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Abstract
This paper studies optimal matroid partitioning problems for various objective functions. In
the problem, we are given a finite set E and k weighted matroids (E, Ii, wi), i = 1, . . . , k, and
our task is to find a minimum partition (I1, . . . , Ik) of E such that Ii ∈ Ii for all i. For each
objective function, we give a polynomial-time algorithm or prove NP-hardness. In particular, for
the case when the given weighted matroids are identical and the objective function is the sum of
the maximum weight in each set (i.e.,

∑k
i=1 maxe∈Ii wi(e)), we show that the problem is strongly

NP-hard but admits a PTAS.
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1 Introduction

The matroid partitioning problem is one of the most fundamental problems in combinatorial
optimization. In this problem, we are given a finite set E and k matroids (E, Ii), i = 1, . . . , k,
and our task is to find a partition (I1, . . . , Ik) of E such that Ii ∈ Ii for all i. We say that such
a partition (I1, . . . , Ik) of E is feasible. The matroid partitioning problem has been eagerly
studied in a series of papers investigating structures of matroids. See, e.g., [7, 8, 9, 16, 23]
for details. In this paper, we study weighted versions of the matroid partitioning problem.
Namely, we assume that each matroid (E, Ii) has a weight function wi : E → R+. We
consider several possible objective functions of the matroid partitioning problem.

Let Op(1) and Op(2) denote two mathematical operators taken from {max,min,
∑
}. For

any partition P = (I1, . . . , Ik) of E, we call Op(1)
i=1,...,k Op(2)

e∈Ii
wi(e) the (Op(1),Op(2))-

value of P . For example, (
∑
,min)-value of P denotes

∑
i=1,...,k mine∈Ii wi(e).

We define the minimum (Op(1),Op(2))-value matroid partitioning problem as the one for
finding a feasible partition with minimum (Op(1),Op(2))-value. The maximum problems are
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51:2 Optimal Matroid Partitioning Problems

defined analogously. These matroid partitioning problems are natural to study, and have
many applications in various areas such as scheduling and combinatorial optimization. We
note that all the matroids and/or all the weights may be identical in case such as scheduling
with identical machines.

The minimum (
∑
,
∑

)-value matroid partitioning problem is reducible to the weighted
matroid intersection problem, and vice versa [8]. Here, the weighted matroid intersection
problem is to find a maximum weight subset that is simultaneously independent in two
given matroids. It is known that this problem is polynomially solvable, and many papers
have worked on algorithmic aspects of this problem [16, 23]. Generalizations of the weighted
matroid intersection problem have also been studied [17, 21, 18].

Special cases of the minimum (max,
∑

)-value matroid partitioning problem have been
extensively addressed in the scheduling literature under the name of the minimum makespan
scheduling. Since this problem is NP-hard, many papers have proposed polynomial-time
approximation algorithms. We remark that most papers focused on subclasses of matroids
as inputs: for example, free matroids [19, 24], partition matroids [25, 26, 20], uniform
matroid [15, 1, 4], and general matroids [26]. Approximation algorithms for the maximum
(min,

∑
)-value matroid partitioning problem are also well-studied, see, e.g., [3, 13, 25, 20].

The other matroid partitioning problems also have many applications, and yet they
are not much studied especially for general matroids. We here describe some examples of
applications.
Maximum total capacity spanning tree partition Assume that we are given an undirected

weighted graph G = (V,E;w), which can be partitioned into k edge-disjoint spanning
trees. The maximum total capacity spanning tree partition problem is to compute a
partition of the edges into k edge-disjoint spanning trees such that the total of the
minimum weight in each spanning tree is maximized. Then, the problem can be written
as the maximum (

∑
,min)-value matroid partitioning problem having k identical graphic

matroids, where the (
∑
,min)-value is

∑k
i=1 mine∈Ii

w(e).
Minimum total memory of a scheduling In this problem we are also given n jobs E and

k identical machines, and each job needs to be scheduled on exactly one machine. In
addition, we are given size s(e) of job e ∈ E. The set of feasible allocation for each
machine i is represented by a family of independent sets Ii of a matroid. The goal of the
problem is to minimize the total memory needed, i.e., (

∑
,max)-value

∑k
i=1 maxe∈Ii s(e).

Burkard and Yao [2] showed that the minimum (
∑
,max)-value matroid problem can be

solved by a greedy algorithm for a subclass of matroids, which includes partition matroids.
Dell’Olmo et al. [5] investigated optimal matroid partitioning problems where the input
matroids are identical partition matroids.

The goal of our paper is to analyze the computational complexity of these matroid
partitioning problems for general matroids.

