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—— Abstract

In this paper we revisit the classical Edge Disjoint Paths (EDP) problem, where one is given
an undirected graph G and a set of terminal pairs P and asks whether G contains a set of

pairwise edge-disjoint paths connecting every terminal pair in P. Our focus lies on structural
parameterizations for the problem that allow for efficient (polynomial-time or fpt) algorithms.
As our first result, we answer an open question stated in Fleszar, Mnich, and Spoerhase (2016),
by showing that the problem can be solved in polynomial time if the input graph has a feedback
vertex set of size one. We also show that EDP parameterized by the treewidth and the maximum
degree of the input graph is fixed-parameter tractable.

Having developed two novel algorithms for EDP using structural restrictions on the input
graph, we then turn our attention towards the augmented graph, i.e., the graph obtained from
the input graph after adding one edge between every terminal pair. In constrast to the input
graph, where EDP is known to remain NP-hard even for treewidth two, a result by Zhou et al.
(2000) shows that EDP can be solved in non-uniform polynomial time if the augmented graph has
constant treewidth; we note that the possible improvement of this result to an fpt-algorithm has
remained open since then. We show that this is highly unlikely by establishing the W[1]-hardness
of the problem parameterized by the treewidth (and even feedback vertex set) of the augmented
graph. Finally, we develop an fpt-algorithm for EDP by exploiting a novel structural parameter
of the augmented graph.
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1 Introduction

The EDGE DisjoINT PaThs (EDP) and NoODE DisjoINT PATHS (NDP) are fundamental
routing graph problems. In the EDP (NDP) problem the input is a graph G, and a set P
containing k pairs of vertices and the objective is to decide whether there is a set of k pairwise
edge disjoint (respectively vertex disjoint) paths connecting each pair in P. These problems
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and their optimization versions — MAXEDP and MAXNDP — have been at the center of
numerous results in structural graph theory, approximation algorithms, and parameterized
algorithms [20, 15, 4, 17, 9, 22, 19, 12, 10].

When k is a part of the input, both EDP and NDP are known to be NP-complete [14].
Robertson and Seymour’s seminal work in the Graph Minors project [20] provides an O(n?)
time algorithm for both problems for every fixed value of k. In the realm of Parameterized
Complezity, their result can be interpreted as fpt-algorithms for EDP and NDP parameter-
ized by k. Here, one considers problems associated with a certain numerical parameter k
and the central question is whether the problem can be solved in time f(k) - n®1) where f
is a computable function and n the input size; algorithms with running time of this form
are called fpt-algorithms [11, 7, 5].

While the aforementioned research considered the number of paths to be the parameter,
another line of research investigates the effect of structural parameters of the input graphs
on the complexity of these problems. Fleszar, Mnich, and Spoerhase [10] initiated the study
of NDP and EDP parameterized by the feedback vertex set number (the size of the smallest
feedback vertex set) of the input graph and showed that EDP remains NP-hard even on
graphs with feedback vertex set number two. Since EDP is known to be polynomial time
solvable on forests [12], this left only the case of feedback vertex set number one open, which
they conjectured to be polynomial time solvable. Our first result is a positive resolution of
their conjecture.

» Theorem 1. EDP can be solved in time O(|P||V(G)|2) on graphs with feedback vertex
set number one.

A key observation behind the polynomial-time algorithm is that an EDP instance with
a feedback vertex set {z} is a YES-instance if and only if, for every tree T of G — {z}, it is
possible to connect all terminal pairs in T either to each other or to x through pairwise edge
disjoint paths in 7. The main ingredient of the algorithm is then a dynamic programming
procedure that determines whether such a set exists for a tree T of G — {z}.

Continuing to explore structural parameterizations for the input graph of an EDP in-
stance, we then show that even though EDP is NP-complete when the input graph has
treewidth two, it becomes fixed-parameter tractable if we additionally parameterize by the
maximum degree.

» Theorem 2. EDP is fized-parameter tractable parameterized by the treewidth and the
mazimum degree of the input graph.

Having explored the algorithmic applications of structural restrictions on the input graph
for EDP, we then turn our attention towards similar restrictions on the augmented graph of
an EDP instance (G, P), i.e., the graph obtained from G after adding an edge between every
pair of terminals in P. Whereas EDP is NP-complete even if the input graph has treewidth
at most two [19], it can be solved in non-uniform polynomial time if the treewidth of the
augmented graph is bounded [22]. It has remained open whether EDP is fixed-parameter
tractable parameterized by the treewidth of the augmented graph; interestingly, this has
turned out to be the case for the strongly related multicut problems [13]. Surprisingly, we
show that this is not the case for EDP, by establishing the W[1]-hardness of the problem
parameterized by not only the treewidth but also by the feedback vertex set number of the
augmented graph.

