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CHAPTER 1 INTRODUCTION

In the early 2000’s, C. Ausoni and J. Rognes pioneered the study of the arithmetic

of ring spectra by making the first computations of iterated algebraic K-theory. In [9]

and later [8], C. Ausoni and J. Rognes computed V(1)∗K(K(∪Fqpk )p) and V(1)∗K(K(C)p)

and they showed that they are finitely generated free P(v2)-modules. Observe that since

kup ' K(C)p and `p ' K(∪Fqpk )p, these spectra detect all the powers of v1 and C. Ausoni

and J. Rognes showed V(1)∗K(K(∪Fqpk )p) and V(1)∗K(K(C)p) detect all the powers of v2.

This gives evidence for the red-shift conjecture that states, roughly, that applying algebraic

K-theory increases chromatic complexity by one.

The goal of this thesis is to continue the study of arithmetic of ring spectra in the case

of iterated algebraic K-theory of finite fields. Since due to J. F. Adams and D. Quillen,

the spectrum K(Fq)p detects the α family, one might hope that a Greek letter family one

chromatic height higher is detected in V(1)∗K(K(Fq)p). We will prove that, in fact this is

the case.

Theorem 1.1. The v2-periodic family generated by β1 in V(1)∗ is detected in V(1)∗K(K(Fq)p)

where p ≥ 5 and q is a prime power that topologically generates Z×p. Consequently, the

elements βpk+1 in the homotopy groups of spheres are detected in K(K(Fq)).

To compute algebraic K-theory of a commutative ring spectrum R, we take the approach

of Bökstedt-Hsiang-Madsen [18] and approximate it using the highly non-trivial Bökstedt

trace map to topological Hochschild homology

K(R) −→ T HH(R)
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where T HH(R) = S 1 ⊗ R is the colimit in commutative ring spectra weighted by the sim-

plicial circle [45]. Topological Hochschild homology is a linear approximation to the al-

gebraic K-theory functor in the sense of Goodwillie calculus. In Chapter 3, we describe

the results of joint work with Andrew Salch. we provide a tool for computing X• ⊗ R for

general simplicial sets X•. In Chapter 4, we compute V(1)∗T HH(K(Fq)p) using this spectral

sequence and give initial results towards S/p∗T HH(K(Fq)p):

Theorem 1.2. Let p ≥ 3 and let q be a prime power that topologically generates Z×p. There

is an isomorphism

V(1)∗T HH(K(Fq)p) � P(µ2) ⊗ Γ(σb) ⊗ Fp{1, α1, λ
′
1, α1λ2, λ

′
1λ2, α1λ

′
1λ2},

and there is an isomorphism

S/p∗T HH(K(Fq)p; `) � P(v1) ⊗ Γ(σb) ⊗ Fp{1, yn,m, y′n,m}/ ∼

where the relations ∼ and the elements yn,m are explicitly defined in Chapter 4.

The next step in the approach of Bökstedt-Hsiang-Madsen, colloquially referred to as

“trace methods," is to compute successive refinements of topological Hochschild homology

using the extra structure that it has. In particular, it has an S 1-action by acting on the first

coordinate and it is cyclotomic, which provides maps

T HH(R)Cpn
F //

R
// T HH(R)Cpn−1

referred to as the Frobenius and Restriction maps. The homotopy limit of these maps is a
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model for topological cyclic homology after p completion

TC(R)p '
(
holimF,R T HH(R)Cpn

)
p
.

As a consequence of work of B. Dundas [26], R. McCarthy [42], L. Hesselholt and I. Mad-

sen [32], if R is connective and π0R � Zp, then there is an equivalence

K(R)p
' // τ≥0TC(R)p

where τ≥0 is the connective cover functor. (For more details on trace methods see Chapter

2.)

The ultimate goal is therefore to compute V(1)∗TC(K(Fq)p), but this is beyond the scope

of the present thesis. Instead, we compute enough of V(1)∗T HH(R)hS 1
to show that already

in this approximation to V(1)∗K(K(Fq)p) periodic classes of height 2 are visible. Specifically,

in Chapter 5, we show that the v2-periodic family generated by β1 in V(1)∗ is detected in

V(1)∗T HH(K(Fq)p)hS 1
.
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CHAPTER 2 K-THEORY AND CHROMATIC HOMOTOPY THEORY

This chapter provides the necessary definitions and framework for the thesis. It does

not contain new results and the experienced reader may skip it, except for the last section,

which contains conventions that will be used in the subsequent chapters.

2.1 Algebraic K-theory

There are many different models for algebraic K-theory of strictly associative ring spec-

tra. Since the goal of this thesis to to make computations and not to prove a structural

result about algebraic K-theory, we are not concerned with a specific model. We simply

provide one here for completeness.

Definition 2.1. A Waldhausen category C is a category equipped with subcategories cofC

and wC of cofibrations and weak equivalences satisfying some axioms described explicitly

in [57]. In particular, we have a notion of cofiber sequence

A ↪→ B→ B/A

where A ↪→ B denotes an arrow in cofC .

Example 2.2. If M is a model category, then the subcategory M co f of cofibrant objects in

M forms a Waldhausen category by forgetting structure.

Definition 2.3. Let C be a small Waldhausen category, then form a simplicial Waldhausen

category S •C , whose n-th category S nC consists of objects

A0 ↪→ A1 ↪→ · · · ↪→ An
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with choices of compatible quotients Ai/Ai+1 where Ai ↪→ Ai+1 is a morphism in cofC for

all i. The morphisms of S nC are commuting diagrams. The face maps di in S •C are given

by omitting Ai and replacing the map with a composite and the degeneracy maps si are

given by inserting the identity in the i-th position. We then define the zero-th space of the

algebraic K-theory spectrum as

K(C )0 := Ω|wS •C |

and the Ω-spectrum K(C ) is the sequence

{Ω|wS •C |, |wS •C |, |wS (2)
• C |, |wS (3)

• C |, . . . }

where S (n)
• C is the n-th iterate of the S • construction S •(. . . (S •C )).

Example 2.4. If R is a commutative ring spectrum (or more generally a strictly associative

ring spectrum) let f cModR be the category of finite cell (left) R-modules and cellular maps.

We define

K(R) := K( f cModco f
R )

In particular, due to Gillet-Waldhausen [58, Chpt. V. Thm. 2.2] and Elmendorf-Kriz-

Mandell-May [28, Thm. 4.3], we can identify K(HA) where A is a ring and H is the

Eilenberg-Maclane functor with Quillen’s definition of K(A).

2.2 Algebraic K-theory of finite fields and Waldhausen’s program

Let p be a prime such that p ≥ 3 and let q be a prime power that topologically generates

Z×p, which denotes the units in the p-adic integers. Under these conditions, we claim that
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there are equivalences

jp ' K(Fq)p ' τ≥0LK(1)S

where τ≥0 indicates the connective cover functor; hence, these spectra are all different

models for the same commutative ring spectrum. Due to Quillen [50], there is a fiber

sequence

K(Fq)p
// K(Fq)p

F−1 // K(Fq)≥2
p

where R≥2 is the fiber of the map R → Hπ0R for a connective ring spectrum R and F is the

map induced by the Frobenius map on Fq. Quillen [50] showed that this fiber sequence is

homotopy equivalent to the fiber sequence

jp
// kup

ψq−1 // ku≥2
p

of Adams where ku is connective complex K-theory and jp is the odd primary p-completion

of the image of J spectrum. There is also a map of fiber sequences

jp
//

��

kup
ψq−1 //

��

kup[2,∞)

��
LK(1)S // KUp

ψq−1 // KUp

which exhibits jp, and hence K(Fq)p, as the connective cover of LK(1)S . The bottom fiber

sequence is due to Devinatz-Hopkins [23]. It follows because when q topologically gen-

erates Z×p � G1, the fiber of ψq − 1 is a model for the homotopy fixed points KUhG1
p , which

Devinatz-Hopkins [23] showed is weakly equivalent to LK(1)S .
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This means that our computations of approximations to K(K(Fq)p) are also approxima-

tions to K(τ≥0LK(1)S ) ' K((τ≥0LE(1)S )p). This algebraic K-theory of the connective covers of

the E(n)-localizations of the sphere fit into a tower

K(S (p))→ . . .K(τ≥0LE(2)S )→ K(τ≥0LE(1)S )→ K(Z(p)),

which McClure-Staffledt [44] proved “converges" in the sense that

K(S (p)) ' holimK(τ≥0LE(n)S )).

Waldhausen first suggested studying this tower and it’s non-connective version

K(S (p))→ . . .K(LE(2)S )→ K(LE(1)S )→ K(Q).

as an approach to computing K(S (p)) [56]. Waldhausen’s idea was to study the localization

sequences

K({finite E(n)-acyclic τ≥0LE(n)S −modules})→ K(τ≥0LE(n)S )→ K(LE(n)S )

and

K({finite E(n)-acyclic LE(n+1)S −modules})→ K(LE(n+1)S )→ K(LE(n)S )

to build up the tower, but there are two problems with this: 1) For his localization se-

quences, Waldhausen assumed the telescope conjecture LE(n) = L f
E(n) where L f

E(n) is the
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finite localization, which is now widely believed to be false for n > 1, and 2) the fibers

K({finite En-acyclic τ≥0LE(n)S − modules}) are not known to be K(R) for some connective

ring spectrum R, so they are not approachable using trace methods. In spite of these short-

comings, we believe that Waldhausen’s program is interesting to study in its own right and

it may still shed light on algebraic K-theory of the sphere spectrum.

2.3 Chromatic height in stable homotopy theory

Recall that a finite spectrum (finite cell S -module) V is said to have type n if K(n)∗V , 0,

but K(n − 1)∗V = 0, where K(n)∗ are cohomology theories, called Morava K-theory theo-

ries, with coefficients K(n)∗ � Fp[v±1
n ] where |vn| = 2pn − 2. By the influential work of

Devinatz-Hopkins-Smith [24] and Hopkins-Smith [33] these Morava K-theories can be

used to detect a vast amount of information about the category F of finite p-local spectra.

Theorem 2.5 (Devinatz-Hopkins-Smith [24], Hopkins-Smith [33]). We summarize three

major theorems of the authors:

• The thick subcategories of F are classified by the filtration

0 ⊂ · · · ⊂ Cn ⊂ . . . C1 ⊂ C0 = F

where Cn is the full subcategory of K(n − 1)∗ acyclic finite p-local spectra; i.e. every

thick subcategory of F is of the form Cn for some n.

• If V ∈ Cn, then V admits a periodic vn-self map

vk
n : Σ(2pn−2)kV → V;
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i.e. no composite

(vk
n)◦n : Σ(2pn−2)knV → Σ(2pn−2)k(n−1)V → · · · → V

is null homotopic.

• A map f : ΣdW → W is nilpotent, some composite of it with itself is null-homotopic,

if and only if K(n)∗ f is nilpotent for all 0 ≤ n < ∞.

Since the notion of chromatic height referred to as type is used for finite spectra, we

would like a notion of chromatic height that works well for spectra that are not finite spec-

tra, and following Baas-Dundas-Rognes, we use the thick subcategory theorem of Devinatz-

Hopkins-Smith to define this notion of height.

Definition 2.6 (Baas-Dundas-Rognes [11]). We say a spectrum X has telescopic complexity

n if the thick subcategory TX of F , consisting of spectra V such that

V ∧ X → v−1
n V ∧ X

induces an isomorphism in homotopy groups πk for k sufficiently large, is equal to Cn.

2.4 Red-shift conjectures

Using the notion of telescopic complexity, we may describe two different versions of

the red-shift conjecture.

Conjecture 2.7 (Ausoni-Rognes [1]). Suppose R is a (suitably finite) K(n)-local spectrum

(for example LK(n)S → R is a G-galois extension for some, possibly pro-finite, group G),

then K(R) has telescopic complexity n + 1.
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We view this conjecture as an extension of the Lichtenbaum-Quillen conjecture to

higher chromatic heights. In particular, the Lichtenbaum-Quillen conjecture may be phrased

as the statement that for nice enough regular rings F with 1
p ∈ F the map

S/p∗K(F)→ v−1
1 S/p∗K(F)

induces an isomorphism in sufficiently high degrees (see Waldhausen [56]).

The version of the red-shift conjecture above, however, only takes non-connective spec-

tra as input. Ausoni and Rognes were able to prove it in the case R = KUp, p complete

periodic complex K-theory, where LK(1)S → KUp is a G1-galois extension and G1 is the

first Morava stabilizer group. They do this using the localization sequence of Blumberg-

Mandell [16]

V(1)∗K(Zp)→ V(1)∗K(ku)→ V(1)∗K(KU).

Since they showed that V(1)∗K(ku) is a finitely generated P(v2)-module, and the, now

proven, Lichtenbaum-Quillen conjecture implies that K∗(Zp) has telescopic complexity 1,

they can show that K(KU) has the same telescopic complexity as K(ku). This is account

is a bit anachronistic since the Lichtenbaum-Quillen conjecture and the existence of such

a localizations sequence were proven after the computation of Ausoni-Rognes. This ap-

proach does not work as well in the case of K(K(Fq)p) ' K(τ≥0LK(1)S ), since the localization

sequence associated to the map K(τ≥0LK(1)S ) → K(LK(1)S ) is not known to have algebraic

K-theory of a connective spectrum as its fiber.

In the connective case, we may formulate the red-shift conjecture as follows.
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Conjecture 2.8 (Barwick [12]). If R has telescopic complexity n, then
m︷  ︸︸  ︷

K(. . .K(R)) has

telescopic complexity n + m.

Barwick described this form of the conjecture for R = C in a talk at MSRI in 2014 and it

appears in [12]. The only cases where it is known for R = C are the cases where n = 0 and

m = 0, 1, by work of Ausoni [8], since K(C)p ' kup. The conjecture is known in the case

R = Fq when n = 0, and m = 1 since K(Fq)p ' jp, and the author is currently in studying the

possible validity of the conjecture for m = 2 as well.

We propose a third version of this conjecture, which is in the same spirit of the red-shift

conjecture.

Conjecture 2.9. If R detects a n-th Greek letter family, then V∗K(R) detects a vn+1-periodic

family generated by the n + 1-st Greek letter element α(n+1)
1 for some type n + 1 spectrum V.

We will make this statement more precise in the next section. The reason we propose

this version of the conjecture is two-fold:

1. The calculations in this thesis suggest that, in our main case of interest, K(K(Fq)p)

actually does not have telescopic complexity 2, even though HFq certainly has tele-

scopic complexity 0 and K(Fq)p certainly has telescopic complexity 1. Unfortunately,

this remains speculation at this time.

2. The spectrum K(Fq) detects the α-family, the first greek letter family, and the main

theorem of this thesis is that V(1)∗K(K(Fq)) detects the v2-periodic family generated

by β1 in V(1)∗. To the author’s knowledge, this is the first evidence for Conjecture 2.9

for n = 1.
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2.5 Greek letter family elements

We will now discuss what is meant by the “n-th Greek letter family" and the “vn-periodic

family generated by the n-th Greek letter element α(n)
1 " in the stable homotopy groups of

spheres. At primes p ≥ 3, the first Greek letter family is the α family, which Adams studied

in [2]. To produce the α family, we note that at primes p ≥ 3, the mod p Moore spectrum

S/p has a periodic v1-self map Σ2p−2S/p → S/p and by mapping into the bottom cell, then

composing this map with itself, and projecting onto the top cell, we may form αk; i.e. the

composite

αk : Σ(2p−2)kS
i0 // Σ(2p−2)kS/p

v◦k1 // S/p
δ0 // ΣS .

One may show that in fact this composite is not null-homotopic and therefore produces

a family of elements in the stable homotopy groups of spheres αk ∈ π∗S . We say a ring

spectrum R “detects the α family" if the classes αk have non-trivial image in π∗R under the

unit map π∗S → π∗R.

Now let p ≥ 5, then the cofiber of v1, V(1), admits a v2-self map and we can construct

the β-family

βk : Σ(2p2−2)kS
i0 // Σ(2p2−2)kS/p

i1 // Σ(2p2−2)kV(1)
v2 // . . .

v2 // V(1)
δ1 // S/p

δ0 // S 0,

which was proven non-trivial by L. Smith [55]. By examining the long exact sequences in

homotopy produced by the cofiber sequences

S p
p // S p

i0 // S/p
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and

Σ2p−2S/p
v1 // S/p

i1 // V(1)

we see that β1 ∈ π2p2−2p−2S maps non-trivially to 0 , i0i1β1 ∈ π2p2−2p−2V(1). The class β1

also maps non-trivially under the map π2p2−2p−2S → π2p2−2p−2LK(1)V(1) to the class called

−g1 (See [48, Lem. 5.4] and [51]). Since v2 ∈ π∗V(1) maps to v2 ∈ LK(2)V(1) and in

π2p2−2p−2LK(1)V(1) the class −g1 is v2-periodic, the classes β1vk
2 are non-trivial elements in

V(1)∗. These are the classes that we refer to as a “v2-periodic family generated by β1."

One may want to know how the “v2-periodic family generated by β1" relates to the β-

family itself. Due to Ravenel [51], we may define the Greek letter elements in the Adams-

Novikov spectral sequence α(n)
t ∈ En,∗

2 algebraically to be the elements δnδn−1 . . . δ0(vt
n) where

δm : ExtBP∗BP(BP∗, BP∗/(p, . . . vm))→ ExtBP∗BP(BP∗, BP∗/(p, . . . vm−1)

One can show, by computing δ0δ1vt
2 that βt is represented by

(
t
2

)
vt−2

2 k0 + tvt−1
2 b1,0 mod (p, v1)

in the Adams-Novikov spectral sequence where

b1,0 =
∑

0<i<p

1
p

(
p
i

)
ti
1 ⊗ tp−1

1

and

k0 = 2tp
1 ⊗ t2 − 2tp

1 ⊗ t1+p
1 − t2p

1 ⊗ t1.
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Notice that when t ≡ 1 mod (p) then
(

t
2

)
=

(
1
2

)(
k1
0

)
. . .

(
kn
0

)
= 0 where t = 1 + k1 p + . . . kn pn

by Lucas’s theorem and therefore βt is represented by vt−1
2 b1,0 modulo p. Hence, when

we detect the v2-periodic family generated by β1, we are detecting the spherical elements

βt ∈ π∗S for t ≡ 1 mod (p). The remaining classes project onto the top cell

π∗V(1)→ π∗Σ
2pS

to the classes β1βk where k . 0 mod (p).

