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Abstract
A square-contact representation of a planar graph G = (V,E) maps vertices in V to interior-
disjoint axis-aligned squares in the plane and edges in E to adjacencies between the sides of the
corresponding squares. In this paper, we study proper square-contact representations of planar
graphs, in which any two squares are either disjoint or share infinitely many points.

We characterize the partial 2-trees and the triconnected cycle-trees allowing for such represen-
tations. For partial 2-trees our characterization uses a simple forbidden subgraph whose structure
forces a separating triangle in any embedding. For the triconnected cycle-trees, a subclass of the
triconnected simply-nested graphs, we use a new structural decomposition for the graphs in this
family, which may be of independent interest. Finally, we study square-contact representations
of general triconnected simply-nested graphs with respect to their outerplanarity index.
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1 Introduction

Contact representations of graphs, in which the vertices of a graph are represented by non-
overlapping or non-crossing geometric objects of a specific type, and edges are represented
by tangencies or other contacts between these objects, form an important line of research
in graph drawing and geometric graph theory. For instance, the Koebe–Andreev–Thurston
circle packing theorem states that every planar graph is a contact graph of circles [13]. Other
types of contact representations that have been studied include contacts of unit circles [2, 9],
line segments [10], circular arcs [1], triangles [8], L-shaped polylines [3], and cubes [7].
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24:2 Square-Contact Representations

Schramm’s monster packing theorem [11] implies that every planar graph can be rep-
resented by the tangencies of translated and scaled copies of any smooth convex body in
the plane. However, it is more difficult to use this theorem for non-smooth shapes, such as
polygons: when k bodies can meet at a point, the monster theorem may pack them in a
degenerate way in which separating k-cycles, and their interiors, shrink to a single point.

In this paper we study one of the simplest cases of contact representations that cannot be
adequately handled using the monster theorem: contact systems of axis-parallel squares. We
distinguish between proper and improper contacts: a proper contact representation disallows
squares that meet only at their corners, while an improper or weak contact representation
allows corner-corner contacts of squares. These weak contacts may represent edges of the
graph, but they are also allowed between squares that should be non-adjacent. The weak
contact representations by squares were shown by Schramm [12] to include all of the proper
induced subgraphs of maximal planar graphs that have no separating 3-cycles or 4-cycles.
However, a characterization of the graphs having proper contact representations by squares
remains elusive.

There is a simple necessary condition for the existence of a proper contact representation
by squares. No three properly-touching squares can surround a nonzero-area region of the
plane. Therefore, if every embedding of a planar graph G with four or more vertices has
a separating triangle or a triangle as the outer face, then G cannot have a proper contact
representation. Our main results show that this necessary condition is also sufficient for
two notable families of planar graphs: partial 2-trees (including series-parallel graphs) and
triconnected cycle-trees (including the Halin graphs). However, we show that this necessary
condition is not sufficient for the existence of weak and proper square-contact representations
of 3-outerplanar and 2-outerplanar triconnected simply-nested graphs.

Due to space limits, full versions of omitted or sketched proofs are provided in [5].

2 Preliminaries

For standard graph theory concepts and definitions related to planar graphs, their embeddings,
and connectivity we refer the reader, e.g., to [6] and to [5].

The graphs considered in this paper are planar, finite, simple, and connected. We denote
the vertex set V and the edge set E of a graphG = (V,E) by V (G) and E(G), respectively. Let
H and G be two graphs. We say that G is H-free if G does not contain a subgraph isomorphic
to H. The complete k-partite graph K|V1|,...,|Vk| is the graph (V =

⋃k
i=1 Vi, E =

⋃
i<j Vi×Vj).

Series-parallel graphs and partial 2-trees. A two-terminal series-parallel graph G with
source s and target t can be recursively defined as follows:
(i) Edge st is a two-terminal series-parallel graph. Let G1, . . . , Gk be two-terminal series-

parallel graphs and let si and ti be the source and the target of Gi, respectively, with
1 ≤ i ≤ k.

(ii) The series composition of G1, . . . , Gk obtained by identifying si with ti+1, for i =
1, . . . , k − 1, is a two-terminal series-parallel graph with source sk and target t1; and

(iii) the parallel composition of G1, . . . , Gk obtained by identifying si with s1 and ti with t1,
for i = 2, . . . , k, is a two-terminal series-parallel graph with source s1 and target t1.
A series-parallel graph is either a single edge or a two-terminal series-parallel graph with

the addition of an edge, called reference edge joining s and t. Clearly, series-parallel graphs
are 2-connected. A series-parallel graph G with reference edge e is naturally associated with
a rooted tree T , called the SPQ-tree of G. Each internal node of T , with the exception of the
one associated with e, corresponds to a two-terminal series-parallel graph. Nodes of T are of
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three types: S-, P-, and Q-nodes. Further, tree T is rooted to the Q-node corresponding to e.
Let µ be a node of T with terminals s and t and children µ1, . . . , µk, if any. Node µ has

an associated multigraph, called the skeleton of µ and denoted by skelµ, containing a virtual
edge ei = siti, for each child µi of µ. Skeleton skelµ shows how the children of µ, represented
by “virtual edges”, are arranged into µ. The skeleton skelµ of µ is:
(i) edge st, if µ is a leaf Q-node,
(ii) the multi-edge obtained by identifying the source si and the target ti of each virtual

edge ei, for i = 1, . . . , k, with a new source s and and new target t, respectively, or
(iii) the path e1, . . . , ek, where virtual edge ei and ei+1 share vertex si = ti+1, with 1 ≤ i < k.
If µ is an S-node, then we denote by `(µ) the length of skelµ, i.e., `(µ) = k.

