
Precedence-Constrained Min Sum Set Cover∗

Jessica McClintock1, Julián Mestre2, and Anthony Wirth†3

1 School of Computing and Information Systems, The University of Melbourne,
Parkville, Australia
jessica.mcclintock@unimelb.edu.au

2 School of Information Technologies, The University of Sydney, Darlington,
Australia
julian.mestre@sydney.edu.au

3 School of Computing and Information Systems, The University of Melbourne,
Parkville, Australia
awirth@unimelb.edu.au

Abstract
We introduce a version of the Min Sum Set Cover (MSSC) problem in which there are “AND” pre-
cedence constraints on them sets. In the Precedence-Constrained Min Sum Set Cover (PCMSSC)
problem, when interpreted as directed edges, the constraints induce an acyclic directed graph.
PCMSSC models the aim of scheduling software tests to prioritize the rate of fault detection
subject to dependencies between tests.

Our greedy scheme for PCMSSC is similar to the approaches of Feige, Lovász, and, Tetali for
MSSC, and Chekuri and Motwani for precedence-constrained scheduling to minimize weighted
completion time. With a factor-4 increase in approximation ratio, we reduce PCMSSC to the
problem of finding a maximum-density precedence-closed sub-family of sets, where density is
the ratio of sub-family union size to cardinality. We provide a greedy factor-

√
m algorithm for

maximizing density; on forests of in-trees, we show this algorithm finds an optimal solution.
Harnessing an alternative greedy argument of Chekuri and Kumar for Maximum Coverage with
Group Budget Constraints, on forests of out-trees, we design an algorithm with approximation
ratio equal to maximum tree height.

Finally, with a reduction from the Planted Dense Subgraph detection problem, we show
that its conjectured hardness implies there is no polynomial-time algorithm for PCMSSC with
approximation factor in O(m1/12−ε).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases planted dense subgraph, min sum set cover, precedence constrained

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.55

1 Introduction

In this paper, we introduce the Precedence-Constrained Min Sum Set Cover problem,
which has connections to Min Sum Set Cover, Densest Subgraph, Precedence-
Constrained Scheduling to Minimize Total Weighted Completion Time, Schedul-
ing with AND/OR Precedence Constraints, and several other problems.

∗ This work was partially supported by the Australian Research Council.
† Corresponding author. Anthony Wirth was supported by an Australian Research Council Future

Fellowship.

© Jessica McClintock, Julián Mestre, and Anthony Wirth;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 55; pp. 55:1–55:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/141727456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.55
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

55:2 Precedence-Constrained Min Sum Set Cover

Problem definition. Just like Set Cover, or indeed Min Sum Set Cover (aka MSSC),
the input to Precedence-Constrained Min Sum Set Cover (aka PCMSSC) is a family
of sets, F , whose union is the universe, U . In addition, there is a binary precedence relation
on F , represented by ≺. Let G(F ,≺) stand for the directed graph that ≺ induces on F .
Throughout this presentation, we assume G is acyclic. The output is a permutation, π, of
the family of sets, F , that obeys the precedence relation ≺. That is, if A ≺ B, then A must
precede B in the permutation: π−1(A) < π−1(B). The objective value, to be minimized,
is the sum over every item in U of its first covering time in the permutation. That is, for
each item u, let τ(u) = minA∈F{π−1(A) : u ∈ A} be the index of the earliest set in π that
includes item u; the objective is

∑
u∈U τ(u). For convenience, let n be the number of items

in the universe |U |, and let m be the cardinality of the family of sets |F|, and index the
permutation π from 1 to m.

1.1 Application
In the software testing context, we would like to schedule test sequences to prioritize the
rate of fault detection. However, there may be inherent dependencies between the tests –
some test cases need to be scheduled before others – complicating the process of ordering
the test suite [18]. Though they perform well, existing algorithms for test case prioritization
subject to dependencies, are heuristic in their effectiveness [18, 17]. The PCMSSC problem
crystallizes the aims and constraints of this software test prioritization problem in a way
that admits analysis and approximation, yet is realistic. PCMSSC is a small extension
of one existing combinatorial optimization question, MSSC, and a refinement of another,
Scheduling with AND/OR Precedence Constraints (aka SAOPC).

1.2 Theoretical context
The original MSSC problem has the same objective as PCMSSC, to minimize

∑
u∈U τ(u),

but it permits every ordering π of F . Feige, Lovász and Tetali’s greedy algorithm for
MSSC [10] starts from an empty ordering π and is simply: While |π| < m, append to π a
set maximizing the number of (yet) uncovered items. Via a clever pricing and histogram
argument, they show that this is a 4-approximation; they also show that this is the best
possible unless P equals NP.

Chekuri and Motwani attack the Precedence-Constrained Scheduling to Minimize
Total Weighted Completion Time (aka PCSTW) problem, which has the same
precedence structure as PCMSSC. Here, however, the total weighted completion times
objective is additive, whereas set coverage is (only) monotone submodular. Chekuri and
Motwani’s factor-2 algorithm for PCSTW repeatedly (and optimally) solves the subproblem
Minimum-Rank Precedence-Closed Subgraph (aka MRPCS) [7]. The rank of a family
of jobs is the ratio of its total processing time to its total weight.