Our results
We first show that the maximization problems can be reduced to the minimization problems.
For example, the maximum (

∑
,min)-value matroid partitioning problem can be transformed

to the minimum (
∑
,max)-value matroid partitioning problem. Hence, we focus only on the

minimization problems.
Our main result is to analyze the computational complexity of the minimum (

∑
,max)-

value matroid partitioning problem. This problem contains the maximum total capacity
spanning tree partitioning problem and the minimum total memory scheduling problem.
We first show that the problem is strongly NP-hard even when the matroids and weights
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Table 1 The time complexity of the optimal matroid partitioning problems (the results of the
paper are in bold). Identical case means I1 = · · · = Ik and w1 = · · · = wk.

objective identical case general case reference
(Σ, Σ) P P [8, 11]

(max, Σ) SNP-hard SNP-hard [12]
(Σ, max) PTAS εk-approx. Section 3

SNP-hard NP-hard even for o(log k)-approx.
(min, min) P P Section 4
(max, max) P P Section 4
(min, max) P P Section 4

(min, Σ) P P Section 4
(max, min) P NP-hard even to approximate Section 4

(Σ, min) P NP-hard even to approximate Section 4

are respectively identical. However, for such instances, we also propose a polynomial-time
approximation scheme (PTAS), i.e., a polynomial-time algorithm that outputs a (1 + ε)-
approximate solution for each fixed ε > 0. Our PTAS computes an approximate solution
by two steps: guess the maximum weight in each I∗i for an optimal solution (I∗1 , . . . , I∗k),
and check the existence of such a feasible partition. We remark that the number of possible
combinations of maximum weights is |E|k and it may be too large. To reduce the possibility,
we use rounding techniques in the design of the PTAS. First, we guess the maximum weight
in I∗i for only s indices. Furthermore, we round the weight of each element and reduce the
number of different weights to a small number r. Then, now we have rs possibilities. To
obtain the approximation ratio (1 + ε), we need to set r and s to be Ω(log k) respectively,
and hence the number of possibilities rs is still large. Our idea to tackle this is to enumerate
sequences of maximum weights in the nonincreasing order. This enables us to reduce the
number of possibilities to

(
r+s−1

r

)
(≤ 2r+s−1). This implies that our algorithm is a PTAS.

Moreover, for the (
∑
,max) case with general inputs, we provide an εk-approximation

algorithm for any ε > 0. The construction is similar to the identical case. We also prove the
NP-hardness even to approximate the problem within a factor of o(log k).

For the (min,min), (max,max), (min,max), and (min,
∑

) cases, we provide polynomial-
time algorithms. The main idea of these algorithms is a reduction to the feasibility problem
of the matroid partitioning problem. For the (max,min) and (

∑
,min) cases, we give

polynomial-time algorithms when the matroids and weights are respectively identical, and
prove strong NP-hardness even to approximate for the general case. These results are
summarized in Table 1 with their references.

Due to the space limitation, we omit proofs of some results, which are found in [14].

2 Preliminaries

A matroid is a set system (E, I) with the following properties: (I1) ∅ ∈ I, (I2) X ⊆ Y ∈ I
implies X ∈ I, and (I3) X,Y ∈ I, |X| < |Y | implies the existence of e ∈ Y \ X such
that X ∪ {e} ∈ I. A set I ⊆ I is said to be independent, and an inclusion-wise maximal
independent set is called a base. We denote the set of bases of (E, I) by B(I). All bases of a
matroid have the same cardinality, which is called the rank of the matroid and is denoted
by rank(I). For any B1, B2 ∈ B(I) and e1 ∈ B1 \ B2, there exists e2 ∈ B2 \ B1 such that
B1 − e1 + e2 ∈ B(I) and B2 − e2 + e1 ∈ B(I).

For a matroid (E, I), a subset A ⊆ E, and a nonnegative integer l ∈ Z+, define I|A = {X :
A ⊇ X ∈ I}, I \A = {X \A : X ∈ I}, I/A = {X ⊆ E \A : rank(X ∪A)− rank(A) = |X|},
and I(l) = {X ∈ I : |X| ≤ l}. We call (A, I|A), (E \A, I \A), (E \A, I/A), and (E, I(l)),

ISAAC 2017



51:4 Optimal Matroid Partitioning Problems

respectively, the restriction, deletion, contraction, and truncation of (E, I). It is well known
that (A, I|A), (A, I \ A), (E \ A, I/A), and (E, I(l)) are all matroids. Given matroids
M1 = (E1, I1) andM2 = (E2, I2), we define the matroid union, denoted byM1 ∨M2, to
be (E1 ∪ E2, I1 ∨ I2) where I1 ∨ I2 = {I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2}. Any matroid union is
also a matroid.

2.1 Model
Throughout the paper, we assume that every matroid is given by an independence oracle,
which checks whether a given set is independent. Let k be a positive integer. We denote
[k] = {1, . . . , k}. Let (E, Ii) be a matroid and wi : E → R+ be a nonnegative weight function
for i ∈ [k]. We denote n = |E|. For any k sets I1, . . . , Ik ⊆ E, we call (I1, . . . , Ik) a feasible
partition of E if it satisfies that

⋃
i∈[k] Ii = E, Ii 6= ∅ (∀i ∈ [k])1, Ii∩Ij = ∅ (∀i, j ∈ [k], i 6= j),

and Ii ∈ Ii (∀i ∈ [k]). In particular, (I1, . . . , Ik) is said to be a base partition if it is a feasible
partition and Ii ∈ B(Ii) for all i ∈ [k]. For two operators Op(1) ∈ {max,min,

∑
} and

Op(2) ∈ {max,min,
∑
}, we define the (Op(1),Op(2))-value of a feasible partition (I1, . . . , Ik)

as Op(1)
i∈[k] Op(2)

e∈Ii
wi(e). In this article, we study the following minimization problem:

min(I1,...,Ik): feasible partition Op(1)
i∈[k] Op(2)

e∈Ii
wi(e).

