIN3 is maintained 

in the cells.  

 Further, I investigated factors affecting the stability of SIN3 220 protein. I attempted 

to identify post-translationally modified species of SIN3 in Drosophila. I have also 

determined whether the N- or the C-terminus is important for SIN3 220 stability.  This 

research is described in Chapter 3.  

 In Chapter 4, I have addressed the functional differences between the SIN3 

isoform specific histone-modifying complexes that may be responsible for the non-

redundant functions of SIN3 isoforms. I have shown that the SIN3 187 and SIN3 220 

complexes establish distinct histone modification at SIN3 target genes and differentially 

regulate the expression of a subset of SIN3 target genes.  

 Taken together, these findings make a significant contribution in understanding the 

regulation and function of the predominant SIN3 isoforms. The experiments performed in 

this study also provide preliminary data for future research. I have discussed key 

questions that may be addressed in the future in Chapter 5.
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CHAPTER 2 INTER-ISOFORM-DEPENDENT REGULATION OF THE DROSOPHILA 
MASTER TRANSCRIPTIONAL REGULATOR SIN3 	

 
A version of this work has been published: 

Ashlesha Chaubal, Sokol V. Todi, and Lori A. Pile. Inter-isoform-dependent regulation 

of the Drosophila master transcriptional regulator SIN3. J Biol Chem (2017), 6:22. 

Introduction 

Normal cell function requires precise and coordinated regulation of abundance, 

localization and interaction of numerous proteins and associated factors. This systematic 

regulation is brought about by several synchronized processes that govern the 

production, subcellular location and timely degradation of proteins. Key among these 

processes is the ubiquitin-proteasome system, which eliminates specific proteins at 

determined time points (Komander and Rape, 2012). Disturbance of the ubiquitin-

proteasome system has serious consequences in cellular function that can directly cause 

cell death (Ciechanover, 1998). This is especially true for controlling the steady-state 

levels of master regulatory proteins that regulate diverse transcriptional networks. 

Specific examples include the histone modifying enzymes, which govern chromatin 

organization and thus regulate gene networks. Dysregulation of histone modifying 

enzymes can be disastrous for the cell, since it not only leads to aberrant gene 

expression, but also affects genome stability (Bannister and Kouzarides, 2011).   

The SIN3 HDAC complex, evolutionarily conserved from yeast to mammals, is one 

such important histone modifying complex (Grzenda et al., 2009b; Silverstein and Ekwall, 

2005b). The protein SIN3 serves as a scaffold for the assembly of this complex (Grzenda 

et al., 2009b). SIN3 is a master transcriptional regulator, which, when deleted or mutated, 

causes embryonic lethality in Drosophila and mice (Cowley et al., 2005; Dannenberg et 
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al., 2005b; Neufeld et al., 1998; Pennetta and Pauli, 1998b). Previous work from our 

laboratory showed that depletion of Drosophila SIN3 affects several biological processes 

resulting in severe developmental defects, increased sensitivity to oxidative stress and 

reduced life span (Barnes et al., 2014; Sharma et al., 2008a; Swaminathan and Pile, 

2010). Although many of the gene networks and biological processes regulated by SIN3 

are known, the regulation of the SIN3 protein itself is poorly understood.  

In Drosophila, a single Sin3A gene gives rise to multiple SIN3 isoforms, SIN3 187, 

SIN3 190 and SIN3 220. These isoforms vary only at the C-terminus due to the presence 

of unique C-terminal exons, form distinct HDAC complexes, are functionally non-

redundant, and are differentially expressed during development (timeline summarized in 

Fig. 1A; (Sharma et al., 2008a; Spain et al., 2010a)). SIN3 220 is the predominant isoform 

expressed in proliferating cells whereas SIN3 187 expression is comparatively higher in 

differentiated tissue (Sharma et al., 2008a). This distinct pattern of expression led us to 

wonder what regulates the isoforms so that they function at different stages during 

development and in adults. We found a highly interdependent relationship between SIN3 

187 and SIN3 220 proteins. SIN3 187 expression causes increased proteasomal 

degradation of SIN3 220 while also reducing its mRNA levels. To the best of our 

knowledge, this type of multi-level, inter-isoform regulation that dictates the abundance 

of a master regulatory protein has not been reported previously.  

Materials and methods 

Cell culture 

Drosophila Schneider cell line 2 (S2) cells were cultured in Schneider's Drosophila 

medium (1X) + L-glutamine (Gibco) with 10% heat-inactivated fetal bovine serum (Gibco) 
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and 50 mg/ml gentamicin (Gibco) and incubated at 27°C. For S2 cells expressing a 

transgene, SIN3 187 with an HA tag (SIN3 187HA cells), 0.1 mg/ml penicillin/streptomycin 

(Gibco) and 0.1 mg/ml Geneticin (Gibco) was added for selection. For S2 cells carrying 

an HA-tagged lid (little imaginal discs) transgene, 300 μg/ml Hygromycin B (Invitrogen) 

was added for selection. 

Drosophila   stocks 

Drosophila melanogaster stocks were maintained and crosses were performed 

according to standard laboratory procedures.  The fly stocks used were as follows: en-

Gal4 (#8828) and EGFP (#6658) obtained from the Bloomington Stock Center and UAS-

SIN3 187HA (described in reference (Sharma et al., 2008a)).  

Immunostaining 

Wing imaginal discs were dissected from wandering third instar larvae in 1 X 

phosphate buffered saline (PBS). 20-30 discs were fixed in 4% formaldehyde in 1 X PBS 

and blocked with 5% normal goat serum, 0.3% Triton X in 1 X PBS. The discs were 

stained as described previously (Sharma et al., 2008a) using the following antibodies: 

rabbit anti-SIN3 220 (1:500) (Sharma et al., 2008a), mouse anti-HA-FITC (1:200; Sigma) 

and Alexa 594 donkey anti-rabbit secondary antibody (1:1000; Invitrogen). The discs 

were stained with 2 µg/ml DAPI solution and mounted in Vectashield (Vector 

laboratories). Photographs were taken using an Olympus IX81 or BX53 microscope. All 

images were taken using the 10X objective lens (Numerical aperture: 0.25) at room 

temperature. 5% deconvolution was applied to the images using the Microsuite Basic 

edition software. 
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Cycloheximide and MG132 assay 

 3 x 106 cells were treated with 0.7 M CuSO4 for 16 h prior to cycloheximide 

treatment. Cycloheximide (A.G. Scientific) was added to the cells to a final concentration 

of 100 µg/ml for 10 h. A second set of cells were simultaneously treated with 50 µM 

MG132 (Sigma) to inhibit the proteasome. Cycloheximide, dissolved in water, and 

MG132, dissolved in DMSO, were replenished after 6 h.  

Time course assay 

4 x 106 cells were treated with 0.7 M CuSO4 for 48 h. Protein and RNA extracts 

were made as described below at the indicated time points.  

Real-time quantitative reverse transcription PCR assay 

Using the RNeasy mini kit (Qiagen), total RNA was extracted from 1 x 107 SIN3 187HA 

cells treated with CuSO4 for different amounts of time. cDNA was generated from the total 

RNA with random hexamers using the ImProm-II Reverse Transcription System 

(Promega). The cDNA was used as template in a real-time quantitative PCR assay 

carried out in a Stratagene Mx3005P real-time thermocycler. Primers (5’-3’) used in the 

PCR reaction were as follows: 

SIN3 220: (TTAAAGGCGTATTGCTCGGC and TTGCGCTACAGAGAAGGTGG) 

SIN3187HA: (AAATCGATTGCCGTGTAACC and 

GCGTAATCTGGAACATCGTATGGG) 

SIN3 PAN: (AAATCGATTGCCGTGTAACC and GAGCGCAGGATTCGCCAACC) 

Taf1: (CTGGTCCTGGTGAGGTGA and CCGGATTCTGGGATTTGA) 
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Western blot 

Protein was extracted by pelleting 106 cells through centrifugation, followed by lysis 

using Laemmli sample buffer (Bio-Rad). Protein concentrations were determined using 

the Bio-Rad Dc protein assay reagent in accordance with the manufacturer's protocol. 

Western blot analysis was performed according to standard protocols (Sambrook and 

Russell, 2001) and as described previously (Gajan et al., 2016). Primary antibodies used 

were as follows: HA-HRP (1:6000; Sigma), SIN3 PAN (1:2000; (Pile and Wassarman, 

2000)), SIN3 220 (1:2000; (Sharma et al., 2008a). Donkey anti-rabbit HRP-conjugated 

IgG (1:3000; GE Healthcare) was used as the secondary antibody. The antibody signals 

were detected using the ECL Prime western blot detection agent (GE Healthcare).  The 

blots were photographed using the FOTO/Analyst Investigator (FOTODYNE) or Versa 

Doc imaging system (Bio-Rad) and quantitated using the TotalLab TL 100 software 

(Nonlinear Dynamics) and Quantity one software (Bio-Rad), respectively. 

Statistical analyses 

Significance values were determined by the student t-test using Graphpad. 

(http://www.graphpad.com/quickcalcs/index.cfm) 

Results  

During Drosophila development, SIN3 isoforms exhibit differential levels of protein 

expression (Summarized in Fig. 2.1A, based on data previously published by our 

laboratory (Sharma et al., 2008a)). SIN3 220 is predominantly expressed during stages 

12-16 of embryogenesis and markedly reduced during stage 17, the final stage of 

embryogenesis (Sharma et al., 2008a). Conversely, the lower molecular weight isoforms, 

SIN3 187 and SIN3 190, exhibit a gradual increase in expression toward the later stages 
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of embryogenesis, peaking at stage 17 (Sharma et al., 2008a). SIN3 190 expression is 

limited to embryos and adult females, and so will not be further considered. Additionally, 

we have observed that cultured Drosophila S2 cells expressing HA-tagged SIN3 187 

(SIN3 187HA cells), show a significant reduction in the level of endogenous SIN3 220 

protein upon induction of SIN3 187HA (Saha et al., 2016a). Collectively, these earlier 

observations led us to investigate whether the SIN3 187 isoform controls SIN3 220 

protein. 