» Theorem 3. EDP is W[1]-hard parameterized by the feedback vertex set number of the
augmented graph.
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Motivated by this strong negative result, our next aim was to find natural structural
parameterizations for the augmented graph of an EDP instance for which the problem
becomes fixed-parameter tractable. Towards this aim, we introduce the fracture number,
which informally corresponds to the size of a minimum vertex set S such that the size of
every component in the graph minus S is small (has size at most |S|). We show that EDP
is fixed-parameter tractable parameterized by this new parameter.

» Theorem 4. EDP is fized-parameter tractable parameterized by the fracture number of
the augmented graph.

We note that the reduction in [10, Theorem 6] excludes the applicability of the fracture
number of the input graph by showing that EDP is NP-complete even for instances with
fracture number at most three. Finally, we complement Theorem 4 by showing that bounding
the number of terminal pairs in each component instead of the its size is not sufficient to
obtain fixed-parameter tractability.

2 Preliminaries

2.1 Basic Notation

We use standard terminology for graph theory, see for instance [6]. Given a graph G, we
let V(G) denote its vertex set, E(G) its edge set and by V(E’) the set of vertices incident
with the edges in E’, where E' C E(G). The (open) neighborhood of a vertex z € V(G)
is the set {y € V(G) : zy € E(G)} and is denoted by Ng(x). For a vertex subset X, the
neighborhood of X is defined as | J, .y Na(z) \ X and denoted by Ng(X). For a vertex set
A, we use G — A to denote the graph obtained from G by deleting all vertices in A, and we
use G[A] to denote the subgraph induced on A, ie., G — (V(G)\ A). A forest is a graph
without cycles, and a vertex set X is a feedback vertex set (FVS) if G — X is a forest. We
use [i] to denote the set {0,1,...,i}. The feedback vertex set number of a graph G, denoted
by fvs(G), is the smallest integer k such that G has a feedback vertex set of size k.

2.2 Edge Disjoint Path Problem

In the EDGE Di1sJOINT PATHS (EDP) problem, one is given an undirected graph G a set P
of terminal pairs (i.e., subsets of V(G) of size two) and the question is whether there is there
a set of pairwise edge disjoint paths connecting every set of terminal pairs in P. Let (G, P)
be an instance of EDP; for brevity, we will sometimes denote a terminal pair {s,t} € P
simply as st. For a subgraph H of G, we denote by P(H) the subset of P containing all
sets that have a non-empty intersection with V(H) and for P’ C P, we denote by P’ the
set UpeP, p. We will assume that, w.l.o.g., each vertex v € V(G) occurs in at most one
terminal pair, each vertex in a terminal pair has degree 1 in GG, and each terminal pair is not
adjacent to each other; indeed, for any instance without these properties, we can add a new
leaf vertex for terminal, attach it to the original terminal, and replace the original terminal
with the leaf vertex [22].

» Definition 5 ([22]). The augmented graph of (G, P) is the graph GF obtained from G by
adding edges between each terminal pair, i.e., GF = (V(G), E(G) U P).
2.3 Parameterized Complexity

The parameterized complexity paradigm allows a finer analysis of the complexity of problems
by associating each problem instance L with a numerical parameter k; the pair (L, k) is
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then an instance of a parameterized problem. A parameterized problem is fized-parameter
tractable (FPT in short) if a given instance (L, k) can be solved in time O(f(k) - |L|™M)
where f is an arbitrary computable function; we call algorithms running in this time fpt-
algorithms. The complexity class W[1] is the analog of NP for parameterized complexity;
under established complexity assumptions, problems that are hard for W[1] do not admit
fpt-algorithms.

We refer the reader to the respective monographs [11, 7, 5] for an in-depth introduction
to parameterized complexity.

2.4 Treewidth

A tree-decomposition of a graph G = (V, E) is a pair (T,{B; :t € V(T)}) where B; CV for
every t € V(T) and T is a tree such that:
1. for each edge (u,v) € E, there is a t € V(T') such that {u,v} C By, and
2. for each vertex v € V, T[{t € V(T) | v € B, }] is a non-empty (connected) tree.
The width of a tree-decomposition is max,cy (r) |B¢| — 1. The treewidth [16] of G is the
minimum width taken over all tree-decompositions of G and it is denoted by tw(G). We
call the elements of V(T') nodes and By bags.