We refer to the problem as the minimum (Op(1),Op(2))-value matroid partitioning problem.
We write a problem instance as (E, (Ii, wi)i∈[k]). If (Ii, wi) are identical for all i ∈ [k], we
write (E, (I, w), k). For the identical case, we can consider the partitioning problem where k
is also a variable. This problem can be solved by solving (E, (I, w), i) for i = 1, . . . , n. Thus
it suffices to focus on the problem where k is given.

It is known to be easy to decide whether there exists a feasible partition or not. Moreover,
the minimum (

∑
,
∑

)-value matroid partitioning problem can be solved in polynomial time.
These facts are useful to show our results later.

I Theorem 1 ([8, 11]). There exists a polynomial-time algorithm that decides whether or
not there exists a feasible partition for any given matroids (E, I1), . . . , (E, Ik). Moreover, if
it exists, we can find a feasible partition with minimum (

∑
,
∑

)-value in polynomial time.

2.2 Basic properties
In this subsection, we prove basic properties of the partitioning problems. These properties
imply that the minimization and maximization versions of matroid partitioning problems
can be reduced to each other.

We first observe that we only need to consider base partitioning problems. LetMi =
(E, Ii) be a matroid for i ∈ [k]. We add dummy elements so that any feasible partition is a
base partition. To describe this precisely, we denote r =

∑
i∈[k] rank(Ii)− |E|. We remark

that r ≥ 0 if E has a feasible partition, since |E| =
∑

i∈[k] |Ii| ≤
∑

i∈[k] rank(Ii) holds for any
feasible partition (I1, . . . , Ik). Then let D = {d1, . . . , dr} be a set of dummy elements. Note
that E∩D = ∅. We define two matroidsM′i = (D, I ′i) andMi = (E∪D, Ii) for each i ∈ [k] by
I ′i = {D′ ⊆ D : |D′| ≤ rank(Ii)−1} and Ii = {I∪D′ : I ∈ Ii, D

′ ∈ I ′i, |I∪D′| ≤ rank(Ii)}.

1 We remark that the condition Ii 6= ∅ (∀i ∈ [k]) is imposed to make the objective function well-defined.
Moreover, if we define maxe∈∅ wi(e) = 0, mine∈∅ wi(e) =∞, and

∑
e∈∅ wi(e) = 0, then we can reduce

the problem where empty sets are allowed to our problem by adding dummy elements.



Y. Kawase, K. Kimura, K. Makino, and H. Sumita 51:5

Namely,M′i is a uniform matroid of rank (rank(Ii)− 1), andMi is the rank(Ii)-truncation
of the matroid unionMi ∨M′i. Then, we have the following proposition.

I Proposition 2. For any (E, (Ii, wi)i∈[k]), its minimum (Op(1),Op(2))-value is the same
as the minimum (Op(1),Op(2))-value for (E ∪D, (Ii, wi)i∈[k]), where

wi(e) =


wi(e) (e ∈ E),
mine∈E wi(e) (e ∈ D, Op(2) = max),
maxe∈E wi(e) (e ∈ D, Op(2) = min),
0 (e ∈ D, Op(2) =

∑
).

We remark that the same property holds for the maximization problem.
In the following, we assume |E| =

∑
i∈[k] rank(Ii). We next show that the maximization

problems are reducible to the minimization ones.

I Proposition 3. For any feasible partition (I1, . . . , Ik) for (E, Ii)i∈[k], it is an optimal
solution for the minimum (Op(1),Op(2))-value matroid partitioning problem instance
(E, (Ii, wi)i∈[k]) if and only if it is optimal for the maximum (Õp(1), Õp(2))-value matroid
partitioning problem instance (E, (Ii, w

′
i)i∈[k]), where wmax = maxi∈[k] maxe∈E wi(e),

m̃in = max,
m̃ax = min,∑̃

=
∑ and w′i(e) =

{
|E|·wmax

rank(Ii) − wi(e) (Op(1) ∈ {min,max},Op(2) =
∑

),
wmax − wi(e) (otherwise).

We note that these reductions above are not approximation factor preserving. Hence,
the (in)approximability of the maximization problems are not deduced from that of the
minimization problems.

3 The minimum (∑, max)-value matroid partitioning problem

In this section, we study the minimum (
∑
,max)-value matroid partitioning problem. We

first deal with the case where the matroids and weights are respectively identical and then
go to the general case.