We utilized the UAS-Gal4 system (Brand and Perrimon, 1993) to analyze the 

impact of SIN3 187 on SIN3 220 in developing Drosophila tissue. Drosophila larval wing 

imaginal discs predominantly express SIN3 220 (Sharma et al., 2008a). We mated virgin 

females carrying a HA-tagged SIN3 187 transgene (UAS-SIN3 187HA) to engrailed-Gal4 

driver males. Progeny of this cross exogenously express SIN3 187HA specifically in the 

posterior half of wing imaginal discs of wandering third instar larvae. Cells of the anterior 

half of the wing disc do not express the SIN3 187HA transgene and therefore serve as 

an internal control for endogenous SIN3 220 protein levels (Fig. 2.1B). We observed that 

the posterior half of the wing discs, which expressed the SIN3 187HA transgene, had 

reduced SIN3 220 staining as compared to the anterior half (Fig. 2.1B). The wing imaginal 

discs obtained from UAS-SIN3 187HA flies, which do not carry a Gal4 driver, and those 

obtained from a control cross between virgin females carrying the UAS-EGFP transgene 

and engrailed-Gal4 driver males showed uniform SIN3 220 staining throughout the wing 

disc, indicating that the reduction in SIN3 220 is a specific effect of SIN3 187HA 

expression (Fig. 2.1B). These data indicate that altering the amount of the SIN3 187 

isoform impacts SIN3 220 protein levels in vivo. 
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 To further examine this relationship between SIN3 isoforms, we turned to cultured 

S2 cells that, like wing imaginal disc cells, are proliferative and predominantly express 

SIN3 220 (Sharma et al., 2008a). We performed a time-course experiment using SIN3 

187HA cells.  At distinct times following induction of SIN3 187HA, whole cell protein 

extracts were prepared and the expression of SIN3 isoforms monitored by western blot. 

Compared to time 0 h, the endogenous SIN3 220 protein gradually decreased upon 

induced SIN3 187 expression (Fig. 2.1C). This effect was particularly noticeable at 36 

	
FIGURE 2.1. Ectopic expression of SIN3 187 causes a reduction in endogenous SIN3 
220 protein. A) Representation of differential expression of SIN3 isoforms during 
development, based on data shown in (11). Numbers within the arrow indicate stages of 
embryogenesis. B) Wing imaginal discs were isolated from wandering third instar larvae 
of the indicated genotype. Wing discs were immunostained with α-HA to detect SIN3 
187HA and α-SIN3 220 to detect endogenous SIN3 220. The green fluorescence 
observed in the UAS-187HA control (left panels) is due to background signal. Wing discs 
obtained from the UAS-EGFP X en-GAL4 cross were immunostained with SIN3 220 
antibody. The green fluorescence observed in this wing disc is due to EGFP expression 
driven by engrailed-Gal4. Scale bars represent 100 µm. C) SIN3 187HA cells were treated 
with CuSO4 for the indicated times to induce expression of the SIN3 187HA transgene. 
Protein extracts were probed with HA, RPD3 and SIN3 220 antibodies. β-Actin levels are 
shown as the loading control. The amount of SIN3 220 and RPD3 protein relative to actin 
is quantitated in the graph below. The results are the average of three independent 
biological replicates. Error bars represent standard error of the mean. *, p <0.05, ***, p < 
0.005. 
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and 48 h of induction, compared with non-induced cells (Fig. 2.1C). These data are 

consistent with the observation made using developing fly tissue (Fig. 2.1B) that SIN3 

187 expression significantly impacts the amount of its 220 counterpart. To determine 

whether the effect of SIN3 187HA was specific for SIN3 220, we analyzed the protein 

level of another SIN3 complex component, RPD3. No significant change was observed 

on the RPD3 protein level upon SIN3 187 induction (Fig. 2.1C). Together, the results 

obtained from the larval wing imaginal discs and S2 cells argue that SIN3 187 specifically 

regulates SIN3 220 protein levels. 

 To gain more mechanistic insight into this interplay, we examined the stability of 

endogenous SIN3 220 upon exogenous expression of SIN3 187 by conducting 

cycloheximide-based pulse-chase experiments. Cycloheximide halts the translation of 

new protein, thus allowing us to monitor the turnover of existing SIN3 220 protein over 

time. SIN3 187HA cells were induced to express SIN3 187. Non-transfected S2 cells 

treated in the same way were used as the control. Both sets of cells were then treated 

with cycloheximide and the stability of endogenous SIN3 220 protein was monitored by 

western blot. In S2 cells, which express little SIN3 187, SIN3 220 is highly stable (Fig. 

2.2A). When SIN3 187HA expression is induced, however, the turnover of endogenous 

SIN3 220 is significantly accelerated (Fig. 2.2B). The SIN3 220 protein level was markedly 

diminished upon induction of SIN3 187 expression, within 10 h of cycloheximide 

treatment, as compared to the level in S2 cells.  
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FIGURE 2.2 SIN3 187 increases SIN3 220 protein turnover by targeting it for 
proteasome-dependent degradation. Cycloheximide treatment was performed for 
(A) S2 (B) SIN3 187HA and (C) LIDHA cells. Protein extracts isolated at 0, 4, 8 and 
10 h were analyzed by western blot. SIN3 220 levels are analyzed for two sets of 
cells: cells treated with CuSO4 for 16 h (Induced) and cells treated with CuSO4 for 
16 h and then treated with the proteasome inhibitor MG132 for indicated time 
(Induced + MG132). Protein extracts obtained from SIN3 187HA cells were probed 
with HA and SIN3 220 antibodies. Protein extracts obtained from S2 and LIDHA cells 
were probed with pan-SIN3 antibody. LIDHA protein extracts were also probed with 
HA antibody. β-Actin levels were used as the loading control. Relative level of SIN3 
220 protein is quantitated in the adjoining graphs. The results are the average of 
three biological independent replicates. Error bars represent standard error of the 
mean.*, p <0.05, **, p < 0.01. 
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Next, we examined whether increased turnover of SIN3 220 in the presence of 

SIN3 187 was proteasome-dependent. To this end, we performed the cycloheximide-

based pulse-chase in the presence of the proteasome inhibitor MG132. Treatment of cells 

with MG132 significantly slowed the degradation of SIN3 220 (Fig. 2.2B). As an additional 

control, we determined whether expression of a component of the SIN3 complex has a 

similar effect on SIN3 220 turnover. We used an S2 cell line that carries a transgene for 

expression of HA-tagged dKDM5/LID (Little imaginal discs), referred to as LID-HA cells. 

Overexpression of dKDM5/LID in the presence of cycloheximide did not alter the turnover 

rate of SIN3 220 protein (Fig. 2.2C). We conclude that SIN3 187 specifically leads to 

increased proteasomal degradation of SIN3 220, a protein that is normally quite stable.  

The impact of SIN3 187 on SIN3 220 protein turnover led us to wonder whether 

the interplay between these isoforms occurs at multiple levels. To explore this possibility, 

we analyzed the effect of SIN3 187 expression on SIN3 220 transcript. Total RNA was 

	
FIGURE 2.3. Presence of SIN3 187 causes a reduction in the SIN3 220 transcript. RT-
qPCR analysis using SIN3 isoform-specific primers. In the schematic representing the 
Sin3A gene, filled squares indicate common exons, squares with diagonal, vertical and 
horizontal lines indicate unique SIN3 187, SIN3 190 and SIN3 220 exons, respectively.  
Small triangle, circle and square indicate the positions of the primers. Taf1 was used as a 
control for normalizing transcript levels. The results are the average of three biological 
independent replicates. Error bars represent standard error of the mean. **, p <0.01. 
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extracted from SIN3 187HA cells that had been induced for different amounts of time to 

express the SIN3 187 transgene.  Real-time quantitative reverse transcription PCR (RT-

qPCR) analysis was performed using isoform-specific primers to quantify the level of the 

different Sin3A transcripts (Fig. 2.3). We observed a reduction in the amount of SIN3 220 

transcript upon induction of SIN3 187HA compared with non-induced cells (Fig. 2.3). The 

data in Figures 2.2 and 2.3 provide evidence of multiple levels of control exerted by SIN3 

187 on to SIN3 220, which collectively result in decreased SIN3 220 protein levels. 

Discussion 

SIN3 is well studied as a master transcriptional regulator that governs several 

important cellular pathways, including cell proliferation and energy metabolism (Kadamb 

et al., 2013a). While SIN3 functions continue to be explored, the processes that regulate 

SIN3 itself remain poorly understood. In this study, we report an interplay between the 

predominant isoforms of SIN3. SIN3 187 expression caused a substantial reduction in the 

level of SIN3 220 protein in developing flies and in cultured cells. Expression of SIN3 187 

impacted SIN3 220 at both transcript and protein levels. The 187 isoform led to reduced 

220 mRNA, while also increasing the proteasomal turnover of its protein. Collectively, our 

data suggest the presence of an active regulatory signal that is triggered by SIN3 187 to 

reduce the amount of SIN3 220. Control of SIN3 220 at multiple levels likely ensures 

efficient removal of this isoform during specific developmental stages and highlights the 

possibility that regulation of SIN3 isoform expression is critically important.  

We showed the involvement of the proteasome in maintaining the level of SIN3 

220. It is likely that post-translational modifications play a role in targeting SIN3 220 to 

this degradative machinery. Mammalian SIN3 is SUMOylated and ubiquitinated (Kong et 
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al., 2010a; Pungaliya et al., 2007b). It remains to be determined whether a similar 

situation exists in Drosophila. In initial attempts to examine post-translational 

modifications of Drosophila SIN3, we performed stringent immunoprecipitation 

experiments using either antibodies for endogenous and HA-tagged SIN3, or a high-

affinity ubiquitin binding resin to detect ubiquitinated SIN3 species. No distinct higher 

molecular weight bands indicative of ubiquitinated SIN3 were observed in our preliminary 

experiments (data not shown). As an alternative approach, we selected three lysine 

residues in the fly ortholog that are reportedly ubiquitinated in the human counterpart (Kim 

et al., 2011; Mertins et al., 2013). Mutating these residues into the similar but non-

ubiquitinatable amino acid arginine, alone or in combination, did not impact SIN3 220 

cellular protein levels (data not shown). It is possible that other lysine residues in 

Drosophila SIN3 are ubiquitinated, or that its proteasomal degradation might be ubiquitin-

independent. There is a growing number of proteins that do not require ubiquitination to 

be degraded by the proteasome (Blount et al., 2014). Our initial studies, however, do not 

definitively rule out the possibility that ubiquitination of SIN3 220 is involved at some point 

to regulate its turnover. 