Key sub-problem definition. To produce an approximation algorithm for PCMSSC, we
combine the ideas of Feige et al. and Chekuri and Motwani. We study a problem we call
Max-Density Precedence-Closed Subfamily (aka MDPCS): in some sense, density
is the reciprocal of rank. We let the coverage of sub-family, A of F , be the union of the
sets in the sub-family: cov(A) ≡ ∪A∈AA. Often, we consider the coverage of a sub-family
on some subset X of the universe: cov(A, X) = cov(A) ∩ X. The density, ∆, of a non-
empty sub-family on subset X is the ratio of the size of its coverage to its cardinality:
∆(A, X) ≡ |cov(A, X)|/|A|. (When it is obvious, we omit the second argument of ∆.)

J.McClintock, J.Mestre, A.Wirth 55:3

Algorithm 1 Algorithm PCMSSC-Greedy.
1: function PCMSSC-Greedy(F ,≺)
2: π ← an “empty permutation”
3: G ← F ; R← U

4: while R 6= ∅ do
5: A ← D(G,≺, R)
6: Append to π some permutation of A consistent with ≺
7: G ← G \ A; R← R \ cov(A)
8: Return π

For convenience’ sake, ∆(∅, X) is defined to be negative. The MDPCS problem seeks a
sub-family A of some input family of sets G that maximizes density on a remaining set
of items to be covered, R, with R ⊆ cov(G), and is precedence closed. That is, the aim
is to maximize ∆(A, R), with the requirement that if A ≺ B and B ∈ A, then A ∈ A.
Were sets in G pairwise disjoint, we could adopt Chekuri and Motwani’s approach for
MRPCS, but in general, it is highly unlikely that such a polynomial-time optimal algorithm
exists for MDPCS. Indeed, our hardness-of-approximation result for MDPCS arises from a
connection to Densest k-Subgraph, whereas Chekuri and Motwani’s max-flow algorithm
solves MRPCS in polynomial time, similar to the approach for Densest Subgraph [12].

1.3 Our results
We first show that an approximately good solution to MDPCS provides, within factor 4, an
approximately good solution to PCMSSC.

We describe a greedy algorithm, MDPCS-Greedy, for MDPCS that obtains a
√
m

approximation, and show that (up to a factor 2) this analysis is tight. We extend MDPCS-
Greedy to be iteratively greedy, and again show that O(

√
m) is the best approximation

we can obtain. If the precedence relation, ≺, induces a forest of in-trees, we show that
MDPCS-Greedy in fact solves MDPCS optimally in polynomial time. If the precedence
relation, ≺, induces a forest of out-trees, we introduce a polynomial-time approximation with
factor equal to the largest tree height.

Consistent with the large approximation factors found in our algorithms, we show there
is no approximation algorithm for PCMSSC with factor in O(m1/12−ε). This result assumes
the Planted Dense Subgraph Conjecture (aka PDSC), which states that it is hard to
find inside an Erdős-Rényi graph a planted dense E-R component. Recently, hardness of
approximation of the Target Set Selection problem was shown via a reduction from
Planted Densest Subgraph and its conjectured hardness [5].

2 Reduction to Max-Density Precedence-Closed Subfamily

In this section, we show that PCMSSC reduces to MDPCS. Suppose we have an algorithm,D,
that returns a factor-α approximation solution to MDPCS. Consider the greedy scheme in
Algorithm 1 for PCMSSC, which we call PCMSSC-Greedy.

Since D is a polynomial-time algorithm (and X only gets smaller), since the while loop
runs at most n times, and since topological sorting takes polynomial time, PCMSSC-
Greedy runs in polynomial time. We now prove that this scheme is in fact an approximation
algorithm.

Although factor α might be a function of both m and n, we assume α is monotonically
non-decreasing in both, so we can safely let α stand for α(m,n) in the following.

ISAAC 2017

55:4 Precedence-Constrained Min Sum Set Cover

Figure 1 Mapping from upper-bound plot B to one with area a factor 4 · α smaller.

I Lemma 1. PCMSSC-Greedy is a 4 · α approximation algorithm to PCMSSC.

Proof. Let Ai be the sub-family returned by D in iteration i of PCMSSC-Greedy, and
let mi =

∑i
j=1 |Aj |. Also, let Ri be the subset of U not yet covered after i− 1 iterations,

{u : τ(u) > mi−1}, and let Xi ⊆ Ri be the subset of U that is first covered by some set
in Ai, {u : mi−1 < τ(u) ≤ mi}.

We can upper-bound the cost of PCMSSC-Greedy by
∑
i |Ri||Ai|. At worst, each of

the Xi items is covered by the last set in Ai, number mi; hence, at iteration i, appending (a
permutation of) Ai to π increases the cover time of all items in Ri by (at most) |Ai|.

To prove the approximation factor, we adapt the argument of Feige et al. [10]. Consider
a plot of cover time against item number, where we order u ∈ U by τ(u) (Figure 1).