3.1 Strong NP-hardness of the identical case
We first prove that the minimum (

∑
,max)-value matroid partitioning problem is strongly

NP-hard even if the matroids and weights are respectively identical.
To prove this, we use the densest l-subgraph problem, which is known to be strongly

NP-hard [10]. The densest l-subgraph problem is, given a graph G and an integer l, to find
a subgraph of G induced on l vertices that contains the largest number of edges.

In our reduction, we use the following property on a partition matroid. Let (E, I) be
a partition matroid defined by I = {I : |I ∩ Si| ≤ ηi (i ∈ [p])}, where (S1, . . . , Sp) is a
partition of E, and η1, . . . , ηp are positive integers. In addition, we assume that |Si| = ηi · k
for each i ∈ [p] so that E can be partitioned into k bases of I. Then, for any weight w, we
can construct greedily an optimal partition to the instance (E, (I, w), k) of the minimum
(
∑
,max)-value matroid partitioning problem.

I Lemma 4 ([2]). Let (E, I) be any partition matroid with |Si| = ηi · k (∀i ∈ [p]), and let w
be any weight. Let Ii,j consist of ηi elements with the ηi largest weights in Si \ (

⋃j−1
h=1 Ii,h).

Then (
⋃

i∈[p] Ii,1, . . . ,
⋃

i∈[p] Ii,k) is an optimal solution to (E, (I, w), k).

ISAAC 2017
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Table 2 The weight of each element eij , where each row corresponds to i and each column
corresponds to j.

i\j 1 · · · l − 1 l · · · l + 2t− 2 l + 2t− 1 l + 2t · · · l + 2m− 1 l + 2m · · · n+ 2m− 1

1 0 · · · 0 0 t− 1 t− 1 t m · · · m...
...

...
...

...
...

...
...

......
...

...
... t− 1 t− 1 t

...
...

ut

...
...

... t− 1 t t
...

......
...

...
... t− 1 t− 1 t

...
......

...
...

...
...

...
...

...
......

...
...

... t− 1 t− 1 t
...

...
vt

...
...

... t− 1 t t
...

......
...

...
... t− 1 t− 1 t

...
......

...
...

...
...

...
...

...
...

n 0 · · · 0 0 t− 1 t− 1 t m · · · m

n+ 1 0 · · · 0 0 · · · 0 0 0 · · · 0 2m2 · · · 2m2
...

...
...

...
...

...
...

...
...

...
n+ 2m 0 · · · 0 0 · · · 0 0 0 · · · 0 2m2 · · · 2m2

I Theorem 5. The minimum (
∑
,max)-value matroid partitioning problem is strongly

NP-hard even if the matroids and weights are identical.

Proof. Let G = (V, F ) be an instance of the densest l-subgraph problem. We denote
V = {1, . . . , n}, F = {f1, . . . , fm}, and fi = {ui, vi}. For any vertex set T ⊆ V , we denote
F [T ] = {{u, v} ∈ F : {u, v} ⊆ T}.

To solve the densest l-subgraph problem, it suffices to find a set of n− l vertices such
that the set of the other l vertices attain maxT⊆V |F [T ]|. We construct a matroid so that
every feasible partition of the ground set corresponds to some set of n− l vertices in V , and
the (

∑
,max)-value is the number of edges in the induced subgraph by the other l vertices.

Let V ′ = {n+ 1, . . . , n+ 2m} be a set of dummy vertices. For each i ∈ V ∪ V ′, we define
a set Ei of n+ 2m− 1 elements as Ei = {eij : j ∈ {1, . . . , n+ 2m− 1}}. Let

E =
⋃n+2m

i=1 Ei and I = {I ⊆ E : |I| ≤ n+ 2m− 1, |I ∩ Ei| ≤ 1 (∀i ∈ [n+ 2m])}.

The resulting matroid is denoted by (E, I), which is a (n+ 2m− 1)-truncation of a partition
matroid. We set k = n+ 2m. The weights of elements are defined as follows:

for each j = 1, . . . , l − 1, set w(eij) = 0 (∀i ∈ [n+ 2m]);
for each j = l+2m, . . . , n+2m−1, set w(eij) = m if i ≤ n, and w(eij) = 2m2 if i ≥ n+1;
set w(eij) (j = l, l + 1, . . . , l + 2m− 1) as follows: for each ft = {ut, vt} (t = 1, . . . ,m),

w(ei,l+2t−2) =
{
t− 1 (i ∈ [n]),
0 (i ≥ n+ 1),

and

w(ei,l+2t−1) =


t (i ∈ {ut, vt}),
t− 1 (i ∈ [n] \ {ut, vt}),
0 (i ≥ n+ 1).

The weight is illustrated in Table 2.
We remark that |E| = (n+ 2m)(n+ 2m− 1). By the definition of the matroid, for every

i ∈ [n+ 2m], all elements in Ei belong to different independent sets from each other. Thus,
for any feasible partition of E, each independent set has n+ 2m− 1 elements which consist
of one element from each Ei except one set.
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It remains to show that the resulting instance is equivalent to the densest l-subgraph
problem instance (G = (V, F ), l).