Drosophila SIN3 isoforms differ only at the C-terminal region. 187 and 220 

isoforms both interact with a core group of HDAC complex components that are 

conserved across species (Spain et al., 2010a). Perhaps the SIN3 protein needs to be 

amidst this core complex to be stable. One possibility to account for SIN3 220 protein 

reduction by SIN3 187HA expression is that excess SIN3 187 sequesters the common 

complex components and exposes SIN3 220 for proteasomal degradation.  
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SIN3 220 transcript is also reduced upon exogenous expression of SIN3 187. The 

molecular mechanism governing this effect remains to be elucidated. Perhaps some 

regulatory factor detects the presence of SIN3 187 transcript and alters splicing at the 

Sin3A gene, resulting in reduced SIN3 220 transcript. Another possibility could be 

transgene-induced post-transcriptional gene silencing (Cogoni and Macino, 2000). When 

the SIN3 187HA transgene is expressed, the overall level of Sin3A mRNA is very high. 

This may trigger degradation of the Sin3A transcript. Further investigation will help us 

better understand which mechanism is responsible for regulating the amount of SIN3 220 

transcript.  

It will be interesting to determine whether mechanisms akin to the ones that we 

reported exist to regulate SIN3 in organisms other than Drosophila. Our finding of inter-

isoform-dependent regulation of SIN3 expands the overall understanding of avenues 

through which master switches are controlled during development. It also suggests that 

similar processes may apply to other key proteins with isoform-specific properties. 
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CHAPTER 3 INVESTIGATING THE STABILITY AND POST-TRANSLATIONAL 
MODIFICATION OF DROSOPHILA SIN3 220 

 
Introduction 
 

SIN3 is a global transcriptional regulator involved in the regulation of diverse 

processes such as development, energy metabolism, cell proliferation and cellular 

senescence (Kadamb et al., 2013b). Several studies have also implicated SIN3 proteins 

in the process of oncogenic transformation (Bansal et al., 2016). Since SIN3 governs the 

expression of a vast number of gene targets, understanding factors that control the 

stability and thereby function of SIN3 proteins is critical, both for normal biology and 

disease. 

The level of proteins in a cell can be accurately maintained by controlling their rate 

of synthesis and degradation. Post-translational modifications, in particular ubiquitination 

and SUMOylation, are key players that can modulate stability of proteins and target them 

for degradation. The process of ubiquitination involves linking a conserved protein, 

ubiquitin, to a target substrate through three enzymatic steps catalyzed by E1 activating 

enzymes, E2 conjugating enzymes and E3 ligases (Hershko and Ciechanover, 1992). 

The target protein, which can be mono-ubiquitinated or poly-ubiquitinated, is then 

targeted to the proteasome for degradation and the ubiquitin moieties are recycled. 

Several key proteins, such as cell cycle regulators, transcription factors, tumor 

suppressors and oncoproteins are regulated by the ubiquitin system (Hershko and 

Ciechanover, 1998). The small ubiquitin-related modifier (SUMO) protein also post-

translationally modifies a large repertoire of proteins in the cell. The process of 

SUMOylation is similar to that described for ubiquitin (Kim et al., 2002). In addition to 

targeting proteins for degradation, SUMOylation also plays a role in protein translocation, 
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subnuclear structure formation and as an antagonist to ubiquitination. SUMOylation and 

ubiquitination may both be involved in regulation of mammalian SIN3 proteins. RNF220, 

an E3 ubiquitin ligase, ubiquitinates the mammalian SIN3B protein (Kong et al., 2010b). 

The SIN3A protein is SUMOylated by the E3 ligase, TOPORS (Pungaliya et al., 2007a). 

Very little is known however, about other key players and mechanistic details regarding 

post-translational modification of SIN3 proteins.  

Although progress has been made in understanding the regulation of the global 

transcriptional regulator SIN3, a great deal remains to be elucidated. The Saccharomyces 

cerevisiae SIN3 protein has two regions with significant PEST scores (Wang et al., 1990). 

PEST regions are rich in proline (P), glutamic acid (E), serine (S) and threonine (T) amino 

acid residues and are considered indicators of rapid protein degradation (Rogers et al., 

1986). The role of PEST regions in SIN3 degradation has not been extensively 

addressed. SIN3 itself has been implicated in influencing the stability of several proteins 

such as p53, SMRTER, Mad4 and Myc, but the factors governing SIN3 stability are not 

yet understood (Kadamb et al., 2013b). Since SIN3 plays an important role in regulating 

several critical biological processes, it is essential to maintain an accurate level of SIN3 

in the cells. SIN3 187 and SIN3 220 are the predominant SIN3 isoforms in Drosophila 

(Sharma et al., 2008b). Unpublished work from our laboratory has shown that ubiquitous 

expression of a N-terminal TAP-tagged (N-TAP) SIN3 220 protein in Drosophila results 

in embryonic lethality. The same result, however, was not obtained upon ubiquitous 

expression of SIN3 220 with a C-terminal HA (C-HA) tag (Spain et al., 2010b). It had also 

been determined that when these tagged-SIN3 proteins were expressed in S2 cells, the 

level of N-TAP SIN3 220 protein was higher compared to C-HA SIN3 220. We therefore 
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hypothesized that N-TAP SIN3 220 is not efficiently degraded, leading to an increased 

total level of SIN3 220 protein, which in turn causes embryonic lethality when expressed 

during fly development. 

 In this research, we aimed to identify factors that influence the stability of SIN3 

protein in Drosophila. We demonstrate that both the N and C-terminus of SIN3 proteins 

are important for targeting SIN3 for degradation. We also investigated whether loss of 

specific lysine residues in potential ubiquitination sites impacted the level of SIN3 220 

protein in the cell.  

Materials and methods 

Cell culture  

S2 and SIN3 187HA cells were cultured as described in Chapter 1. S2 cells 

expressing a transgene, SIN3 220 with an HA tag (SIN3 220HA cells), were cultured in 

Schneider's Drosophila medium (1X) + L-glutamine (Gibco) with 10% heat-inactivated 

fetal bovine serum (Gibco). 0.1 mg/ml penicillin/streptomycin (Gibco) and 0.1 mg/ml 

Geneticin (Gibco) was added for selection. 1 µl/ml of 0.7M CuSO4 was added to the 

relevant cell lines for induction of tagged proteins.  

Generation of lysine to arginine mutants 

To generate lysine to arginine mutants at putative ubiquitination sites we used a 

plasmid containing the SIN3 220 gene with a sequence encoding a C-terminal HA tag (C-

HA SIN3 220) in the pRMHa4 vector. Using site-directed mutagenesis, we replaced the 

codon for lysine at amino acid position 71, 1209 and 1229 individually with that for 

arginine. The mutations at these specific positions were verified by DNA sequencing 

(Eton Biosciences). After verification, the single mutants (SIN3 220 K71R, SIN3 220 
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K1209R and SIN3 220 K1229R) were used for a second round of site-directed 

mutagenesis to create double lysine mutants (SIN3 220 K71 1209R, SIN3 220 K71 

1229R, and SIN3 220 K1209 1229R), which were verified by DNA sequencing. To 

generate the triple lysine mutant, SIN3 220 K71 1209R was used to perform site-directed 

mutagenesis and the mutation was confirmed by DNA sequencing. The primers used for 

site-directed mutagenesis are listed in Table 3.1.  

Table 3.1: Primers used for site-directed mutagenesis 

Primer Name Sequence 

Ubq sdm acK71R forward CACGCCACGCTTACGAGTGGAGGATGCG 

Ubq sdm acK71R reverse CGCATCCTCCACTCGAAGCGTGGCGTG 

Ubq sdm acK1209R forward GAAGTACTACCTCCGGTCTCTCGATCAC 

Ubq sdm acK1209R reverse GTGATCGAGAGACCGGAGGTAGTACTTC 

Ubq sdm acK1229R forward GCCCTGCGCTCACGGAGTCTGTTTAAC 

Ubq sdm acK1229R reverse GTTAAACAGACTCCGTGAGCGCAGGGC 

 

Nuclear fraction extraction and immunoprecipitation 

Nuclear fraction extraction and immunoprecipitation was carried out from SIN3 

220HA cells as previously described (Spain et al., 2010). In brief, 150 µl of interaction 

buffer (20 mM HEPES (pH 7.4), 150 mM NaCl, 0.5 mM EDTA,1% Triton X-100) was 

added to 850 µl of nuclear extract prepared from 1 x 108 cells along with 40 µl of anti-HA 

agarose beads (Sigma) and incubated at 4°C overnight. The beads were then washed 

with IP wash buffer 1 (20 mM Tris (pH 7.4), 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 

0.1% sodium deoxycholate), IP wash buffer 2 (20 mM HEPES (pH 7.4), 500 mM NaCl, 
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0.5 mM EDTA,1.5% Triton X-100, 0.1% sodium deoxycholate and 10% glycerol) and IP 

wash buffer 3 (20 mM HEPES (pH 7.4), 300 mM NaCl, 1 mM MgCl2, 0.1 mM EDTA, 10% 

glycerol and 1.5%Triton X-100) for 5 minutes each at 4°C. The immunoprecipitated 

proteins were eluted using Laemmilli buffer (Bio-Rad) for 20 minutes at room temperature. 

The eluted proteins were analyzed by western blotting. 

Transient transfection 

SIN3 220 tagged constructs and lysine mutants were transiently transfected into 

S2 cells and SIN3 187HA cells using the Effectene transfection kit (Qiagen) as per the 

manufacturer’s protocol. Briefly, 1.0 µg of plasmid DNA was mixed with 8 µl Enhancer 

and incubated for 5 minutes followed by addition of 10 µl Effectene reagent and a 15 

minute incubation at room temperature. The solution was then added to 2 x 106 cells after 

mixing with 1 ml of appropriate cell culture media. 1 ml of cell culture media was also 

added to mock transfected cells. The cells were induced with 1 µl/ml of 0.7M CuSO4 after 

24 hours. Protein extracts were made after 24 hour induction and analyzed by western 

blotting. 

Western blotting 

Western blot was performed as described in Chapter 1. Primary antibodies used 

were as follows: HA-HRP (1:6000; Sigma), SIN3 PAN (1:2000; Pile and Wasserman, 

2000), CBP (1:3000, Upstate Cell Signaling Solutions), RPD3 (1:3000, Pile and 

Wasserman, 2000), Actin (1:1000, Cell Signaling) and Tubulin (1:1000, Cell Signaling), 

SUMO-2/3 (kindly provided by Dr. Xiang-Dong Zhang, Subramonian et al., 2014). 