2.6 Trace methods

The goal of this thesis is to give a close enough approximation of K(KFq)p) to detect

periodic information of higher chromatic height. The approach we take was initiated by

Bökstedt-Hsiang-Madsen [18] in the early 1990’s. At that time, it was known that algebraic

K-theory of rings was equipped with a non-trivial trace map

Kk(R)→ HHk(R)

where HHk(R) = πk|Barcyc
⊗ (R)| or equivalently the homology of the alternating sign chain

complex of the simplicial ring Barcyc
⊗ (R) by the Dold-Kan correspondence. The map is

defined as a composite where the last map is the map induced by the trace map

HHk(Mn(R)) � // HHk(R)
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which is an isomorphism since HH∗ is Morita invariant. Bökstedt first constructed a version

of this for ring spectra using functors with smash product (FSP’s) to model spectra, since

at the time there was not a good symmetric monoidal model category for spectra. There

are now several models for symmetric monoidal model categories for spectra including

S -modules [28], symmetric spectra [34], orthogonal spectra [39], and Γ-spaces [38] and

these model categories have been unified in the sense that there are Quillen equivalences

between all of them [40]. We can therefore define, for a strictly associative ring spectrum

R

T HHk(R) = πk|Barcyc
∧ (R)|

When R is a commutative ring spectrum (a commutative monoid in a symmetric monoidal

model category for spectra), we can describe this construction as a simplicial tensoring

T HHk(R) = πk(S 1 ⊗ R)

due to McClure-Schwanzl-Vogt [43] and this will be our approach in Chapter 3. From this

description, it is clear S 1 acts on S 1 ⊗ R by acting on the first coordinate and hence C also

acts on S 1⊗R for any finite subgroup C ⊂ S 1. Using Bökstedt’s model or the norm model for

THH [5], we can also construct T HH(R) as a genuine C-equivariant spectrum for any finite

subgroup C of S 1. The spectrum T HH(R) also has the structure of a cyclotomic spectrum,

which means that there are compatible maps of S 1-spectra

ρ#
CΦC(T HH(R))→ T HH(R)



16

for each finite subgroup C ⊂ S 1, where φC(T HH(R)) has an S 1-action by pulling back along

the isomorphism ρC : S 1 → S 1/C. Together these properties allow us to construct the

isotropy separation diagram, which is sometimes called the Norm-Restriction diagram for

THH,

T HH(R)hCpn
//

��

T HH(R)Cpn R //

��

T HH(R)Cpn−1

��
T HH(R)hCpn

// T HH(R)hCpn // T HH(R)tCpn

A key feature of this diagram is that the homotopy fixed points, homotopy orbits, and Tate

fixed points can be computed using spectral sequences, so by computing T HH(R) you can,

potentially, compute T HH(R)Cpn inductively.

Now if we write F : T HH(R)Cpn → T HH(R)Cpn−1 for the inclusion of fixed points, then

we can define

T F(R) = holimF T HH(R)Cpn

and

TR(R) = holimR T HH(R)Cpn .

we then define (p-typical) topological cyclic homology as

TC(R; p) = fib{ TR(R) 1−F // TR(R) }

or equivalently

TC(R; p) = fib{ T F(R) 1−R // T F(R). }

We can also define an integral version of topological cyclic homology TC and after p-
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completion there is an equivalence

TC(R)p → TC(R; p)p.

Bökstedt constructed a highly non-trivial trace map

K(R) −→ T HH(R)

for strictly associative ring spectra and when R = HA for a ring A, the Dennis trace map

factors through Bökstedt’s trace map. Bökstedt’s trace map, in turn, factors through topo-

logical cyclic homology

Kk(R) //

&&

TCk(R)

��
T HHk(R).

The benefit of the cyclic refinement of the trace map is that topological cyclic homology is

a close approximation to algebraic K-theory.

Theorem 2.10 (Dundas-Goodwillie-McCarthy [27] ). Let f : R→ S be a map of connective

strictly associative ring spectra such that f : π0R → π0S is surjective with nilpotent kernel,

then the diagram

K(R) //

��

K(S )

��
TC(R) // TC(S )

is a homotopy pullback diagram.

Corollary 2.11. If Zp surjects onto π0R and R is a connective strictly associative ring spec-
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trum, then

K(R)p ' τ≥0TC(R)p

This corollary depends on the Theorem 2.10 as well as computations of Hesselholt-

Madsen [32].

We will need to use the multiplicativity of the cyclotomic trace map proven by Dundas.

Theorem 2.12 (Dundas [25]). The cyclotomic trace map

K(R)→ TC(R)

is a weak map of commutative ring spectra; i.e. it is a zigzag of commutative ring spectrum

maps where each wrong way map is a weak equivalence of commutative ring spectra.

The approach we will take in this thesis is to compute the linear approximation to it-

erated algebraic K-theory of finite fields, topological Hochschild homology, and then com-

pute enough of the homotopy fixed points of topological Hochschild homology to detect

periodic information of higher chromatic height.

2.7 Organization

This thesis is organized into three main chapters of original research. Chapter 3 consists

of the construction of a May-type spectral sequence in higher order topological Hochschild

homology associated to filtered commutative ring spectrum. This chapter is based on

joint work with Andrew Salch, and therefore some of the theorems are included without

proof and the reader should read [3] for a thorough account. The goal is to highlight

aspects of the joint project that were primarily the author’s contribution as well as set up
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all the necessary machinery needed for Chapter 4. In Chapter 4, we compute mod (p, v1)-

homotopy of topological Hochschild homology of K(Fq)p where p ≥ 3 and q is a topological

generator of Z×p. We also give initial calculations towards mod p homotopy of topological

Hochschild homology of K(Fq)p. In Chapter 5, we prove the main theorem that the β-

elements βpk+1 are detected in iterated algebraic K-theory of finite fields, giving evidence

for red-shift phenomena.

2.8 Conventions

Throughout, we will work in the category of symmetric spectra of simplicial sets with

the positive flat stable model structure, which we denoteS. This particular model structure

for spectra is chosen because the main theorem of the author’s joint paper with Andrew

Salch [4] then applies; i.e given a map of simplicial spectra X• → Y• where

1. the spectra Xn and Yn are positive flat cofibrant for all n,

2. each degeneracy map si : Xn → Xn+1 and s′i : Yn → Yn+1 is a levelwise cofibration, and

3. the map Xn → Yn is a flat cofibration for each n

then the induced map on realizations |X•| → |Y•| is a cofibration. The category S is also

a combinatorial, cofibrantly generated, symmetric monoidal model category satisfying the

Shipley-Schwede monoid axiom by [54] and it satisfies the strong commutative monoid

axiom of White as he proved in [59].

We will write Comm C for the category of commutative monoids in a symmetric monoidal

category C and we will write sC for the category of simplicial objects in C , in other words,

functors ∆op → C .
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We will write (−)p for the p-completion of a spectrum or a group. We will write P(x),

E(x), Ph(x) and Γ(x) for the polynomial algebra, exterior algebra, truncated polynomial,

and divided power algebra on the generator x. Here Ph(x) = P(x)/xh. Recall that Γ(x) has

generators γi(x) for i ≥ 1 satisfying i! j!γi(x)γ j(x) = (i + j)!γi+ j(x). In particular, when Γ(x) is

an algebra over a field of characteristic p, there is an isomorphism

Γ(x) = Pp(x, γp(x), γp2(x), . . . )

of Fp-algebras. We will write =̇ to indicate that the equality holds up to multiplication by a

unit in Fp.

We will write ` for K(
⋃

i≥0 Fqpi )p, we will write j for K(Fq)p, and ku for K(Fq)p where

p ≥ 3 and q is a topological generator of Z×p. We will tacitly assume that `, j and ku are

cofibrant since we could cofibrantly replace them in CommS if they were not already. For

chapter 5 we will assume p ≥ 5 so that the finite spectrum V(1) = cof{Σ2p−2S/p→ S/p} has

a v2-self map.
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CHAPTER 3 A MAY-TYPE SPECTRAL SEQUENCE FOR HIGHER THH

The purpose of this chapter is to describe the construction of a spectral sequence in

“higher order" topological Hochschild homology with coefficients associated to a decreas-

ingly filtered commutative monoid in S with filtered coefficients. The full details of the

construction can be found in the author’s joint paper with Andrew Salch [3].

3.1 Decreasingly filtered commutative monoids in symmetric spectra

We give a definition of decreasingly filtered commutative monoids in S using categori-

cal machinery that has the advantage of being clean and concise.

Definition 3.1. A decreasingly indexed object in S is a functor I : Nop → S.

We write SN
op

for the category of such functors and, by convention, we write In for

evaluation of a functor I in SN
op

on an object in Nop.

Definition 3.2. We define the projective model structure on SN
op

, by defining the fibrations

to be those natural transformations f : I → J such that f (n) : In → Jn is a fibration for

each n ∈ N. The weak equivalences are the natural transformations g : I → J such that

g(n) : In → Jn is a weak equivalence for each n. The cofibrations are natural transformations

that have the left lifting property with respect to trivial fibrations.

Remark 3.3. The categoryNop has the usual Reedy category structure as a partially ordered

set. In particular, this gives Nop the structure of a direct category. The opposite Reedy

structure makes Nop an indirect category and the projective model structure on the functor

category SN
op

is the same as the Reedy model structure when Nop has the opposite Reedy

model structure. The upshot of this description is that we may describe cofibrations in the

projective model structure explicitly. The cofibrations in the projective model structure are



22

those natural transformations I → J such that for each i the map

Ii+1

∐
Ii

Ji+1 → Ji

is a cofibration.

Note that in order for this model structure to exist we need the category S to be cofi-

brantly generated, but this is the case due to Theorem 4.11 [53]. From now on the model

structure on SN
op

will be understood to be the projective model structure specified above.

Definition 3.4. A decreasingly filtered object in S is a cofibrant object in SN
op

in the projec-

tive model structure.

Remark 3.5. Note that this is the same data as a decreasingly indexed object in S with

the property that each map fi : Ii → Ii−1 is a cofibration and each object is cofibrant.

The category SN
op

has a symmetric monoidal product, denoted ⊗Day, called the Day

convolution after B. Day who first constructed it in his thesis [22]. For this construction

we enrich Nop in S by defining

Nop(n,m) =


S if n ≥ m

0 otherwise
.

where S is a cofibrant replacement for the unit of the symmetric monoidal product in S.

Definition 3.6 (Day convolution). The Day convolution symmetric monoidal product in SN
op

of I and J is the coend

(I ⊗Day J)n =

∫ (a,b)∈Nop×Nop

Nop(a + b, n) ∧ Ia ∧ Jb.
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By definition, this coend is the left Kan extension in the diagram

Nop × Nop

+

��

I⊗̄J // S

Nop
I⊗Day J

::

,

which, in turn, is the colimit

colim
a+b∈Nop/n

Ia ∧ Ib

where Nop/n is the over category consisting of objects in y ∈ Nop equipped with a map y→ n

and morphisms are commuting triangles.

Example 3.7. This construction can be visualized as follows. Consider the lattice,

...

��

...

��

...

��
. . . // I2 ∧ J2

//

��

I1 ∧ J2

��

// I0 ∧ J2

��
. . . // I2 ∧ J1

��

// I1 ∧ J1

��

// I0 ∧ J1

. . . // I2 ∧ J0
// I1 ∧ J0 .

The colimit of this diagram is (I ⊗Day J)1. To produce (I ⊗Day J)2, we truncate the lattice

further and take a colimit.

Theorem 3.8 (Day). The category SN
op

forms a closed symmetric monoidal category. The

category of commutative monoid objects in SN
op

is equivalent to the category of lax sym-

metric monoidal functors in Nop → S.

Proof. This theorem is Example 3.2.2 in Day’s thesis [22] and it follows form his work on
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promonoidal categories. This was also recently proven in the setting of quasi-categories by

Glasman [31]. �

Definition 3.9. Recall that a lax symmetric monoidal functor between symmetric monoidal

categories (C ,⊗C ,1C ) and (D,⊗D ,1D) is a functor

I : C → D

together with natural transformations

η : 1D → I(1C ) and

ρ : I(−) ⊗D I(−)→ I(− ⊗C −)

satisfying the usual commutativity, associativity, and unitality axioms.

Definition 3.10. A decreasingly indexed commutative monoid inS is a lax symmetric monoidal

functor

I : (Nop,+, 0) −→ (S,∧,S)

or equivalently, due to Theorem 3.8, an object in CommSN
op

.

In order to have a good model structure on CommSN
op

we need CommSN
op

to satisfy a

strong version of the commutative monoid axiom. Following White [59], a model category

C satisfies the strong commutative monoid axiom if whenever h : X → Y is a (trivial)

cofibration then h�n/Σn is a (trivial) cofibration. The notation h�n indicates that we are

taking the pushout product of h with itself n times, for example if f : A→ B and g : X → Y,
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the pushout product of the two maps in C is the map

f�g : A ⊗ Y
∐
A×X

B ⊗ Y → B ⊗ Y

where ⊗ is a the symmetric monoidal product in C .

Lemma 3.11. The category SN
op

with the projective model structure satisfies the strong

commutative monoid axiom.

Proof. By White [59, Lem. A.1], it suffices to check the strong commutative monoid axiom

on the generating cofibrations. The generating cofibrations in the projective model struc-

ture were determined in [14] and they are the natural transformations f : I → J of the

form J ⊗Nop where J is the set of generating cofibrations of S. This notation means that a

map f : I → J is a cofibration if f = g ∧ Nop(i,−) for some g ∈ J . Since

Nop(i,−) '


S if j ≤ i

0 if j > i

this is equivalent to saying that I0 → J0 is a map in J , Ii = I0 for i ≤ j and Ii = 0 for i > j,

and Ji = J0 for i ≤ j and Ji = 0 for i > j. Let h : I → J be an (acyclic) map in J ⊗ Nop,

then we need to prove that h�n/Σn is an (acyclic) cofibration in SN
op

in the projective model

structure. In the case n = 2, we need to show that the map

h�2/Σ2 : (I ⊗Day J
∐

I⊗DayI

J ⊗Day I)/Σ2 → (J ⊗Day J)/Σ2

is an (acyclic) cofibration in the projective model structure. We therefore need to know if
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the map

(I ⊗Day J
∐

I⊗DayI

J ⊗Day I)n/Σ2

∐
(I⊗Day J

∐
I⊗DayI J⊗DayI)n+1/Σ2

(J ⊗Day J)n+1/Σ2

→ (J ⊗Day J)n/Σ2

is a cofibration in S. Note that for X,Y ∈ {I, J}, (X ⊗Day Y)n = X0 ∧Y0 is n ≤ 2i and 0 if n > 2i,

so the map is the same as the map

(I0 ∧ J0

∐
I0∧I0

J0 ∧ I0)/Σ2

∐
(I0⊗Day J0

∐
I0⊗DayI0 J0⊗DayI0/Σ2

(J0 ⊗Day J0)/Σ2

 = (J0 ⊗Day J0)/Σ2 → (J0 ∧ J0)/Σ2

(3.1)

or in other words the identity map

(J0 ⊗Day J0)/Σ2 → (J0 ∧ J0)/Σ2

when n < 2i, it is the map

(I0 ∧ J0

∐
I0∧I0

J0 ∧ I0)/Σ2 → (J0 ⊗Day J0)/Σ2 (3.2)

when n = 2i and it is the map 0 → 0 when n > 2i. Since the map 3.1 is the identity it

is an (acyclic) cofibration in S. Since the map I0 → J0 is an (acyclic) cofibration in S by

assumption and S satisfies the strong commutative monoid axiom in S, the map 3.2 is also

an (acyclic) cofibration in S. Hence, the map h�2/Σ2 is an (acyclic) cofibration as desired.

The same type of argument works for i > 2 and it is therefore left to the reader. �

Definition 3.12. The category CommSN
op

is equipped with the model structure created

by the forgetful functor U : CommSN
op
→ SN

op
; i.e., fibrations in CommSN

op
are natural
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transformations f : I → J such that U( f ) is a projective fibration and weak equivalences

are natural transformations g : I → J such that U(g) is a weak equivalence in SN
op

. This

model structure exists by Lemma 3.11 and White [59, Thm. 3.2]. We will call this model

structure “the model structure inherited from the projective model structure on SN
op

."

Lemma 3.13. Let CommSN
op

be equipped with the model structure inherited from the pro-

jective model structure on SN
op

, then cofibrations h between cofibrant objects in CommSN
op

forget to cofibrations U(h) in SN
op

.

Proof. This follows by White [59, Prop. 3.5] and Lemma 3.11. �

Definition 3.14. A decreasingly filtered commutative monoid in S is a cofibrant object in

CommSN
op

with the model structure inherited from the projective model structure on SN
op

.

This definition also allows us to define a decreasingly filtered I-module in a simple way.

Definition 3.15. A decreasingly filtered symmetric I-bimodule, M, is a cofibrant object M

in SN
op

that has the structure of a symmetric I-bimodule, where I is a cofibrant object in

CommSN
op

.

Definition 3.16. Let J be a decreasingly indexed object in S. We say J is Hausdorff if

holimn Jn ' 0. We say that J is finite if there exists a non-negative integer n such that

fm : Jm → Jm−1 is a weak equivalence whenever m > n.

The following appears as Definition 3.16 in the author’s joint paper with Andrew Salch

[3].

Definition 3.17 (The associated graded commutative monoid). Let I be a decreasingly

filtered commutative monoid in S. We will write E0I for the associated graded commutative

monoid of I, which we define as follows:



28

• As an object of S,

E0I �
∐
n∈N

In/In+1.

• As an object in CommS we need to specify the unit map and multiplication map as

well as show that it satisfies the axioms of a commutative monoid in S.

– The unit map S→ E0I is the composite

S
η
−→ I0 → I0/I1 ↪→ E0I.

– The multiplication on E0I is given as follows. Since the smash product com-

mutes with colimits, hence with coproducts, to specify a map µE0I : E0I ∧ E0I →

E0I. it suffices to specify a component map

∇i, j : Ii/Ii+1 ∧ I j/I j+1 → E0I

for every i, j ∈ N. We define such a map ∇i, j as follows: first, we have the

commutative square

Ii+1 ∧ I j
ρi+1, j //

fi+1∧idI j

��

Ii+ j+1

fi+ j+1

��
Ii ∧ I j

ρi, j // Ii+ j

so, using the assumption that the maps fi are cofibrations, we take vertical

cofibers to get a map

∇̃i, j : Ii/Ii+1 ∧ I j → Ii+ j/Ii+ j+1.
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Now we have the commutative diagram

Ii+1 ∧ I j+1
idIi+1 ∧ f j+1

''
fi+1∧idI j+1

��

ρi+1, j+1 // Ii+ j+2
fi+ j+2

''

fi+ j+2

��

Ii+1 ∧ I j

fi+1∧idI j

��

ρi+1, j // Ii+ j+1

fi+ j+1

��

Ii ∧ I j+1
idIi ∧ f j+1

''

ρi, j+1 //

��

Ii+ j+1
fi+ j+1

''

��

Ii ∧ I j
ρi, j //

��

Ii+ j

��

Ii/Ii+1 ∧ I j+1

idIi/Ii+1 ∧ f j+1 ''

∇̃i, j+1 // Ii+ j+1/Ii+ j+2

0

''
Ii/Ii+1 ∧ I j

∇̃i, j // Ii+ j/Ii+ j+1

in which the columns are cofiber sequences. So we have a choice of factorization

of the composite map ∇̃i, j ◦
(
idIi/Ii+1 ∧ f j+1

)
through the zero object. So we have

the commutative square

Ii/Ii+1 ∧ I j+1

idIi/Ii+1 ∧ f j+1

��

// 0

��
Ii/Ii+1 ∧ I j

∇̃i, j // Ii+ j/Ii+ j+1

and, taking vertical cofibers, a map

Ii/Ii+1 ∧ I j/I j+1 → Ii+ j/Ii+ j+1,

which we compose with the inclusion map Ii+ j/Ii+ j+1 ↪→ E0I to produce our
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desired map ∇i, j : Ii/Ii+1 ∧ I j/I j+1 → E0I. We then define a map

µE0I : E0I ∧ E0I → E0I

using the universal property of the infinite wedge and the fact that the smash

product distributes over the wedge.