I Claim 6. Let α ∈ {0, . . . ,m}. The graph G has a vertex set T ∗ with |T ∗| = l and
|F [T ∗]| ≥ α if and only if there exists a feasible partition (I1, . . . , Ik) of E with (

∑
,max)-

value at most 2m2(n− l) +m2 +m− α.

First, we assume that there exists T ∗ ⊆ V such that |T ∗| = l and |F [T ∗]| ≥ α. Without loss
of generality, we assume that T ∗ = {1, . . . , l} and V \ T ∗ = {l + 1, . . . , n}. We show that
there exists a partition such that its (

∑
,max)-value is at most 2m2(n− l) +m2 +m− α.

We denote Ej [p, q] = {ep,j , . . . , eq,j}. Let J1 = {1, . . . , l}, J2 = {l + 1, . . . , l + 2m}, and
J3 = {l + 2m+ 1, . . . , n+ 2m}. We construct a partition (I∗1 , . . . , I∗n+2m) of E as follows:

I∗j =


Ej−1[1, j − 1] ∪ Ej [j + 1, n + 2m] (j ∈ J1),
Ej−1[1, l] ∪ Ej [l + 1, n + 2m + l − j] ∪ Ej−1[n + 2m + l − j + 2, n + 2m] (j ∈ J2),
Ej−1[1, j − 2m− 1] ∪ Ej [j − 2m + 1, n] ∪ Ej−1[n + 1, n + 2m] (j ∈ J3).

Then, the maximum weight of each independent set is

max
e∈I∗

j

w(e) =



0 (j ∈ J1),
t− 1 (j = l + 2t− 1 ∈ J2, t = 1, . . . ,m, {ut, vt} ∈ F [T ∗]),

t
(
j = l + 2t− 1 ∈ J2, t = 1, . . . ,m, {ut, vt} 6∈ F [T ∗]
j = l + 2t ∈ J2, t = 1, . . . ,m

)
,

2m2 (j ∈ J3).

Thus, the (
∑
,max)-value is at most 0 · l +

∑m
t=1(2t)− |F [T ∗]|+ 2m2 · (n− l) ≤ 2m2(n−

l) +m2 +m− α.
Conversely, we assume that there exists a feasible partition (I1, . . . , Ik) of E such that

maxe∈I1 w(e) ≤ · · · ≤ maxe∈Ik
w(e), and

∑
j∈[k] maxe∈Ij w(e) ≤ 2m2(n− l) +m2 +m− α.

All elements in Ek must be contained in different Ij ’s from each other by definition of (E, I).
Hence at least n− l sets contain elements e with w(e) = 2m2. If maxe∈Ij w(e) ≥ 2m2 holds
for some j ≤ l+ 2m, then the objective value is at least 2m2(n− l+ 1) > 2m2(n− l) +m2 +
m− α. Thus, each of Il+2m+1, . . . , Ik contains 2m elements with weight 2m2, and none of
I1, . . . , Il+2m contains such elements. Let U = {i : |Ei ∩ Ij | = 0 (∃j ∈ {l + 2m+ 1, . . . , k})}.
Note that |U | = n − l and U ⊆ {1, . . . , n}. Here, we have 2m2(n − l) + m2 + m − α ≥∑

j∈[k] maxe∈Ij w(e) = 2m2(n − l) +
∑

j∈[l+2m] maxe∈Ij w(e). In order to obtain a lower
bound of

∑
j∈[l+2m] maxe∈Ij

w(e), we define E′ = {eij : i ∈ U, j = 1, . . . , l + 2m}. Let
(E′, I ′) be a partition matroid where I ′ = {I ′ : |I ′ ∩ Ei| ≤ 1 (∀i ∈ U)}. We observe
that

∑
j∈[l+2m] maxe∈Ij

w(e) ≥
∑

j∈[l+2m] maxe∈Ij∩E′ w(e), and (I1 ∩ E′, . . . , Il+2m ∩ E′) is
a feasible partition to the (

∑
,max) problem instance (E′, (I ′, w), l + 2m). By Lemma 4,

an optimal solution to (E′, (I ′, w), l + 2m) can be obtained by a greedy algorithm. Let
(I ′1, . . . , I ′l+2m) be an output solution of the greedy algorithm. Then we have

∑
j∈[l+2m]

max
e∈Ij

w(e) ≥
∑

j∈[l+2m]

max
e∈I′

j

w(e) = m+
m∑

l=1
2(l − 1) + |{{u, v} : |{u, v} ∩ U | ≥ 1}|

≥ m2 +m− |F [V \ U ]|.

This implies |F [V \U ]| ≥ α. Therefore, T = V \U is a vertex set with |T | = l and |F [T ]| ≥ α.
This proves the theorem. J
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Note that the matroid (E, I) in the above proof is graphic because it can be seen as a
matroid corresponding to a cycle with n+2m vertices and each adjacent vertices is connected
by n+ 2m− 1 multiple edges. Thus, the maximum total capacity spanning tree partition
problem is NP-hard.