That is, on (u− 1, u] the plot has height τ(u), and the plot is non-decreasing on (0, n].
The PCMSSC solution cost is the area under plot on (0, n]. The upper bound for the
PCMSSC-Greedy solution in the previous paragraph can be viewed as a series of horizontal
slices, of height |Ai| and width |Ri|, with slices “right-aligned”. That is, slice i is the
rectangle (n− |Ri|, n]× (mi−1,mi]. The plot defined by the upper boundary of this series
of slices, which we call B, lies not below the plot for PCMSSC-Greedy. We show that,
with area shrunk by factor of 1/(4α), a mapping of plot B lies not above the plot for (every)
optimal solution, OPT, on (0, n]. Since the area under the plot represents solution cost, we
conclude that PCMSSC-Greedy is a 4 · α approximation.

Mapping. We map slice i to a column of height hi ≡ |Ai||Ri|/(2α|Xi|) and width |Xi|/2,
positioned between |Ri|/2 and |Ri+1|/2 “elements” from the right-hand end of the curve for

J.McClintock, J.Mestre, A.Wirth 55:5

Algorithm 2 Algorithm MDPCS-Greedy.
1: function MDPCS-Greedy(G, ≺, R)
2: A ← G
3: for each S ∈ G do
4: if ∆(P[S], R) > ∆(A, R) then
5: A ← P[S]
6: return A

OPT. This column is the rectangle (n− |Ri|/2, n− |Ri+1|/2]× (0, hi]. (Sets appended to π
after all elements of U are covered do not contribute to the solution cost, so we omit them
from this analysis, and thus assume |Xi| > 0.) Since hi|Xi|/2 = |Ai||Ri|/(4α), this mapping
produces a plot whose area is a factor 4α smaller than plot B. The following claim suffices
to prove Lemma 1, where OPT[j] is the prefix of j sets in permutation OPT (of F).

I Claim 2. For all i with |Ri| > 0, |cov(OPT[bhic], Ri)| ≤ |Ri|/2.

The proof of Claim 2 follows soon. Meanwhile, finalizing the proof of Lemma 1, Claim 2
shows that even after the first bhic sets of solution OPT, there are at least |Ri|/2 uncovered
items (of Ri). Therefore the plot for OPT rises to a height at least bhic + 1 ≥ hi, at a
horizontal position at most n−|Ri|/2. For all i, the top-left corner of the ith mapped column
is at position (hi, n− |Ri|/2); since the plot for OPT is non-decreasing, this rectangle fits
entirely within the plot for OPT, and we have the desired shrunken plot. J

Proof of Claim 2. Let π◦j stand for π after j−1 iterations of the loop in PCMSSC-Greedy.
Abusing notation (as OPT and π are sequences, not families of sets), if OPT[bhic] ⊆ π ◦ i, the
claim is trivially true, since |cov(OPT[bhic], Ri)| = 0. We hence assume that OPT[bhic]\π ◦ i
is non-empty. On its ith instantiation, algorithm D returns a sub-family, Ai, whose density
∆(Ai, Ri) is ≥ 1/α times the maximum-density precedence-closed subfamily of sets. Since
sub-family OPT[bhic] is precedence closed with respect to F , so is OPT[bhic] \ π ◦ i with
respect to Gi = F \ π ◦ i, and it was thus “considered” by D, so

|cov(OPT[bhic] \ π ◦ i), Ri)|
|OPT[bhic] \ π ◦ i|

≤ α · |Xi|
|Ai|

. (1)

Now, Ri is exactly those items not in cov(π◦i), and |OPT[bhic]\π◦i| ≤ bhic, so inequality (1)
leads to |cov(OPT[bhic], Ri)| ≤ αhi |Xi|/|Ai|. Substituting hi = |Ai||Ri|/(2α|Xi|) into this,
we obtain |cov(OPT[bhic], Ri)| ≤ |Ri|/2. J

3 Algorithms for Max-Density Precedence-Closed Subfamily

In this section, we introduce a general greedy method for MDPCS, optimal on in-trees, and
an alternative approach for out-tree forests, with factor equal to maximum tree height.

3.1 Greedy
Recall that the input to MDPCS is a family of sets G and a set of items to be covered R.
Let P[S] be the minimal precedence-closed sub-family of G containing S ∈ G: that is, the
ancestors of S (including S itself). Our greedy algorithm for MDPCS, in Algorithm 2 (which
we call MDPCS-Greedy), returns the denser of G and the best of the P[S] solutions.

ISAAC 2017

55:6 Precedence-Constrained Min Sum Set Cover

By the definition of P , MDPCS-Greedy returns a feasible solution. We let δP-max stand
for the maximum of ∆(P [S], R) over all S ∈ G. If every set in G covers at least one item in R,
then δP-max ≥ 1. However, since PCMSSC-Greedy could involve a sequence of depleting
instances of MDPCS, there is no guarantee that each set in G contains an item in R.

I Lemma 3. MDPCS-Greedy is a
√
m approximation to MDPCS. If δP-max ≥ 1,

MDPCS-Greedy is a
√
n approximation to MDPCS.