3.2 The Loday construction

Let D be a closed symmetric monoidal model category. Let f S et+ denote the category

of finite pointed sets. We will write ∗S for the basepoint of a finite pointed set S and let

S et+ denote the category of pointed sets.

Definition 3.18 (Loday construction with coefficients). Given a commutative monoid R in

D and a symmetric R-bimodule, define a functor

− ⊗ (R,M) : f S et+ → ModR

in the following way:

• define the functor on objects by

S ⊗ (R,M) = M{∗S } ∧
∧

s∈S−{∗S }

R{s},

• define the functor on maps, by sending the map f : S → T to the map

f ⊗ (R,M) : M{∗S } ∧
∧

s∈S−{∗S }

R{s} → M{∗T } ∧
∧

t∈T−{∗T }

R{t}
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defined by the composite

M{∗S } ∧
∧

s∈S−{∗S }

R{s}
'
→ M{∗S } ∧

∧
{s∈ f −1(∗T )}

R{s} ∧
∧
t∈T

∧
{s∈ f −1(t)|t∈T−{∗T }}

R{s} → M{∗T } ∧
∧
t∈T

R{t}

where the left map simply rearranges factors, and the right map is a smash product

of two maps:

– the map

M{∗S } ∧
∧

s∈ f −1(∗T )

R{s} → M{∗T },

given by the iterates of the module map, and

– the map ∧
t∈T

∧
{s∈ f −1(t)|t∈T−{∗T }}

R{s} →
∧
t∈T

R{t}

given by the iterating the multiplication map of R.

Note that the empty smash product is understood to be the unit of the symmetric monoidal

product and a map from an empty smash product to R is given by the unit map of the

commutative monoid R.

This extends to a functor

− ⊗ (R,M) : s f S et+ → ModR

using functoriality of − ⊗ (R,M) to define the face and degeneracy maps and then taking

geometric realization of the resulting simplicial R-module.



32

Remark 3.19. This construction can again be extended to a functor

− ⊗ (R,M) : sS et+ → sModR

by letting − ⊗ (R,M)(Xn) = colimY⊂XnY ⊗ (R,M) where Y ranges over all finite based subsets

of Xn.

Remark 3.20. We use the notation − ⊗ (−;−) because of the relation to the tensoring of a

simplicial set with a commutative ring spectrum. Recall, that McClure-Schwanzl-Vogt [43]

proved that the category of commutative ring spectra have all weighted limits and colimits

in simplicial sets and therefore, in particular, it is tensored and cotensored over simplicial

sets. If we let R = M and work in the category S, for example, then there is a commutative

diagram

sS et+
−⊗(R;R) //

U
��

CommS

id
��

sS et −⊗R // CommS

where the bottom functor is the weighted colimit in CommS that defines the tensoring of

a simplicial set with a commutative ring spectrum.

Remark 3.21. We will write X•⊗̃(R; M) for the simplicial R-module whose realization is

X• ⊗ (R; M) and we will write X• ⊗ R for the simplicial commutative monoid in D when

R = M and X• is unbased.

Example 3.22. In the case where X• = S 1
• := ∆[1]/δ∆[1], the minimal simplicial model for
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the circle, S 1
• ⊗ R is the geometric realization of the simplicial object in S

S 1
•⊗̃R :=

 R // R ∧ Roo
oo //

// R ∧ R ∧ R
oo

oo
oo

//

//
// . . .

oo

oo

oo
oo

 (3.3)

with face and degeneracy maps given by the following formulas: the face maps are

di =


idR ∧... idR ∧µ ∧ idR ∧... ∧ idR if i < n

(µ ∧ idR ∧ . . . ∧ idR) ◦ tn if i = n

where the multiplication map µ : R ∧ R → R is in the i-th position on the first line and

tn : R∧n → R∧n is the map that cyclicly permutes the factors to the right. The degeneracy

maps are

si = idR ∧... ∧ idR ∧η ∧ idR ∧ . . . ∧ idR

where the unit map η : S → R from the sphere spectrum is in the i-th position.

Remark 3.23. The simplicial tensoring S 1⊗R is the primary model for T HH(R) that we will

work with even though it is not genuine S 1-equivariant. Since there is a model of T HH,

due to Bökstedt and developed by Hesselholt and Madsen which is genuine C-equivariant

for all finite subgroups C of S 1, then we will tacitly use one of the genuine models for

equivarant constructions. This will not cause an issue since the method of attack used

here is by homotopy fixed point spectral sequences and the homotopy groups of each

model for THH are the same. There is also a more recent model for T HH as the norm

NS 1

e (R) = I U
R∞(S 1 ⊗ R) which is a genuine S 1-equivariant orthogonal spectrum [5]. In future

joint work with C. Malkiewich, the author plans to construct a equivariant version of the

THH-May spectral sequence using this construction, but that is beyond the scope of the
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present thesis.

3.3 The May filtration and the THH-May spectral sequence

Definition 3.24 (The May filtration). Let S be a finite pointed set. We can equip the set of

functions x : S → N, denoted NS , with the L1 norm | − | so that for x ∈ NS

|x| = Σs∈S x(s).

We then define a sub-poset of NS by

DS
n := {x ∈ NS ; |x| ≥ n}.

Let I be a decreasingly filtered commutative monoid in S and let M be a cofibrant sym-

metric I-bimodule. Define a functor

F S (I; M) : (NS )op −→ S

on objects by F S (I; M)(x) = Mx(∗S )
∧

s∈S−{∗S } Ix(s) for x ∈ NS and on morphisms in the apparent

way. We can precompose this functor with the inclusion functor to produce a functor

F S
n (I; M) : (DS

n )op // (NS )op F S (I) // S.

We then define the May filtration associated to the finite pointed set S to be the collection

of objects

M S
n (I; M) := colim F S

n (I; M)
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in S for n ∈ N along with maps

M S
n (I; M) −→ M S

n−1(I; M)

given by precomposing with the inclusion (DS
n )op −→ (DS

n−1)op and taking colimits.

Remark 3.25. When M = I, we will simply write F S (I) and M S
n (I) for F S (I; I) and M S

n (I; I).

Using the May filtration in each simplicial degree, we produce a filtration of simplicial

objects in S

...

��

...

��

...

��

M X0
2 (I; M) //

��

M X1
2 (I; M)oo

oo //
//

��

M X2
2 (I; M)

oo

oo
oo

//

//
//

��

. . .

oo
oo
oo
oo

M X0
1 (I; M) //

��

M X1
1 (I; M)oo

oo //
//

��

M X2
1 (I; M)

oo

oo
oo

//

//
//

��

. . .

oo
oo
oo
oo

M X0
0 (I; M) //M X1

0 (I; M)oo
oo //

//M
X2

0 (I; M)
oo

oo
oo

//

//
// . . .

oo
oo
oo
oo

and when X• = S 1
• the bottom row is the simplicial object whose geometric realization is

T HH(I0,M0).

Remark 3.26. Note that the definition of M X•
n (I; M) can be extended to any simplicial

pointed set Y• by defining

M Yn
m (I; M) = colim

Y⊂Yn
M Y

m (I; M)

in each simplicial degree where Y ranges over all finite subsets of Yn.

When we write M X•
n (I) we will mean that X• is an un-based simplicial set and we have

done the same construction otherwise.
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Definition 3.27. If I is a decreasingly filtered commutative monoid in S and M is a cofi-

brant symmetric I-bimodule, X• is a simplicial pointed set, and G∗ is a connective general-

ized homology theory then the topological Hochschild-May spectral sequence is the spectral

sequence obtained by applying G∗ to the tower of cofiber sequences

...

��∣∣∣M X•
2 (I; M)

∣∣∣ //

��

∣∣∣M X•
2 (I; M)

∣∣∣ / ∣∣∣M S •
3 (I; M)

∣∣∣
∣∣∣M X•

1 (I; M)
∣∣∣ //

��

∣∣∣M X•
1 (I; M)

∣∣∣ / ∣∣∣M X•
2 (I; M)

∣∣∣
∣∣∣M X•

0 (I; M)
∣∣∣ //

∣∣∣M X•
0 (I; M)

∣∣∣ / ∣∣∣M X•
1 (I; M)

∣∣∣ .

(3.4)

That is, it is the spectral sequence of the exact couple

D1
∗,∗ �

⊕
i, j Gi

∣∣∣∣M X•
j (I; M)

∣∣∣∣ //
⊕

i, j Gi

∣∣∣∣M X•
j (I; M)

∣∣∣∣
tt

E1
∗,∗ �

⊕
i, j Gi

∣∣∣∣M X•
j (I; M)

∣∣∣∣ / ∣∣∣∣M X•
j+1(I; M)

∣∣∣∣
kk

.

Remark 3.28. We need to know that the map

∣∣∣M X•
n (I; M)

∣∣∣ −→ ∣∣∣M X•
n−1(I; M)

∣∣∣
is a cofibration, and this relies on a theorem of the author and A. Salch, which states that

a map between two “good" simplicial objects in S, which is a (positive) flat cofibration at

each simplicial level, realizes to a (positive) flat cofibration [4]. This is the reason why
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we choose the category of symmetric spectra in simplicial sets with the positive flat model

structure where this theorem holds and all necessary axioms hold. Otherwise, all the

constructions are sufficiently general to work in any nice enough model category (see [3]

for the exact conditions needed on a model category in order to construct the THH-May

spectral sequence and identify the E1-page). Consequently, the sequence

. . . −→
∣∣∣M X•

2 (I)
∣∣∣ −→ ∣∣∣M X•

1 (I)
∣∣∣ −→ ∣∣∣M X•

0 (I)
∣∣∣

is again a decreasingly filtered commutative monoid in S, which we will call
∣∣∣M X•(I)

∣∣∣,
and therefore, we can define E0

∣∣∣M X•(I)
∣∣∣. The input of the THH-May spectral sequence as

defined is G∗
(
E0

∣∣∣M X•(I)
∣∣∣).

The main theorem of [3] produces a more computable E2-page. The idea is that the

associated graded construction commutes with tensoring with a simplicial set.

Theorem 3.29 (Fundamental Theorem of the May filtration [3]). Let X• be a simplicial

pointed set, let I be a decreasingly filtered commutative monoid in S, and let M be a

cofibrant symmetric I-bimodule, then there is a weak equivalence

E0

∣∣∣M X•(I; M)
∣∣∣ ' X• ⊗ (E0I; E0M),

which is a weak equivalence in CommS when M = I and X• is an un-based simplicial set.

Proof. See [3] for a detailed proof. �
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We therefore produce a spectral sequence

E2
s,t = Gs,t(X• ⊗ (E0I; E0M))⇒ Gs(X• ⊗ (I0; M)) (3.5)

with differential

dr : Er
s,t −→ Er

s−1,t+r

for any connective generalized homology theory G∗. The spectral sequence strongly con-

verges as long as Ii and Mi are Hausdorff and the differentials satisfy a Leibniz rule in the

case I = M and X• is an un-based simplicial set [3].

Another construction of the T HH-May spectral sequence

E1
∗,∗ � G∗,∗ (X• ⊗ (E0I, E0M))⇒ G∗ (X• ⊗ (I0,M)) (3.6)

is possible using the Day convolution symmetric monoidal product. This construction is

conceptually cleaner, but it does not simplify the process of proving that the resulting

spectral sequence has the correct input term, output term and convergence properties.

The category SN
op

is a closed symmetric monoidal model category equipped with Day

convolution and the projective model structure as proven in [22] and [35]. Now fix a

based simplicial set X•, let I be a cofibrant commutative monoid object in SN
op

, and let M

be a cofibrant symmetric I-bimodule. We can form the Loday construction

− ⊗ (I,M) : sS et+ → ModI ⊂ S
Nop
.
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For example, if X• is the usual minimal simplicial model S 1
• = (∆[1]/δ∆[1])• for the

circle, then S 1
•⊗̃(I,M) is the cyclic bar construction using the Day convolution as the tensor

product:

S 1
•⊗̃(I,M) =

 M // M ⊗Day Ioo
oo //

// M ⊗Day I ⊗Day I
oo

oo
oo

//

//
// . . .

oo

oo

oo
oo


Since I is a functor Nop → S and M is an I-module, we will write I(n) and M(n) for the

evaluation of these functors at a nonnegative integer n just for the sake of this remark. We

write S 1
•⊗̃(I,M)(i) for the the simplicial object in S

S 1
•⊗̃(I,M)(i) =

 M(i) // (M ⊗Day I)(i)oo
oo //

// (M ⊗Day I ⊗Day I)(i)
oo

oo
oo

//

//
// . . .

oo

oo

oo
oo


Applying geometric realization to each S 1⊗̃(I,M)(i), we get a decreasingly filtered object

in S

S 1
• ⊗ (I,M)(0)← S 1

•(I,M)(1)← S 1
• ⊗ (I,M)(2)← . . .

which is a decreasingly filtered object in S by the main theorem of [4]. The spectral

sequence obtained by applying a generalized homology theory G∗ to the tower of cofiber

sequences associated to this decreasingly filtered object in S is precisely the THH-May

spectral sequence.

Remark 3.30. The author expects that the construction of the THH-May spectral sequence

may also work using the construction ΛX•(R) that appears in [52], which is a version of the

Loday construction that does not require cofibrant input in order to be functorial and lends

itself well to approximations of higher order topological cyclic homology, also known as

covering homology [19].
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Example 3.31. We conclude with an example. Suppose I is a trivially filtered commutative

monoid inS; i.e., In = 0 for n > 0. Suppose M is a decreasingly filtered symmetric I-module

object in S with Mn ' 0 for n > 1. Then the sequence of simplicial commutative monoids

becomes

M X0
1 (I,M) //

��

M X1
1 (I,M)oo

oo //
//

��

M X2
1 (I,M)

oo

oo
oo

//

//
//

��

. . .

oo
oo
oo
oo

M X0
0 (I,M) //M X1

0 (I,M)oo
oo //

//M
X2

0 (I,M)
oo

oo
oo

//

//
// . . .

oo
oo
oo
oo

where the realization of M X•
0 (I,M) is X•⊗(I0; M0), the realization of M X•

1 (I; M) is X•⊗(I0,M1)

and the realization of the quotient M X•
0 (I,M)/M X•

1 (I,M) is M X•(I0,M0/M1). The spectral

sequence collapses to produce a long exact sequence coming from the cofiber sequence

X• ⊗ (I0,M1)→ X• ⊗ (I0,M0)→ X• ⊗ (I0,M0/M1).

When X• = ∆[1]/δ∆[1] with the obvious basepoint, this specializes to a cofiber sequence,

T HH(I0,M1)→ T HH(I0,M0)→ T HH(I0,M0/M1)

which recovers a result of Pirashvili-Waldhausen [49, Prop. 2.13].

3.4 Filtered Commutative Ring Spectra

Let R be a cofibrant connective commutative monoid in S. In order to apply the

THH-May spectral sequence, it is necessary to construct decreasingly filtered commuta-

tive monoids in spectra. The goal of this section is to produce a decreasingly filtered

commutative monoid in S as a specific multiplicative model for the Whitehead tower of a
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connective commutative monoid in S. This provides a large supply of decreasingly filtered

commutative monoids. Part of the proof uses a Postnikov tower of a commutative ring

spectrum constructed as a tower of square-zero extensions, so first we define square-zero

extensions in this context.

3.4.1 Postnikov towers as towers of square-zero extensions

Definition 3.32. By a square-zero extension in S, we mean a fiber sequence

I −→ Ã −→ A

where Ã is the pullback in CommS of

Ã //

��

A
ε

��
A d // A n ΣI,

the map ε is defined to be the inclusion of A into A n ΣI and d represents a class [d] ∈

T AQ0
S (A,ΣI). (For a definition of T AQ∗S (A,ΣI), see [13] or [41].) Note that, a priori, A

must be a commutative monoid in S and I must be a A-bimodule. By A n ΣI we mean

the trivial square-zero extension of A by ΣI; that is, additively A n ΣI := A ∨ ΣI and its

multiplication is the map

µ : A ∧ A ∨ A ∧ I ∨ I ∧ A ∨ I ∧ I −→ A ∨ I
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determined, using the universal property of the coproduct, by the maps

µA : A ∧ A→ A ↪→ A ∨ I

ψ` : A ∧ I → I ↪→ A ∨ I

ψr : I ∧ A→ I ↪→ A ∨ I

sq : I ∧ I → 0 ↪→ A ∨ I

where µA is the multiplication on A, ψr and ψ` are the right and left action maps of I as an

A-bimodule and sq is the usual map I ∧ I → I ↪→ A ∨ I, which in this case factors through

the zero object.

Definition 3.33. Let R be a connective commutative monoid in S. By a Postnikov tower of

square-zero extensions associated to R, we mean a tower

. . . // τ≤3R // τ≤2R // τ≤1R // τ≤0R

Σ3Hπ3R

OO

Σ2Hπ2R

OO

Σ1Hπ1R

OO

Hπ0R

OO

of fiber sequences where πk(τ≤nR) = πk(R) for k ≤ n and πk(τ≤nR) = 0 for k > n, such that the

fiber sequences

ΣnHπnR −→ τ≤nR −→ τ≤n−1R

are square-zero extensions.

As defined it is not clear that such Postnikov towers of square-zero extensions actually

exist for a given commutative monoid in S, but it is a theorem that they do.

Theorem 3.34. Let R be a connective commutative monoid in S. Then there exists a

model for the Postnikov tower associated to R which is a Postnikov tower of square-zero
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extensions.

Proof. See Theorem 4.3 and the comments after in [36] and Theorem 8.1 in [13]. Also,

see Lurie’s Corollary 3.19 from [37] for the result in the setting of quasi-categories. �

3.4.2 Constructing the Whitehead tower as a filtered commutative ring spectrum

Recall from Definition 3.14 that a cofibrant object in the category CommSN
op

equipped

with the projective model structure is a decreasingly filtered commutative monoid inS. We

may define certain n-truncated decreasingly filtered commutative monoids in the following

way.

Definition 3.35. Let Jn ⊂ N be the sub-poset of the natural numbers consisting of all i ∈ N

such that i ≤ n. We give this poset the structure of a symmetric monoidal category (Jn, +̇, 0)

by letting

i+̇ j = min{i + j, n}.

We may consider lax symmetric monoidal functors in SJop
n for each n again as a conse-

quence of [22, Ex. 3.2.2] these are equivalent to the commutative monoids in the functor

category under the Day convolution symmetric monoidal product. We may also consider

the model structure on Comm(SJop
n ) created by the forgetful functor to SJop

n , where SJop
n

has the projective model structure. Using the same considerations as the functor category

S
Nop

, the model category structure created by the forgetful functor exists. In this model

structure, it is an easy exercise to show that the cofibrant objects are functors I≤n in SJop
n

such that each I≤n
i is cofibrant in S for i ≤ n and each map fi : I≤n

i → I≤n
i−1 is a cofibration in

S for each i ≤ n.
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Theorem 3.36. Let R be a cofibrant connective commutative monoid in S, then there

exists a decreasingly filtered commutative monoid in S

R≥• : Nop → S,

where we write R≥n for the functor evaluated on an object in Nop, such that πk(R≥n) � πk(R)

for k ≥ n and πk(R≥n) � 0 for k < n. In particular, there is a natural transformation

ρi, j : R≥i ∧ R≥ j −→ R≥i+ j

satisfying commutativity, associativity, and unitality.