3.2 PTAS for the identical case
In this subsection, we provide a PTAS for the minimum (

∑
,max)-value matroid partitioning

problem with identical matroids and weights. This is the best possible result (unless P=NP)
because the problem is strongly NP-hard as we proved in the previous subsection.

We start with the following observation, which will be also useful in Section 3.4.

I Proposition 7. Let (E, (Ii, wi)i∈[k]) be any instance of the minimum (
∑
,max)-value

matroid partitioning problem, and let (I∗1 , . . . , I∗k) be an optimal solution. When we know
maxe∈I∗

i
wi(e) for all i ∈ [k], we can easily compute a feasible partition (I1, . . . , Ik) such that∑

i∈[k] maxe∈Ii
wi(e) ≤

∑
i∈[k] maxe∈I∗

i
wi(e).

Proof. The feasible partitions for matroids (E, Ii|{e : wi(e) ≤ maxe∗∈I∗
i
wi(e∗)})i∈[k] satisfy

the condition. Thus, we can find one of them in polynomial time by Theorem 1. J

Let (E, (I, w), k) be a problem instance, and let ε < 1/2 be a positive number. We write
wmax = maxe∈E w(e). Let (I∗1 , . . . , I∗k) be an optimal solution.

The idea of the algorithm is to guess the maximum weights. Since the number of
possibilities of the maximum weights is at most nk, we can solve the problem by solving
the feasibility of matroid partitioning problems nk times. Thus, we can solve the problem
efficiently when k is small, but not in polynomial time. In order to reduce the possibilities,
we guess maxe∈I∗

i
w(e) only for some i’s. Without loss of generality, we assume that

maxe∈I∗1
w(e) ≥ · · · ≥ maxe∈I∗

k
w(e). We define a set J = {i1, . . . , is} of indices by

ij =
{
j (j = 1, . . . , b1/ε2c),
b(1 + ε)t/ε2c (j = b1/ε2c+ t, t = 1, . . . , blog1+ε(kε2)c).

By definition, it holds that 1 = i1 < i2 < · · · < is ≤ k, and s = b1/ε2c+ blog1+ε(kε2)c. Note
that for any j = b1/ε2c+ t and t ≥ 1, we have

ij − ij−1 ≥ ((1 + ε)t/ε2 − 1)− ((1 + ε)t−1/ε2) = (1 + ε)t−1/ε− 1 ≥ 1/ε− 1 > 1

as ε < 1/2. For notational convenience, we denote i0 = 0 and is+1 = k + 1.
To reduce the number of possibilities more, we round the weights w(e). For all e ∈ E,

define

w′(e) =

{
(1+ε)twmax

k
ε
(

(1+ε)twmax

k
ε ≤ w(e) < (1+ε)t+1wmax

k
ε, t ∈ {0, 1, . . . , blog1+ε( k

ε
)c}
)

,

0
(
w(e) < wmax

k
ε
)

.

Our algorithm guesses maxe∈I∗
ij
w′(e) for each ij ∈ J . We write u∗j for the value. Then,

it finds a feasible partition (I1, . . . , Ik) that satisfies maxe∈I1 w(e) ≥ · · · ≥ maxe∈Ik
w(e) and

maxe∈Iij
w′(e) ≤ u∗j for all ij ∈ J . The algorithm is summarized in Algorithm 1.

I Theorem 8. Algorithm 1 is a PTAS algorithm for the minimum (
∑
,max)-value matroid

partitioning problem with identical matroids and weights.
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Algorithm 1: PTAS for the (
∑
,max) problem with identical matroids and weights

1 foreach u1, . . . , us ∈ {0} ∪
{

(1+ε)twmax

k ε : t = 0, . . . , blog1+ε(k/ε)c
}

such that
u1 ≥ · · · ≥ us do

2 find a partition (I1, . . . , Ik) such that Ii ∈ (I|{e : w′(e) ≤ uj}) for each
ij ≤ i < ij+1, j = 1, . . . , s if such a partition exists;

3 return the best solution (I1, . . . , Ik) among the obtained partitions;

Proof. Let (I∗1 , . . . , I∗k) be an optimal solution to the problem and (I1, . . . , Ik) be the output of
Algorithm 1. Without loss of generality, we assume that maxe∈I∗1

w(e) ≥ · · · ≥ maxe∈I∗
k
w(e).

Let u∗j = maxe∈I∗
ij
w′(e) for each ij ∈ J .

We first analyze the running time of Algorithm 1.

I Claim 9. Algorithm 1 runs in polynomial time with respect to k for fixed ε.

Proof of Claim 9. Let r = blog1+ε(k/ε)c + 2. We observe that any choice of a possible
combination of values u1, . . . , us corresponds a multisubset of size s from the set of r values.
Thus the number of possible combinations is

(
r+s−1

s

)
. Furthermore, we have(

r + s− 1
s

)
≤

r+s−1∑
l=0

(
r + s− 1

l

)
= 2r+s−1 ≤ 2(log1+ε(k/ε)+2)+(1/ε2+log1+ε(kε2))

≤ 22 log1+ε k+2+1/ε2
= 22+1/ε2

· klog1+ε 4.