For each virtual edge ei of skelµ, recursively replace ei with the skeleton skelµi of its
corresponding child µi. The two-terminal series-parallel subgraph of G that is obtained in
this way is the pertinent graph of µ and is denoted by Gµ. We have that Gµ is:
(i) edge st, if µ is a Q-node,
(ii) the series composition of the two-terminal series-parallel graphs Gµ1 , . . . , Gµk

, if µ is an
S-node, and

(iii) the parallel composition of the two-terminal series-parallel graphs Gµ1 , . . . , Gµk
, if µ is

a P-node.
We denote by G−µ the subgraph of Gµ obtained by removing from it terminals s and t together
with their incident edges.

A 2-tree is a graph that can be obtained from an edge by repeatedly adding a new vertex
connected to two adjacent vertices. Every 2-tree is planar and 2-connected. A partial 2-tree
is a subgraph of a 2-tree. Equivalently, partial 2-tree can be defined as the K4-minor-free
graphs. In particular, the series-parallel graphs are exactly the 2-connected partial 2-trees.

Simply-nested graphs. Let G be an embedded planar graph and let G1, . . . , Gk be the
sequence of embedded planar graphs such that G1 = G, graph Gi+1 is obtained from Gi
be removing all the vertices incident to the outer face of Gi together with their incident
edges, and Gk is outerplanar. We say that the embedding of G is k-outerplanar. A graph
is k-outerplanar if it admits a k-outerplanar embedding. The set Vi of vertices incident to
the outer face of Gi is the i-th level of G. A k-outerplanar graph is simply-nested [4] if, for
i = 1, . . . , k − 1, graphs G[Vi] are chordless cycles and G[Vk] is either a cycle or a tree.

We define cycle-trees and cycle-cycles the 2-outerplanar simply-nested graphs whose
internal level is a tree and a cycle, respectively. The 2-outerplanar 3-connected simply-
nested graphs have a nice geometric interpretation. Similarly to the Halin graphs, which
are the graphs of polyhedra containing a face that share an edge with all other faces, 3-
connected cycle-trees are the graphs of polyhedra containing a face touched by all other faces.
Analogously, the 3-connected cycle-cycle graphs with no chords on the inner cycle are the
graphs of polyhedra in which there exist two disjoint faces that are both touched by all other
faces.

Square-contact representations. Let G = (V,E) be a planar graph. A square-contact
representation Γ of G maps each vertex v ∈ V to an axis-aligned square SΓ(v) in the plane,
such that, for any two vertices u, v ∈ V , squares SΓ(u) and SΓ(v) are interior-disjoint, and
the sides of SΓ(u) and SΓ(v) touch if and only if uv ∈ E. A square-contact representation of
G is proper if any two touching squares share infinitely many points, i.e., they cannot share
only a corner point, and non-proper, otherwise. When the square-contact representation is
clear from the context, we may choose to drop the Γ subscript and just use S(v) to refer to
the square for vertex v. In the remainder of the paper, we only consider proper square-contact
representations and refer to such representations simply as square-contact representations.

ISAAC 2017
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Geometric transformations. Let G be planar graph and let Γ be a square-contact repre-
sentation of G. Also, let p be any point in Γ. We define the ↗-, ↖-, ↙-, and ↘-quadrant
of p in Γ as the first, second, third, and fourth quadrant around p, respectively. Suppose
that the half-lines delimiting the ↙-quadrant of p in Γ do not intersect the interior of any
square in Γ. Also, let Γ′ be the part of Γ lying in the ↙-quadrant of p. Then, a ↙

p-scaling of Γ
by a factor α > 0 is a square-contact representation Γ∗ defined as follows; see, e.g., Fig. 3.
Initialize Γ∗ = Γ and remove from Γ∗ the drawing of the squares contained in the interior
of Γ′. Then, insert into Γ∗ a copy Γ′′ of Γ′ scaled by α such that the upper-right corner
of Γ′′ coincides with p. Clearly, depending on the scale factor α, drawing Γ∗ may or may
not be a square-contact representation of G (as adjacencies may be lost or gained). In the
following, we refer to the case in which α > 1 simply as a ↙

p-scaling of Γ and to the case
in which 0 < α < 1 as a negative ↙

p-scaling of Γ. The definitions of ◦p-scaling and negative
◦
p-scaling, with ◦ ∈ {↖,↘,↗}, are analogous. Finally, let v be a vertex of G and let x, y, z,
and w be the upper-left, lower-left, lower-right, and upper-left corner points of S(v) in Γ. A
↖

v-scaling, ↙

v-scaling, ↘

v-scaling, ↗

v-scaling of Γ is a ↖

x-scaling, ↙

y-scaling, ↘

z-scaling, ↗

w-scaling of
Γ, respectively.