Proof of Theorem 3.36. Let R be a cofibrant connective commutative monoid in S and let

. . . // τ≤2R // τ≤1R // τ≤0R

Σ2Hπ2(R)

OO

ΣHπ1(R)

OO

Hπ0(R)

OO

be a Postnikov tower of square-zero extensions of R in the sense of Definition 3.33. To

prove the theorem we need to do the following:

1. Construct R≥n.

2. Construct natural transformations ρi, j : R≥i ∧ R≥ j −→ R≥i+ j.

3. Show that the maps ρi, j satisfy commutativity, associativity and unitality.

The procedure will be inductive. First, define R≥0 := R where R was assumed to be a

cofibrant connective commutative monoid in S and is therefore an object in CommSJop
0 .
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To construct R≥1, we consider the map of commutative ring spectra R −→ Hπ0R. We can

assume this map is a fibration, since if it wasn’t we could factor the map in commutative

ring spectra into an acyclic cofibration and a fibration. We then define R≥1 to be the fiber

of this map. By design, we have constructed an object I≤1
• in CommSJop

1 . Commutativity,

associativity and unitality follow by the definition of a symmetric R-bimodule action of R

on R≥1. This completes the base step in the induction.

Suppose we have an object I≤n−1
• ∈ ob CommSJn−1

op
for an arbitrary n ≥ 1. As before, we

define R≥i to be I≤n−1
i for all i ≤ n − 1. Define Pn := colim

Dn
τ≥iR ∧ τ≥ jR where Dn is the full

subcategory of Nop × Nop with objects (i, j) such that 0 < i ≤ j < n and i + j ≥ n. Since I≤n−1
•

is in CommSJn−1
op

, there is a unique map Pn −→ R≥n−1.

The fact that the fiber sequence ΣkHπkR −→ τ≤kR −→ τ≤k−1R is a square-zero extension

for each k implies that the natural maps

ΣiHπiR ∧ Σ jHπ jR −→ Σn−1Hπi+ jR,

factor through 0 for each (i, j) ∈ Dn. We get an induced map on fibers by considering the

diagrams

R≥k

��

// R //

��

τ≤k−1R

��
ΣkHπkR // τ≤kR // τ≤k−1R
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for k < n. There are therefore commutative diagrams

R≥i ∧ R≥ j //

��

ΣiHπiR ∧ Σ jHπ jR

0
��

R≥n−1 // Σn−1HπnR

for each (i, j) ∈ Dn, hence, the map

R≥i ∧ R≥ j −→ R≥n−1 −→ Σn−1HπnR

factors through zero for each (i, j) ∈ Dn.

We need the map R≥n−1 → Σn−1HπnR to be a fibration, so we use the factorization

R≥n−1

##

// Σn−1HπnR

R
≥n−1

99

into a trivial cofibration followed by a fibration.

We can define R≥n to be the pullback, in the category of R-modules in C , of the diagram

R≥n //

��

0

��
R
≥n−1 f // Σn−1HπnR.

We then also need to replace Pn by Pn where Pn is the same colimit as Pn except that

each instance of R≥n−1 is replaced by R
≥n−1

. There is therefore a map Pn → Pn and there is

a map Pn → Σn−1Hπn−1R that factors through the zero map by the same considerations as
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above.

By the universal property of the pullback, there exists a unique map g

Pn

**

��

g

""
R≥n //

��

0

��
R
≥n−1 // Σn−1Hπn−1R.

By composing the maps R≥i ∧ R≥ j → Pn and R
≥n−1
∧ R≥i → Pn with the map g, we produce

the necessary maps ρi, j : R≥i ∧ R≥ j −→ R≥min{i+ j,n} where 0 < i ≤ j < n. This also proves,

by construction, that they satisfy the compatibility axiom (that is, naturality of the lax

symmetric monoidal functor Jop
n → S). The factor swap map produces all the maps

ρi, j : R≥i ∧ R≥ j → R≥min{i+ j,n}

where i > j and the commutativity and compatibility necessary for those maps as well.

The maps ρ0,n and ρn,0 are the R-module action maps that we produced by working in

the category of R-modules and again by construction these maps satisfy commutativity

and compatibility with the other maps. Unitality is also easily satisfied for each ρi, j with

i, j ∈ {0, ..., n}, since all these maps are R-module maps.

We just need to check associativity. By assumption, we have associativity for all the

maps ρi, j where i, j < n, we therefore just need to show that the associativity diagrams

involving the maps ρi, j for i or j equal to n. Since the symmetric monoidal product on
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R-modules is associative, we know that, for i, j, k ∈ {0, n}, the diagrams

R≥i ∧ R≥ j ∧ R≥k //

��

R≥i ∧ R≥ j+k

��
R≥i+ j ∧ R≥k // R≥i+ j+k

commute. We also know, by construction, that the diagram

R≥i ∧ R≥ j

�� %%
R≥n−1 R≥noo

(3.7)

commutes for all i + j ≥ n. The diagram

R≥i ∧ R≥n //

��

R≥n

��

R≥n ∧ R≥ioo

��
R≥i ∧ R≥n−1 // R≥n−1 R≥n−1 ∧ R≥ioo

(3.8)

also commutes by construction.

We need to show that for i, j, k ∈ {0, 1, ..., n} with either i, j, or k equal to n, then

R≥i ∧ R≥ j ∧ R≥k //

��

R≥i ∧ R≥ j+k

��
R≥i+ j ∧ R≥k // R≥n

(3.9)

commutes. This follows by combining the commutativity of Diagram 3.7, Diagram 3.8,

and the diagrams of the form of Diagram 3.9 when i, j, k < n, and using the fact that

R≥n → R≥n−1 is a monomorphism, since it is the pullback of a monomorphism in S by

construction, and hence it is retractile; i.e. when we say monomorphisms are retractile we
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mean that if f ◦ g is a monomorphism then f is also a monomorphism.

We have therefore produced an object in CommSJop
n . By induction, we can therefore

produce an object in CommSN
op

and then cofibrantly replace it to produce a decreasingly

filtered commutative monoid in S, denoted R≥•, as desired. �

Remark 3.37. Since we have functorial factorizations of maps and functorial cofibrant

replacement in our setting [29], the above theorem is entirely functorial, in other words,

a map of connective commutative ring spectra A→ B induces a map of Whitehead towers

A≥• → B≥• compatible with the multiplication maps ρA
i, j and ρA

i, j. This induces a map of

associated graded commutative monoids in S

E0A≥• −→ E0B≥•

and a map of THH-May spectral sequences

E∗,∗(X• ⊗ E∗0(A≥•))

��

+3 E∗(X• ⊗ A)

��
E∗,∗(X• ⊗ E∗0(B≥•)) +3 E∗(X• ⊗ B).

Example 3.38. Assume a prime p ≥ 3 is fixed. Let j be a cofibrant replacement in CommS,

for the commutative ring spectrum K(Fq)p where q is a prime power that topologically

generates Z×p. Then by Theorem 3.34, we produce a decreasingly filtered commutative

monoid in S. We will let j≥• be the decreasingly filtered commutative monoid in S that
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we produce. The associated graded E∗0 j≥• is additively equivalent to

Hπ0 j ∨ Σ2p−3Hπ2p−3 j ∨ Σ4p−5Hπ4p−5 j ∨ ...

or more succinctly Hπ∗( j). Its homotopy groups π∗(E∗0 j≥•) � π∗( j), but it is a generalized

Eilenberg-Maclane spectrum.

Corollary 3.39. By Theorem 3.36 and the construction of the THH-May spectral sequence,

we produce a bound on topological Hochschild homology of any connective commutative

ring spectrum R:

#πkT HH(R) ≤ #πkT HH(Hπ∗R)

where #S for a set S indicates the cardinality of the set S .
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CHAPTER 4 THH OF THE CONNECTIVE IMAGE OF J

We will assume that p ≥ 3 and q is a prime power that topologically generates Z×p,

which denotes the units in the p-adic integers. Recall that under these conditions, there

are equivalences

jp ' K(Fq)p ' τ≥0LK(1)S

where τ≥0 indicates the connective cover functor. We will therefore simply write j in this

chapter for K(Fq)p and assume that it is cofibrant in CommS, since we could cofibrantly

replace it in CommS if it was not already cofibrant.

4.1 mod (p, v1)-homotopy of T HH of the connective image of J

Recall, from Chapter 2, the construction that takes a decreasingly filtered commutative

monoid I in S as input and produces a May-type spectral sequence

E2
s,t = Gs,tT HH(E0I)⇒ GsT HH(I0)

for any connective generalized homology theory G, which we we call the G-THH-May

spectral sequence. Also, we produced a Whitehead-type decreasingly filtered commutative

monoid in S, denoted j≥•, associated to a cofibrant commutative ring spectrum model for

p-complete connective image of J. We therefore have a spectral sequence

E2
s,t = Gs,tT HH(E0 j≥•)⇒ GsT HH( j). (4.1)

The purpose of this section is to compute this spectral sequence in the case G = V(1).
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In the case where G = HFp, the input of the spectral sequence is calculable, and the out-

put is already known due the work of Angeltveit-Rognes [6]. This computation, therefore,

will allow us to see the differentials in the V(1)-THH-May spectral sequence that are also

detected in the HFp-THH-May spectral sequence. To begin, let us recall the computation

of Angeltveit-Rognes.

Theorem 4.1 (Angeltveit-Rognes [6]). There is an isomorphism

HFp∗( j) � P(ξ̃p
1 , ξ̃2, ξ̄3, ...) ⊗ E(τ̃2, τ̄3, ...) ⊗ E(b) � (A//A(1))∗ ⊗ E(b)

where all the elements in (A//A(1))∗ besides τ̃2, ξ̃
p
1 , and ξ̃2, and b have the usual A∗-coaction

and the coaction on the remaining elements τ̃2, ξ̃
p
1 , ξ̃2, and b are

ψ(b) = 1 ⊗ b

ψ(ξ̃p
1 ) = 1 ⊗ ξ̃p

1 − τ0 ⊗ b + ξ̄
p
1 ⊗ 1

ψ(ξ̃2) = 1 ⊗ ξ̃2 + ξ̄1 ⊗ ξ̃
p
1 + τ1 ⊗ b + ξ̄2 ⊗ 1

ψ(τ̃2) = 1 ⊗ τ̃2 + τ̄1 ⊗ ξ̃
p
1 + τ̄0 ⊗ ξ̃2 − τ1τ0 ⊗ b + τ̄2 ⊗ 1.

There is also an isomorphism

HFp∗(T HH( j)) � HFp∗( j) ⊗ E(σξ̃p
1 , σξ̃2) ⊗ P(στ̃2) ⊗ Γ(σb)

of A∗-comodules and HFp∗( j)-algebras. The A∗-coaction is given by using the formula

ψ(σx) = (1 ⊗ σ) ◦ ψ(x)
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and the previously stated coactions.

Note that Angeltveit and Rognes use a tilde over a symbol, for example x̃ to signify

that the element has a different coaction then the coaction on x or x̄. We now want to

compute the input of the spectral sequence. First, we note that as described in Example

3.38, S/p ∧ E0 j≥• is an HFp algebra and hence V(1) ∧ E0 j≥• is also an HFp algebra. It is

known more generally that T HH(R) is an R algebra, so V(1)∧T HH(E0 j≥•) is a V(1)∧E0 j≥•-

algebra and in particular an HFp-module. We can therefore apply the following lemma,

which can be found in Ausoni-Rognes [10, Lem. 4.1], though certainly the lemma predates

their work and they refer to Whitehead as the originator. We provide our own proof.

Lemma 4.2. Let M be an HFp-module. Then M is equivalent to a wedge of suspensions of

HFp, and the Hurewicz map

π∗(M) −→ HFp∗(M)

induces an isomorphism between π∗(M) and the subalgebra of A∗-comodule primitives

contained in HFp∗(M).

Proof. We recall that in the language of Hopkins-Smith [33] the spectrum HFp is a field

spectrum, so any HFp-module is a wedge of suspensions of HFp. Observe that the Adams

spectral sequence

Exts,t
A∗(Fp; HFp∗(M))⇒ πt−s(M)

collapses to the s = 0 line, and therefore the input of the spectral sequence is

HomA∗(Fp; HFp∗(M)).
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Since A∗-comodule maps from Fp to HFp∗(M) are equivalent to A∗-comodule primitives in

HFp∗(M) and HFp∗(M) is a A∗-comodule algebra, the result follows. �

Therefore, computing the algebra of comodule primitives in HFp∗(V(1) ∧ T HH(E0 j≥•))

will suffice for computing the input of the V(1)-THH-May spectral sequence.

Lemma 4.3. There is an isomorphism

π∗(HFp ∧ E0 j≥•) � (A//E(0))∗ ⊗ P(v1) ⊗ E(α1).

Proof. As observed in Example 3.38

S/p ∧ E0 j≥• ' HFp ∨
∨
i≥1

Σ(2p−2)i−1HFp ∨ Σ(2p−2)iHFp

and π∗(S/p ∧ E0 j≥•) � P(v1) ⊗ E(α1). By using the equivalence HZ ∧ S/p ' HFp we get

HFp ∧ E0 j≥• ' HZ ∧ S/p ∧ E0 j≥•

so additively

HFp ∧ E0 j≥• ' HZ ∧ (HFp ∨
∨
i≥1

Σ(2p−2)i−1HFp ∨ Σ(2p−2)iHFp).

We can write this as

(HZ ∧ HFp) ∧HFp

HFp ∨
∨
i≥1

Σ(2p−2)i−1HFp ∨ Σ(2p−2)iHFp
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and use the collapse of the Künneth spectral sequence to produce the desired isomorphism.

�

Proposition 4.4. There is an isomorphism

HFp∗(T HH(E0 j≥•)) � (A//E(0))∗ ⊗ P(v1) ⊗ E(α1) ⊗ E(σξ̄1, σv1) ⊗ P(στ̄2) ⊗ Γ(σα1)

where the A∗-coaction is the usual one, that is the coproduct in A∗, on elements in (A//E(0))∗.

The coaction on α1 and v1 is given by the formulas

ψ(α1) = 1 ⊗ α1

ψ(v1) = τ̄0 ⊗ α1 + 1 ⊗ v1

and the coproduct on the rest of the classes, besides γpk(σα1) uses the formula

ψ(σx) = (1 ⊗ σ) ◦ ψ(x).

Proof. We already know that π∗(HFp ∧ E0 j≥•) � (A//E(0))∗ ⊗ P(v1) ⊗ E(α1). We can use the

Bökstedt spectral sequence,

E s,t
2 = HH∗(HFp∗E0 j≥•))⇒ HFp∗(T HH(E0 j≥•))

to compute HFp∗(T HH(E0 j≥•)). The input is

HH∗((A//E(0))∗⊗P(v1)⊗E(α1)) � (A//E(0))∗⊗P(v1)⊗E(α1)⊗E(σξ̄i|i ≥ 1)⊗Γ(στ̄i|i ≥ 1)⊗E(σv1)⊗Γ(σα1)
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Using the well known facts that TorE(x)(k; k) � Γ(σx) and TorP(y)(k, k) � E(σy) for |x| =

2i − 1 and |y| = 2 j for any i, j ∈ N, one can show using classical methods that there are

isomorphisms HH∗(E(x)) � E(x) ⊗ Γ(σx) when |x| is odd, and HH∗(P(y)) � P(y) ⊗ E(σy)

when |y| is even (see [7], for example, for a detailed calculation). Using these calculations

and the fact that the functor HH∗(−) has the property that, when A and B are graded

Fp-algebras, there is an isomorphism

HH∗(A ⊗ B) � HH∗(A) ⊗ HH∗(B),

we can compute the input of the Bökstedt spectral sequence. We observe that by the

definition of E0 j≥• there is a map of commutative ring spectra HZ −→ E0 j≥•, and therefore

a map of Bökstedt spectral sequences,

HH∗(HFp∗HZ))

��

+3 HFp∗(T HH(HZ))

��
HH∗(HFp∗E0 j≥•) +3 HFp∗(T HH(E0 j≥•))

where the input of the top spectral sequence is

HH∗(HFp∗HZ) � (A//E(0))∗ ⊗ E(σξ̄i|i ≥ 1) ⊗ Γ(στ̄i|i ≥ 1).

Recall that due to Bökstedt [17] (see also Ausoni [7]), there are differentials

dp−1(γp+k(στ̄i))=̇σξ̄i+1γk(στ̄i)
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for k ≥ 0, i ≥ 1. Since these classes map to classes of the same names in the Bökstedt

spectral sequence for E0 j≥•, the same differentials occur in the Bökstedt spectral sequence

for E0 j≥•.

The only remaining possible differentials, for bidegree reasons, are possible differen-

tials on the classes γpk(σα1). We claim that these differentials do not occur and we will

prove this by contradiction. Suppose

dr(γpk(σα1)) , 0 (4.2)

for some r and some k > 0. Then we observe that in degree 2pk(p2 − p), the dimen-

sion of (HFp)∗(T HH(E0 j≥•)) as an Fp vector space is strictly less than the dimension of

(HFp)∗(T HH( j)) in the same degree. Since the HFp-THH-May spectral sequence with input

(HFp)∗(T HH(E0 j≥•)) computes (HFp)∗(T HH( j)), this leads to a contradiction. Therefore,

the presence of any differential of the form (4.2) contradicts the known computation of

(HFp)∗(T HH( j)) due to Angeltveit-Rognes [6]. Thus, no differentials of the form (4.2)

occur.

There is no further room for differentials for bidegree reasons so the E∞-page for E0 j≥•

is

E∗,∗∞ � (A//E(0))∗ ⊗ P(v1) ⊗ E(α1) ⊗ E(σξ̄1) ⊗ Pp(στ̄i|i ≥ 1) ⊗ E(σv1) ⊗ Γ(σα1)

We therefore just need to resolve hidden extensions. Due to Bökstedt [17], we know that

σ commutes with the Dyer-Lashof operations

Qpi
(τ̄i) = τ̄i+1
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computed by Steinberger [20] so we have relations

(στ̄i)p = Qpi
(στ̄i) = σ(Qpi

(τ̄i)) = στ̄i+1

for all k ≥ 0. These produce hidden multiplicative extensions

στ̄i+1 = (στ̄i)p

and therefore, the multiplicative structure on the output is

HFp∗(T HH(E0 j≥•)) � (A//E(0))∗ ⊗ P(v1) ⊗ E(α1) ⊗ E(σξ̄1) ⊗ P(στ̄1) ⊗ E(σv1) ⊗ Γ(σα1).

For the coaction, recall that the class v1 arose as the Bockstein on α1 in S/p ∧ E0 j≥•, and

therefore the coaction on v1 is

ψ(v1) = τ̄0 ⊗ α1 + 1 ⊗ v1.

The class dual to α1 cannot be the Bockstein of a class because β2 = 0. Since the class dual

to α1 is in degree 2p− 3 and the lowest class in A besides β is P1 in degree 2p− 2, the class

α1 must be a comodule primitive with coaction

ψ(α1) = 1 ⊗ α1.
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The rest of the coactions are determined by the coproduct in A∗ and the formula

ψ(σx) = (1 ⊗ σ) ◦ ψ(x)

�

We now use the HFp-THH-May spectral sequence in a case where the output is known

due to Angeltveit-Rognes [6] in order to detect differentials in the V(1)-THH-May spectral

sequence.

Proposition 4.5. The only differentials in the HFp-THH-May spectral sequence

(HFp)s,t(T HH(E0 j≥•))⇒ (HFp)s(T HH( j))

for j are as follows:

d1(ξ̄1)=̇α1 d1(σξ̄)=̇σα1

d1(τ̃1)=̇v1 d1(στ̄1)=̇σv1.