While it is possible to compute the treewidth exactly using an fpt-algorithm [1], the
asymptotically best running time is achieved by using the recent state-of-the-art 5-approxi-
mation algorithm of Bodlaender et al. [2].

» Fact 6 ([2]). There exists an algorithm which, given an n-vertex graph G and an integer k,
in time 2°) . either outputs a tree-decomposition of G of width at most 5k +4 and O(n)
nodes, or correctly determines that tw(G) > k.

A tree-decomposition (T, B; : t € V(T)) of a graph G is nice if the following conditions
hold: (1) T is rooted at a node r such that |B,| = @, (2) every node of T has at most two
children, if a node ¢t of T has two children ¢; and t3, then B; = B;, = B,,; in that case
we call ¢ a join node, (3) if a node t of T has exactly one child ¢/, then exactly one of the
following holds: (3A) B; = By U {v}, in which case we call t an introduce node or (3B)
B = By \ {v} in which case we call ¢t a forget node, and (4) if a node ¢ of T is a leaf, then
|Bt| = 1; we call these leaf nodes.

The main advantage of nice tree-decompositions is that they allow the design of much
more transparent dynamic programming algorithms, since one only needs to deal with four
specific types of nodes. It is well known (and easy to see) that for every fixed k, given a
tree-decomposition of a graph G = (V, E) of width at most & and with O(|V|) nodes, one
can construct in linear time a nice tree-decomposition of G with O(]V|) nodes and width at
most k [3]. Given a node ¢ in T', we let Y; be the set of all vertices contained in the bags of
the subtree rooted at ¢, i.e., Y; = B; U Up is separated from the root by t Dp-

3 Closing the Gap on Graphs of Feedback Vertex Number One

In this section we develop a polynomial-time algorithm for EDP restricted to graphs with
feedback vertex set number one. We refer to this particular variant as SIMPLE EDGE Dis-
JOINT PATHS (SEDP): given an EDP instance (G, P) and a FVS X = {z}, solve (G, P).
Additionally to our standard assumptions about EDP (given in Subsection 2.2), we will
assume that: (1) every neighbor of z in G is a leaf in G — X, (2) x is not a terminal, i.e.,
x ¢ P, and (3) every tree T in G — X is rooted in a vertex r that is not a terminal. Property
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(1) can be ensured by an additional leaf vertex ! to any non-leaf neighbor n of z, removing
the edge {n,z} and adding the edge {l, 2} to G. Property (2) can be ensured by adding an
additional leaf vertex [ to x and replacing & with [ in P and finally (3) can be ensured by
adding a leaf vertex [ to any non-terminal vertex r in T and replacing r with [ in P.

A key observation behind our algorithm for SEDP is that whether or not an instance
T = (G, P, X) has a solution merely depends on the existence of certain sets of pairwise edge
disjoint paths in the trees T' in G — X. In particular, as we will show in Lemma 8 later on,
7 has a solution if and only if every tree T in G — X is (-connected (see Definition 7). The
main ingredient of the algorithm is then a bottom-up dynamic programming algorithm that
determines whether a tree T'in G — X is #-connected. We now define the various connectivity
states of subtrees of T' that we need to keep track of in the dynamic programming table.

» Definition 7. Let T be a tree in G — X rooted at r (recall that we can assume that r
is not in P), t € V(T), and let S be a set of pairwise edge disjoint paths in G[T; U X] and
P’ C P(T;), where Ty is the subtree of T rooted at t.
We say that the set S y-connects P’ in G[T; U X] if for every a € P'NT,, the set
S either contains an a-x path disjoint from b, or it contains an a-b path disjoint from z,
where {a,b} € P’. Moreover, for £ € {yx}U P(1}), we say that the set S £-connects T; if S
~p-connects P(T;) \ {¢} and additionally the following conditions hold.
If ¢ = vx then S also contains a path from ¢ to x.
If ¢ = p for some p € P(T}) then:
If pNT; = {a} then S contains a t-a path disjoint from z.
If pNT; = {a,b} then S contains a t-a path disjoint from 2 and a b-z path disjoint
from a or S contains a ¢-b path disjoint from x and an a-x path disjoint from b.
For ¢ € {vg,vx} U P(T}), we say that T} is {-connected if there is a set .S which ¢-connects
P(T}) in G[T; U X].