Proof. Consider some optimal solution sub-family, OPT, and let k stand for its cardinality.
For each S1, S2, . . . , Sk in OPT, the density of P[Si] is at most δP-max and, by definition,
P[Si] is a sub-family of OPT. Therefore,

|cov(OPT, R)| = |∪ki=1cov(P[Si], R)| ≤
k∑
i=1
|cov(P[Si], R)| ≤ δP-max

k∑
i=1
|P[Si]| ≤ δP-max·k2 ,

where the first inequality observes the definition of union, while the remarks above justify
the second and third inequalities. Therefore ∆(OPT, R)/δP-max ≤ k.

On the other hand, ∆(OPT, R) ≤ |R|/k, but MDPCS-Greedy returnsA with ∆(A, R) ≥
∆(G, R) = |R|/m. Hence the approximation ratio is at most min(k,m/k) ≤

√
m. If δP-max ≥

1, then the approximation ratio is at most min(k, |R|/k) ≤
√
|R| ≤

√
n. J

Indeed, these factors for MDPCS-Greedy are tight, up to a factor two. And without the
assumption δP-max ≥ 1, there are instance collections on which MDPCS-Greedy achieves
only an Ω(n) approximation. Alternatively, we could iterate MDPCS-Greedy, repeatedly
choosing a sub-family of the form P[S] (for some S ∈ G) that when added to the current
solution maximizes the density of the sub-family, similar to the greedy algorithm for Set
Cover. Again, there is a collection of instances in which this scheme returns only an O(

√
n)

(or O(
√
m)) approximation.

3.2 Forest of in-trees
If graph G(F ,≺), and hence graph G(G,≺) has a special structure, similarly explored in the
context of Partially Ordered Knapsack [15], MDPCS admits better approximation
factors. We start with G a forest of in-trees: for all A in F , at most one set immediately
depends on A, that is |{B ∈ F : A ≺ B}| ≤ 1. Consequently, for all A,B ∈ F , either P[A]
and P [B] are disjoint, or (wlog) A ∈ P [B]. Therefore, a solution in such an input is a union
of disjoint sub-families P[S1],P[S2], In an optimal solution, each sub-family P[Si] has
optimum density, so MDPCS-Greedy will (in polynomial time) find an optimal solution.

3.3 Forest of out-trees
We consider the “opposite” scenario, in which the in-degree of each set is at most one: that is,
for all A, |{B ∈ F : B ≺ A}| ≤ 1. Focusing on the graph G(F ,≺), each connected component
of G is a rooted out-tree. Here, we introduce another greedy algorithm, which provides
an approximation factor equal to the largest tree height. It acts recursively, adopting the
approach of Chekuri and Kumar [6] for the Maximum Coverage Problem with Group
Budget Constraints, and so adds 1 to the approximation factor at each tree level.

Let OPT be some optimal solution to MDPCS on G, and let δOPT be its density,
∆(OPT, R): therefore, cov(OPT, R)− δOPT|OPT| = 0. Our recursive algorithm DT , shown
in Algorithm 3, has as input (σ+ 1, T, δOPT, R

′), where σ+ 1 is an “approximation factor”, T
a tree, and R′ ⊆ R a subset of items to be covered. Let t @ T denote that t is a subtree of T

J.McClintock, J.Mestre, A.Wirth 55:7

Algorithm 3 Algorithm DT called with (σ + 1, T, δOPT, R
′).

1: function DT (σ + 1, T, δOPT, R
′)

2: r ← root of T
3: R′0 ← R′, A0

T ← {r}
4: Solutions← {∅,A0

T }
5: R′ ← R′ \ cov(A0

T)
6: κ← number of children of r
7: for j = 1 to κ do
8: Let Tj be the subtree rooted at the jth child of r
9: for i = 1 to κ do

10: Candidates← ∅
11: for each child j of r s.t. no sub-family of Tj has yet been added to Ai−1

T do
12: Add the output Ai,jT of DT (σ, Tj , δOPT, R

′) to Candidates
13: Let Ai,j∗T be the tree t in Candidates that maximizes σ|cov(t, R′)| − δOPT|t|
14: AiT ← A

i−1
T ∪ {Ai,j∗T } . By construction, AiT is a tree.

15: Add AiT to Solutions
16: R′ ← R′ \ cov(AiT)
17: return AT , the tree t in Solutions that maximizes σ|cov(t, R′0)| − δOPT|t|

sharing T ’s root. Let M(T,R′) be the t @ T that maximizes |cov(t, R′)| − δOPT|t|. Given
tree T of height at most σ + 1, we show inductively that DT returns some AT @ T with

(σ + 1)|cov(AT , R′)| − δOPT|AT | ≥ |cov(M(T,R′), R′)| − δOPT|M(T,R′)| . (2)

Broadly, algorithm DT behaves as follows. If the root r of tree T has κ children, DTmakes
a sequence of κ recursive calls to itself. After the i− 1th call, it has a putative solution Ai−1

T

comprising r itself and i − 1 subtrees, each hanging from a different child of r. In the ith
iteration, DT adds a subtree from a “new” child to Ai−1

T . This new subtree has the maximum
value of σcov(t, R′i) − δOPT|t|, where R′i is set R′ during the ith iteration (before step 16).
With first parameter σ + 1, DT returns the best of the κ+ 2 putative solutions (including ∅
and {r}), the subtree AT maximizing σ|cov(AT , R′)| − δOPT|AT |.