Secondary antibodies used are donkey anti-rabbit HRP-conjugated IgG (1:3000; GE 

Healthcare) and sheep anti-mouse HRP-conjugated IgG (1:3000; GE Healthcare). 
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Results and discussion 

 As described in Chapter 2, overexpression of SIN3 187 leads to the proteasomal 

degradation of SIN3 220. This interplay is not only a possibly unique regulatory 

mechanism but also a tool to analyze factors that affect the stability of SIN3 220. We have 

previously observed that exogenous expression of un-tagged SIN3 220 protein or C-HA 

SIN3 220 in S2 cells does not lead to an increase the overall level of SIN3. We 

hypothesize that the level of SIN3 220 is critically controlled in S2 cells and that excess 

SIN3 220 protein is targeted for degradation. Therefore, any factor that interferes with the 

degradation of SIN3 220, thereby stabilizing the protein, should result in a higher total 

level of SIN3 220 relative to control in S2 and SIN3 187HA cells.  

	
	
Figure continued on next page 
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 Unlike C-HA SIN3 220, N-TAP SIN3 220 can be expressed at a high level in S2 

cells.  This led us to ask whether the position or the nature of a tag affects the stability of 

SIN3 220 protein. To address this question, we generated SIN3 220 constructs to express 

SIN3 220 with an HA or a TAP tag on either the N terminus (N-HA or N-TAP) or C the 

terminus (C-HA or C-TAP). Details of construction of these plasmids is provided in the 

undergraduate honors thesis of Michael Sobolic. We transiently transfected N-HA SIN3 

220, C-HA SIN3 220, N-TAP SIN3 220 and C-TAP SIN3 220 encoding constructs into S2 

cells and SIN3 187HA cells. The stability of these tagged proteins was analyzed by 

western blotting. The expression of the TAP-tagged and HA-tagged SIN3 protein was 

verified by probing the blots with tag-specific antibodies (Figure 3.1A, B). In S2 cells, the 

 
 
Figure 3.1. Presence of a TAP tag at either N or C-terminus interferes with the 
degradation of SIN3 220 protein. SIN3 220 HA and TAP-tagged constructs were 
transiently transfected in S2 cells (A), (B) and (C) and 187HA cells (D). Protein extracts 
isolated after 24 h CuSO4 induction were analyzed by Western blotting. (A) Protein 
extracts from mock transfected and SIN3 220 N-HA and SIN3 220 C-HA transfected 
cells were probed with HA antibody to verify expression of these constructs. (B) Protein 
extracts from mock transfected and SIN3 220 N-TAP and SIN3 220 C-TAP transfected 
cells were probed with CBP antibody to verify expression of constructs. (C) Protein 
extracts from mock transfected and SIN3 220 N-HA, SIN3 220 C-HA, SIN3 220 N-TAP 
and SIN3 220 C-TAP transfected cells were probed with SIN3 antibody to determine 
the total level of SIN3 protein upon transfection. Beta-actin levels were used as loading 
control. (D) Protein extracts from mock transfected and SIN3 220 N-HA, SIN3 220 C-
HA, SIN3 220 N-TAP and SIN3 220 C-TAP transfected cells were probed with SIN3 
antibody to determine the stability of SIN3 220 tagged constructs upon SIN3 187 
overexpression. Tubulin levels were used as loading control. 
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TAP-tagged SIN3 proteins exhibit a higher protein level as compared to the HA-tagged 

proteins (Figure 3.1C). Similarly, in SIN3 187HA cells, the level of N-HA SIN3 220 and C-

HA SIN3 220 is reduced upon SIN3 187 expression like endogenous SIN3 220 (Figure 

3.1D). Conversely, the level of N-TAP SIN3 220 and C-TAP SIN3 220 remains high in the 

presence of SIN3 187 and is comparable to that of the exogenously expressed SIN3 187 

(Figure 3.1D). This suggests that both the N-terminus and the C-terminus may be 

important for SIN3 220 stability. Since the TAP tag (~ 21kDa) is a larger tag as compared 

to HA (~ 1.1kDa), it is possible that presence of a TAP tag protects the SIN3 220 protein 

from being targeted for degradation. Interestingly, in mammalian cells, both the N-terminal 

and the C-terminal domains of SIN3B are ubiquitinated by RNF220 (Kong et al., 2010b). 

It is therefore possible, that presence of a large tag at the N or C-terminus interferes with 

the post-translation modification of SIN3 220, thereby affecting its degradation. 

Although there is evidence for post-translational modification of SIN3 in 

mammalian cells, ubiquitination or SUMOylation of SIN3 has not been reported in 

Drosophila or any other model system. We attempted to identify ubiquitinated SIN3 

species by either immunoprecipitating endogenous SIN3 or by enriching ubiquitinated 

proteins and analyzing the immunoprecipitates by western blotting using specific 

antibodies. No conclusive evidence, however, was obtained from these reciprocal 

immunoprecipitation experiments (data not shown). We therefore addressed this question 

using an alternative approach. The database of post-translational modifications (dbPTM) 

(http://dbptm.mbc.nctu.edu.tw/index.php) is a comprehensive database for protein post-

translational modifications (PTMs) that integrates information for experimentally validated 

and putative PTMs generated from several predictive tools (Lee et al., 2006). For our 
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study, we identified specific lysine residues in the mammalian SIN3 protein predicted by 

dbPTM as potential ubiquitination sites. Using the sequence alignment tool Clustal W, we 

observed that these specific lysine residues are conserved in the Drosophila SIN3 protein 

(Figure 3.2A). We hypothesized that if these lysine residues are putative ubiquitination 

sites, mutating them to arginine should stabilize the SIN3 220 protein  

 
 
Figure 3.2. Lysine to arginine mutations at putative ubiquitination sites do not 
significantly alter the stability of SIN3 220. (A) Sequence alignment of specific regions 
in mammalian Sin3A and Drosophila SIN3 220 proteins. Putative ubiquitination sites 
conserved between these proteins are highlighted. The lysine (K) residues in these 
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Using site-directed mutagenesis we created single (K71R, K1209K, K1229R), 

double (K71 1209R, K71 1229R, K1209 1229R) and triple (K71 1209 1229R) lysine to 

arginine mutations in C-HA SIN3 220 at potential ubiquitination sites. These SIN3 220 

encoding constructs were transiently transfected in SIN3 187HA cells and the stability of 

the mutated proteins was analyzed by western blotting. C-HA SIN3 220, which was used 

to create these mutants, was used as a control. Converting lysine to arginine at putative 

ubiquitination sites individually or in combination did not significantly alter the stability of 

SIN3 220 (Figure 3.2 B, C). This suggests that these specific lysine residues may not play 

a role in targeting SIN3 220 for degradation. It is conceivable that other lysine residues 

may be important for ubiquitination of SIN3 220 or that SIN3 220 may be targeted for 

degradation by other post-translational modifications. 

 As mentioned, the mammalian SIN3A isoform, which is a paralog of SIN3B, is 

SUMOylated by TOPORS (Pungaliya et al., 2007a). Since SIN3A exhibits higher similarity 

to Drosophila proteins relative to SIN3B, we asked whether Drosophila SIN3 proteins 

undergo SUMOylation. To detect SUMOylated SIN3 species we performed 

immunoprecipitation experiments in S2 cells expressing a transgene encoding HA-tagged 

SIN3 220 (SIN3 220HA cells) under the control of a metallothionien promoter. Similar to 

S2 cells, the total level of SIN3 is tightly regulated in SIN3 220HA cells and does not 

putative sites were mutated to arginine (R) residues using site-directed mutagenesis. 
SIN3 187HA cells were transiently transfected with SIN3 220 3’HA constructs containing 
specific single (B), double and triple (C) K to R mutations. Protein extracts isolated after 
24 h CuSO4 induction were analyzed by Western blotting. (B) Protein extracts from mock 
transfected and wild type C-HA SIN3 220, SIN3 220 K71R, SIN3 220 K1209R and SIN3 
220 K1229R transfected cells were probed with HA antibody to determine the stability of 
constructs upon SIN3 187 overexpression. (C) Protein extracts from mock transfected 
and wild type SIN3 220 3’HA, SIN3 220 K71 1209R, SIN3 220 K71 1229R, SIN3 220 K 
1209 1229R and SIN3 220 K71 1209 1229R transfected cells were probed with HA 
antibody to determine the stability of these constructs upon SIN3 187 overexpression. 
RPD3 levels were used as loading control. 
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increase even upon induction of the SIN3 220 transgene (Saha et al., 2016b). We predict 

that upon induction and subsequent expression of SIN3 220HA, the excess SIN3 220 

protein is targeted for degradation, thus maintaining a specific level of SIN3 220 in the 

cell. We attempted to enrich SUMOylated SIN3 species by immunoprecipitating HA-

tagged SIN3 220 using anti-HA agarose beads. The immunoprecipitates were analyzed 

by western blotting using SIN3 and SUMO-2/3 antibodies. No distinct signal was 

observed for SIN3 in the blot probed with anti-SUMO-2/3 indicating that SUMOylated 

SIN3 species could not be detected in our experiment (Figure 3.3).  

In conclusion, we have demonstrated that the N and C-terminus play an important 

role in SIN3 220 stability and that the presence of a large protein tag at either terminus 

possibly interferes with the degradation of SIN3 220. No post-translationally modified 

species of SIN3 could be detected in our studies. It is possible that ubiquitinated or 

 

 
Figure 3.3. SUMOylated species of SIN3 could not be detected upon 
immunoprecipitation of tagged SIN3 220. Co-immunoprecipitation assays were 
performed with extracts prepared from SIN3 220HA cells using anti-HA agarose beads. 
Protein extracts were analyzed by Western blotting. Whole cell extracts (WCE), nuclear 
extracts (NE) and immunoprecipitate (IP) were probed with SIN3 and SUMO-2/3 
antibodies to detect SUOMylated SIN3 species. 
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SUMOylated species of SIN3 220 exist but are very transient and hence were not 

identified in our immunoprecipitation experiments (Andreou and Tavernarakis, 2009). We 

tested specific lysine residues at potential ubiquitination sites for their ability to influence 

SIN3 220 stability. Although loss of these lysine residues did not affect the stability of 

SIN3 220 protein it is possible that there may be other lysine residues that are critical for 

targeting SIN3 for proteasomal degradation.  
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CHAPTER 4 UNDERSTANDING THE FUNCTIONAL DIFFERENCES BETWEEN SIN3 
ISOFORM-SPECIFIC COMPLEXES IN DROSOPHILA 

 
Introduction 
  
 In Drosophila, the predominant SIN3 isoforms, SIN3 187 and SIN3 220, are 

differentially expressed during embryonic development (Sharma et al., 2008b). This 

suggests that the SIN3 isoforms perform distinct functions during the different 

developmental stages. Additionally, we demonstrated through experiments described in 

Chapter 2 that there is a possible mechanism in place that can ensure that the correct 

isoform is present during the appropriate stage of embryogenesis (Chaubal et al., 2016). 