The surviving classes ξ̄p−1
1 α1, σξ̄γp−1σα1, γp(σα1), (στ̄1)p, and (στ̄1)p−1σv1 map to classes b,

σξ̃
p
1 , σb, στ̃2, and σξ̃2 in HFp∗T HH( j) and all other surviving classes map to classes of the

same name.

Proof. The output of the spectral sequence is trivial in the range 0 < s < 2p2 − 2p − 1, due

to the computation of Angeltveit-Rognes [6], and each of the classes which are the source

or target of one of the claimed nonzero differentials lie in this range. There are no other

possible differentials besides d1 differentials in this range, so this forces the specified d1

differentials. The resulting E2 = E∞-page is isomorphic to HFp∗T HH( j) with the specified
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correspondence in the proposition. �

Remark 4.6. The behavior of the differentials above leads us to conjecture that d1 com-

mutes with the operation σ in the HFp-THH-May spectral sequence.

Proposition 4.7. There is an isomorphism

V(1)∗(T HH(E0 j≥•)) � E(α1, λ1, ε1, σṽ1) ⊗ P(µ1, ṽ1) ⊗ Γ(σα1)

where |ε1| = |λ1| = |σṽ1| = 2p − 1, |α1| = 2p − 3, |µ1| = 2p, |ṽ1| = 2p − 2, and |σα1| = 2p − 2.

Proof. We can compute HFp∗(V(1) ∧ T HH( j)) where the input is HFp∗(V(1) ∧ T HH(E0 j≥•)),

using the HFp ∧ V(1)-THH-May spectral sequence. The differentials are the same and the

classes τ̄0 and τ̄1 map to classes of the same name in the output. This is useful because

there is a map of spectral sequences from the V(1)-THH-May spectral sequence to the

HFp ∧ V(1)-THH-May spectral sequence induced by the map of S -algebras

S ∧ V(1)
η∧idV(1) // HFp ∧ V(1)

where η : S → HFp is the unit map of HFp as a ring spectrum. Due to Lemma 4.2, the map

V(1)∗(T HH(E0 j≥•)) −→ (HFp ∧ V(1))∗(T HH(E0 j≥•))

includes V(1)∗(T HH(E0 j≥•)) into (HFp ∧V(1))∗(T HH(E0 j≥•)) as the A∗-comodule primitives.

By Lemma 4.4, the elements

{α1, v1 − τ̄0α1, στ̃1 − τ̄0ξ̄1, σξ̄1, σv1 − τ̄0σα1, τ̃1 − τ̄1}
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are comodule primitives where we write τ̃1 to distinguish the class in HFp∗(T HH(E0 j≥•))

from the class τ̄1 ∈ HFp∗(V(1)). We rename these classes respectively

{α1, ṽ1, µ1, λ1, σṽ1, ε1}.

In particular,

(HFp ∧V(1))∗(T HH(E0 j≥•)) � A∗ ⊗ E(ε1)⊗ P(σv1)⊗ E(α1)⊗ E(σξ̄1)⊗ P(στ̄1)⊗ E(σv1)⊗ Γ(σα1)

so the classes γpk(σα1), or possibly the difference of γpk(σα1) and a correcting term, are

also comodule primitives and by possible abuse of notation we still write γpk(σα1) for these

elements. Thus, the result follows from Lemma 4.4 and Lemma 4.2. �

We now consider the map of THH-May spectral sequences

V(1)∗(T HH(E0 j≥•))

f
��

+3 V(1)∗(T HH( j))

��
(HFp ∧ V(1))∗(T HH(E0 j≥•)) +3 (HFp ∧ V(1))∗(T HH( j))

induced by the map

η ∧ idV(1) : S ∧ V(1) −→ HFp ∧ V(1)

where η : S → HFp is the unit map of the ring spectrum HFp.
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Proposition 4.8. The only d1 differentials are

d1(λ1)=̇σα1,

d1(ε1)=̇ṽ1, and

d1(µ1)=̇σṽ1

in the V(1)-THH-May spectral sequence. The E2-page of the V(1)-THH-May spectral se-

quence is therefore

E∗,∗2 = E(α1, λ1γp−1(σα1), (µ1)p−1σṽ1) ⊗ P((µ1)p) ⊗ Γ(σb)

Proof. The classes

{ṽ1, µ1, λ1, σα1, σṽ1, ε1}

in the V(1)-THH-May spectral sequence map to the classes

{v1 − τ̄0α1, στ̃1 − τ̄0ξ̄1, σξ̄1, σα1, σv1 − τ̄0σα1, τ̃1 − τ̄1}

in the HFp∧V(1)-THH-May spectral sequence under the map of spectral sequences f . There

are trivial differentials

d1(τ̄0) = d1(τ̄1) = 0

and nontrivial differentials

d1(ξ̄1)=̇α1 d1(σξ̄)=̇σα1

d1(τ̃1)=̇v1 d1(στ̄1)=̇σv1

in the HFp ∧V(1)-THH-May spectral sequence by Propositions 4.5 and 4.7. We will use the
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formula f d1 = d1 f to compute the differentials. Notice that the map f is injective on the

E2-page of the spectral sequences so it makes sense to use the formula d1(x) = f −1d1( f (x)).

We therefore produce differentials

d1(λ1) = f −1(d1(σξ̄1)) = f −1(σα1) = σα1,

d1(ε1) = f −1d1(τ̃1 − τ̄1) = f −1(v1) = ṽ1,

d1(µ1) = f −1(d1(στ̃1 − τ̄0ξ̄1)) = f −1(v1 − τ̄0α1) = ṽ1

in the V(1)-THH-May spectral sequence as desired. There are no other possible d1 differ-

entials for bidegree reasons. �

Lemma 4.9. There is an isomorphism

V(1)∗(T HH( j; `)) � E(λ′1, λ2) ⊗ P(µ2) ⊗ Γ(σb)

Proof. Note that there are equivalences

V(1) ∧ T HH( j; `) ' T HH( j; HFp) ' HFp ∧ j T HH( j)

and that HFp ∧ j T HH( j) is a HFp ∧ j j-module, i.e. it is a HFp-module. We can therefore

apply Lemma 4.2 and Theorem 4.1 to compute V(1)∗T HH( j; `) � π∗T HH( j; HFp). The

result is the algebra of comodule primitives in

HFp∗(T HH( j; HFp)) � A∗ ⊗ E(σξ̃p
1 , σξ̃2) ⊗ P(στ̃2) ⊗ Γ(σb),

which can be seen by the collapse of the Künneth spectral sequence. The algebra of co-
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module primitives is isomorphic to E(λ′1, λ2) ⊗ P(µ2) ⊗ Γ(σb) where

µ2 = στ2 − τ̄0σξ̃2 − τ̄1σξ̃
p
1 + τ0τ1σb, λ′1 = σξ̃

p
1 − τ0σb,

λ2 = σξ̄2 − ξ̄1σξ̃
p
1 − τ1σb, and σb = σb.

�

We have another approach to computing T HH∗( j; j/(p, v1)) = V(1)∗(T HH( j)), as a V(1)∗-

module, but not as graded rings, by filtering the coefficients j/(p, v1) using the short filtra-

tion

0 −→ Σ2p−3HFp −→ j/(p, v1)

with associated graded j-module HFp n Σ2p−3HFp, which multiplicatively has the structure

of the trivial square-zero extension of HFp by Σ2p−3HFp. We use the THH-May spectral

sequence with filtered coefficients as follows

T HHs,t( j; HFp n Σ2p−3HFp)→ T HHs( j; j/(p, v1)).

This spectral sequence reduces to the long exact sequence

. . . // πk−2p+3(T HH( j; HFp) // πk(T HH( j; j/(p, v1))

��
πk(T HH( j; HFp)) // πk−2p+2(T HH( j; HFp)) // . . .

.

(4.3)

where two out of three terms are known. We claim that this exact sequence demon-

strates that the V(1)-THH-May spectral sequence cannot collapse at E2. The author owes
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Eva Höning for giving some evidence that there must be a longer differential in personal

communication, since the author originally had an argument that said that the differential

on λ2 = (µ1)p−1σṽ1 was zero.

Proposition 4.10. There is a differential

dp−1((µ1)p−1σṽ1)=̇α1λ1γp−1(σα1)

in the V(1)-THH-May spectral sequence and no remaining differentials.

Proof. There is only one remaining possible differential for bidegree reasons, which is

the stated differential dp−1((µ1)p−1σṽ1)=̇α1λ1γp−1(σα1). Suppose the V(1)-THH-May spectral

sequence computing π∗(T HH( j; j/(p, v1)) collapses at the E2-page. Then, the long exact

sequence (4.3) takes the form

Σ2p−3E(λ′1, λ2) ⊗ P(µ2) ⊗ Γ(σb) // E(α1, λ1γp−1(σα1), (µ1)p−1σṽ1) ⊗ P((µ1)p) ⊗ Γ(σb)

��
E(λ′1, λ2) ⊗ P(µ2) ⊗ Γ(σb)

ll

where the dotted arrow indicates a shift in degree by 1. In particular, in degree 2p2−1 and

2p2 − 2 we have the exact sequence

0 −→ Fp{(µ1)p−1σṽ1} −→ Fp{λ2} −→ Fp{λ
′
1} −→ Fp{α1λ1γp−1(σα1)} −→ 0.

We can therefore determine if there should be a differential as stated by determining if the
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map

Fp{λ2} −→ Fp{λ
′
1}

is nontrivial. To determine this, we note that the boundary map is exactly the map

V(1)∗(T HH( j; `)) −→ V(1)∗(T HH( j; Σ2p−2`))

induced by the map ` −→ Σ2p−2` given by 1 − ψq where q is the q-th Adams operation. This

map induces multiplication by P1 in cohomology

HF∗p(Σ2p−2`) = Σ2p−2A//E(1) P1
// A//E(1) = HF∗p(`).

In the dual, we therefore know that the map

(P1)∗ : HFp∗(`) = (A//E(1))∗ // Σ2p−2(A//E(1))∗ = HFp∗(Σ
2p−2`)

sends classes of the form ξ̄1y to y and the map sends all other classes to zero. The same

will therefore be true for the induced map

HFp∗(V(1) ∧ T HH( j; `)) // HFp∗(V(1) ∧ T HH( j; Σ2p−2`))

HFp∗(V(1) ∧ T HH( j)) ⊗HFp∗( j) HFp∗(`)

�

OO

id⊗HFp∗( j)(P1)∗
// HFp∗(V(1) ∧ T HH( j)) ⊗HFp∗( j) HFp∗(Σ

2p−2`),

�

OO
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in particular ξ̄1σξ̃
p
1 maps to σξ̃p

1 . We therefore examine the square

V(1)2p2−1(T HH( j; `)) //

g

��

V(1)2p2−2(T HH( j; Σ2p−3`))

h
��

(HFp ∧ V(1))2p2−1(T HH( j; `)) // (HFp ∧ V(1))2p2−2(T HH( j; Σ2p−3`)),

which is isomorphic to

Fp{λ2}

g
��

// Fp{λ
′
1}

h
��

Fp{σξ̃2, ξ̄1σξ̃
p
1 , τ̄1σb, ξ̄1τ̄0σb} // Fp{σξ̃

p
1 , τ̄0σb}.

As stated in the proof of Proposition 4.8, the vertical maps send λ2 and λ′1 to classes given

by the formulas

g(λ2) = σξ̃2 − ξ̄1σξ̃
p
1 − τ̄1σb

h(λ′1) = σξ̃
p
1 − τ̄0σb.

The bottom horizontal map sends the class in the image of σξ̃2 to the class σξ̃p
1 ; i.e.,

σξ̃2 − ξ̄1σξ̃
p
1 − τ̄1σb � // σξ̃

p
1 .

Since the inverse image of the Hurewicz map evaluated on this element is

h−1(σξ̃p
1 ) = h−1(σξ̃p

1 − τ̄0σb) = λ′1.

This proves that the top horizontal map is nontrivial and therefore, there must be a differ-
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Figure 1: The Ep−1-page of the V(1)-THH-May spectral sequence at p = 3 for s ≤ 36.

ential

dp−1((µ1)p−1σṽ1)=̇α1λ1γp−1(σα1)

as stated. �

Remark 4.11. Due to Oka [47, Thm. 4.4], the obstruction to a ring structure on V(1) at

the prime 3 is a composite of maps including the composite map

β1 : Σ11S // Σ11S/p
β(1) // S/p // Σ1S ,

however we can easily compute that the induced map Σ11 j → Σ j is null homotopic and

hence the obstruction vanishes after smashing with j. Thus, V(1) ∧ j and hence V(1) ∧

T HH( j) are ring spectra, so the ring spectrum structure on V(1)∗(T HH( j)) is also correct at

the prime 3. This type of argument is also used by Ausoni in the case of V(1) ∧ ku in [7].
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Theorem 4.12. Let p ≥ 3 be a prime number and let V(1) be the cofiber of the map

v1 : Σ2p−2S/p→ S/p.

Then there is an isomorphism

V(1)∗(T HH( j)) � P(µ2) ⊗ Γ(σb) ⊗ Fp{α1, λ
′
1, λ2α1, λ2λ

′
1, λ2λ

′
1α1}

where the products between the classes

{α1, λ
′
1, λ2α1, λ2λ

′
1, λ2λ

′
1α1}

are zero except for

α1 · λ2λ
′
1 = λ′1 · λ2α1 = λ2λ

′
1α1.

Proof. This proof follows from Proposition 4.5 and Proposition 4.10. There are no further

possible differentials for bidegree reasons. This can be seen in Figure 1 since all the algebra

generators are in the range specified. The only possible hidden multiplicative extension is

easily ruled out by a filtration argument. �

4.2 THH of connective im J with coefficients in Morava K-theory

Note that S/p∗T HH( j; `) � π∗T HH( j; k(1)) where k(1) is the connective cover of the first

Morava K-theory spectrum. We can therefore compute π∗T HH( j; k(1)) using the Bockstein

spectral sequence

V(1)∗T HH( j; `)[v1]⇒ π∗T HH( j; k(1))



70

whose input we computed in the previous section.

Proposition 4.13. There is an isomorphism,

π∗(T HH( j; k(1)))⇒ (P(v1) ⊗ Γ(σb) ⊗ Fp{1, yn,m, y′n,m})/ ∼

where yn,m = λ′nµ
pn−1m
2 , y′n,m = λ′nλ

′
n+1µ

pn−1m
2 , λ′1 = σξ̃

p
1 , λ′2 = λ2,

λ′n =


λ′1µ

pn−3(p−1)
2 if n ≥ 3 is odd

λ2µ
pn−3(p−1)
2 if n ≥ 3 is even.


and the relations are given by vl(n)

1 yn,m = vl(n)
1 y′n,m = 0 where l(1) = 1, l(2) = p2 and l(n) =

pn + l(n − 2).

Proof. The proof makes use of the map of spectral sequences,

π∗(V(1) ∧ T HH( j; `))[v1]

f
��

+3 π∗(S/p ∧ T HH( j; `))

f ′

��
π∗(V(1) ∧ T HH(`))[v1] +3 π∗(S/p ∧ T HH(`))

induced by the map of ring spectra ` ∧ j T HH( j) −→ ` ∧` T HH(`) given by the map of ring

spectra j −→ `.

In the bottom spectral sequence, we know due to McClure-Staffeldt [45] that the dif-

ferentials satisfy the following formula.

dr(λ2) = dr(λ1) = 0 for all r ≥ 0

dr(n)(µpn−1
) = vr(n)

1 λn
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where r(1) = p, r(2) = p2 and r(n) = pn + r(n − 2) for n ≥ 3. The classes λn for n ≥ 3 are

defined to be

λn =


λ1µ

pn−3(p−1) if n ≥ 3 is odd

λ2µ
pn−3(p−1) if n ≥ 3 is even


We know, by using the Hurewicz map and the map of Bökstedt spectral sequences,

that the map of spectral sequences, call it f , sends µ2 = στ̃2 to µ. If n is odd, we see

that if d1(µ2) = 0 then there are no other possible differentials on µ for bidegree reasons.

Therefore, dp(µ2) = 0. But, this is a contradiction because it implies that f (dp(µ2)) = f (0) =

0, when f (dp(µ2)) = dp( f (µ2)) = dp(µ) = vp
1λ1 , 0. Thus, d1(µ2) , 0 so d1(µ2)=̇v1σξ̃

p
1 .

The map of spectral sequences implies that dp2((µ2)p) = vp2

1 σξ̃2 since there are no possible

earlier differentials on στ̃2 for bidegree reasons, and f (σξ̃2) = λ2. If σξ̃2 died on an earlier

page, there would be a contradiction because f (dp2(µ2)) = f (0) = 0 contradicts the known

differential dp2( f (µ2)) = dp2(µ) = λ2. This implies that d1(σξ̃2) = 0. The only other possible

differential on σξ̃2 is dp+1(σξ̃2) = vp+1
1 but f (vp

1) = vp
1 so we have that f (v1) = f (dp+1(σξ̃2)) =

dp+1( f (σξ̃2)) = dp+1(λ2) = 0, which contradicts the fact that f (v1) = v1.

Letting l(1) = 1, l(2) = p2 and l(n) = pn + l(n − 2) for n ≥ 3, we produce differentials

dl(n)(µpn−1
) = vl(n)

1 λ′n by the same argument, where λ′1 = σξ̄
p
1 , λ′2 = λ2 and for n ≥ 3,

λ′n =


λ′1µ

pn−3(p−1) if n ≥ 3 is odd

λ2µ
pn−3(p−1) if n ≥ 3 is even.


There is also a possible dp differential on σξ̃

p
1 , but we claim that it is zero. We can prove

this by contradiction. Suppose dp(σξ̃p
1 ) = vp

1 (Note that this is the only possible differential

of this length), then dp(vp2−p
1 σξ̃

p
1σξ̃2) = vp2

1 σξ̃2. But, that would mean that dp2(µ2) = 0. This
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contradicts the known differential dp2(µ) = vp2

1 λ2. Thus, the assumption that dp(σξ̃p
1 ) , 0

must be false.

There are no further possible differentials so

π∗(T HH( j; k(1))) � P(v1) ⊗ Γ(σb) ⊗ Fp{1, yn,m, y′n,m}/ ∼

where n ≥ 1, m ≥ 0 and m . p − 1(mod p) and

yn,m = λ′nµ
pn−1m
2

y′n,m = λ′nλ
′
n+1µ

pn−1m
2

�

4.3 Towards mod p-homotopy of T HH of the connective image of J

We would really like to understand S/p∗T HH( j) and eventually T HH∗( j) if we want

to compute K( j), without smashing with a Smith-Toda complex, using trace methods. We

conjecture the following description of S/p∗T HH( j)

Conjecture 4.14. There is an isomorphism of graded Fp-vector spaces

S/p∗T HH( j) � H∗((P(v1) ⊗ Γ(σb) ⊗ Fp{1, yn,m, y′n,m}) ⊗ E(α1)/ ∼, d) (4.4)

where H∗(−, d) indicates homology of the DGA with respect to the family of differentials

d(y2k,m) = α1y2k−1,m,
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where α1 has degree one and all other classes have degree zero, and ∼ indicates the same

equivalence relation as in Proposition 4.13

The conjecture is really that the differentials stated are all the differentials. We know

that the isomorphism of 4.4 is true for some family of differentials since there is a long

exact sequence

. . . // S/pkT HH( j; `) // S/pkT HH( j; Σ2p−2`)

��
S/pk−1T HH( j) // S/pk−1T HH( j; `) // S/pk−1T HH( j; Σ2p−2`)

��
S/pk−2T HH( j) // S/pk−2T HH( j; `) // . . .