I Lemma 4. Given tree T of height ≤ σ + 1, DT (σ + 1, T, δOPT, R
′), returns AT @ T

satisfying inequality (2).

Proof. First, the base case. If σ = 0, and the tree has height 1, the only options are ∅
and {r}. These are easy to evaluate and inequality (2) is easily satisfied.

If σ > 0, consider tree M(T,R′0), where R′0 is the initial value of R′ in DT . Again,
if M(T,R′0) is empty, or if it is {r}, DT will consider those two solutions, so will return
some solution satisfying (2). Therefore, assume tree M(T,R′0) comprises root r and subtrees
hanging from κ∗ ≤ κ children. We focus analysis on Aκ∗T . Although DT does not know κ∗, it
generates AiT for all i ≤ κ, returning the best of these, at least as good as Aκ∗T .

We renumber root r’s children to match the order in which they contribute to Aκ∗T , so
that j∗ = i on each iteration. The construction ofM(T,R′0) can also be interpreted iteratively,
so that at iteration i it adds a subtree hanging from child number iM ; let that subtree be
called MiM (T,R′0). However, we insist that if M(T,R′0) contains a subtree hanging from
child i ≤ κ∗, it is chosen at iteration i.

Consider the subtree added to Aκ∗T in iteration i, Ai,iT . If Ai,iT is different fromMiM (T,R′0),
it must be because DT (σ, Ti, δOPT, R

′
i) returned Ai,iT , which had the largest value for t ∈

ISAAC 2017

55:8 Precedence-Constrained Min Sum Set Cover

Candidates (children numbered i and above) of σ|cov(t, R′i)| − δOPT|t|, while tree M(T,R′0)
added a subtree from child iM ≥ i, giving inequality (3), as follows

σ|cov(Ai,iT , R
′
i)| − δOPT|Ai,iT | ≥ σ|cov(Ai,iMT , R′i)| − δOPT|Ai,iMT | (3)

≥ |cov(M(TiM , R′i), R′i)| − δOPT|M(TiM , R′i)| (4)
≥ |cov(MiM (T,R′0), R′i)| − δOPT|MiM (T,R′0)| , (5)

while inequality (4) arises from the inductive argument about DT (σ, . . .), while inequality (5)
flows from the optimality ofM(TiM , R′i) on (TiM , R′i). If in factAi,iT is the same asMiM (T,R′0),
then the overall inequality (3) – (5) holds because σ ≥ 1.

The coverage of Aκ∗T on R′0 is the union of cov({r}, R′0) and ∪κ∗i=1cov(Ai,iT , R′i). From the
definition of R′i (step 16 of DT), the cov(·) sets are disjoint. Since also σ ≥ 1,

σ|cov(Aκ
∗

T , R
′
0)| − δOPT|Aκ

∗

T |

≥ [|cov({r}, R′0)| − δOPT] +
κ∗∑
i=1

[
σ|cov(Ai,iT , R

′
0)| − δOPT|Ai,iT |

]
,

and, by applying overall inequality (3) – (5), this is

≥ [|cov({r}, R′0)| − δOPT] +
κ∗∑
i=1

[|cov(MiM (T,R′0), R′i)| − δOPT|MiM (T,R′0)|]

= |cov({r}, R′0)|+
[
κ∗∑
i=1
|cov(MiM (T,R′0), R′i)|

]
− δOPT|M(T,R′0)| , (6)

For each iteration i, inspired by Chekuri and Kumar [6], we have

cov(MiM (T,R′
0), R′

i) ⊇ cov(MiM (T,R′
0), R′

0 \ cov(Aκ
∗
T , R′

0)) ,

so, cov({r}, R′
0) ∪

κ∗⋃
i=1

cov(MiM (T,R′
0), R′

i) ⊇

(
cov({r}, R′

0) ∪
κ∗⋃
i=1

cov(MiM (T,R′
0), R′

0)

)
\

cov(Aκ
∗
T , R′

0) .

Applying the union bound to the LHS and the composition of M(T,R′
0) to the RHS,

|cov({r}, R′
0)|+

κ∗∑
i=1

|cov(MiM (T,R′
0), R′

i)| ≥ |cov(M(T,R′
0), R′

0) \ cov(Aκ
∗
T , R′

0)|

≥ |cov(M(T,R′
0), R′

0)| − |cov(Aκ
∗
T , R′

0)| .

Combining this with the inequality ending at (6), we see that

σ|cov(Aκ
∗

T , R
′
0)| − δOPT|Aκ

∗

T | ≥
(
|cov(M(T,R′0), R′0)| − |cov(Aκ

∗

T , R
′
0)|
)
−

δOPT|M(T,R′0)| ,

∴ (σ + 1)|cov(Aκ
∗

T , R
′
0)| − δOPT|Aκ

∗

T | ≥ |cov(M(T,R′0), R′0)| − δOPT|M(T,R′0)| . J

For a forest of out-trees, we return the best individual tree solution generated by DT . Without
knowing the value of δOPT, there are only mn possible values, so we can in polynomial time
try them all and return the densest sub-forest. Finally, for OPT, the right-hand side of
inequality (2) is zero, so Lemma 4 shows DT returns a tree with density at least δOPT divided
by maximum tree height.