This is a polynomial with respect to k for fixed ε. Thus, the algorithm runs in polynomial
time. J

Note that, without the restriction u1 ≥ · · · ≥ us, the number of possible combinations of
values u1, . . . , us is rs = kΘ(log log k), which is not polynomial with respect to k.

In the remainder, we show the approximation ratio of the algorithm.

I Claim 10. Let OPT denote the optimal value and let ALG denote the (
∑
,max)-value of

(I1, . . . , Ik). Then it holds that ALG ≤ (1 + 15.5ε)OPT.

Proof of Claim 10. First, OPT is at least

OPT =
∑
i∈[k]

max
e∈I∗

i

w(e) ≥
∑
i∈[k]

max
e∈I∗

i

w′(e) ≥
s∑

j=1
(ij − ij−1)u∗j .

Let (I ′1, . . . , I ′k) be a feasible partition of E obtained at line 2 in Algorithm 1 using u∗1, . . . , u∗s .
Then ALG is at most

ALG =
∑
i∈[k]

max
e∈Ii

w(e) ≤
∑
i∈[k]

max
e∈I′

i

w(e)

≤
s∑

j=1
(ij+1 − ij) max

e∈I′
ij

w(e) ≤
s∑

j=1
(ij+1 − ij)

(
(1 + ε)u∗j + wmax

k
ε

)

≤
s∑

j=1
(ij+1 − ij)(1 + ε)u∗j + k · w

max

k
ε ≤ (1 + ε)

s∑
j=1

(ij+1 − ij)u∗j + ε ·OPT. (1)

Here, the third inequality holds by the definition of w′ and maxe∈I′
ij
w′(e) ≤ u∗j .
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We derive an upper bound on
∑s

j=1(ij+1 − ij)u∗j . To simplify notation, let q = b1/ε2c.
First, since ij+1 − ij = ij − ij−1 = 1 holds for any j = 1, . . . , q − 1, we have∑q−1

j=1(ij+1 − ij)u∗j =
∑q−1

j=1(ij − ij−1)u∗j . (2)

Second, we evaluate (iq+1 − iq)u∗q . Note that iq = q = b1/ε2c and iq+1 = b(1 + ε)/ε2c.
Thus iq+1 − iq ≤ (1 + ε)/ε2 − (1/ε2 − 1) = (1 + ε)/ε. Moreover, u∗q = maxe∈I∗q

w′(e) ≤
maxe∈I∗q

w(e) ≤ OPT/q, because OPT =
∑

i∈[k] maxe∈I∗
i
w(e) ≥

∑
i∈[q] maxe∈I∗

i
w(e) ≥

q ·maxe∈I∗q
w(e). We remark that 1/q = 1/b1/ε2c ≤ 1/(1/ε2 − 1) = ε2/(1− ε2) < 4

3ε
2 < 2ε2

as ε < 1/2. Therefore, it follows that

(iq+1 − iq)u∗q ≤ 2ε(1 + ε)OPT. (3)

Lastly, let j ∈ {q + 1, . . . , s}, and let t (≥ 1) be the integer such that ij = b(1 + ε)t/ε2c
(i.e., t = j − q). We observe that ij − ij−1 ≥ (1 + ε)t−1/ε− 1. In addition, we have

ij+1 − ij ≤
(

(1 + ε)t+1

ε2

)
−
(

(1 + ε)t

ε2 − 1
)

= (1 + ε)t

ε
+ 1

≤ (1 + ε)/ε+ 1
(1 + ε)0/ε− 1

(
(1 + ε)t−1

ε
− 1
)
≤ 1 + 2ε

1− ε (ij − ij−1) < (1 + 6ε)(ij − ij−1),

where the second inequality holds since (1+ε)x/ε+1
(1+ε)x−1/ε−1 is monotone decreasing for x ≥ 1 and

the last inequality holds since ε < 1/2. Therefore, it follows that∑s
j=q+1(ij+1 − ij)u∗j =

∑s
j=q+1(1 + 6ε)(ij − ij−1)u∗j . (4)

By combining (1), (2), (3), (4), together with ε < 1/2, we have

ALG ≤ (1 + ε)
(

(1 + 6ε)
∑s

j=1(ij − ij−1)u∗j + 2ε(1 + ε)OPT
)

+ ε ·OPT

≤ (1 + ε) ((1 + 6ε) + 2ε(1 + ε)) ·OPT + ε ·OPT = (1 + 10ε+ 10ε2 + 2ε3)OPT
< (1 + 10ε+ 5ε+ 0.5ε)OPT = (1 + 15.5ε)OPT. J

3.3 Hardness of the general case
We show a stronger result than the NP-hardness of the minimum (

∑
,max)-value matroid

partitioning problem by reducing the set cover problem. Given a set V = [n] and a collection
S = {Si ⊆ V : i ∈ [k]}, the set cover problem is to find a subset S ′ (⊆ S) of minimum
cardinality such that S ′ covers V , i.e.,

⋃
S∈S′ S = V . It is known that the set cover problem

cannot be approximated in polynomial time to within a factor of o(log k) unless P=NP [6, 22].