3 Partial 2-Trees

In this section, we study square-contact representations of partial 2-trees and give the
following simple characterization for graphs in this family admitting such representations.

I Theorem 1. Let G be a partial 2-tree. Then, the following statements are equivalent:
(i) G is K1,1,3-free,
(ii) G admits an embedding without separating triangles, and
(iii) G admits a square-contact representation.

In order to prove Theorem 1, we first show that, without loss of generality, we can restrict
our attention to the biconnected partial 2-trees, i.e., the series-parallel graphs.

I Lemma 1. Let G be a K1,1,3-free partial 2-tree. Then, there exists a K1,1,3-free series-
parallel graph G∗ such that G ⊂ G∗ and G admits a square-contact representation if G∗ does.

Sketch. Let β(H) denote the number of blocks, i.e., the maximal biconnected components,
of a graph H. Adding to G a new vertex connected to two vertices in V (G) incident to the
same cut-vertex of G, belonging to different blocks, and sharing a common face yields a
graph G′ such that β(G′) = β(G)− 1. It is easy to see that G′ is K1,1,3-free and that G′ does
not contain K4 as a minor. Hence, repeating such an augmentation eventually yields a series-
parallel graph G∗ that is K1,1,3-free. Also, by construction, two vertices in V (G) are adjacent
in G∗ if and only if they are adjacent in G. Therefore, a square-contact representation of G
can be derived from a square-contact representation Γ∗ of G∗, by removing from Γ∗ all the
squares corresponding to vertices in V (G∗) \ V (G). J

As already observed in Section 1, an embedding without separating triangles is necessary
for the existence of a square-contact representation, and K1,1,3 has no embedding without
separating triangles. Thus, (iii) ⇒ (ii) ⇒ (i) are immediate. To complete the proof of
Theorem 1, we show how to construct a square-contact representation of any K1,1,3-free
series-parallel graph, proving that (i)⇒ (iii). We formalize this result in the next theorem.

I Theorem 2. Every K1,1,3-free series-parallel graph admits a square-contact representation.
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Figure 1 (a) A critical S-node, (b) an almost-bad P-node, (c) a bad P-node, (d) a forbidden
P-node, (e) an S-node of Type B, and (f) an S-node of Type C. Yellow, green, and blue regions
represent parallel compositions of any number of S-nodes, at most one critical S-node and any
number of non-critical S-nodes, and any number of non-critical S-nodes, respectively.

Let G be a series-parallel graph and let T be the SPQ-tree of G with respect to any
reference edge. We start with some definitions; refer to Fig. 1. Let µ be an S-node in T .
We say that µ is critical, if skelµ =s–x–t and the two children of µ both contain an edge
between their terminals, i.e., sx, xt ∈ E(Gµ), and non-critical, otherwise. Let µ be a P-node
in T containing an edge between its terminals. We say that µ is almost bad, if it has exactly
one critical child, bad, if it has exactly two critical children, and forbidden, if it has more
than two critical children. Finally, let µ be a P-node in T . We say that µ is good, if it is
neither bad, nor almost bad, nor forbidden.

We now assign one of three possible types to each S-node µ in T as follows (for each child
µi of µ, we denote the two terminals of Gµi as si and ti).

Type A Node µ is of Type A, if either `(µ) > 2 or `(µ) = 2 and at least one child of µ does
not contain an edge between its terminals, i.e., |{s1t1, s2t2} ∩ E(Gµ)| < 2.

Type B Node µ is of Type B, if `(µ) = 2, all its children contain an edge between their
terminals, and at least one of them is a bad P-node.

Type C Node µ is of Type C, if `(µ) = 2, and all its children contain an edge between their
terminals, and none of them is a bad P-node.

Observe that S-nodes of Type B and of Type C are also critical.
Let G be a K1,1,3-free series-parallel graph and let T be the SPQ-tree of G with respect

to any reference edge. We have the following simple observations regarding the P-nodes in T .

I Observation 1. SPQ-tree T contains no forbidden P-node; refer to Fig. 1(d).

I Observation 2. Let µ be a P-node in T with terminals s and t such that st ∈ E(Gµ).
Then, none of the children of µ is of Type B and at most two children of µ are of Type C.

We now consider special square-contact representations for the pertinent graphs of the
S-nodes in T . Let Γµ be a square-contact representation of Gµ. We say that Γµ is either a
rectangular, L-shape, or pipe drawing of Gµ, if it satisfies the following conditions; refer to
Fig. 2.

Rectangular drawing S(t) lies to the left and above S(s) and the drawing Γ−µ of G−µ in Γµ
lies to the right of S(t) and above S(s); also, all the squares of Γ−µ whose left side (bottom
side) is collinear with the right side of S(t) (with the top side of S(s)) are adjacent to
S(t) (to S(s)).

ISAAC 2017
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S(t)S(t)S(t)
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Figure 2 From left to right: pertinent Gµ of an S-node µ with terminals s and t, L-shape
and pipe drawings of Gµ, respectively, and a rectangular drawing of an S-node ν with pertinent
Gν = Gµ ∪ sx. The L-shape region and horizontal pipe enclosing G−

µ and the rectangle enclosing
G−
ν are shaded blue.