J.McClintock, J.Mestre, A.Wirth 55:9

4 Hardness of approximation

Apart from the in-tree case, which is in P, the approximation factors for PCMSSC are
polynomial. In this section, we show that such factors are to be “expected”. We show a
hardness reduction to PCMSSC from the Planted Dense Subgraph Conjecture, which
is a statement about the difficulty of finding a dense component in an Erdős-Rényi graph [5].
Our inspiration here is Burge, Munagala and Srivastava’s hardness-of-approximation reduction
from Densest k-Subgraph for pipelined query operators [4].

First, we define the Planted Dense Subgraph Conjecture, where N is the input
graph’s order, α its log density, k the order of the planted component, and β its log density.

I Definition 5. The problem PDS(N, k, α, β) has as input a graph with probability 1/2
drawn from G(N,Nα−1) and with probability 1/2 drawn from G(N,Nα−1), in which some k
vertices are chosen uniformly from N and on them is added a subgraph drawn from G(k, kβ−1).
The task is to correctly report from which of the two distributions the graph was drawn.

I Conjecture 6 (Planted Dense Subgraph Conjecture). For all ε > 0, k ≥
√
N ,

and β < α, no probabilistic polytime algorithm can, with advantage > ε, solve PDS(N, k, α, β).

We show that identifying an ordering π with low PCMSSC score solves PDS almost surely.

I Lemma 7. Assuming the Planted Dense Subgraph Conjecture, there is no poly-time
algorithm that, for ε > 0, approximates PCMSSC within factor O(n1/6−ε) nor O(m1/12−ε).

Proof. First, let k =
√
N , α = 1/2 and β = 1/2− γ, for some γ > 0. Given graph H([N], E),

the input to PDS, define family F to be Nλ vertex sets, together with an edge set for each edge
in E . More specifically, the vertex sets are Vu,i for each u ∈ {1, . . . , N} and i ∈ {1, . . . , λ},
while the edge sets are Eu,v for each (u, v) ∈ E . For convenience, let U = {0, 1, . . . , n}, so
that |U | = n+ 1, with U+ = {1, . . . , n}.

The ≺ relation acts as follows: every edge set must be preceded by all “copies” of each of
its endpoints’ vertex sets. That is, for all (u, v) ∈ E and for all i, Vu,i ≺ Eu,v and Vv,i ≺ Eu,v.

We now define the composition of the sets in F . Every vertex set comprises the same
item: Vu,i = {0}, for all u, i. To define the edge sets, we associate items with vertices: let the
set of items associated with vertex v be Uv. (This association is merely a vehicle to define
edge sets, and is distinct from vertex-set composition.) The construction is randomized, based
on parameter p ∈ (0, 1): each item in U+ is associated with each vertex in H independently,
with probability p. Hence E[|Uv|] = np, while for all j ∈ U+, E[|{v : j ∈ Uv}|] = Np. For
each edge (u, v), we define Eu,v to be Uu ∩ Uv, with expected size np2.

Choosing p. If there is a planted component, P, it (just) covers all of U : this drives our
selection of p. There are

√
N vertices in P , and each item j is in

√
Np of the Uv sets, on average.

We expect (ignoring constants) around Np2 vertex pairs in P where j is associated with both.
The probability of each vertex pair having an edge is, independently, kβ−1 = (N1/2)(−1/2−γ) =
N−(1/4+γ/2). Therefore, E[|Eu,v ∈ P : j ∈ Eu,v|] ≈ Np2N−(1/4+γ/2) = N3/4−γ/2p2. So this
is close to 1, we set p = 32 ·N (−3+γ′)/8 logN , with γ′ = 2γ.

Planted component. If there is a planted component P, we show a “good” PCMSSC
solution. Suppose that π starts with all Vu,i for all u ∈ P followed by Eu,v for all u, v ∈ P
(edges E in P). The number of sets so far is λ

√
N plus a random value highly concentrated

around
√
N(
√
N − 1)N−(1/4+γ/2)/2, hence ≤ N3/4−γ/2 with high probability (whp). The

ISAAC 2017

55:10 Precedence-Constrained Min Sum Set Cover

claim below proves U is covered whp by these P-based sets. If so, the PCMSSC cost is whp
bounded by n(λ

√
N +N3/4−γ/2).

I Claim 8. If H was generated with a planted component, P, then with high probability all
items in U+ are covered by the planted component’s edge sets.

Proof of Claim 8. The expected number of Uv in P containing j is
√
Np, so

Pr[|v ∈ P : j ∈ Uv| ≤
√
Np/2] ≤ exp(−

√
Np/8) = exp(−4 ·N (1+γ′)/8 logN) ,

via Chernoff bounds, which is tiny. Therefore, and since
(
x
2
)
≥ x2/4 for large enough x, the

probability that the number of pairs of vertices in P where j is associated with both is at
most Np2/16 is (also) at most exp(−4 ·N (1+γ′)/8 logN).