The SIN3 isoforms also differ in their ability to rescue lethality in Sin3A null flies, further 

emphasizing the differential functions performed by these isoforms (Spain et al., 2010b).  

SIN3 187 and SIN3 220 arise from alternative splicing of a single Sin3A gene and 

possess identical PAH 1-4 (paired amphipathic helices) and HID (histone deacetylase 

interaction domain) regions (Pennetta and Pauli, 1998a; Sharma et al., 2008b). These 

functional domains are involved in complex formation and interactions with DNA binding 

factors that target the SIN3 complex to its target genes. Despite the presence of these 

identical protein interaction domains, SIN3 187 and SIN3 220 form distinct histone 

modifying complexes and perform non-redundant functions (Spain et al., 2010b). Both of 

the SIN3 isoform specific complexes contain a common core of complex components that 

includes SDS3, ING1, BRMS1, ARID4B, SAP130, Pf1 and the histone deacetylase 

RPD3. In addition to these components, the SIN3 220 complex also associates with 

EMSY, Caf1-p55 and the histone demethylase dKDM5/LID. It is likely that the unique 

stretch of 315 amino acids at the SIN3 220 C-terminus is involved in interactions with 

these specific binding partners. Previous work in our laboratory has shown that Caf1-p55 
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is capable of directly interacting with the SIN3 220 unique C-terminus (Uni-C), whereas 

EMSY does not interact with the Uni-C. (Saha, 2017; Moore, 2017). Interaction of 

dKDM5/LID with the Uni-C has not yet been characterized. Furthermore, it is possible 

that the presence of EMSY, Caf1-p55 and dKDM5/LID is responsible for the non-

redundant functions performed by the SIN3 220 complex. The interaction of EMSY with 

the SIN3 220 complex was identified only in S2 cells but not in Drosophila embryo nuclear 

extracts (Spain et al., 2010). For this research therefore, we have focused on the possible 

role of dKDM5/LID and Caf1-p55 in the SIN3 220 complex.  

Little imaginal discs (dKDM5/LID) is a JmjC-domain containing histone 

demethylase that specifically removes the H3K4me3 histone modification (Eissenberg et 

al., 2007; Lee et al., 2007; Secombe et al., 2007). Like SIN3, dKDM5/LID is essential for 

survival in Drosophila and a dual regulator of gene expression, in that it is involved in both 

activation and in repression (Gajan et al., 2016; Gildea et al., 2000). Additionally, 

dKDM5/LID functions coordinately with SIN3 in regulation of cell proliferation and wing 

development. Interestingly, dKDM5/LID inhibits the activity of the histone deacetylase 

RPD3 in a complex isolated from Drosophila embryos that includes dPf1, MRG15 and 

CG13367 (Lee et al., 2009). It is possible that presence of dKDM5/LID in the SIN3 220 

complex impacts the histone deacetylase activity of RPD3. In support of this hypothesis, 

the SIN3 220 complex exhibits a decreased deacetylase activity as compared to SIN3 

187 in vitro (Spain et al., 2010). Those authors also determined that SIN3 187 and SIN3 

220 complexes differentially impact global H3K9Ac and H3K14Ac levels. Overexpression 

of SIN3 187 caused a noticeable decrease in H3K9Ac and H3K14Ac, whereas 

overexpression of SIN3 220 reduced only the H3K9Ac mark. Whether SIN3 isoform 
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specific complexes establish distinct histone modification patterns at target genes and 

thereby differentially regulate gene expression has not been elucidated.  

Transcriptome analysis in Drosophila S2 cells has shown that SIN3 and 

dKDM5/LID regulate several common gene targets (Gajan et al., 2016). Another unique 

binding partner of SIN3 220, Caf1-p55 also affects the expression of a subset of SIN3 

target genes (Saha, 2017). Caf1-p55 is a WD-40 repeat containing protein that can 

directly bind to histone proteins (Henning et al., 2005). Caf1-p55 is present in several 

chromatin-modifying complexes including the SIN3 complex, the NURF complex and 

Polycomb repressive group complex (Czermin et al., 2002; Hassig et al., 1997; Laherty 

et al., 1997; Martinez-Balbas et al., 1998; Muller et al., 2002). Since the SIN3 187HA 

complex does not include dKDM5/LID and Caf1-p55, there is an intriguing possibility that 

binding of the SIN3 187 complex to target genes instead of the SIN3 220 complex may 

result in gene expression changes that mimic those caused by loss of Caf1-p55 and 

dKDM5/LID. These changes in gene expression can in turn, be responsible for the 

functional differences between the SIN3 isoform specific complexes.  

In this chapter, we show that dKDM5/LID does not interact with the unique C-

terminus of SIN3 220. Loss of lid by RNAi impacts histone acetylation patterns at a subset 

of targets genes suggesting that presence of dKDM5/LID in the SIN3 220 complex may 

influence the activity of RPD3. We also demonstrate that recruitment of the SIN3 187 

complex to SIN3 targets genes in place of the SIN3 220 complex alters the expression of 

a subset of genes. Furthermore, we analyze whether these gene expression changes are 

similar to those caused due to the double knockdown of Caf1-55 and lid. We also 

demonstrate that distinct histone modifications patterns are established by the SIN3 187 
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and SIN3 220 complexes. This research is a significant contribution towards the 

understanding of key functional differences between the predominant SIN3 isoforms in 

Drosophila.  

Materials and Methods 

Cell culture 

Cell lines utilized and culture conditions are as described in Chapter 2. 

Paraquat treatment 

4 x 106 S2 and SIN3 187HA cells in 4 ml appropriate culture medium were induced 

with CuSO4 for transgene activation. After 24 hour induction, cells were treated with 10 

mM paraquat (1,1’-Dimethyl-4,4’-bipyridinium dichloride (Sigma Aldrich)). After 24 hour 

paraquat treatment, cells were stained with Trypan blue and cell counts were determined 

as per hemocytometer standards.   

Transient transfection 

Transient transfection was performed in LID-HA cells as described in Chapter 3.  

RNA interference 

RNAi in S2 cells was performed as described previously (Gajan et al., 2016). 

Briefly, 4 x106 cells were plated in 60-mm dishes in 4 ml Schneider's Drosophila medium 

containing gentamycin. Cells were left undisturbed for 3 hours to facilitate adhering to the 

dish. After 3 hours, the culture medium was replaced with serum-free medium. 50 µg of 

appropriate dsRNA was added to each dish. Schneider's Drosophila medium containing 

gentamycin was added after 30 minutes incubation with dsRNA. Construction of dsRNA 

targeting lid, Caf1-55 and the GFP gene is described previously (Gajan et al., 2016, Saha 
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et al., 2016). Knockdown was verified by standard PCR using gene specific primers. Taf-

1 was used as a loading control. 

Chromatin immunoprecipitation and qPCR 

Chromatin preparation and immunoprecipitation was performed as previously 

described (Saha et al., 2016). Briefly, 75 µg of prepared chromatin was 

immunoprecipitated using: anti-HA agarose beads (40 µl), anti-H3C (4 µl), anti-H3K4me3 

(3 µl), anti-H3K9Ac (3 µl), anti-H3K14Ac (3 µl), anti-H3K27Ac (3 µl) and pre-immune IgG 

(10 µl). Immunoprecipitated samples after reverse-crosslinking were analyzed by 

quantitative PCR. Primer pairs used are listed in Table 4.1. 

Table 4.1: Primers used for ChIP-qPCR analysis 

Gene Forward primer Reverse Primer 

Ahcy13 CGAAGCCCAGCTACAAAGTC AATAGATGCAATTCACCCGC 

MS (CG10623) CGGAAAACGTACAGCAGTGA GCATTTGACCAGAATTGGCT 

Sam-S CCACACCTCCACCGTCTACT CCTCTGTTCAAGTCGTGCAA 

Pyk GACGACGCTTTCAGCGAT TTTGAAGCTCGGGTCTGC 

Jumu GCGACTTCGAATACGAGACC GCCGTGATCTCTGCACTTTT 

Lea TGAATTTCGCTTTCGTTGGT CAATTAAGGAGGCGAAACGA 

Sli AAACACCGCTAATCCAATCG AGAAAAGCGCAAAAGTCGAA 

Ds TGCCAACCATCCTAACGG CTGTGGAGGACACAGGGG 

 

Gene expression analysis by RT-PCR 

Total RNA was isolated from 1 x 107 cells using the RNAeasy kit (Qiagen). cDNA 

was prepared from the isolated RNA using random hexamers and the ImProm-II Reverse 
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Transcription Kit (Promega). cDNA was analyzed by quantitative PCR using gene specific 

primers listed in Table 4.2. Relative fold change in gene expression was calculated by the 

2-DDCT method (Livak and Schmittgen, 2001). Dmn was used as a normalizer.  

Table 4.2: Primers used for RT-qPCR analysis 

Gene Forward primer Reverse primer 

Ahcy13 AGACCTTGGTCTTCCCCG GACACCGGTGGTCGTCTC 

MS 

(CG10623) 

TCCAAAGTCGGAAGGCTG GGCCACTTTGGTAAGCGA 

Sam-S AAACTTTGACCTCAGGCCC CGCTGGTATATCGGCTGG 

Pyk GGCTCCGGCTTCACAA TTCCTGAGCGGCAGAATTTATT 

Jumu AGGAGATGCTGAACGTGGAC TCGCGGATATAGCTTCCAGT 

Lea TGAATTTCGCTTTCGTTGGT CAATTAAGGAGGCGAAACGA 

Sli AAACACCGCTAATCCAATCG AGAAAAGCGCAAAAGTCGAA 

Reph CTGATGGTGGAGAACCGC TTTGGCTTGAATGCCTCC 

Dmn GACAAGTTGAGCCGCCGCCTTAC CTTGGTGCTTAGATGACGCA 

 

Nuclear fraction extraction and immunoprecipitation 

Nuclear fraction extraction was performed as described in Chapter 3. 

Immunoprecipitation was carried out using anti-HA agarose beads (40 µl) and anti-Flag 

resin (40 µl). The protein extracts were analyzed by western blotting. 
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Western blotting 

Western blotting was performed as described in Chapter 2. Primary antibodies 

used for analysis are as follows: anti-HA (1:6000), anti-SIN3 PAN (1:2000), anti-RPD3 

(1:3000), anti-Caf1-p55 (1:3000, Abcam). 