We can compare this approach to the Bockstein spectral sequence

V(1)∗T HH( j)[v1]⇒ S/p∗T HH( j)

using the input computed in the previous section; i.e.

V(1)∗T HH( j)[v1] � P(µ) ⊗ Γ(σb) ⊗ P(v1) ⊗ Fp{1, α1, λ
′
1, λ2α1, λ2λ

′
1, α1λ

′
1λ2}.

Comparing these two approaches forces the differentials d(y2k,m) = α1y2k−1,m above. It also

forces differentials on µpk
for all k ≥ 0, for example d1(µ) = v1λ

′
1. Some other possible

differentials in both the long exact sequence and the Bockstein spectral sequence can be

eliminated by comparing with the THH-May spectral sequence

S/p∗T HH(E0 j≥•)⇒ S/p∗T HH( j).
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The input of this spectral sequence is computable by similar methods to those in the pre-

vious section. The Ep-page of this spectral sequence is actually the same as the E1-page

of the Bockstein spectral sequence, but the advantage is that the S/p-THH-May spectral

sequence has a slightly different grading convention than the Bockstein spectral sequence

so some differentials that seem to be possible with the Bockstein grading are not possible

using the THH-May grading. An example of this is the possible differential d4(σb) = α1v4
1 in

the Bockstein spectral sequence and the long exact sequence, but this can be ruled out be-

cause in the S/p-THH-May spectral sequence |σb| = (p, 2p2−2p) and |α1v4
1| = (p, 2p2−2p−1)

and therefore there is no possible differential. We can also eliminate possible differentials

in the Bockstein spectral sequence by comparing to the long exact sequence, for example

there are possible differentials dp(λ2α1) = σbv1α1 and dp(λ′1λ2) = v1λ
′
1σb, but these can be

ruled out since there is no boundary map in the long exact sequencethat would make this

possible. The author plans to prove this conjecture in subsequent work.
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CHAPTER 5 DETECTING V2-PERIODICITY

The goal of this chapter is to prove a version of the red-shift conjecture in a specific case.

We say that a spectrum R detects the n-th Greek letter family, if the family of elements maps

nontrivially under the unit map

π∗S → π∗R.

Let V be a finite cell p-local S -module of type n + 1. We say that V∗K(R) detects the vn+1-

periodic family generated by α(n+1)
1 if the classes vk

n+1α
(n+1)
1 map non-trivially to V∗K(R) under

the unit map

V∗ � V∗S
V∗η // V∗K(R).

Conjecture 5.1 (Greek letter family red-shift conjecture). If R detects the Greek letter

family α(n)
k , then V∗K(R) detects the vn+1-periodic family generated by α(n+1)

1 in V∗ for some

type n + 1 spectrum V that detects α(n+1)
1 .

The main example of interest is the spectrum K(Fq)p, which detects the alpha family

{αk}. The main theorem of this chapter will be that V(1)∗K(K(Fq)p) detects the v2-periodic

elements generated by β1 verifying the conjecture for R = K(Fq)p and n = 1. In particular,

we can show that the classes βpk+1 are detected under the unit map π∗S → π∗K(K(Fq)p).

Note that throughout this section we will assume p ≥ 5 and q is a prime power that

topologically generates Z×p.
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5.1 Homotopy fixed point spectral sequences

Given a connective generalized homology theory E, we will refer to the spectral se-

quence

E2
∗,∗ � H−s(S 1, EtT HH(R))⇒ Ec

t+sT HH(R)hS 1

as the “S 1-E homotopy fixed point spectral sequence associated to T HH(R)" where H−s(S 1; M)

indicates group cohomology with coefficients in M. We will call s the horizontal degree t

the vertical degree and t + s the topological degree or total degree, since we will use the

Serre convention for grading the spectral sequence where the spectral sequence lies in the

second quadrant if T HH(R) is connective. By definition, the “continuous" E-homology of

T HH(R)hS 1
is

Ec
∗T HH(R)hS 1

� lim
n
π∗(E ∧ F((ES 1)(n)

+ ,T HH(R))S 1
)

where the limit is taken with respect to the inclusion maps

(ES 1)(1) ↪→ (ES 1)(2) ↪→ . . . ↪→ ES 1.

Our choice of model for (ES 1)(n) is S (Cn)+ with the usual coordinate-wise action of S 1 on

Cn. If E is a finite cell complex, then since homotopy limits commute with homotopy

(co)fiber sequences Ec
∗T HH(R)hS 1

� E∗T HH(R)hS 1
, for example when E = V(1) := cof{v1 :

Σ2p−2S/p → S/p} for p > 2. We first give a general characterization of the d2 differential

in the S 1-E-homotopy fixed point spectral sequence. The following proof is adapted from

Lemma 3.1 in Bruner-Rognes [21] to include a connective generalized cohomology theory

E, though the argument is the same and Bruner-Rognes give a more general statement in
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the case E = HFp.

Proposition 5.2. Suppose E∗T HH(R) is a graded Fp-vector space. All the d2 differentials

in the S 1-E homotopy fixed point spectral sequence associated to T HH(R) are of the form

d2(x) = tσx.

where t is a generator of H−∗(S 1;Fp) in degree −2.

Proof. An element x ∈ E∗T HH(R) is a non-equivariant map

S t −→ E ∧ T HH(R); . (5.1)

that is, by adjunction a non-equivariant map

S 0 −→ F(S t, E ∧ T HH(R)).

By an adjunction in equivariant homotopy theory, this is equivalent to an S 1-equivariant

map

S (C)+ ∧ S 0 −→ F(S t, E ∧ T HH(R)).
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We consider the diagram,

S (C)+

��

x

((
(S 1 × δD2)+

��

// S (C1)

��

// F(S t, E ∧ T HH(R))

(S 1 × D2)+
// S (C2).

66

The differential d2 is the obstruction to lifting the composite map

(S 1 × δD2)+ → S (C1)→ F(S t, E ∧ T HH(R))

over the map S (C2)→ F(S t, E ∧ T HH(R)) where the attaching map is exactly the action of

S 1. Using the equivariant adjunction again, this is the obstruction to lifting the map

δD2
+ → S (C1)→ F(S t, E ∧ T HH(R))

over the map D2
+ → S (C2). Using the splitting δD2

+ ' S 1 ∨D2
+, we see that differential is the

map

S 1 → F(S t, E ∧ T HH(R)

which by adjunction is equivalent to the map

S 1 ∧ S t −→ E ∧ T HH(R),

which is exactly the element σx in Et+1(T HH(R). �
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Corollary 5.3. In the S 1-HFp homotopy fixed point spectral sequence associated to T HH(K(Fq)p)

there are differentials

d2(ξ̃p
1 ) = tσξ̃p

1 , d2(ξ̃2) = tσξ̃2

d2(τ̃2) = tστ̃2, d2(b) = tσb

and all other d2 differentials are zero.

Proof. The Corollary follows by direct application of 5.2 to the computation of Angeltveit-

Rognes sumarized in Theorem 4.1. Note that the operator σ is a derivation, so in particular

d2(σx) = tσ2x = 0 for all x. �

In the following section, we will write Tk(R) for F(S (Ck)+,T HH(R))S 1
. Note that there is

a truncated homotopy fixed point spectral sequence with k columns converging to E∗(Tk(R))

and

lim E∗Tk(R) = Ec
∗(T HH(R)hS 1

).

5.2 Detecting the classes β1, β′1, and v2

The following argument is inspired by the argument of Ausoni-Rognes [9, Prop. 4.8].

Recall from Chapter 2 that the class β1 maps non-trivially under the map S
i0 // S/p

i1 // V(1)

where i0 and i1 are the maps that include in the bottom cell.

Proposition 5.4. The classes v2, i0i1β1, and i1β
′
1 in V(1)∗ map nontrivially to the classes tµ2,

tσb, and tσξ̃p
1 in

V(1)∗T HH(K(Fq)p)hS 1

where β′1 is the mod p Bockstein on β1.

Proof. First, v2 is represented by τ̄2 ⊗ 1, β′1 is represented by ξ̄p
1 ⊗ 1 and β1 is represented

by Σ
p−1
i=1

1
p

(
p
i

)
ξ̄i

1 ⊗ ξ̄
j
1 ⊗ 1, in the cobar complex which is the E1-page of the Adams spectral
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sequence that converges to π∗V(1) [20]. We consider the map of Adams spectral sequences

Ext∗,∗A∗ (Fp,H∗V(1)) −→ Ext∗,∗A∗ (Fp,H∗V(1) ⊗ T2(K(Fq)p))

induced by the unit map

V(1) ∧ S
1V(1)∧η // V(1) ∧ T2(K(Fq)p)) .

We see that τ̄2 ⊗ 1, ξ̄p
1 ⊗ 1, Σ

p−1
i=1

1
p

(
p
i

)
ξi

1 ⊗ ξ
j
1 ⊗ 1 are permanent cycles in the source, which map

to classes of the same name in the target. Since the elements in the source are infinite

cycles, this implies that the elements that they map to are infinite cycles as well. We then

have to check that these classes are not boundaries.

We can eliminate the possibility of a d1 differential with τ̄2 ⊗ 1 as a co-boundary by

computing the differential in the cobar complex for H∗V(1) ⊗ H∗T2(K(Fq)p) on each class of

the correct degree. Since the two column truncation of the homotopy fixed point spectral

sequence converging to H∗T2(K(Fq)p) has a differential d2(τ̄2) = tµ2, by Corollary 5.3, the

class τ̄2 does not survive and can therefore not hit classes of the same name in the 1-co-

chains.

The only other classes in the the right degree in H∗V(1) ⊗ H∗T2(K(Fq)p) to be the source

of a d1 hitting τ̄2⊗1 are {σξ̃2, τ̄1σb}. However, σb is primitive so d1(τ̄1σb) = d1(τ̄1)σb , τ̄2⊗1.

Also, d1(σξ̃2) = ξ̄1 ⊗ σξ̃
p
1 + τ̄1 ⊗ σb , τ̄2 ⊗ 1. Therefore, τ̄2 ⊗ 1 survives to the E2-page. There

are no possible longer differentials hitting τ̄2 ⊗ 1 because the class lies on the one-line of

the Adams spectral sequence; hence, it is a permanent cycle.



81

We eliminate the possibility that the class ξ̄p
1 ⊗ 1 is a boundary of a d1 by the same

method. Consider the truncated homotopy fixed point spectral sequence converging to

H∗T2(K(Fq)p). In that spectral sequence there is a d2 on ξ̄
p
1 hitting tσξ̄p

1 by Corollary 5.3.

Therefore, the only classes that are in the right degree in H∗V(1)∧T2(K(Fq)p) to have ξ̄p
1 ⊗ 1

as their co-boundary are

{τ̄0σξ̄
p
1 , σb.}

However, d1(σb) = 0, since it is a comodule primitive, and

d1(τ̄0σξ̃
p
1 ) = 1 ⊗ τ̄0σξ̄

p
1 − τ̄0 ⊗ σξ̃

p
1 − 1 ⊗ τ̄0σξ̃

p
1 , ξ̄

p
1 ⊗ 1.

The class [ξ̄p
1 ⊗ 1] is in Adams filtration 1 so it can not be the target of a longer differential,

therefore it is a permanent cycle.

For
∑p−1

i=1
1
p

(
p
i

)
ξi

1⊗ξ
p−i
1 ⊗1, we first need to check that it is not a boundary of an element in

A∗⊗H∗V(1)∧T2(K(Fq)p). We check the differential in the cobar complex on all the elements

here in the right degree. These classes are


1 ⊗ σb, τ̄0 ⊗ τ̄0tξ̃p

1 , ξ̄
p−1
1 ⊗ τ̄0τ̄1, ξ̄

p−2
1 τ̄0τ̄1 ⊗ τ̄0τ̄1,

ξ̄
p−1
1 τ̄0 ⊗ τ̄1, ξ̄

p−1
1 τ̄1 ⊗ τ̄0, ξ̄

p−1
1 τ̄1τ̄0 ⊗ 1, ξ̄p

1 ⊗ 1


where ξ̃p

1 has a coproduct coming from H∗K(Fq) and ξ̄p
1 has the coproduct coming from the

coaction on A∗. Recall that Milnor computed the coaction of A∗ on

H∗(CP∞,Fp) � H∗(BS 1;Fp),
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where the right side is the equivalent to the group cohomology H∗(S 1;Fp) [46]. The coac-

tion on the class t is

ψ(t) = Σi≥0ξ̄
i
1 ⊗ tpi

.

Therefore, in the input of the truncated homotopy fixed point spectral sequence computing

V(1)∗T2(K(Fq)p), the A∗ coaction on t is primitive.

We compute the differential in the cobar complex on each of the elements that could

possibly have the class representing β1 as a target:

d1(1 ⊗ σb) = 1 ⊗ 1 ⊗ σb

d1(τ̄0 ⊗ τ̄0tξ̃p
1 ) = τ̄0 ⊗ τ̄0 ⊗ tξ̃p

1 + τ̄0 ⊗ ξ̄
p
1 ⊗ tτ̄0 + τ̄0 ⊗ τ̄0ξ̄

p
1 ⊗ t + τ̄0 ⊗ τ̄0 ⊗ τ̄0tb

d1(ξ̄p−1
1 ⊗ τ̄0τ̄1) = 1 ⊗ ξ̄p−1

1 ⊗ τ̄0τ̄1 − ∆(ξ̄p−1
1 ) ⊗ τ̄0τ̄1 + ξ̄

p−1
1 ⊗ ψ(τ̄0τ̄1)

= −
∑p−2

i=1

(
p−1

i

)
ξ̄

p−i−1
1 ⊗ ξ̄i

1 ⊗ τ̄0τ̄1 + ξ̄
p−1
1 ⊗ τ̄0 ⊗ τ̄1

+ξ̄
p−1
1 ⊗ τ̄0τ̄1 ⊗ 1 + ξ̄

p−1
1 ⊗ τ̄1 ⊗ τ̄0

d1(ξ̄p−2
1 τ̄0τ̄1 ⊗ τ̄0τ̄1) = 1 ⊗ ξ̄p−2

1 τ̄0τ̄1 − ∆(ξ̄p−2
1 τ̄0τ̄1) ⊗ τ̄0τ̄1 + ξ̄

p−2
1 τ̄0τ̄1 ⊗ ψ(τ̄0τ̄1)

= 1 ⊗ ξ̄p−2
1 τ̄0τ̄1 ⊗ τ̄0τ̄1 −

∑p−2
i=0 ξ̄

i
1 ⊗ ξ̄

p−i−2
1 τ̄0τ̄1 ⊗ τ̄0τ̄1

−
∑p−2

i=0 ξ̄
i
1τ̄0 ⊗ ξ̄

p−i−2
1 τ̄1 ⊗ τ̄0τ̄1 −

∑p−2
i=0 ξ̄

i
1τ̄0τ̄1 ⊗ ξ̄

p−i−2
1 ⊗ τ̄0τ̄1

−
∑p−2

i=0 ξ̄
i
1τ̄1 ⊗ ξ̄

p−i−2
1 τ̄0 ⊗ τ̄0τ̄1 −

∑p−2
i=0 ξ̄

i
1τ̄0 ⊗ ξ̄

p−i−2
1 ξ̄1τ̄0 ⊗ τ̄0τ̄1

+ξ̄
p−2
1 τ̄0τ̄1 ⊗ 1 ⊗ τ̄0τ̄1 + ξ̄

p−2
1 τ̄0τ̄1 ⊗ τ̄0 ⊗ τ̄0

+ξ̄
p−2
1 τ̄0τ̄1 ⊗ τ̄0τ̄1 ⊗ 1 + ξ̄

p−2
1 τ̄0τ̄1 ⊗ τ̄1 ⊗ τ̄0

d1(ξ̄p−1
1 τ̄0 ⊗ τ̄1) = 1 ⊗ ξ̄p−1

1 τ̄0 ⊗ τ̄1 − ∆(ξ̄p−1
1 τ̄0) ⊗ τ̄1 + ξ̄

p−1
1 τ̄0 ⊗ ψ(τ̄1)

= 1 ⊗ ξ̄p−1
1 τ̄0 ⊗ τ̄1 −

∑p−1
i=0

(
p−1

i

)
ξ̄i

1 ⊗ ξ̄
p−i−1
1 τ̄0 ⊗ τ̄1

−
∑p−1

i=0

(
p−1

i

)
ξ̄i

1τ̄0 ⊗ ξ̄
p−i−1
1 ⊗ τ̄1 + ξ̄

p−1
1 τ̄0 ⊗ 1 ⊗ τ̄1

+ξ̄
p−1
1 τ̄0 ⊗ τ̄1 ⊗ 1
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d1(ξ̄p−1
1 τ̄1 ⊗ τ̄0) = 1 ⊗ ξ̄p−1

1 τ̄1 ⊗ τ̄0 − ∆(ξ̄p−1
1 τ̄1) ⊗ τ̄0 + ξ̄

p−1
1 τ̄1 ⊗ 1 ⊗ ψ(τ̄0)

= 1 ⊗ ξ̄p−1
1 τ̄1 ⊗ τ̄0 −

∑p−1
i=0

(
p−1

i

)
ξ̄i

1 ⊗ ξ̄
p−1−i
1 τ̄1 ⊗ τ̄0

−
∑p−1

i=0

(
p−1

i

)
ξ̄i

1τ̄0 ⊗ ξ̄
p−1−i
1 ξ̄1 ⊗ τ̄0

−
∑p−1

i=0

(
p−1

i

)
ξ̄i

1τ̄1 ⊗ ξ̄
p−1−i
1 τ̄1 ⊗ τ̄0

+ξ̄
p−1
1 τ̄1 ⊗ 1 ⊗ τ̄0 + ξ̄

p−1
1 τ̄1 ⊗ τ̄0 ⊗ 1

d1(ξ̄p−1
1 τ̄1τ̄1 ⊗ 1) = 1 ⊗ ξ̄p−1

1 τ̄1τ̄1 ⊗ 1 − ∆(ξ̄p−1
1 τ̄1τ̄1) ⊗ 1 + ξ̄

p−1
1 τ̄1τ̄1 ⊗ 1 ⊗ 1

= 1 ⊗ ξ̄p−1
1 τ̄1τ̄1 ⊗ 1 −

∑p−1
i=0

(
p−1

i

)
ξ̄i

1 ⊗ ξ̄
p−1−i
1 τ̄1τ̄0 ⊗ 1

−
∑p−1

i=0

(
p−1

i

)
ξ̄i

1τ̄0 ⊗ ξ̄
p−1−i
1 ξ̄1τ̄0 ⊗ 1

−
∑p−1

i=0

(
p−1

i

)
ξ̄i

1τ̄1 ⊗ ξ̄
p−1−i
1 τ̄1τ̄0 ⊗ 1

−
∑p−1

i=0

(
p−1

i

)
ξ̄i

1τ̄0 ⊗ ξ̄
p−1−i
1 τ̄1 ⊗ 1

−
∑p−1

i=0

(
p−1

i

)
ξ̄i

1τ̄1τ̄0 ⊗ ξ̄
p−1−i
1 τ̄1 ⊗ 1

+ξ̄
p−1
1 τ̄1τ̄1 ⊗ 1 ⊗ 1

d1(ξ̄p
1 ⊗ 1) = 0.