Informally, a tree T} is: (1) yp-connected if all its terminal pairs can be connected in G[T;UX]
either to themselves or to z, (2) yx-connected if it is yg-connected and additionally there
is a path from its root to x (which can later be used to connect some terminal not in T} to
x via the root of T}), and (3) 7,-connected if all but one of its terminals, i.e., one of the
terminals in p, can be connected in G[T; U X] either to themselves or to x, and additionally
one terminal in p can be connected to the root of T; (from which it can later be connected
to « or the other terminal in p).

» Lemma 8. (G, X, P) has a solution if and only if every tree T in G — X is ~y-connected.

Due to Lemma 8, our algorithm to solve EDP only has to determine whether every tree
in G — X is yy-connected. For a tree T'in G — X, our algorithm achieves this by computing
a set of labels L(t), where L(t) is the set of all labels £ € {vy,vx} U P(T}) such that T} is
{-connected, via a bottom-up dynamic programming procedure. We begin by arguing that
for a leaf vertex [, the value L(l) can be computed in constant time.

» Lemma 9. The set L(l) for a leaf vertex | of T can be computed in time O(1).

Proof. Since [ is a leaf vertex, we conclude that 7T} is yp-connected if and only if either
I¢ Porle Pand (l,z) € E(G). Similarly, T} is vx-connected if and only if [ ¢ P and
(I,z) € E(G). Finally, T} is (-connected for some ¢ € P(T}) if and only if I € P. Since all
these properties can be checked in constant time, the statement of the lemma follows. <«

We will next show how to compute L(t) for a non-leaf vertex t € V(T') with children ¢4, ..., .
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» Definition 10. We define the three sets V,"* = {t; | v ¢ L(t;) }, V' = {t; | 7x €
L(t;) }, and Vi = {t1,...,t;} \ (V, P U V™).

That is, V, 7 is the set of those children ¢; such that T; is not yp-connected, V;'¥ is the set
of those children ¢; such that 7; is vx-connected and V; is the set comprising the remaining
children. Observe that {V;, V, 7, V;"”¥} forms a partition of {t,...,#;} and moreover vy €
L(t) and vx ¢ L(t) for every t € V;. Let H(t) be the graph with vertex set V; UV, " having
an edge between t; and t; (for ¢ # j) if and only if L(¢;) N L(t;) # 0 and not both ¢; and
t; are in V;. The following lemma is crucial to our algorithm, because it provides us with a
simple characterization of L(t) for a non-leaf vertex t € V(7).

» Lemma 11. Let t be a non-leaf vertex of T with children t1,...,t;. Then Ty is:
~o-connected if and only if L(t') # 0 for every t' € {t1,...,t;} and H(t) has a matching
M such that |V \ V(M)] < |V,X],
~vx -connected if and only if L(t') # 0 for every t’ € {t1,...,t;} and H(t) has a matching
M such that V™70 \ V(M)] < |V,X],
C-connected (for £ € P(Ty)) if and only if L(t') # 0 for every t' € {t1,...,t;} and there is
a t; with £ € L(t;) such that H(t) — {t;} has a matching M with V=70 \ V(M)] < |V,"X].
The following two lemmas show how the above characterization can be employed to compute
L(t) for a non-leaf vertex ¢t of T. Since the matching employed in Lemma 11 needs to
maximize the number of vertices covered in V77 we first show how such a matching can
be computed efficiently.

» Lemma 12. There is an algorithm that, given a graph G and a subset S of V(G), computes
a matching M mazimizing |V (M) N S| in time O(+/|V||E|).

» Lemma 13. Let t be a non-leaf vertex of T with children t1,...,t;. Then L(t) can be
computed from L(ty), ..., L(t;) in time O(|P(T})|1>V1).

We are now ready to put everything together to decide whether a tree T is yp-connected.

» Lemma 14. Let T be a tree in G — X. There is an algorithm that decides whether T is
~vg-connected in time O(|P(T)||V(T)|?).

Proof. The algorithm computes the set of labels L(¢) for every vertex ¢ € V(T) using a
bottom-up dynamic programming approach. Starting from the leaves of T, for which the
set of labels can be computed due to Lemma 9 in constant time, it uses Lemma 13 to
compute L(t) for every inner node ¢ of T' in time O(| P(T})|1?V/1). The total running time of
the algorithm is then the sum of the running time for any inner node of T" plus the number
of leaves of T, i.e., O(|P(T)||V(T)]3). <

» Theorem 1. EDP can be solved in time O(|P||V(G)|2) on graphs with feedback vertex
set number one.