For each such pair, there is an edge actually present with probability N−(1/4+γ/2).
Item-association and edge-presence events are independent, so in expectation j is in at least

µ = (Np2/16)N−(1/4+γ/2) = 322(log2 N)/16

edge sets in P. For all j ∈ U+, again via Chernoff bounds,

Pr[|{(u, v) ∈ EP : j ∈ Eu,v}| ≤ µ/2] ≤ exp(−(64 logN)/8) = N−8 .

Taking the union over all n items in U+, the probability that some item is uncovered by the
edge sets in P is at most n/N8, which is very small (below, we choose n to be o(N)). J

No planted component. We show that if there is no planted component, even after several
vertex and edge sets have appeared in π, there is a significant portion of items not yet covered,
pushing the PCMSSC score very high.

Consider a solution to PCMSSC derived from x vertices and their induced edges. The
number of vertex sets is λx and the number of vertex pairs is ≈ x2/2. The expected number
of edges is ≤ x2/

√
N , but there are in fact

(
N
x

)
≤ Nx such sets of N vertices. Via the

Chernoff bound, the probability that all of them have at most 3/2 their average number of
edges, µE , is at most Nx exp(−µE/12). If we would like this probability to be at most 1/N8,
say, then let µE ≥ 12(x + 8) logN . Since the number of vertex pairs is at least x2/4, and
hence µE ≥ x2/(4

√
N), there is a very low probability of exceeding x2/

√
N edges across all

sets of x vertices if x ≥ 500
√
N logN .

By construction, each edge set has on average np2 items. The probability that some
edge set related to at least one of the at most x2/

√
N edges has more than 2np2 items is

at most (x2/
√
N) exp(−np2/12). If n ≥ 200 logN/p2, which is satisfied by n ∈ Ω(N3/4),

because x ≤ N , this probability is tiny.
Even ignoring the possibility of edge sets covering common items, we conclude that

whp, after λx vertex sets and x2/
√
N edge sets appear in π, at most 2np2x2/

√
N ≤

2048 · nN (−5+γ′)/4x2(log2 N) items have been covered. Hence if x ≤ N (5−2γ′)/8, then there
are o(n) items covered. With Ω(n) items uncovered, the PCMSSC score is at least a constant
multiplied by n(λN (5−2γ′)/8 +N (3−2γ′)/4).

Letting λ grow to at least N1/4 and letting γ′ shrink, whp the asymptotic ratio between
this cost and the cost in the planted case (just before Claim 8) tends arbitrarily close to N1/8.
Since n ∈ Θ(N3/4) permits our probability bounds, whp there is a gap of Θ(n1/6−ε), for
all ε > 0, in the PCMSSC costs between the two cases. Likewise, the number of sets m in
the input is highly concentrated around λN + N3/2, which is Θ(N3/2). An algorithm for
PCMSSC with an approximation factor better than Θ(n1/6−ε) or Θ(m1/12−ε), for all ε > 0,
could solve PDS with very significant advantage. From this, we conclude Lemma 7. J

J.McClintock, J.Mestre, A.Wirth 55:11

5 Related work

The Min-Sum Vertex Cover problem – the special case of MSSC where each set has
two items – admits a 2-approximation algorithm [10]. In database theory, MSSC has been
referred to as the Pipelined Set Cover problem. This model typically allows for different
processing times (or costs) on the sets, and has been given an alternative (but still factor-4)
approximation algorithm [19].

In web search theory, a generalization of MSSC relating the min-sum objective to
Minimum Latency Set Cover is called Multiple Intents Reranking. This extends
the objective function to allow for different user profiles – relating to how many times each
item needs to be covered [1]. It has also been referred to as the Generalized Min-Sum
Set Cover problem, which has constant-factor approximations [2].

In Scheduling with AND/OR Precedence Constraints (SAOPC), there are two
types of jobs: AND-jobs are available only when all precedences are met, while OR-jobs
only require that at least one of the precedences are met [11]. In fact, PCMSSC is a special
case of SAOPC in which the precedence-constrained sets are AND-jobs, and the item are
OR-jobs. Scheduling to minimize the makespan is Label Cover-hard for general AND/OR
precedences [13], but the reduction has an OR-AND-OR-AND structure: it is unclear whether
PCMSSC is Label Cover-hard, that is [8], hard to approximate within 2log1−1/(log logc n) n.

Erlebach, Kääb, and Möhring prove that minimizing the total completion time in SAOPC
is Label Cover-hard, but that scheduling available jobs with Smith’s shortest processing
time (SPT) rule gives an O(n)-approximation [9]. They further prove that this algorithm
gives an O(

√
n)-approximation for the special case with a single processor where all jobs

have equal weights. However, in PCMSSC, AND jobs have zero weight and unit processing
time, but OR jobs have unit weight and zero processing time.