Statistical Analyses 

All significance values were calculated by the unpaired two sample Student’s t test 

using GraphPad (https://www.graphpad.com/quickcalcs/ttest1/?Format=SEM) as 

described in Chapter 2. 

Results and Discussion 

To understand the functional differences between the SIN3 isoform specific 

complexes, we first analyzed the role of dKDM5/LID and Caf1-p55 in the SIN3 220 

complex. Co-immunoprecipitation (Co-IP) assays in S2 cells and immunoprecipitation 

(IP) following bacterial expression has shown that Caf1-p55 can directly interact with the 

Uni-C (Saha, 2017). To determine whether dKDM5/LID can interact with the Uni-C, we 

transiently transfected a construct encoding HA-tagged Uni-C (Uni-C HA) into S2 cells 

carrying a HA/Flag-tag lid encoding transgene (LID-HA cells). Mock transfected LID-HA 

cells were used as a control. The expression of the transgenes was induced by addition 

of CuSO4 and Co-IP was performed using anti-Flag resin. The immunoprecipitates were 

analyzed by western blotting using HA, SIN3 and RPD3 antibodies. A clear signal for Uni-

C HA in whole cell extracts obtained from transfected cells, but not from mock transfected 

cells, indicated successful transient transfection (Figure 4.1). No signal, however, was 

obtained for the immunoprecipitate suggesting that dKDM5/LID does not interact with the 

unique C-terminus of SIN3 220. Consistent with published data, endogenous SIN3 and 
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RPD3 immunoprecipitated with dKDM5/LID and served as a positive control for the Co-

IP assay (Gajan et al., 2016). Although we did not observe an interaction of dKDM5/LID 

with the Uni-C it is possible that dKDM5/LID interacts with this region in the context of the 

full-length SIN3 220 protein.  

 Another possibility is that dKDM5/LID interacts with SIN3 220 through Caf1-p55. 

The dKDM5/LID protein contains multiple conserved domains, namely, Jumonji C (JmjC), 

JmjN, ARID (A/T rich interaction domain), C5HC2 zinc finger and three PHD motifs (plant 

homeobox domain). The third PHD domain (PHD3) of dKDM5/LID is essential for 

development in Drosophila (Li et al., 2010). Additionally, it recognizes and binds to di- 

and trimethylated lysine 4 of histone H3 and possibly aids in the recruitment of dMyc to 

these methylated regions. We hypothesized that the dKDM5/LID PHD3 domain may also 

be important for its interaction with SIN3 and Caf1-p55. To address this hypothesis, we 

 
 
Figure 4.1. dKDM5/LID does not interact with the unique C-terminus of SIN3 220. 
Co-immunoprecipitation assays were performed using extracts prepared from LID-
Flag/HA cells that were transiently transfected with Uni-C HA or mock transfected. The 
extracts were incubated with anti-Flag resin. Samples were analyzed by Western 
blotting. Whole cell extract (WCE), nuclear extract (NE) and immunoprecipitate (IP) were 
probed with HA, SIN3 and RPD3 antibodies. 
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used a stable cell line expressing a transgene encoding a HA-tagged LID protein that 

lacks the PHD3 domain (LID-HADPHD3). We performed Co-IP assays in LID-HA and 

LID-HADPHD3 cells using anti-HA resin. The immunoprecipitates were analyzed by 

western blotting using antibodies against HA, SIN3 and Caf1-p55. The loss of the PHD3 

domain did not significantly alter co-immunoprecipitation of either endogenous SIN3 or 

Caf1-p55 with dKDM5/LID, suggesting that this domain is not important for interaction 

with these proteins (Figure 4.2). Further analysis can be conducted by eliminating other 

conserved protein interaction domains of dKDM5/LID to assess their requirement for 

interaction with SIN3 or Caf1-p55. 

 

 

 

 

 
 
Figure 4.2. PHD3 domain of dKDM5/LID is not required for interaction with SIN3 
220 and Caf1-p55. Co-immunoprecipitation assays were performed using extracts 
prepared from LID-HA and LID-HA△PHD3 cells. The extracts were incubated anti-HA 
agarose beads. Samples were analyzed by Western blotting. Whole cell extract 
(WCE), nuclear extract (NE) and immunoprecipitate (IP) were probed with HA, SIN3 
and Caf1-p55 antibodies. 
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Next, we analyzed the role of dKDM5/LID in the histone modification activity of the 

SIN3 complex. dKDM5/LID is a histone demethylase and does not possess any catalytic 

activity towards the histone acetylation mark (Eissenberg et al., 2007; Lee et al., 2007; 

Secombe et al., 2007). An alteration in H3K9Ac however, was observed upon lid 

knockdown at two LID regulated genes, Sesn and ssdp, although the change was not 

statistically significant (Gajan et al., 2016). To further examine the effect of lid knockdown 

on histone acetylation marks regulated by RPD3, we performed ChIP-qPCR using 

antibodies against H3K9Ac, H3K14Ac and H3K27Ac in S2 cells treated with dsRNA 

against lid (Kurdistani et al., Tie et al., 2009; 2002; Spain et al., 2010). Efficient knockdown 

 
 
Figure 4.3. Loss of dKDM5/LID increases the level of H3K4me3 mark. A) RT-PCR 
analysis was performed to confirm lid knockdown in S2 cells. Taf-1 was used as a 
loading control B) ChIP-qPCR analysis was performed post lid knockdown using anti-
H3K4me3. Percent input signal obtained was normalized to H3C. Fold change relative 
GFP RNAi was plotted. The results are the average of three biological independent 
replicates. Error bars represent standard error of the mean. 
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of lid was verified by assessing the transcript level using standard RT-PCR (Figure 4.3A). 

S2 cells treated with dsRNA against GFP were used as a control. Since LID is a histone 

demethylase, ChIP-qPCR was also performed using anti-H3K4me3 as a positive control. 

We expect that lid RNAi should result in an increase in the level of H3K4me3 at target 

genes. IgG was used as a non-specific control. We tested five genes namely, Ahcy13 

(Adenosylhomocysteinase), AlphaTub84B (a-Tubulin at 84B), Kraken, Lea/Robo2 

(Roundabout 2) and Sli (Slit) that were previously determined to be regulated by both 

SIN3 and dKDM5/LID (Gajan et al., 2016). Knockdown of lid lead to a noticeable although 

statistically insignificant increase in the level of H3K4me3, which is consistent with 

published data (Figure 4.3B) (Gajan et al., 2016). Interestingly, lid RNAi caused a modest 

yet statistically significant increase in the H3K9Ac mark at four of the five genes tested 

(Figure 4.4A). Alteration in the pattern of H3K14Ac and H3K27Ac was also observed upon 

lid knockdown (Figure 4.4B, C). These data suggest that dKDM5/LID impacts the level of 

histone acetylation at target genes possibly by influencing either the recruitment or activity 

of RPD3. Further analysis is required to provide evidence in support of this hypothesis.  
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Figure 4.4. Loss of dKDM5/LID impacts histone acetylation patterns. ChIP-
qPCR analysis was performed post lid knockdown using anti-H3K9Ac (A), anti-
H3K14Ac (B) and anti-H3K27Ac (C). Percent input signal obtained was normalized 
to H3C. Fold change relative to GFP RNAi was plotted. The results are the average 
of three biological independent replicates. Error bars represent standard error of the 
mean. .*, p <0.05, **, p < 0.01. 
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dKDM5/LID and Caf1-p55 regulate expression of a subset of SIN3 target genes 

(Gajan et al., 2016; Saha, 2017). We therefore asked whether dKDM5/LID and Caf1-p55 

function coordinately in the SIN3 complex. For this study, we chose gene targets from 

two GO categories, metabolism and neuron development, that are enriched in genes 

regulated by both SIN3 isoforms (Saha et al., 2016). According to Flybase, Sam-S (S-

adenosylmethionine (SAM) synthetase), Ahcy13 and CG10623 ((MS) Methionine 

synthase) are Drosophila genes likely involved in methionine metabolism 

(http://flybase.org/). SIN3 regulates the level of H3K9Ac and H3K4me3 at the promoters 

of these methionine metabolic genes and consequently their level of expression (Liu et 

al., 2016). Pyk (Pyruvate kinase) encodes a key enzyme in glucose metabolism and its 

expression is increased upon loss of SIN3 (Pile et al., 2003). Jumu (Jumeau) is a 

transcriptional regulator that regulates dendrite morphogenesis in Drosophila (Parrish et 

al., 2006). Sli and Lea/Robo2 are key players in the process of axon guidance (Kidd et 

al., 1999; Rajgopalan et al., 2000; Simpson et al., 2000). Jumu, Sli and Lea are direct 

SIN3 targets and their transcription is activated by SIN3 (Saha et al., 2016). To analyze 

the effect of dKDM5/LID and Caf1-p55 on the expression of these SIN3 targets, we 

performed individual and double knockdown of lid and Caf1-55 in S2 cells. GFP RNAi 

was used as a non-specific control. Total RNA was isolated from these cells, converted 

to cDNA and analyzed by qPCR using gene specific primers. Efficient knockdown of lid 

and Caf1-55, individual as well as double knockdown was confirmed by standard RT-

Figure 4.5. dKDM5/LID and Caf1-p55 may act through separate pathways to 
regulate SIN3 gene expression. RT-qPCR analysis was performed in S2 cells treated 
with dsRNA against lid and Caf1-55, individually and in combination. GFP RNAi was used 
as a non-specific control. Dmn was used as a control for normalizing transcript levels. 
The results are the average of three biological independent replicates. Error bars 
represent standard error of the mean. 
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PCR (Figure 4.5A). The reduction of dKDM5/LID and Caf1-p55 individually, resulted in 

the downregulation of Pyk and Jumu (Figure 4.5B). Double knockdown of lid and Caf1-

55 at these genes did not exhibit an additive effect. Conversely, the individual loss of 

dKDM5/LID and Caf1-p55 exhibits opposing effects on the expression of Ahcy13, Sam-

S, MS, Lea and Sli (Figure 4.5B). Reduction in the level of both dKDM5/LID and Caf1-

p55 by RNAi results in either an intermediate effect relative to the individual knockdown 

(Ahcy13, Sam-S) or follows the trend of the individual knockdowns (MS, Lea, Sli). This 

suggests that dKDM5/LID and Caf1-p55 may regulate the expression of a subset of SIN3 

gene targets by distinct mechanisms.  