I Theorem 11. Even if either matroids or weights, but not both, are identical, the minimum
(
∑
,max)-value matroid partitioning problem cannot be approximated in polynomial time

within a factor of o(log k), unless P=NP.

3.4 Algorithm for the general case
In this subsection, we provide an εk-approximation algorithm for any ε > 0. Let
(E, (Ii, wi)i∈[k]) be an instance of the minimum (

∑
,max)-value matroid partitioning problem,

and let (I∗1 , . . . , I∗k) be any optimal partition.
Similarly to the PTAS described in Section 3.2, our algorithm guesses maxe∈I∗

i
wi(e)

for each i ∈ [k]. In order to reduce the number of possibilities, we only guess top-d1/εe
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weights of maxe∈I∗
i
wi(e). For simplicity, let r = d1/εe. Let J∗ = {i1, . . . , ir} be the indices

of top-r weights, i.e., maxe∈I∗
i
wi(e) ≥ maxe∈I∗

j
wi(e) for any i ∈ J∗ and j ∈ [k] \ J∗. Let

u∗i = maxe∈I∗
i
wi(e) for each i ∈ J∗. Then it finds a feasible partition (I1, . . . , Ik) that

satisfies maxe∈Ii wi(e) ≤ u∗i for i ∈ J∗ and maxe∈Ii wi(e) ≤ minj∈J∗ u
∗
j for i ∈ [k] \ J∗.

I Theorem 12. For any positive fixed number ε > 0, there exists a polynomial-time εk-
approximation algorithm for the minimum (

∑
,max)-value matroid partitioning problem.

4 Complexity of other optimal matroid partitioning problems

In this section, we prove the other results in Table 1. We first deal with the cases (1)
(Op(1),Op(2)) = (min,min), (max,max), (min,max) or (min,

∑
); (2) (Op(1),Op(2)) =

(max,min) or (
∑
,min) with identical matroids. For the (min,min), (max,max), (min,max)

and (min,
∑

) problems, we show polynomial-time reductions to the matroid partitioning
problem. Then we can see that these are polynomially solvable by Theorem 1.

I Theorem 13. The minimum (min,min)-value matroid partitioning problem is solvable in
polynomial time.

I Theorem 14. The minimum (max,max) and (min,max)-value matroid partitioning prob-
lems (E, (Ii, wi)i∈[k]) are solvable in polynomial time.

I Theorem 15. The minimum (min,
∑

)-value matroid partitioning problem (E, (Ii, wi)i∈[k])
is solvable in polynomial time.

Next we consider the (max,min) case and the (
∑
,min) case. As we will see later,

the optimal matroid partitioning problems for these cases are (strongly) NP-hard even to
approximate. We provide polynomial-time algorithms for instances where matroids are
identical (weights may differ). The following lemma plays the crucial role for this purpose.

I Lemma 16. Let (E, I) be a matroid. If there is a partition (I1, . . . , Ik) of E such that
Ii ∈ I for all i ∈ [k], then for any k elements e1, . . . , ek ∈ E, there is a partition (I ′1, . . . , I ′k)
of E such that ei ∈ I ′i ∈ I for all i ∈ [k],

We will reduce the problem of finding an optimal partition to the minimum weight perfect
bipartite matching problem. It is well-known that this problem is solvable in polynomial
time (see, e.g., [16, 23] for basic algorithms). Now we are ready to prove the theorem.

I Theorem 17. The minimum (max,min) and (
∑
,min)-value matroid partitioning problems

with identical matroids (E, (I, wi)i∈[k]) are solvable in polynomial time.

Proof. Let (E, I) be any matroid. Recall that the existence of a feasible partition is checkable
in polynomial time by Theorem 1. Hence, in what follows, we assume that (E, (I, w), k) has
a feasible partition.

We first consider the (max,min) problem. By Lemma 16, the minimum (max,min)-value
is at most w if and only if the bipartite graph (E, [k], {(e, i) : wi(e) ≤ w}) has a right-perfect
matching. Thus, we can get the optimal value in polynomial time by setting w for all
{wi(e) : i ∈ [k], e ∈ E} and checking the existence of a right-perfect matching.

Next, we consider the (
∑
,min) problem. By Lemma 16, the minimum (

∑
,min)-value is

the minimum weight of right-perfect matchings in the weighted bipartite graph (E, [k], E ×
[k];w), where weight w is defined as w(e, i) = wi(e) for each (e, i) ∈ E × [k]. Thus, we can
find the optimal value in polynomial time. J
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In addition, for the (max,min) case and the (
∑
,min) case, we prove the following

hardness result by a reduction from SAT, which is an NP-complete problem [12].

I Theorem 18. The minimum (max,min) and (
∑
,min)-value matroid partitioning problems

are both strongly NP-hard. Moreover, there exists no approximation algorithm for the problems
unless P=NP.
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