S(t)

S(s)

S(t)

S(s)

S(t)

S(s)

S(t)

S(s)

Figure 3 Transforming Γτ into Γρ.

L-shape drawing Γµ is a rectangular drawing in which there exists a rectangular region (red
region R∅ in Fig. 2) inside the bounding box of Γ−µ whose interior does not intersect
any square in Γ−µ and whose lower-left corner lies at the intersection point between the
vertical line passing through the right side of S(t) and the horizontal line passing through
the top side of S(s).

Pipe drawing S(t) lies to the left of S(s) and the drawing Γ−µ of G−µ in Γµ lies to the right
of S(t) and to the left of S(s); also, all the squares of Γ−µ whose left side (right side) is
collinear with the right side of S(t) (with the left side of S(s)) are adjacent to S(t) (to
S(s)).

In the following, we generally refer to a drawing of an S-node µ in T (of Gµ) which is
either an L-shape drawing, a pipe drawing, or a rectangular drawing as a valid drawing of µ
(of Gµ).

Let Γ−µ be the square-contact representation of G−µ contained in Γµ. Observe that Γ−µ lies
in the interior of an orthogonal hexagon with an internal angle equal to 270◦, i.e., an L-shape
polygon (or, simply, L-shape), if Γ−µ is an L-shape drawing. Also, Γ−µ lies in the interior of a
rectangle whose opposite vertical sides are adjacent to the right side of S(t) and to the left
side of S(s), i.e., a horizontal pipe, if Γ−µ is a pipe drawing. Finally, Γ−µ lies in the interior of
a rectangle whose left and bottom side are adjacent to the right side of S(t) and to the top
side of S(s), respectively, if Γ−µ is a rectangular drawing.

Proof of Theorem 2. In order to prove Theorem 2, we proceed as follows. Let G be a
K1,1,3-free series-parallel graph and let T be the SPQ-tree of G rooted at a Q-node ρ with
terminals s and t, whose unique child τ is an S-node. Observe that such a Q-node always



G.Da Lozzo, W. E.Devanny, D. Eppstein, and Timothy Johnson 24:7

exists, since G is simple, and that node τ is either of Type A or of Type C, since G is
K1,1,3-tree. We perform a bottom-up traversal in T to construct one or two valid drawings
of Gµ, for each S-node µ ∈ T . Namely, we compute:

an L-shape drawing, if µ is of Type A (Lemma 4),
a pipe drawing, if µ is of Type B (Lemma 5), and
both a pipe drawing and a rectangular drawing, if µ is of Type C (Lemma 6).

Thus, when node τ is considered, we can compute either an L-shape drawing of Gτ ,
if τ is of Type A, or a rectangular drawing of Gτ , if τ is of Type C. Further, both such
valid drawings Γτ of Gτ can be easily turned into a square-contact representation Γρ of
G = Gτ ∪ st, by performing a

↙

t-scaling and an ↙

s-scaling of Γτ in such a way that the right
side of S(t) and the left side of S(s) touch; refer to Fig. 3. This is possible since both in an
L-shape drawing and in a rectangular drawing of Gτ all the squares of G−τ whose left side
(bottom side) is collinear with the right side of S(t) (with the top side of S(s)) are adjacent
to S(t) (to S(s)).

Let µ be an S-node and let µ1, . . . , µk be the children of µ in T . If each child µi of µ is
a Q-node, then node µ is of Type A, if `(µ) > 2, and it is of Type C, otherwise. It is not
difficult to see that, in the former case, Gµ admits an L-shape drawing and that, in the latter
case, Gµ admits both a pipe drawing and a rectangular drawing. In the remainder of the
section, we consider the case in which µ has both Q-node and P-node children.

We first show how to construct special square-contact representations of Gµ, that we call
canonical drawings, for any P-node µ in T , assuming that valid drawings have been computed
for each S-node child of µ. We distinguish five possible canonical drawings, depending on

1. the number and type of the S-node children of µ and
2. the presence of edge st.
Each canonical drawing has three variants: vertical (V), horizontal (H), and diagonal
(D). We name such canonical representations XY drawings, where X ∈ {V,H,D} denotes
the variant of the representation and Y = 1, if st ∈ E(Gµ), and Y = 0, otherwise. Canonical
drawings share the following main property (which, in fact, also holds for valid drawings).

I Property 1. Let Γµ be a valid drawing or a canonical drawing of Gµ. Then, for each
vertex v in V (G−µ ), it holds that vs ∈ E(Gµ) (vt ∈ E(Gµ)) if:
1. S(v) has a side that is collinear with a side of S(s) (of S(t)) in Γµ and
2. S(v) is separated from S(s) (from S(t)) in Γµ by the line passing through such a side.

Property 1 allows us to modify canonical and valid drawings by appropriate ◦s-scaling and
◦
t-

scaling transformations, with ◦ ∈ {↖,↗,↘,↙}, preserving adjacencies between vertices in Gµ.
First, consider a P-node µ in T with terminals s and t such that st /∈ E(Gµ) and let

µ1, . . . , µk be the S-node children of µ. We say that a square-contact representation Γµ of
Gµ is an H0 drawing or a V0 drawing, if it satisfies the following conditions (in addition to
Property 1); refer to Fig. 4.