Finally, in the Partially Ordered Knapsack (aka POK), there is a predecessor ≺
relation, inducing a directed graph, and each vertex has a profit and a weight [15]. The aim is
to find a closed under predecessor set of vertices that maximizes total profit subject to a total
weight constraint. For in- and out-trees, Johnson and Niemi consider pseudo-polynomial
algorithms that are nonetheless efficient in practice, as well as an FPTAS (with running time
proportional to 1/ε) derived from a standard PTAS approach for knapsack problems [15].

Kolliopoulos and Steiner [16] provide an FPTAS for POK when the underlying order is two
dimensional. They note that Hajiaghayi et al. [14] show that POK is hard to approximate
within 2logδ n, that POK generalizes Densest k-Subgraph, and that a constant-factor
algorithm for Partially Ordered Knapsack would provide a sub-factor-2 approximation
for PCSTW. Indeed, the Minimum-Rank Precedence-Closed Subgraph problem that
Chekuri and Motwani solve optimally is a minimize-ratio version of POK; again, there
is some connection to the difference in approximability between Densest Subgraph and
Densest k-Subgraph. Borradaile, Heeringa, and Wilfong [3] examine variants of POK
with undirected graphs, and 1-neighbor as well as all-neighbor precedence requirements.

Acknowledgements. We thank Tim Miller for the foundational software-testing problem.

References

1 Yossi Azar, Iftah Gamzu, and Xiaoxin Yin. Multiple intents re-ranking. In STOC: 41st
ACM Symposium on Theory of Computing, pages 669–678, 2009.

ISAAC 2017

55:12 Precedence-Constrained Min Sum Set Cover

2 Nikhil Bansal, Anupam Gupta, and Ravishankar Krishnaswamy. A constant factor ap-
proximation algorithm for generalized min-sum set cover. In SODA: 21st ACM-SIAM
Symposium on Discrete Algorithms, pages 1539–1545, 2010.

3 Glencora Borradaile, Brent Heeringa, and Gordon Wilfong. The knapsack problem with
neighbour constraints. Journal of Discrete Algorithms, 16:224–235, 2012.

4 Jen Burge, Kamesh Munagala, and Utkarsh Srivastava. Ordering pipelined query operators
with precedence constraints. Technical Report 2005-40, Stanford InfoLab, 2005.

5 Moses Charikar, Yonatan Naamad, and Anthony Wirth. On approximating target set
selection. In APPROX: 19th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, pages 4:1–4:16, 2016.

6 Chandra Chekuri and Amit Kumar. Maximum coverage problem with group budget con-
straints and applications. In APPROX: 7th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, pages 72–83, 2004.

7 Chandra Chekuri and Rajeev Motwani. Precedence constrained scheduling to minimize
sum of weighted completion times on a single machine. Discrete Applied Mathematics,
98(1):29–38, 1999.

8 Irit Dinur and Shmuel Safra. On the hardness of approximating label-cover. Information
Processing Letters, 89(5):247–254, 2004.

9 Thomas Erlebach, Vanessa Kääb, and Rolf H Möhring. Scheduling AND/OR-networks
on identical parallel machines. In WOAO: International Workshop on Approximation and
Online Algorithms, pages 123–136, 2003.

10 Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover. Algorith-
mica, 40(4):219–234, 2004.

11 Donald W. Gillies and Jane W.-S. Liu. Scheduling tasks with and/or precedence constraints.
SIAM Journal on Computing, 24(4):797–810, 1995.

12 A. V. Goldberg. Finding a maximum density subgraph. Technical Report CSD-84-171, UC
Berkeley Computer Science Division, 1984.

13 Michael Goldwasser and Rajeev Motwani. Intractability of assembly sequencing: Unit disks
in the plane. In WADS: Workshop on Algorithms and Data Structures, pages 307–320, 1997.

14 M Hajiaghayi, Kamal Jain, L Lau, I Măndoiu, Alexander Russell, and V Vazirani. Min-
imum multicolored subgraph problem in multiplex pcr primer set selection and population
haplotyping. Computational Science–ICCS 2006, pages 758–766, 2006.

15 David S. Johnson and K. A. Niemi. On knapsacks, partitions, and a new dynamic program-
ming technique for trees. Mathematics of Operations Research, 8(1):1–14, 1983.

16 Stavros G. Kolliopoulos and George Steiner. Partially ordered knapsack and applications
to scheduling. Discrete Applied Mathematics, 155(8):889–897, 2007.

17 Jesssica McClintock, Tim Miller, and Anthony Wirth. Prioritisation of test suites contain-
ing precedence constraints, 2017. submitted.

18 Tim Miller and Shifa-e-Zehra Haidry. Using dependency structures for prioritization of
functional test suites. IEEE Transactions on Software Engineering, 39(2):258–275, 2013.

19 Kamesh Munagala, Shivnath Babu, Rajeev Motwani, and Jennifer Widom. The pipelined
set cover problem. In ICDT: 10th International Conference on Database Theory, pages
83–98, 2005.

	Introduction
	Application
	Theoretical context
	Our results

	Reduction to Max-Density Precedence-Closed Subfamily
	Algorithms for Max-Density Precedence-Closed Subfamily
	Greedy
	Forest of in-trees
	Forest of out-trees

	Hardness of approximation
	Related work