The SIN3 187 complex does not contain dKDM5/LID or Caf1-p55. It is therefore 

possible that when the SIN3 187 complex is recruited to SIN3 target genes instead of the 

SIN3 220 complex, it results in gene expression changes that are similar to those 

observed upon double knockdown of lid and Caf1-55. To address this possibility, we took 

advantage of the interplay between SIN3 isoforms that was described in Chapter 2. 

Drosophila S2 cells predominantly express the SIN3 220 isoform, and therefore SIN3 

target genes are bound by the SIN3 220 complex in S2 cells (Saha et al., 2016). As 

demonstrated in Chapter 2, when SIN3 187 is overexpressed, the endogenous SIN3 220 

protein is rapidly degraded through the proteasome. Since the level of endogenous SIN3 

220 is drastically reduced, we hypothesized that the SIN3 187 complex replaces the SIN3 

220 complex at SIN3 regulated genes. This provided us with an experimental system 

wherein the two cell types S2 and SIN3 187HA exhibit the presence of distinct SIN3 

isoforms, enabling us to analyze the differences in gene transcription in the presence of 

different SIN3 isoform specific complexes. To analyze changes in gene expression, we 
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studied the same metabolic and developmental genes as mentioned above. To verify 

localization of SIN3 187 at these genes, we performed chromatin immunoprecipitation 

followed by quantitative PCR (ChIP-qPCR) in SIN3 187HA cells. As demonstrated in 

Chapter 2, induction of SIN3 187HA in these cells substantially decreased the level of 

endogenous SIN3 as compared to S2 cells (Figure 4.6A). Chromatin was prepared from 

S2 cells and SIN3 187HA cells and immunoprecipitated using anti-HA agarose beads.  

S2 cells serve as a non-specific control since they do not express any HA-tagged protein. 

qPCR analysis of immunoprecipitated DNA using gene specific primers confirms that 

SIN3 187HA binds to all the gene targets mentioned above and does not bind to the 

intronic region of ds, which serves as the negative control (Figure 4.6B).  
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After verification of SIN3 187HA binding to specific gene targets, we analyzed the 

expression pattern of these genes in S2 and SIN3 187HA cells. RNA was isolated from 

S2 and SIN3 187HA cells after 48 hour induction by CuSO4. RNA obtained from these 

cells was then converted to cDNA and analyzed by qPCR using gene specific primers. 

All the metabolic genes tested, Ahcy13, Sam-S, and Pyk, with the exception of MS were 

significantly upregulated in SIN3 187HA cells as compared to S2 cells (Figure 4.7). 

Among the genes important for neuronal development, Lea and Sli exhibit several fold 

 
Figure 4.6. Verification of SIN3 187HA binding to SIN3 gene targets. A) Western 
blotting analysis of proteins isolated from S2 and SIN3 187HA cells after 48 hour 
induction with CuSO4. Protein extracts were probed with SIN3 and HA antibodies. Actin 
was used as a loading control. B) ChIP-qPCR analysis was performed in S2 and SIN3 
187HA cells using anti-HA agarose beads. S2 cells serve as a non-specific control. The 
results are the average of three biological independent replicates. Error bars represent 
standard error of mean.  
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higher expression in SIN3 187HA cells relative to S2 cells (Figure 4.7). This suggests that 

recruitment of the SIN3 187 complex instead of the SIN3 220 complex can alter the gene 

expression pattern of a subset of SIN3 target genes. Further, comparison of gene 

expression changes in SIN3 187HA cells to those observed upon loss of LID and Caf1-

p55 did not exhibit similar patterns, with the exception of Sli. (Figure 4.5, Figure 4.7). This 

suggests that differential gene expression in SIN3 187HA cells relative to S2 cells is not 

merely due to the absence of dKDM5/LID and Caf1-p55 in the SIN3 187 complex. It is 

possible that dKDM5/LID and Caf1-p55 play a role in the regulation of a subset of SIN3 

target genes, such as Sli. Analyzing a larger number of genes involved in different 

biological pathways may help us identify the cellular context wherein binding of the SIN3 

187HA complex mimics the loss of dKDM5/LID and Caf1-p55. 

 

 
Figure 4.7. Binding of SIN3 187 complex to target genes in place of the SIN3 220 
complex results in differential gene expression. RT-qPCR analysis was performed 
in S2 and SIN3 187HA cells using gene specific primers. Dmn was used as a control 
for normalizing transcript levels. The results are the average of three biological 
independent replicates. Error bars represent standard error of the mean. *, p <0.05, **, 
p < 0.01, ***, p < 0.001. 
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Additionally, as demonstrated above, loss of dKDM5/LID impacts the pattern of 

histone acetylation marks at targeted genomic loci. To further analyze the functional 

differences between the SIN3 isoform specific complexes, we asked whether the absence 

dKDM5/LID in the SIN3 187 complex results in the establishment of differential histone 

modification patterns at target genes by this complex. Chromatin was prepared from S2 

and SIN3 187HA cells and ChIP was performed using antibodies against H3K4me3, 

H3K9Ac and H3K14Ac histone marks. These histone modifications were analyzed 

because dKDM5/LID specifically demethylates the H3K4me3 mark and the SIN3 187 

complex alters global levels of H3K9Ac and H3K14Ac (Eissenberg et al., 2007; Lee et al., 

2007; Secombe et al., 2007; Spain et al., 2010). The percent input signal for each histone 

modification was normalized to H3C. IgG was used as a non-specific ChIP control. The 

SIN3 187 complex establishes a distinct histone modification pattern at a subset of SIN3 

target genes (Figure 4.8).  

Four out of the seven genes tested in this study, namely, Sam-S, Pyk, Lea and Sli, 

show an increase in the level of H3K4me3 following induction of SIN3 187HA (Figure 

4.8A). An increase in the H3K4me3 mark is consistent with the loss of the histone 

demethylase dKDM5/LID, which is predicted if dKDM5 is recruited by the SIN3 220 

complex.  The gene MS, however, exhibits a significant decrease in H3K4me3, 

suggesting that the differences in the level of histone methylation at SIN3 target genes 

upon SIN3 187 binding cannot solely be attributed to the absence of dKDM5/LID in the 

complex. Analysis of histone acetylation at H3K9 and H3K14 positions in SIN3 187HA 

cells reveals alteration in the level of these marks relative to S2 cells at a subset of gene 

targets (Figure 4.8B, C). Ahcy13, Sam-S, Pyk and Jumu do not exhibit any significant 
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changes in the level of H3K9Ac at their promoters. Like the H3K4me3 mark, there is a 

significant decrease in the level of H3K9Ac at the MS gene promoter. Reduction in the 

level of two active histone marks, H3K4me3 and H3K9Ac, however, does not cause a 

substantial decrease in the expression of MS, indicating that other factors may play a role 

in maintaining the appropriate expression of MS in the cell (Figure 4.7). The change in 

gene expression for Lea and Sli, on the other hand, is consistent with the histone 

modification changes. There is a highly significant increase in the level of H3K4me3 and 

H3K9Ac at Lea and Sli, which correlates with the several fold upregulation of transcription 

of these genes (Figure 4.7). Although not statistically significant, there is also an increase 

in level of H3K14Ac that may contribute to the activation of expression of Lea and Sli. 

This is interesting because Lea and Sli are key players in neuron development. It is 

possible that the switch in SIN3 isoforms from SIN3 220 to SIN3 187 during 

embryogenesis occurs to alter the pattern of histone modification at specific 

developmental genes ensuring appropriate level of expression of these genes. More 

genes important for embryonic and post-embryonic development need to be tested to 

provide further evidence to support this hypothesis. The change in the level of H3K14Ac 

at the genes tested upon SIN3 187 binding is not statistically significant, except at Jumu. 

It is, however, possible that this change may be biologically significant by recruiting 

chromatin associated factors that can recognize and bind this histone mark.  
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Figure 4.8. Binding of SIN3 187 complex to target genes in place of the SIN3 220 
complex results in differential histone modification patterns. ChIP-qPCR analysis 
was performed in S2 and SIN3 187HA cells using anti-H3K4me3 (A) anti-H3K9Ac (B) 
and anti-H3K14Ac (C). Percent input signal obtained was normalized to H3C. Fold 
change relative to S2 was plotted. The results are the average of three biological 
independent replicates. Error bars represent standard error of the mean. .*, p <0.05, 
**, p < 0.01, ***, p < 0.001, ****, p < 0.0001. 
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SIN3 and dKDM5/LID play an important role in the regulation of oxidative stress 

response (Gajan et al., 2016). Since the SIN3 187 complex does not contain dKDM5/LID, 

we predicted that the SIN3 187 HA cells are more sensitive to oxidative stress as 

compared to S2 cells. We treated S2 and SIN3 187HA cells with paraquat to induce 

oxidative stress. Cell survival was determined after 24 hour paraquat treatment. SIN3 

187HA cells exhibit lower survival as compared to S2 cells (Figure 4.9A). We also 

analyzed the expression pattern of three genes, Sam-S, Jumu and Reph (Regulator of 

eph expression) that are regulated by SIN3 and dKDM5/LID under oxidative stress 

conditions (Gajan et al., 2016). Sam-S is upregulated, whereas Jumu and Reph are 

downregulated upon Sin3A and lid double knockdown in S2 cells under oxidative stress 

 
Figure 4.9. SIN3 187HA cells are more sensitive to oxidative stress relative to 
S2 cells and exhibit differential gene expression. A) S2 and SIN3 187HA cells 
were treated with paraquat for 24 hours post induction by CuSO4. Percent cell survival 
relative to untreated cells was plotted. The results are the average of three biological 
independent replicates. Error bars represent standard error of the mean. B) RT-qPCR 
analysis was performed in S2 and SIN3 187HA cells treated with paraquat for 24 
hours post induction by CuSO4. Dmn was used as a control for normalizing transcript 
levels. The results are the average of two biological independent replicates. Error bars 
represent standard deviation.  
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conditions (Gajan et al., 2016). Interestingly, when SIN3 187HA cells are subjected to 

oxidative stress, we also observe an upregulation of Sam-S and downregulation of Jumu 

and Reph (Figure 4.9B), suggesting that the SIN3 220 complex may play a crucial role 

during stress response due to the presence of dKDM5/LID in the complex. We have, 

however, tested a limited number of genes. More stress response genes need to be 

analyzed to better understand the role of SIN3 187 and SIN3 220 complexes in stress 

tolerance. 