H0 drawing S(t) lies to the left of S(s), the bottom side of S(s) lies below the bottom side
of S(t), and the drawing of G−µ in Γµ lies to the right of S(t), below the top side of S(t),
above the bottom side of S(s), and to the left of the right side of S(s).

V0 drawing S(t) lies above S(s), the left side of S(s) lies to the right of the left side of S(t),
and the drawing of G−µ in Γµ lies above S(s), to the right of the left side of S(s), below
the top side of S(t), and to the left of the right side of S(s).

ISAAC 2017
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S(s)
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D1
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S(t)

A

C
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Figure 4 Canonical drawings of a P-node µ. The striped regions correspond to L-shapes,
horizontal pipes, and rectangles enclosing the square-contact representations of graphs G−

µi
, for each

S-node child µi of µ. Labels A, B, and C indicate the type of each S-node.

Now, consider a P-node µ in T with terminals s and t such that st ∈ E(Gµ) and let
µ1, . . . , µk be the S-node children of µ. We say that a square-contact representation Γµ of
Gµ is an H1 drawing, an H1� drawing, a V1 drawing, a D1 drawing, or a D1� drawing, if it
satisfies the following conditions (in addition to Property 1); refer to Fig. 4.

H1 drawing S(t) lies to the left of S(s), the bottom side of S(s) lies above the bottom side
of S(t), and the drawing of G−µ in Γµ lies to the right of S(t), below the top side of S(t),
above the bottom side of S(t), and to the left of the right side of S(s).

H1� drawing S(t) lies to the left of S(s), the bottom side of S(s) lies below the bottom side
of S(t), and the drawing of G−µ in Γµ lies to the right of S(t), below the top side of S(t),
above the top side of S(s), and to the left of the right side of S(s).

V1 drawing S(t) lies above S(s) and the drawing of G−µ in Γµ lies above S(s), below the top
side of S(t), to the right of the left side of S(s), and to the left of the right side of S(s).

D1 drawing S(t) lies above S(s) and the left side of S(t) lies to the left of the left side of
S(s), and the drawing of G−µ in Γµ lies to the right of the left side of S(t), below the top
side of S(t), above the bottom side of S(s), and to the left of the right side of S(s).

D1� drawing Γµ is a D1 drawing of Gµ in which the drawing of G−µ lies to the right of S(t).

We now present two lemmata for the possible canonical drawings of each P-node µ in
T . Recall that, by Observation 1, we can assume that µ is not a forbidden P-node. Let
µ1, . . . , µk be the S-node children of µ. The general strategy in the proofs of both lemmata
consists of
1. computing appropriate valid drawings Γµ1 , . . . ,Γµk

for the pertinent graphs Gµ1 , . . . , Gµk

of µ1, . . . , µk, respectively,
2. modifying the square-contact representation of G−µi

contained in Γµi
, for i = 1, . . . , k, by

means of affine transformations, so that representations derived from S-nodes of the same
type lie in the interior of the same polygon, and finally

3. composing the resulting drawings into a canonical drawing of Gµ. Refer to [5] for details.
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We first consider the case in which µ does not contain an edge between its terminals. In
this case, by Lemmata 4, 5, and 6, we can assume that Γµi

is an L-shape drawing, if µi is of
Type A, and a pipe drawing, if µi is of Type B or of Type C, for i = 1, . . . , k.

I Lemma 2. Let µ be a P-node in T with terminals s and t such that st /∈ E(Gµ). Then,
graph Gµ admits an H0 drawing and a V0 drawing.

Then, we consider the case in which µ contains an edge between its terminals. Recall
that, by Observation 2, node µ has no child of Type B and at most two children of Type C.
In particular, node µ has two children of Type C, if it is bad, and one child of Type C, if
it is almost bad. In this case, by Lemmata 4 and 6, we can assume that Γµi

is an L-shape
drawing, if µi is of Type A, and a rectangular drawing, if µi is of Type C, for i = 1, . . . , k.

I Lemma 3. Let µ be a P-node in T with terminals s and t such that st ∈ E(Gµ). Then,
graph Gµ admits

an H1 drawing, a V1 drawing, and a D1 drawing, if µ is bad, or
an H1� drawing and a D1� drawing, if µ is good or almost bad.
We finally turn our attention to the valid drawings of the S-nodes in T . Let µ be an

S-node in T and let µ1, . . . , µk be the children of µ (where the virtual edge ei, corresponding
to node µi, precedes the virtual edge ei+1, corresponding to node µi+1, from t to s in skelµ).
The next three lemmata immediately imply Theorem 2. To simplify their proofs, we assume
that each child of µ is a P-node. In fact, the case in which a child of µ is a Q-node can
be treated analogously to that of a P-node containing an edge between its terminals. The
general strategy in the proofs of all three lemmata consists of
1. computing appropriate canonical drawings Γµ1 , . . . ,Γµk

for the pertinent graphs
Gµ1 , . . . , Gµk

of µ1, . . . , µk, respectively,
2. modifying these drawings, by means of affine transformations, so that the squares cor-

responding to terminals shared by different children of µ can be identified without
introducing any overlapping between squares corresponding to internal vertices of Gµi

and Gµj
, with i 6= j, and finally

3. composing the resulting drawings into a valid drawing of Gµ.