Suppose that some combination of these elements could hit the class

Σ
p−1
i=1

1
p

(
p
i

)
ξi

1 ⊗ ξ
p−i
1 ⊗ 1.

Then we need to solve the equation

Σ
p−1
i=1

1
p

(
p
i

)
ξi

1 ⊗ ξ
p−i
1 ⊗ 1 = a1d1(1 ⊗ σb) + a2d1(τ̄0 ⊗ τ̄0tξ̃p

1 ) + a3d1(ξ̄p−1
1 ⊗ τ̄0τ̄1)

+a4d1(ξ̄p−2
1 τ̄0τ̄1 ⊗ τ̄0τ̄1) + a5d1(ξ̄p−1

1 τ̄0 ⊗ τ̄1)

+a6d1(ξ̄p−1
1 τ̄1 ⊗ τ̄0) + a7d1(ξ̄p−1

1 τ̄1τ̄1 ⊗ 1)

for some ai ∈ F
×
p, but there are no solutions to this equation.

Since Σ
p−1
i=1

1
p

(
p
i

)
ξi

1 ⊗ ξ
p−i
1 ⊗ 1 is on the two-line, we still have to check that there is no d2
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differential hitting it in the Adams spectral sequence,

Ext∗,∗A∗ (Fp,H∗(V(1) ∧ T2(K(Fq)p))⇒ V(1)∗T2(K(Fq)p).

Since a d2 would have to have its source on the 0-line in degree 2p2 − 2p− 1, it would have

to be a class in H2p2−2p−1V(1) ∧ T2(K(Fq)p).

We computed

H2p2−2p−1V(1) ∧ T2(K(Fq)p) � Fp{τ̄0tξ̃p
1 },

since d2(b) = tσb in the two column homotopy fixed point spectral sequence that computes

H∗T2(K(Fq)p). The Leibniz rule implies

d2(τ̄0tξ̃p
1 ) = d2(τ̄0)tξ̃p

1 − τ̄0d2(ξ̃p
1 ) , Σ

p−1
i=1

1
p

(
p
i

)
ξi

1 ⊗ ξ
p−i
1 ⊗ 1,

so we can rule out this differential. Therefore, the class

p−1∑
i=1

1
p

(
p
i

)
ξi

1 ⊗ ξ
p−i
1 ⊗ 1

is a permanent cycle.

We conclude that v2, β′1 and β1 map from V(1)∗S to

V(1)∗T2(K(Fq)p).

In V(1)∗T2(K(Fq)p), the only possible classes in the right degree to be v2, β′1 and β1 are tµ2,
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tσb and tσξ̄p
1 . The unit map factors through V(1)∗T HH(K(Fq)p)hS 1

, so these classes pull back

to classes in V(1)∗T HH(K(Fq)p)hS 1
. This proves that these classes are permanent cycles in

the S 1-V(1) homotopy fixed point spectral sequence associated to T HH(K(Fq)p). �

Now, the classes β1vk−1
2 have the property that in the Adams-Novikov spectral sequence

for V(1) they are represented by the classes

Σ
p−1
i=1

1
p

(
p
i

)
ti
1 ⊗ tp−i

1 ⊗ vk−1
2 ,

which are on the two-line. We can therefore give a similar argument to the previous

one, except that we work in the Adams-Novikov spectral sequence, using the fact that

the classes representing β1vk−1
2 are in low Adams-Novikov filtration. To do this we must

compute BP ∧ V(1)∗Tk(K(Fq)p).

5.3 Computing (BP ∧ V(1))∗T HH(K(Fq)p)

In this section, we compute

(BP ∧ V(1))∗T HH(K(Fq)p

using the BP ∧ V(1)-THH-May spectral sequence. To accomplish this, we first need to

compute the input of the BP ∧ V(1)-THH-May spectral sequence; i.e.,

(BP ∧ V(1))∗T HH(E0K(Fq)≥•p ).
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Lemma 5.5. There is an isomorphism of (BP ∧ V(1)∗E0K(Fq)≥•p -algebras

(BP ∧ V(1))∗T HH(E0K(Fq)≥•p ) � P(t1, t2, . . . ) ⊗ E(ε1, λ1, σv1, α1) ⊗ P(v1, µ1) ⊗ Γ(σα1)

and the Hurewicz map

(BP ∧ V(1))∗T HH(E0K(Fq)≥•p )→ (HFp ∧ BP ∧ V(1))∗T HH(E0K(Fq)≥•p )

sends tn to Φ(n) where Φ(n) is defined inductively with Φ(1) = ξ̄1 − ξ̂1 and

Φ(n) = ξ̄n − ξ̂n −
∑

i + j = n;

i, j > 0

ξ̄i · Φ( j)pi
.

Proof. Recall that V(1) ∧ T HH(E0K(Fq)≥•p ) is a V(1) ∧ E0K(Fq)≥•p -algebra, and hence an HFp

algebra, since V(1) ∧ E0K(Fq)≥•p is itself an HFp-algebra. Thus, there is an equivalence

BP ∧ V(1) ∧ T HH(E0K(Fq)≥•p ) ' BP ∧ HFp ∧HFp V(1) ∧ T HH(E0K(Fq)≥•p )

and by the collapse of the Künneth spectral sequence, an isomorphism

(BP ∧ V(1))∗T HH(E0K(Fq)≥•p ) � P(t1, t2, . . . ) ⊗ E(ε1, λ1, σv1, α1) ⊗ P(v1, µ1) ⊗ Γ(σα1) (5.2)

as desired. Since BP ∧ V(1) ∧ T HH(E0K(Fq)≥•p ) is an HFp-module we can use Lemma 4.2,

which states that (BP ∧ V(1))∗T HH(E0K(Fq)≥•p ) includes as the comodule primitives inside
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of

(HFp ∧ BP ∧ V(1))∗T HH(E0K(Fq)≥•p ).

We recall that by the Künneth isomorphism and Proposition 4.4 there is an isomorphism

of graded rings

(HFp ∧ BP ∧ V(1))∗T HH(E0K(Fq)≥•p ) �

H∗(BP) ⊗ E(τ̄0, τ̄1) ⊗ (A//E(0))∗ ⊗ P(v1) ⊗ E(α1) ⊗ E(λ1) ⊗ P(µ1) ⊗ E(σv1) ⊗ Γ(σα1)

where we write (A//E(0))∗ � P(ξ̂1, ξ̂2, . . . ) ⊗ E(τ̂1, τ̂2, . . . ) and H∗(BP) � P(ξ̄1, ξ̄2, . . . ) to dis-

tinguish the two sets of generators. The coaction on ξ̄i, τ̄i, τ̂i and ξ̂i are the same as the

coproduct in the dual Steenrod algebra, and hence for example ξ̄1 − ξ̂1 is a comodule prim-

itive, since

ψ(ξ̄1 − ξ̂1) = 1 ⊗ ξ̄1 + ξ̄1 ⊗ 1 − 1 ⊗ ξ̂1 − ξ̄1 ⊗ 1 = 1 ⊗ ξ̄1 − 1 ⊗ ξ̂1.

This is the base step in the induction. Suppose that Φ( j) is a comodule primitive for j < n,

then
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ψ(ξ̄n − ξ̂n −
∑

i+ j=n;i, j>0 ξ̄iΦ( j)pi
) = ψ(ξ̄n) − ψ(ξ̂n) −

∑
i+ j=n;i, j>0 ψ(ξ̄i) · ψ(Φ( j))p

=
∑

i+ j=n ξ̄i ⊗ ξ̄
pi

j −
∑

i+ j=n ξ̄i ⊗ ξ̂
pi

j

−
∑

i+ j=n;i, j>0 ψ(ξ̄i) · (1 ⊗ Φ( j)p)

= 1 ⊗ ξ̄n−1 − 1 ⊗ ξ̂n

+
∑

i+ j=n;i, j>0 ξ̄i ⊗ (ξ̄pi

j − ξ̂
pi

j )

−
∑

i+ j=n;i, j>0 ξ̄i ⊗ (ξ̄pi

j − ξ̂
pi

j )

−
∑

i+ j=n;i, j>0
∑
`+k=i;`,k>0 ξ̄` ⊗ ξ̄

p`

k Φ( j)pi

+
∑

i′+ j′=n;i′, j′>0
∑
`′+k′= j;`′,k′>0 ξ̄i ⊗ ξ̄

pi′

`′ Φ(k)p`
′+i′

−1 ⊗
∑

i′+ j′=n;i′, j′>0 ξ̄i′Φ( j′)pi′

= 1 ⊗ ξ̄n−1 − 1 ⊗ ξ̂n − 1 ⊗
∑

i′+ j′=n;i′, j′>0 ξ̄i′Φ( j′)pi′

where the last equality can be seen by rearranging the indices in the sums

−
∑

i+ j=n;i, j>0

∑
`+k=i;`,k>0

ξ̄` ⊗ ξ̄
p`

k Φ( j)pi

and ∑
i′+ j′=n;i′, j′>0

∑
`′+k′= j;`′,k′>0

ξ̄i ⊗ ξ̄
pi′

`′ Φ(k)p`
′+i′

so that j = k′, i = `′ + i′, k = `′, ` = i′, j + k = j′, and n = k′ + `′ + i′. Therefore,

ξ̄n − ξ̂n + Σi+ j=n;i, j>0ξ̄iΦ( j)pi

is a comodule primitive for each integer n ≥ 2.
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The coaction on the remaining elements is

ψ(α1) = 1 ⊗ α1 ψ(σv1) = 1 ⊗ σv1 + τ̄0 ⊗ σα1

ψ(σα1) = 1 ⊗ σα1 ψ(λ1) = 1 ⊗ λ1

ψ(γpk(σα1)) = 1 ⊗ γpk(σα1) ψ(µ1) = 1 ⊗ µ1 + τ̄0 ⊗ λ1.

ψ(v1) = 1 ⊗ v1 + τ̄0 ⊗ α1

We therefore know that the elements

{λ1, σv1 − τ̄0σα1, α1, γpk(σα1), v1 − τ̄0α1, µ1 − τ̄0λ1, ξ̄n − ξ̂n + Σi+ j=n;i, j>0ξ̄iΦ( j)pi
| n ≥ 1}

as well as products and sums of these classes are comodule primitives. By comparing the

dimension as an Fp-vector space in each degree to the isomorphism 5.2, we know this must

be all the comodule primitives. Note that we are using the fact that a product or sum of

comodule primitives is primitive since the coaction map M → A∗ ⊗ M is also a ring map

when M is a comodule algebra. �

Proposition 5.6. As a (BP∗, BP∗BP)-comodule

(BP ∧ V(1))∗T HH(K(Fq)p) � P(tp
1 , t2, ...) ⊗ E(b) ⊗ E(σξ̄p

1 , σξ̄2) ⊗ P(µ2) ⊗ Γ(σb)

where the coaction is given by

ψ(tp
1 ) = 1 ⊗ tp

1 + tp
1 ⊗ 1 ψ(µ2) = 1 ⊗ µ2

ψ(tn) = ∆(tn) for n ≥ 2 ψ(γpk(σb)) = 1 ⊗ γpk(σb)

ψ(b) = 1 ⊗ b ψ(σx) = (1 ⊗ σ) ∗ ψ(x)
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Proof. We need to compute differentials in the BP ∧ V(1)-THH-May spectral sequence

E1
∗,∗ = (BP ∧ V(1))∗,∗T HH(E0K(Fq)≥•p )⇒ BP ∧ V(1)∗T HH(K(Fq)p)

so we examine the map of spectral sequences

(BP ∧ V(1))∗,∗T HH(E0K(Fq)≥•p ) +3

h
��

BP ∧ V(1)∗T HH(K(Fq)p)

��
(HFp ∧ BP ∧ V(1))∗,∗T HH(E0K(Fq)≥•p ) +3 (HFp ∧ BP ∧ V(1))∗T HH(K(Fq)p).

induced by the Hurewicz map BP→ HFp. Recall from Lemma 5.5 that

(BP ∧ V(1))∗T HH(E0K(Fq)≥•p ) � P(ξ1, ξ2, . . . ) ⊗ E(ε1, λ1, σv1, α1) ⊗ P(v1, µ1) ⊗ Γ(σα1).

We know that in the HFp ∧ BP ∧ V(1)-THH-May spectral sequence the classes ξ̄i for i ≥ 1

and τ̄ j for j = 0, 1 survive to E∞, since the output of the spectral sequence is known to be

(HFp ∧ BP ∧ V(1))∗T HH(K(Fq)p) �

P(ξ̄1, ξ̄2, . . . ) ⊗ E(τ̄0, τ̄1) ⊗ H∗(K(Fq)p) ⊗ E(σξ̄p
1 , σξ̄2) ⊗ P(στ̄2) ⊗ Γ(σb)

by Theorem 4.1 and the Künneth isomorphism. This forces differentials

d1(ξ̂1) = α1 d1(τ̂i) = 0 for i > 0

d1(ξ̄i) = 0 d1(λ1) = σα1

d1(τ̂1) = v1 d1(µ1) = σv1

d1(τ̄i) = 0
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and there are no further nontrivial differentials. Since the Hurewicz map h is injective and

it sends t1 to ξ̄1 − ξ̂1, the differential d1(t1) in the top spectral sequence can be computed

using the formula

d1(t1) = d1(h−1(ξ̄1 − ξ̂1)) = h−1d1(ξ̄1 − ξ̂1) = h−1(α1) = α1.

Similarly, ε1 maps to τ̄1− τ̂1 implying d1(ε1) = v1. Hence, in the BP∧V(1)-THH-May spectral

sequence there are differentials

d1(t1) = α1 d1(λ1) = σα1

d1(ε1) = v1 d1(µ1) = σv1.

On E2-pages the map of spectral sequences induced by the Hurewicz map is again injective.

Since E2 � E∞ in the target spectral sequence, the same is true in the source. This implies

that the BP ∧ V(1)-THH-May spectral sequence collapses at the E2-page.

By examining the long exact sequence

BP∗(V(1) ∧ j)→ BP∗(V(1) ∧ `)→ BP∗(V(1) ∧ Σ2p−2`)

we can determine that the coaction on tp
1 and ti for i ≥ 2 is the same as the coaction on

these elements in BP∗(V(1)∧`) � P(t1, t2, . . . ). Note that there is no hidden comultiplication

on tp
1 since there are no classes in degrees 2p2−2p− (2p−2) or lower and the lowest degree

element in BP∗BP is in degree 2p − 2. The class b in lowest degree and therefore it is

primitive, so this gives the coaction on b, tp
1 , ti for i ≥ 2 by using the splitting of BP∗BP-
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comodules

BP∗(V(1) ∧ j)
//
BP∗(V(1) ∧ T HH( j)).oo

The coaction on µ2 is primitive because |µ2| = 2p2 and there are no classes in degrees

2p2 − 2p + 2 or 2p2 − 4p + 4 or lower and the classes in BP∗BP are in degrees congruent to

zero mod 2pn − 2 for some n. Similarly, the coaction on λ′1 is primitive because there are no

classes in degree 2p2 − 2p + 1 − (2p − 2) or lower.

To determine the coaction on λ2, we use the map of BP∗BP-comodules

(BP ∧ V(1))∗T HH(K(Fq)p)→ (BP ∧ V(1))∗T HH(`p).

We claim that in (BP ∧ V(1))∗T HH(`p), the coaction on λ2 is

ψ(λ2) = 1 ⊗ λ2 + t1 ⊗ λ
′
1.

Note that there is an isomorphism

BP∗(V(1) ∧ `) � BP∗HFp � P(ξ̄1, ξ̄2, . . . )

� BP∗BP ⊗BP∗ Fp

� P(t1, t2, . . . )

so ξ̄2 and t2 are two names for the same basis element up to multiplication by a unit. The

operation σ gives

λ2 = σξ̄2=̇σt2, λ′1 = σξ̄
p
1 =̇σtp

1
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and we can therefore compute the coaction on λ2 as

ψ(λ2) = (1 ⊗ σ)∆(t2)

which produces the desired coaction modulo (p, v1). We then just check that there are no

other terms that could be added on to ψ(λ2) in (BP ∧ V(1))∗T HH(K(Fq)p) that would map

to zero, but there aren’t any because the only class in degree 2p2 − 1 − (2p − 2) is λ′1 and

there are no classes in degree 2p2 − 1 − (4p − 4) or lower.

We know ψ(σb) = (1 ⊗ σ)(1 ⊗ b) = 1 ⊗ σb. This just leaves the classes γpk(σb) for k > 0.

Note that we already showed that in the input of BP ∧ V(1)-THH-May spectral sequence

the classes γpk+1(σα1) = γpk(σb) are primitive. Therefore, it suffices to check that there is

not a hidden coaction in the THH-May spectral sequence. If the coaction contains terms of

the form x ⊗m where |m| < |γpk(σα1)|, then the May filtration of m must be greater or equal

to the May filtration of γpk(σb).

Suppose the May filtration of m is greater or equal to pk+1, the May filtration of γpk(σb).

Then, since the only classes with positive May filtration are γp j(σb), b, λ′1, and λ2, the class

m must be of the form

(γp j(σb))`bε1λ′ε2
1 λε3

2 z,

for some possibly zero element z, where 0 ≥ ` < p, ε1, ε2, ε3. Write mfilt(x) for the May

filtration of an element, then

mfilt(γp j(σb)) = p j+1 mfilt(λ′1) = p − 1

mfilt(b) = 1 mfilt(λ2) = 1.
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so j, `, ε1, ε2, and ε3 must satisfy

`p j+1 + ε1 + ε2(p − 1) + ε3 ≥ pk+1. (5.3)

We split into cases. If k = 1, then j ≥ k − 1, and if j = k − 1, then the inequality (5.3) only

holds if ` = p − 1. In that case, ε2 must be 1 and either ε1 or ε3 must be 1. Thus,

|(γp j(σb))`bε1λ′ε2
1 λε3

2 | ≥ (2p2 − 2p)(p − 1) + 2p2 − 2p + 1 + 2p2 − 2p − 1 = 2p3 − 2p

But, 2p3 − 2p > 2p3 − 2p2 = |γp(σb)| contradicting the assumption that |m| < |γp(σb)|. In the

case k > 1, then the inequality (5.3) only holds if j ≥ k, but if j ≥ k, then

|(γp j(σb))`| ≥ 2pk+2 − 2pk+1 = |γpk(σb)|

so again m does not satisfy |m| < |γpk(σb)|. Thus, no such m such that |m| < |γpk(σb)| and

mfilt(m) ≥ mfilt(γk
p(σb)) exists. This implies that there are no hidden coactions and γpk(σb)

remains a co-module primitive. �

Corollary 5.7. In the S 1−BP-homotopy fixed point spectral sequence associated to T HH(K(Fq)p)

there are differentials

d2(ξ̃p
1 ) = tλ′1

d2(ξ̃2) = tλ2

d2(b) = tσb

and no further d2 differentials.