In summary, we have demonstrated that dKDM5/LID does not interact with the 

unique C-terminus of SIN3 220 and that the PHD3 domain of dKDM5/LID is not required 

for interaction with either SIN3 220 or Caf1-p55. Loss of dKDM5/LID alters the level of 

histone acetylation at gene targets. Furthermore, dKDM5/LID and Caf1-p55 may act 

independently to regulate expression of a subset of SIN3 target genes. We have also 

shown that there is differential gene expression of specific target genes between S2 and 

SIN3 187HA cells which, predominantly express SIN3 220 and SIN3 187 isoforms, 

respectively. These differences in expression of target genes are not solely because of 

the absence of specific complex components in the SIN3 187 complex. Interestingly, the 

SIN3 187 and SIN3 220 complexes establish distinct histone modification patterns that 

may contribute to differences in gene expression and thereby differences in function 

during critical biological processes.   
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CHAPTER 5 FUTURE DIRECTIONS 

In my PhD thesis research, I have studied the regulation, stability and functional 

differences of the SIN3 isoforms in Drosophila. SIN3 is a global transcriptional regulator 

that plays a key role in several important biological processes such as cell proliferation, 

development, metabolism and cancer progression. Although SIN3 has been well studied 

for over three decades, critical questions regarding the regulation of expression and 

stability of SIN3 proteins, evolution and functional differences between SIN3 isoforms and 

mechanisms underlying the role of SIN3 in gene activation are yet to be answered. In my 

study, I have demonstrated that a feedback mechanism between the predominant SIN3 

isoforms in Drosophila may regulate the level of SIN3. Additionally, both the N and C-

terminus are important for stability and proteasomal degradation of SIN3 proteins. 

Furthermore, the SIN3 187 and SIN3 220 complexes establish distinct histone 

modification patterns at target genes that may be responsible for change in the level of 

expression of these genes and thereby the non-redundant functions performed by the 

SIN3 isoforms. Based on published literature and the current research, some important 

unanswered questions are discussed below. 

What factors are involved in alternative splicing of Sin3A gene in Drosophila?  

In this research, we have discussed the regulation of the predominant SIN3 

isoforms, SIN3 187 and SIN3 220. These isoforms are produced by alternative splicing 

of the Sin3A gene in Drosophila. The key players that are responsible for splicing the Sin3 

gene in Drosophila and other species are not known. An RNAi screen can be performed 

in Drosophila S2 cells using dsRNA against known and putative splicing factors. S2 cells 

predominantly express the SIN3 220 isoform (Sharma et al., 2008). If loss of a splicing 
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factor impacts the splicing of Sin3A gene, we may observe an accumulation of unspliced 

SIN3 transcript. Putative factors identified in this study can then be studied further by 

conducting biochemical and bioinformatic analysis. Binding of these proteins to Sin3A at 

specific locations near exon-intron boundaries using ChIP-qPCR can be analyzed. 

Additionally, the effect of loss of these factors on Drosophila embryogenesis can be 

studied. Furthermore, using bioinformatics tools homologues of these factors in other 

species and their expression pattern in distinct tissues, can be identified which will help 

us understand the splicing and thereby regulation of the SIN3 isoforms in other model 

systems.  

Which complex components influence the stability of SIN3 proteins?  

In this study, we have demonstrated that overexpression of SIN3 187 can target 

the existing SIN3 220 protein for proteasomal degradation. We hypothesize that the 

excess SIN3 187 protein sequesters common core complex components from the SIN3 

220 complex, thereby destabilizing SIN3 220 and targeting it for degradation. To identify 

complex components that may influence SIN3 220 stability, we first have to determine 

which components directly interact with SIN3. Based on experiments performed in our 

lab, we know that Caf1-p55 and ING1 directly interact with the unique C-terminal region 

of SIN3 220, whereas EMSY, SAP130, SDS3 and RPD3 do not (Saha, 2017; Moore 

2017). These studies were, however, performed using only the unique SIN3 220 C-

terminus, and the full length SIN3 protein may have additional interactions with these 

complex components.  

To identify all the protein-protein interactions within the SIN3 complex, the 

endogenous SIN3 complex could be immunopurified, followed by quantitative mass 



	 	

	

69	

	

spectrometry (MS) analysis after chemical cross-linking (Sharon et al., 2006). SIN3 

isoform specific complexes can be purified from SIN3 187HA and SIN3 220HA cells by 

affinity purification using anti-HA beads. S2 cells can be used as a control for 

immunoprecipitation to detect non-specific interactions. Comparison between the protein 

complex samples before and after cross-linking may reveal new protein bands due to 

cross-linking between complex interaction partners. New bands appearing after cross-

linking will be excised and subjected to peptide digestion and analyzed by MS/MS. This 

will capture all the protein-protein interactions within the SIN3 complex and provide 

potential candidates that may influence SIN3 stability. Additionally, since the SIN3 

complex is conserved from yeast to mammals, our study will also add to the existing 

knowledge about SIN3 complex structure in mammalian systems. This is especially 

important since several studies are targeting interaction of SIN3 with its complex 

components for therapeutic use (Hurst et al., 2008; Smith et al., 2010, Farias et al., 2010; 

Bansal et al., 2015).  

How is SIN3 targeted to the proteasome for degradation?  

We found that inhibiting the proteasome using the inhibitor MG132 stabilizes the 

SIN3 220 protein. Our attempts to detect SIN3 species that are post-translationally 

modified were without success. It is possible that post-translationally modified SIN3 is 

very unstable and gets rapidly degraded escaping detection. In an alternative approach, 

the proteins that may be involved in targeting SIN3 to the proteasome can be analyzed. 

In SIN3 187HA cells, overexpression of SIN3 187 targets SIN3 220 for degradation. 

Similarly, in SIN3 220HA cells, upon induction of the SIN3 220 transgene, excess SIN3 

protein is degraded to maintain a specific level of SIN3 in the cell. SIN3 187HA and SIN3 
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220HA cells could be treated with CuSO4 to induce the expression of the transgenes 

followed by treatment with MG132. This will result in accumulation of SIN3 proteins that 

are targeted for degradation. The endogenous SIN3 protein can then be 

immunoprecipitated along with its binding partners and subjected to quantitative mass 

spectrometry. Mass spectrometric analysis will help us identify proteins such as 

SUMO/ubiquitin E3 ligases that may post-translationally target SIN3 and target it to the 

proteasome. This study will help identify important players that may regulate the stability 

and function of SIN3.  

What is the genome-wide pattern of histone modifications established by SIN3 187 

and SIN3 220 complexes? 

We demonstrated that the SIN3 isoform specific complexes can establish different 

patterns of histone modifications at certain target genes. We have, however, tested a 

limited number of genes. To understand the complete picture of differential regulation of 

histone modifications by the SIN3 isoform specific complexes, a genome-wide analysis 

of histone post-translational modifications at all SIN3 target genes can be performed 

using ChIP-seq. Chromatin will be isolated from S2 and SIN3 187HA cells and ChIP will 

be performed using antibodies against specific histone marks namely, H3K9Ac, 

H3K14Ac, H3K27Ac and H3K4me3. H3C will be used as a normalizer and IgG as a non-

specific control. This analysis will primarily provide a detailed map of key histone 

modifications at SIN3 target genes. It will help identify the differences in the pattern of 

histone modification upon SIN3 187 recruitment in place of SIN3 220. Additionally, we 

can determine whether this differential pattern of histone marks is localized to gene 

promoters or is present throughout the gene. By combining histone modification ChIP-
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seq data with the existing RNA-seq data for SIN3 regulated genes, we can correlate 

differences in histone marks with changes in gene expression. This study will help us 

determine the true functional differences between SIN3 187 and SIN3 220 complexes.   

 There are multiple SIN3 isoforms in different species that perform non-redundant 

functions. Although the role of SIN3 in regulation of several biological processes has been 

well-studied, the exact roles of different SIN3 isoforms are not well characterized. 

Recently, researchers are focusing on understanding how SIN3 isoforms may perform 

distinct functions in important processes such as stem cell maintenance and oncogenic 

transformation (Lewis et al., 2016; Halder et al., 2017). This study and the experiments 

described in this chapter make a significant contribution towards dissecting the role of 

SIN3 isoforms in transcriptional regulation and will aid in further advancing the field of 

epigenetic regulation of cellular processes.  
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SIN3 is a global transcriptional regulator, conserved from yeast to mammals, that 

acts as a scaffold protein for a histone modifying complex. In Drosophila, a single Sin3A 

gene is alternatively spliced to produce distinct SIN3 isoforms; SIN3 220, SIN3 190 and 

SIN3 187, that differ only at their C-terminus. These isoforms are differentially expressed 

during development. We have shown that there is an interplay between the predominant 

isoforms of SIN3, SIN3 220 and SIN3 187, that possibly regulates the overall level of SIN3 

in the cell. Exogenous expression of SIN3 187 reduces the level of transcript and 

accelerates the proteasomal degradation of endogenous SIN3 220. This feedback can 

possibly ensure that the appropriate isoform is present during the correct developmental 

stage during embryogenesis. Differential expression of the SIN3 isoforms during embryo 

development suggests that they perform unique and specialized functions. The SIN3 

proteins form distinct isoform specific complexes. SIN3 187 interacts with a single 

catalytic enzyme, the HDAC RPD3, while SIN3 220 interacts with two enzymes, RPD3 

and the HDM dKDM5/LID. This differential interaction of SIN3 isoforms with distinct 
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histone modifying activities may play a role in the non-redundant functions performed by 

SIN3. Using previously published transcriptome data, we have identified common and 

unique gene targets of SIN3 and LID. In Drosophila S2 cells, knockdown of LID results in 

an increase in the level of H3K9ac, H3K14ac and H3K27ac at genes commonly regulated 

by SIN3 and LID. Since LID preferentially interacts with the SIN3 220 complex, we have 

investigated the histone modification patterns established by the SIN3 isoform specific 

complexes. We utilized Drosophila cultured cells that express either the SIN3 187 or the 

SIN3 220 complex. The SIN3 187 and SIN3 220 complexes establish distinct histone 

modification patterns at target genes and differentially regulate the expression of these 

genes. It is possible that the differential histone modification patterns and the consequent 

alteration of target gene expression contributes to the functional differences between the 

SIN3 isoforms. This work enhances our understanding of SIN3 isoform function and 

provides further insight into the molecular mechanisms of epigenetic control of gene 

expression by histone modifying complexes 
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