I Lemma 4. If µ is an S-node of Type A, then Gµ admits an L-shape drawing.

Proof. We first describe how to select a valid drawing of Γµi of Gµi , for i = 1, . . . , k, based
on whether (i) `(µ) > 2 or (ii) `(µ) = 2. Recall that, if `(µ) = 2, then at least one child of
µ does not contain an edge between its terminals, say µ1 (the case in which s1t1 ∈ E(Gµ1)
and s2t2 /∈ E(Gµ2) is analogous).
(i) By Lemma 2 and Lemma 3, we can construct a drawing Γµi

, for each µi, such that:
1. Γµ1 is an H0 drawing, if s1t1 /∈ E(Gµ1), and Γµ1 is an H1 drawing (H1� drawing), if

µ1 is bad (if µ1 is good or almost bad);
2. Γµ2 is a V0 drawing, if s2t2 /∈ E(Gµ2), and Γµ2 is a D1 drawing (D1� drawing), if µ2

is bad (if µ2 is good or almost bad); and
3. Γµi is a V0 drawing, if siti /∈ E(Gµi), and Γµi is a V1 drawing (D1� drawing), if µi

is bad (if µi is good or almost bad), for every i > 2.
(ii) By Lemma 2 and Lemma 3, we can construct an H0 drawing Γµ1 of Gµ1 and a V1

drawing (D1� drawing) Γµ2 of Gµ2 , if µ2 is bad (if µ2 is good or almost bad).
We show how to compose all such drawings into an L-shape drawing Γµ of Gµ as follows.

Refer to Fig. 5(a) for an example of how to compose drawings Γµi , with i = 1, . . . , k, in case
(i) and to Fig.5(b) for an example of how to compose drawings Γµ1 and Γµ2 in case (ii). First,

ISAAC 2017



24:10 Square-Contact Representations

=
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S(t1)

S(s) = S(s3)

=
S(t2)
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=
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(a)
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=
S(t2)

S(s1)

=
S(t)

S(t1)

(b)

=
S(t)

S(t1)
=

S(s1)

S(t2)

S(s) = S(s2)

(c)

=
S(t)

S(t1)
=

S(s)
=

S(s)

S(s2)

↘
s-scaling

=
S(s1)

S(t2)

(d)

=
S(s1)

S(t2)

=
S(s)

S(s2)
=

S(t)

S(t1)

↘
s-scaling

↙
t-scaling

(e)

Figure 5 Illustrations for the proofs of Lemmata 4, 5, and 6. Striped polygons of the same color
enclose different parts of the drawing of each graph G−

µi
(contained in the canonical drawing Γµi of

Gµi). (a) An H1 drawing of Gµ1 , a D1 drawing of Gµ2 , and a D1� drawing of Gµ3 are combined
into an L-shape drawing. (b) An H0 drawing of Gµ1 and a D1� drawing of Gµ2 are combined into
an L-shape drawing. (c) An H1� drawing of Gµ1 and a D1� drawing of Gµ2 are combined into a
rectangular drawing. (d) An H1 drawing of Gµ1 and a D1� drawing of Gµ2 are combined into a pipe
drawing. (e) An H1� drawing of Gµ1 and a D1� drawing of Gµ2 are combined into a pipe drawing.

we scale S(si) and S(ti) in Γµi
so that the bounding box of the drawing of each connected

component of Gµi
− {si, ti} in Γµi

, for i = 1, . . . , k, becomes arbitrarily small with respect
to the drawing of S(si) and S(ti). This avoids overlapping between internal vertices of Gµi

and Gµj
, with i 6= j, in the next phases of the construction. Then, we scale and translate

each drawing Γµi so that S(ti+1) = S(si), with i < k. It is easy to see that, by the choice of
the canonical drawings of each Gµi

, there exists a rectangular region in Γµ whose interior
does not intersect any square representing a vertex in G−µ and whose lower-left corner lies at
the intersection point between the vertical line passing through the right side of S(t) and the
horizontal line passing through the top side of S(s) in Γµ. J

The proof of the next two lemmata also exploits rotations of drawings Γµi
and can be

carried out in a fashion similar to the proof of Lemma 4. Refer to [5] for details.

I Lemma 5. If µ is an S-node of Type B, then Gµ admits a pipe drawing.

I Lemma 6. If µ is an S-node of Type C, then Gµ admits a pipe and a rectangular drawing.