Proof. This follows from Proposition 5.2 and the fact that λ2 = σξ̃2 and λ′1 = σξ̃
p
1 . �
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Remark 5.8. We will also need to know the coaction of BP∗BP on

BP∗(V(1) ∧ Tk+1(K(Fq)p)),

which is isomorphic to

P(ξ̄p
1 , ξ̄2, ...) ⊗ E(b) ⊗ E(σξ̄p

1 , σξ̄2) ⊗ P(µ2) ⊗ Γ(σb) ⊗ P(t)/tk

modulo differentials. This just amounts to describing the coaction on the class t. On the

homotopy fixed point spectral sequence

H∗(S 1, BP∗(V(1) ∧ T HH(K(Fq)p)))

BP∗BP only has a natural coaction on the coefficients, so the class t ∈ H2(S 1,Fp) is a co-

module primitive.

5.4 Detecting the periodic families of height two in iterated K-theory

We first recall a theorem of Ausoni-Rognes that aids in producing the v2-periodic family

generated by β1 in V(1)∗T HH(K(Fq)p)hS 1
.

Theorem 5.9 (Ausoni-Rognes [9]). The classes vk
2 map to nonzero classes (tµ)k under the

unit map

V(1)∗S → V(1)∗T HH(`)hS 1

and hence pullback to nontrivial classes vk
2 in V(1)∗K(`).

Remark 5.10. Since we showed v2 maps to tµ2 under the unit map V(1)∗S → V(1)∗T HH( j)hS 1
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and the maps

V(1)∗S → V(1)∗T HH(K(Fq)p)hS 1
→ V(1)∗T HH(`)hS 1

are ring maps, the classes vk
2 also map to (tµ2)k under the unit map

V(1)∗S → V(1)∗T HH(K(Fq)p)hS 1
.

We therefore know that (tµ)k are permanent cycles in the Adams, Adams-Novikov, and

homotopy fixed point spectral sequences computing V(1)∗T HH(K(Fq)p)hS 1
. This fact will

be used in the following proof.

Theorem 5.11. The elements β1vi
2 in V(1)∗S map to a non-trivial element (tµ2)itσb in

V(1)∗T HH(K(Fq)p)hS 1
under the unit map.

Proof. We claim that v2 ∈ BP∗(V(1)) also maps to tµ2 in

BP∗(V(1) ∧ F(S (C2)+,T HH(K(Fq)p))S 1
)

in the cobar complex, which is the E1-page of the Adams-Novikov spectral sequence for

BP∗(V(1)∧F(S (C2)+,T HH(K(Fq)p))S 1
). The class v2 in the Adams-Novikov E∞ page for V(1)

must map nontrivially to a class in the Adams-Novikov E∞ page in the target, since v2 in the

associated graded represents a class in V(1)∗S which maps nontrivially to V(1)∗T2(K(Fq)p)
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by Proposition 5.4. Since we have a commutative diagram of spectral sequences with input

ExtBP∗BP(BP∗, BP∗(V(1)))
g //

��

ExtBP∗BP(BP∗, BP∗(V(1) ∧ T2(K(Fq)p)))

��
ExtA(Fp,H∗V(1)) // ExtA(Fp,H∗V(1) ∧ T2(K(Fq)p))

and the map of spectral sequences ExtBP∗BP(BP∗, BP∗ ⊗ X) → ExtA∗(Fp,H∗X) always raises

filtration, the class v2 must map to a class in filtration 0 or 1. Since we know v2 maps to

u · tµ, where u ∈ F×p, modulo classes in higher filtration, we just need to check classes in

topological degree 2p2 − 2 in filtration 1. The classes in topological degree 2p2 − 2 and

filtration 1 are 1 ⊗ λ2, t1 ⊗ λ
′
1, and v1 ⊗ λ

′
1, so

g(v2) = tµ2 + a0 · 1 ⊗ λ2 + a1 · t1 ⊗ λ
′
1 + a2 · v1 ⊗ λ

′
1

for some a0, a1, a2 ∈ Fp. However, we know that the composite map of spectral sequences

ExtBP∗BP(BP∗, BP∗(V(1)))→ ExtA(Fp,H∗(V(1) ∧ T2(K(Fq)p)))

sends v2 to τ̄2 ⊗ 1 by Proposition 5.4. We also know that the map

ExtBP∗BP(BP∗, BP∗(V(1) ∧ T2(K(Fq)p)))→ ExtA(Fp,H∗V(1) ∧ T2(K(Fq)p))

sends 1 ⊗ λ2, t1 ⊗ λ
′
1, and v1 ⊗ λ

′
1 to classes of the same name by Proposition 5.6. Thus, a0,

a1, and a2 must be zero.
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This argument along with Remark 5.10 also implies that vk
2 maps to (u · tµ2)k in

BP∗(V(1) ∧ Tk+1(K(Fq)p)).

and, hence, the class (u · tµ2)k is a comodule primitive for each k.

The element β1 is represented by the class

b1,0 = Σ
p−1
i=1

1
p

(
p
i

)
ti
1 ⊗ tp−i

1 ⊗ 1

in the E1-page of the Adams-Novikov spectral sequence for V(1) [51]. It maps to a class of

the same name in the cobar complex for the BP∗BP-comodule

BP∗(V(1) ∧ T2(K(Fq)p)),

i.e. the E1 page of the Adams-Novikov spectral sequence for V(1)∧T2(K(Fq)p) We know that

the class b1,0 survives to E∞ in the Adams-Novikov spectral sequence for V(1) ∧ T2(K(Fq)p)

and becomes the class tσb by Proposition 5.4.

The class b1,0vk−1
2 represents β1vk−1

2 in the Adams-Novikov spectral sequence for V(1).

It maps to b1,0(u · tµ2)k−1 in the Adams-Novikov spectral sequence for V(1) ∧ Tk(K(Fq)p)

by the argument above. Since the class representing β1vk−1
2 is a permanent cycle in the

Adams-Novikov spectral sequence for V(1), the class b1,0(u · tµ2)k−1 is an infinite cycle in the

Adams-Novikov spectral sequence for V(1)∧ Tk(K(Fq)p), but it could still be a co-boundary.

It is on the two-line of the Adams-Novikov spectral sequence, so we just need to check that

it is not the co-boundary of a d1 or d2 differential.
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1. If the class b1,0(u · tµ2)k−1 is the co-boundary of a d1, then there is a sum of classes

∑
i

ai ⊗ mi ∈ BP∗BP ⊗BP∗ BP∗(V(1) ∧ Tk+1(K(Fq)p)).

such that

d1(
∑

i

ai ⊗ mi) = Σ
p−1
i=1

1
p

(
p
i

)
ti
1 ⊗ tp−i

1 ⊗ (u · tµ2)k−1.

Recall that the coaction on m is of the form ψ(m) = 1⊗m +
∑

j a j ⊗m j where |m j| < |m|.

Observe that the only elements in (BP ∧ V(1))∗Tk(K(Fq)p) whose coaction contains

(u · tµ)k−1 as either m or m j for some j are classes of the form (u · µ)k−1y for some

y ∈ (BP ∧ V(1))∗Tk(K(Fq)p) and unit v ∈ F×p. The coaction of such a class is

ψ((u · tµ)k−1y) = (1 ⊗ (u · tµ)k−1)ψ(y),

and ψ(y) must be of the form

ψ(y) = 1 ⊗ y + z ⊗ 1 +
∑

bi ⊗ yi

since ψ((u · tµ)k−1y) must have 1 ⊗ (u · tµ)k−1 as a term. Since the only classes in

(BP ∧ V(1))∗Tk(K(Fq)p) that have a term z ⊗ 1 in their coaction are the classes tp
1 , ti for

i ≥ 2 the class y must be a product of these. Since |(u · tµ)k−1y| = (2p2−2)(k−1)+ |y| and

the degree must equal (2p2 − 2)k − 2p, the degree of y must be 2p2 − 2p− 2. However,

the class tp
1 is the element of lowest degree in the set {tp

1 , t2, . . . } and |tp
1 | = 2p2 − 2p, so

no product of classes in this set can be in degree 2p2 − 2p − 2. Thus, mi = (u · tµ)k−1
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for at least one i.

Now, if mi = (u · tµ)k−1 for only one i, then the element ai corresponding to mi must

have reduced co-product e · b1,0 + z for some unit e ∈ F×p and some class z; i.e.

∆̄(ai) = ∆(ai) − ai ⊗ 1 − 1 ⊗ ai = e · b1,0 + z

The degree of ai must be 2p2 − 2p, so ai = f · t j
1vp− j

1 where f ∈ F×p .

However,

∆̄( f · t j
1vp− j

1 ) = f · vp− j
1 ∆̄(t j

1)

= f · vp− j
1 (t1 ⊗ 1 + 1 ⊗ t1) j − 1 ⊗ f · t j

1vp− j
1 − fit

j
1vp− j

1 ⊗ 1

and this does not equal

eΣ
p−1
i=1

1
p

(
p
i

)
ti
1 ⊗ tp−i

1 + z

for any j, e, f ∈ F×p, and any class z.

Suppose that mi = (u · tµ)k−1 for i ∈ I where I contains more than one natural number.

Then

ψ(
∑
i∈I

ai) = g · b1,0 + z′

for some unit g ∈ F×p and some possibly trivial class z′. However, we checked in the

proof of Proposition 5.4 that no class of the form
∑

i∈I ai ⊗ 1 has coaction

g · Σp−1
i=1

1
p

(
p
i

)
ti
1 ⊗ tp−i

1 ⊗ 1 + z′
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as described above and the same proof applies here.

Thus, there is no sum of classes
∑

i ai ⊗ mi such that

d1(
∑

i

ai ⊗ mi) = b1,0 ⊗ (u · tµ2)k−1

and therefore the class b1,0(u · tµ2)k−1 survives to the E2-page.

2. Now suppose there is a class in bidegree (2p2k−2k+2p2−2p+1, 0) that is the source of

a d2 differential hitting b1,0(u · tµ2)k−1. This class is therefore in BP2p2k−2k+2p2−2p+1V(1)∧

Tk+1(K(Fq)p). Since this class is in an odd degree, we can classify all the classes that

could possibly be in this degree as a linear combination of elements in the three fam-

ilies {λ′1z1, λ2z2, tkbz3} where z1 and z2 are some nontrivial product of even dimensional

classes and z3 is some nontrivial product of even dimensional classes that does not

include tσb or (tµ2) j for any j ≥ 1 as a factor since tk+1 = 0. We therefore compute the

differential d2 on each of these classes.

Since λ′1 is a co-module primitive, d1(λ′1) = 0, so we need to check what d2(λ′1). How-

ever, |d2(λ′1)| = (2p2 − 2p, 2) using the convention (t − s, s). So d2(λ′1) is represented in

the cobar complex by an element of the form a⊗ b⊗ c where |a⊗ b⊗ c| = 2p2 − 2p + 2,

but by checking the degrees of every class, we see that no products of classes are

in this degree and hence no such class exists. Hence, d2(λ′1) = 0 and consequenctly

d2(λ′1z1) = λ′1d2(z1).

The class λ2 has coaction ψ(λ2) = 1⊗λ2 + t1⊗λ
′
1 so there is a differential d1(λ2) = t1⊗λ

′
1.

Hence, d1(λ2z2) = (t1 ⊗ λ
′
1)z2 + λ2d1(z3) , 0 so λ2z3 does not survive to the E2-page.
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We therefore just need to check that a class of the form tkbz3 where z3 does not contain

tµ or tσb as a factor. Note that the Leibniz rule implies

d2(tkbz3) = d2(tkb)z3 + tkbd2(z3).

We now need to check if

d2(a1λ
′
1z1 + a2tkbz3) = mΣ

p−1
i=1

1
p

(
p
i

)
ti
1 ⊗ tp−i

1 ⊗ (tµ2)k−1

for some unit m ∈ F×p, but

d2(a1λ
′
1z1 + a2tkbz3) = a1λ

′
1d2(z1) ± a2(d2(tkb)z3 + tkbd2(z3))

and there are no values of d2(z1), d2(tkb), and d2(z3) that make this hold since z3 cannot

contain tµ or tσb as a factor and the classes λ′1 and tkb are not factors of b1,0(u · tµ)k.

�

To produce the following corollary to Theorem 5.11 we will need to use the property

that the trace map K(R) → T HH(R)hS 1
is a map of commutative ring spectra when R is

a commutative ring spectrum. The proof that the trace maps K(R) → TC(R) and K(R) →

T HH(R) are maps of ring spectra when R is a commutative ring spectrum may be attributed

to Hesselholt-Geisser [30], Blumberg-Gepner-Tabuada [15], and Dundas [25]. We recall

the theorem of Dundas.

Theorem 5.12 (Dundas [25] ). Let R be a commutative ring spectrum. The cyclotomic
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trace map K(R) → TC(R) is a weak map of commutative ring spectra; i.e. there is a

zizag of commutative ring spectrum maps where all wrong way maps are equivalences of

commutative ring spectra.

We also need to know that the map π∗TC(R)→ π∗T HH(R)hS 1
is a map of rings.

Lemma 5.13. The map TC(R; p) → T HH(R)hS 1
is a map in Ho(CommS); hence, the map

π∗TC(R)p → π∗T HH(R)hS 1
is a map of rings.

Proof. First, recall that T F(R) ' holimF T HH(R)Cpn and, since T HH(R)Cpn are commutative

ring spectra when R is a commutative ring spectrum, we can take the homotopy limit in

the category of commutative ring spectra and T F(R) will be a commutative ring spectrum

as well. Define TC(R; p) as the equalizer

TC(R; p) ' eq {T F(R)
Id //

R
// T F(R)}

in the category of commutative ring spectra, since Id and R are commutative ring spectrum

maps. Thus, the map TC(R; p) → T F(R) is a map of commutative ring spectra. Now, the

maps T HH(R)Cpn → T HH(R)hCpn are maps of commutative ring spectra since there is a

commuting diagram

F(S 0,T HH(R))Cpn // F((ECpn)+,T HH(R))Cpn

F(S 0 ∧ S 0,T HH(R) ∧ T HH(R))Cpn //

OO

F((ECpn)+ ∧ (ECpn)+,T HH(R) ∧ T HH(R))Cpn

OO

F(S 0,T HH(R))Cpn ∧ F(S 0,T HH(R))Cpn //

OO

F((ECpn)+,T HH(R))Cpn ∧ F((ECpn)+,T HH(R))Cpn

OO

where the horizontal maps are induced by the map (ECpn)+ → S 0 and the vertical maps
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are induced by the S 1-equivariant commutative multiplication map T HH(R) ∧ T HH(R) →

T HH(R) and the diagonal maps S 0 → S 0 ∧ S 0 and (ECpn)+ → (ECpn)+ ∧ (ECpn)+, which are

co-commutative maps such that the diagram

(ECpn)+
//

��

(ECpn)+ ∧ (ECpn)+

��
S 0 // S 0 ∧ S 0

commutes. Since the maps T HH(R)hCpn → T HH(R)hS 1
is also a map of commutative ring

spectra such that the diagram

T HH(R)Cpn+1 // T HH(R)hCpn+1

''

T HH(R)Cpn //

OO

T HH(R)hCpn

OO

// T HH(R)hS 1

commutes in the category of commutative ring spectra, we can take homotopy limits in

the category of commutative ring spectra to produce a composite map

TC(R; p)→ T F(R)→ holimF T HH(R)hCpn
→ T HH(R)hS 1

in the category of commutative ring spectra. Since the derived functor of the forgetful

functor U : CommS → S is a Quillen right adjoint, it preserves homotopy limits, so the

homotopy limits that we compute are actually the same as the homotopy limits in the

category HoS and hence, they are equivalent to the way that T F and TC are usually

defined. Thus, the map

TC(R; p)→ T HH(R)hS 1
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is a map in Ho CommS, which suffices to induce a ring map in homotopy groups. �

Since TC(R)p ' TC(R; p)p as commutative ring spectra, we therefore produce a com-

mutative ring spectrum map

K(R)→ T HH(R)hS 1
,

which will be used in the proof below.

Corollary 5.14. Let p ≥ 5 be a prime and q be a prime power that topologically generates

Z×p . The classes β1vk
2 map from π∗V(1) to nonzero elements in V(1)∗K(K(Fq)) under the

unit map. Consequently, the classes βpk+1 for k ≥ 0 map to K(K(Fq)) under the unit map

π∗S → K(K(Fq)).

Proof. The classes β1vk
2 in V(1)∗ map to V(1)∗K(K(Fq)) under the unit map since the cyclo-

tomic trace is multiplicative and therefore the maps

V(1)∗S → V(1)∗T HH(K(Fq)p)hS 1
→ V(1)∗T HH(K(Fq)p)

factor through V(1)∗K(K(Fq)); i.e, there is a commutative diagram

V(1)∗S
V(1)∗η //

V(1)∗η
((

V(1)∗K(K(Fq))

V(1)∗(K( fp)◦tr)

��

V(1)∗K( fp)
//

V(1)∗(K( fp)◦tr)

**

V(1)∗K(K(Fq)p)

V(1)∗tr
��

V(1)∗T HH(K(Fq)p) V(1)∗T HH(K(Fq)p)hS 1

V(1)∗F
oo

where fp : K(Fq)→ K(Fq)p denotes the p-completion map, F : XhS 1
→ X indicates inclusion

of homotopy fixed points, and we abuse notation and write tr for the trace maps from

algebraic K-theory to T HH and its S 1-homotopy fixed points.
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There is also a commuting diagram of ring spectra

S ' S ∧ S
1S∧η //

i0i1∧1S

��

S ∧ K(K(Fq))

i0i1∧1K(K(Fq))

��

i0i1∧K( fp)

**

// V(1) ∧ K(K(Fq)p)p

V(1) ∧ S
1V(1)∧η // V(1) ∧ K(K(Fq))

1V(1)∧K( fp)
// V(1) ∧ K(K(Fq)p)

1V(1)∧gp

OO

where fp : K(Fq) → K(Fq)p, and gp : K(K(Fq)p) → K(K(Fq)p)p are p-completion maps

and η is the unit map. Since the classes vpk
2 β1 ∈ V(1)∗ pullback to classes βpk−1 in π∗S along

the unit map and since they map nontrivially to classes in π∗V(1) ∧ K(K(Fq)p), they must

map to nontrivial classes in π∗K(K(Fq)) under the unit map

π∗S → π∗K(K(Fq)).

�

Remark 5.15. We expect that more of the divided β-family in the homotopy groups of

spheres is detected in π∗K(K(Fq)) and we are currently in the process of studying how much

more we can detect. To detect all of the divided β-family would require more knowledge

of π∗K(K(Fq)), which is beyond the scope of the present thesis.
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In this dissertation, we study the interactions between periodic phenomena in the ho-

motopy groups of spheres and algebraic K-theory of ring spectra. C. Ausoni and J. Rognes

initiated a program to study the arithmetic of ring spectra using algebraic K-theory and

gave a higher chromatic version of the Lichtenbaum-Quillen conjecture, called the red-

shift conjecture, that is expected to govern this arithmetic. This dissertation provides a

proof of a special case of a variation on the red-shift conjecture. Specifically, we show

that, under conditions on the order of the fields, iterated algebraic K-theory of finite fields

detects a periodic family of chromatic height two.

To prove that iterated algebraic K-theory of finite fields detects a periodic family of

chromatic height two, we compute approximations to iterated algebraic K-theory using

the theory of trace methods. We develop a tool for computing higher order topological

Hochschild homology (THH) using a filtration of a commutative ring spectrum. We then

compute THH of algebraic K-theory of finite fields after smashing with a finite complex.

We then detect height two periodic elements in the circle homotopy fixed points of THH

and show that periodic families of height two are detected in iterated algebraic K-theory

of finite fields.
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