4 Triconnected Simply-Nested Graphs

In this section, we devote our attention to 3-connected simply-nested graphs.
A cycle-tree with a single edge removed from the outer cycle is a path-tree (to avoid

special cases, we allow the outer cycle of the cycle-tree to be a 2-gon). In path-trees, we refer
to vertices in the tree as tree vertices and vertices in the external path as path vertices. A
tree vertex can see a path vertex if they share a face in the original cycle-tree. Define an
almost-triconnected path-tree with root ρ, leftmost path vertex `, and rightmost path vertex
r to be a path-tree containing in one of its faces a tree vertex ρ and path vertices ` and r
such that if the edges ρ`, ρr, and `r were added, the resulting graph would be a 3-connected
cycle-tree.
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`µ rµ

ρµ

ρ1

`µ = `1 rµ = r1T1

ρµ

rµ = r4

ρµ = ρi

`µ = `1 T1 T2 T3 T4

Figure 6 Path-trees associated with a Q-node (left), an S-node (middle), and a P-node (right).
Dashed edges may or may not exist. Striped triangles represent smaller path-trees Ti with root ρi.

SPQ-decomposition of path-trees. We now describe a recursive decomposition for almost-
triconnected path-trees. We call this an SPQ-decomposition, because it bears a striking
similarity to the SPQ-decomposition of series-parallel graphs. Let G be a 3-connected cycle-
tree, let `r be an edge incident to the outer cycle of G, and let ρ be a tree vertex incident to
the internal face of G edge `r is incident to. Also, let G′ = G− `r be the almost-triconnected
path-tree obtained from G by removing edge `r. Graph G′ defines a rooted decomposition
tree T whose nodes are of three different kinds: S-, P-, and Q-nodes. Each node µ of T is
associated with a path-tree Gµ with root ρµ, leftmost path vertex `µ, and rightmost path
vertex rµ obtained—except the Q-nodes—from smaller path-trees Ti with root ρi, leftmost
path vertex `i, and rightmost path vertex ri, for i = 1, . . . , k, as follows.

A Q-node µ is associated with a path-tree Gµ with three vertices: one tree vertex ρµ and
two path vertices `µ and rµ. The tree vertex ρµ is the root of Gµ, while path vertices `µ
and rµ are the leftmost and the rightmost path vertex of Gµ, respectively. Edge `µrµ
will always exist, but edges ρµ`µ and ρµrµ may or may not exist; see Fig. 6(left).
An S-node µ is associated with a path-tree Gµ obtained from path-tree T1 by adding
a new root ρµ connected to ρ1. Also, `µ = `1 and rµ = r1 are the leftmost and the
rightmost path vertex of Gµ, respectively. Edges ρµ`µ and ρµrµ may or may not exist;
see Fig. 6(midde).
A P-node µ is associated with a path-tree Gµ obtained from path-trees Ti by merging
T1, T2, . . . , Tk from left to right as follows. First, roots ρi are identified into a new root
ρµ. Then, the rightmost path vertex ri of Ti and the leftmost path vertex `i+1 of Ti+1
are identified, for i = 1, . . . , k − 1. Path vertices `µ = `1 and rµ = rk are the leftmost
and the rightmost path vertex of Gµ, respectively; see Fig. 6(right).

We have the following lemma.

I Lemma 7. Any almost-triconnected path-tree admits an SPQ-decomposition.

In [5] we show how to construct a square-contact representation of any almost-triconnected
path-tree G without separating triangles and whose outer face is not a triangle by inductively
maintaining the invariant depicted in Fig. 7 for the S- and P-nodes of an SPQ-decomposition
of G. We formalize this result in the next lemma.

I Lemma 8. Any almost-triconnected path-tree G without separating triangles and whose
outer face is not a triangle admits a square-contact representation.

To construct a square-contact representation for a 3-connected cycle-tree, it is natural
to remove an edge in the outer cycle to obtain a path-tree, use Lemma 8 to construct a
square-contact representation, and then attempt to reintroduce a contact for the removed
edge. However, because Lemma 8 places the leftmost and rightmost path vertices on the
left and right side of the drawing, it is unclear how to add a contact between them. Instead,
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S(ρ)

S(`) S(r)

S(ρ)

S(`) S(r)

S-node

P-node

Figure 7 Invariants for S- and P-nodes with more than two path vertices.

we split the cycle-tree into two overlapping almost-triconnected path-trees, obtain their
square-contact representations by Lemma 7, and overlay them to form a square-contact
representation for the entire cycle-tree.

I Theorem 3. Any 3-connected cycle-tree G without separating triangles and whose outer
face is not a triangle admits a square-contact representation.

As Halin graphs are 3-connected cycle-trees without separating triangles and have, except
for K4, a non-triangular outer face, we have the following.

I Corollary 4. Any Halin graph G 6' K4 admits a square-contact representation.

Next, we investigate square-contact representations of 2-outerplanar simply-nested graphs
that are not cycle-trees (Theorem 5) and 3-outerplanar simply nested graphs (Theorem 6).

I Theorem 5. There exists a 3-connected 2-outerplanar simply-nested graph that does not
admit any proper square-contact representation.

Proof. Consider the two nested quadrilaterals shown in Fig. 8(left). One of its two quadri-
lateral faces must be the outer one, giving the embedding shown. In any square-contact
representation, the inner polygon surrounded by the squares for the four outer vertices must
be a rectangle, as it has only four sides. Each of the four inner squares must touch one of
the four corners of this rectangle (the corner made by its two outer neighbors). For the four
inner squares to touch the four corners of the rectangle and each other, the only possibility
is that the rectangle is a square and each inner square fills one quarter of it, as shown in
Fig.8(middle). However, this representation is improper, as diagonally-opposite inner squares
meet at their corners. J

I Theorem 6. There exists a 3-connected 3-outerplanar simply-nested graph that does not
admit any square-contact representation.

Proof. Consider the graph shown in Fig.8(right). Its quadrilateral face must be the outer one,
giving the embedding shown. As in the proof of Theorem 5, the only possible representation
for its two outer quadrilaterals has the four outer squares surrounding a central square region,
divided into four quarters representing the four middle vertices, as shown in Fig. 8(middle).
However, this representation leaves no room for the inner vertex. J

We remark that the graph of Theorem 6 is actually 2-outerplanar simply-nested, but not
with its quadrilateral face as the outer face.
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Figure 8 Left: Two nested quadrilaterals form a graph with no proper square-contact representa-
tion. Middle: An improper square-contact representation for the same graph. Right: A graph with
no square-contact representation, even an improper one.

5 Conclusions

In this paper, we provided simple characterizations for two notable families of planar
graphs that admit proper square-contact representations. Moreover, we introduced a new
decomposition for an interesting family of polyhedral graphs that generalize the Halin
graphs, i.e., the 3-connected cycle-trees. Finally, we showed that the absence of separating
triangles and a non-triangular outer face do not guarantee the existence of weak and proper
square-contact representations of 3-outerplanar and 2-outerplanar simply-nested graphs,
respectively.

Acknowledgements. We thank Jawaherul M. Alam for useful discussions on this subject.

References
1 Md. Jawaherul Alam, David Eppstein, Michael Kaufmann, Stephen G. Kobourov, Sergey

Pupyrev, André Schulz, and Torsten Ueckerdt. Contact graphs of circular arcs. In WADS
’15, volume 9214 of LNCS, pages 1–13. Springer, 2015. doi:10.1007/978-3-319-21840-3_
1.

2 Clinton Bowen, Stephane Durocher, Maarten Löffler, Anika Rounds, André Schulz, and
Csaba D. Tóth. Realization of simply connected polygonal linkages and recognition of
unit disk contact trees. In GD ’15, volume 9411 of LNCS, pages 447–459. Springer, 2015.
doi:10.1007/978-3-319-27261-0_37.

3 Steven Chaplick, Stephen G. Kobourov, and Torsten Ueckerdt. Equilateral l-contact
graphs. In WG ’13, volume 8165 of LNCS, pages 139–151. Springer, 2013. doi:10.1007/
978-3-642-45043-3_13.

4 Robert J. Cimikowski. Finding hamiltonian cycles in certain planar graphs. Inf. Process.
Lett., 35(5):249–254, 1990. doi:10.1016/0020-0190(90)90053-Z.

5 Giordano Da Lozzo, William Devanny, David Eppstein, and Timothy Johnson. Square-
contact representations of partial 2-trees and triconnected simply-nested graphs. Tech.
Report arXiv:1710.00426, Cornell University, 2017. URL: http://arxiv.org/abs/1710.
00426.

6 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

7 Stefan Felsner and Mathew C. Francis. Contact representations of planar graphs with cubes.
In SoCG ’11, pages 315–320. ACM, 2011. doi:10.1145/1998196.1998250.

8 Daniel Gonçalves, Benjamin Lévêque, and Alexandre Pinlou. Triangle contact repre-
sentations and duality. Discrete Comput. Geom., 48(1):239–254, 2012. doi:10.1007/
s00454-012-9400-1.

9 H. Harborth. Lösung zu Problem 664A. Elemente der Mathematik, 29:14–15, 1974.

ISAAC 2017

http://dx.doi.org/10.1007/978-3-319-21840-3_1
http://dx.doi.org/10.1007/978-3-319-21840-3_1
http://dx.doi.org/10.1007/978-3-319-27261-0_37
http://dx.doi.org/10.1007/978-3-642-45043-3_13
http://dx.doi.org/10.1007/978-3-642-45043-3_13
http://dx.doi.org/10.1016/0020-0190(90)90053-Z
http://arxiv.org/abs/1710.00426
http://arxiv.org/abs/1710.00426
http://dx.doi.org/10.1145/1998196.1998250
http://dx.doi.org/10.1007/s00454-012-9400-1
http://dx.doi.org/10.1007/s00454-012-9400-1


24:14 Square-Contact Representations

10 Petr Hliněný. Contact graphs of line segments are NP-complete. Discrete Math., 235(1-
3):95–106, 2001. doi:10.1016/S0012-365X(00)00263-6.

11 Oded Schramm. Combinatorically Prescribed Packings and Applications to Conformal and
Quasiconformal Maps. PhD thesis, Princeton University, 1990.

12 Oded Schramm. Square tilings with prescribed combinatorics. Israel J. Math., 84(1-2):97–
118, 1993. doi:10.1007/BF02761693.

13 Kenneth Stephenson. Introduction to Circle Packing: The theory of discrete analytic func-
tions. Cambridge University Press (1), 2005.

http://dx.doi.org/10.1016/S0012-365X(00)00263-6
http://dx.doi.org/10.1007/BF02761693

	Introduction
	Preliminaries
	Partial 2-Trees
	Triconnected Simply-Nested Graphs
	Conclusions