Proof. We first employ Lemma 14 to determine whether every tree T of G — X is -
connected. If so we output YES and otherwise NO. Correctness follows from Lemma 8. <«

4 Treewidth and Maximum Degree

The goal of this section is to obtain an fpt-algorithm for EDP parameterized by the treewidth
w and maximum degree A of the input graph.
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» Theorem 15. EDP can be solved in time 20(A«”) -n, where w, A and n are the trecwidth,
mazimum degree and number of vertices of the input graph G, respectively.

Proof Sketch. Let (G, P) be an instance of EDP and let (T, B) be a nice tree-decomposition
of G of width at most k = 5w + 4; recall that such (T, B) can be computed in time 2°*)
by Fact 6. Consider the following leaf-to-root dynamic programming algorithm A, executed
on T. At each bag B; associated with a node t of T, A will compute a table M, of records,
which are tuples of the form {(used, give, single)} where:

used is a multiset of subsets of B; of cardinality 2 with each subset occurring at most A

times,

give is a mapping from subsets of B, of cardinality 2 to [A], and

single is a mapping which maps each terminal a; € Y; such that its counterpart b; & Y;

to an element of B;.

Before we proceed to describe the steps of the algorithm itself, let us first introduce the
semantics of a record. For a fixed ¢, we will consider the graph G; obtained from G[Y;] by
removing all edges with both endpoints in B; (we note that this “pruned” definition of G,
is not strictly necessary for the algorithm, but makes certain steps easier later on). Then
a = {(used, give,single)} € M, if and only if there exists a set of edge disjoint paths @ in
G and a surjective mapping 7 from terminal pairs occurring in Y; to subsets of B; of size
two with the following properties:

For each terminal pair ab that occurs in Y;:

(@ either contains a path whose endpoints are a and b, or
() contains an a-x; path for some x; € B; and a b-x5 path for some zo € B; which is
distinct from 1, and furthermore 7(ab) = {1, 22} €used,;

for each terminal pair ab such that a € Y; but b & Y;:

@ contains a path whose endpoints are a and © € By, where (a, ) € single;
for each distinct z1,22 € By, @ contains precisely give({x1, z2}) paths from 1 to xs.

In the above case, we say that () witnesses a. It is important to note that the equivalence
between the existence of records and sets @) of pairwise edge disjoint paths only holds because
of the bound on the maximum degree. That is because every vertex of G has degree at
most A, it follows that any set @@ of pairwise edge disjoint paths can contain at most A
paths containing a vertex in the boundary. Moreover, we note that by reversing the above
considerations, given a set of edge disjoint paths @ in G satisfying a certain set of conditions,
we can construct in time 32% a set of records in M; that are witnessed by Q (one merely
needs to branch over all options of assigning paths in « which end in the boundary: they
may either contribute to give or to single or to used). These conditions are that each path
either (i) connects a terminal pair, (ii) connects a terminal pair to two vertices in By, (iii)
connects two vertices in By, or (iv) connects a terminal a € Y; whose counterpart b ¢ Y; to
a vertex in By.

A runs as follows: it begins by computing the records M, for each leaf t of T. It then
proceeds to compute the records for all remaining nodes in T in a bottom-up fashion, until
it computes M,. Since B, = 0, it follows that (G, P) is a YEs-instance if and only if
(0,0,0) € M,.. For each record «, it will keep (for convenience) a set @, of edge disjoint
paths witnessing . Observe that while for each specific o there may exist many possible
choices of @, all of these interact with B; in the same way.

We make one last digression before giving the procedures used to compute M; for the
four types of nodes in nice tree-decompositions. First, observe that the size of one particular
record is at most Ak? + Ak? + [single|. Since the number of edge disjoint paths in G; ending
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in B; is upper-bounded by Ak, it follows that each record in M, satisfies |single| < Ak and
in particular each such record has size at most O(Ak?). As a consequence, |M;| < 20(AK?)
for each node ¢ in T, which is crucial to obtain an upper-bound on the running time of A.
It remains to formalize the computation of the records for the four types of nodes of a nice
tree decomposition.

Summary and running time

Algorithm A begins by invoking Fact 6 to compute a tree-decomposition of width at most
k = 5w+ 4 and O(n) nodes, and then converts this into a nice tree-decomposition (7, B) of
the same width and also O(n) nodes. It then proceeds to compute the records M; (along
with corresponding witnesses) for each node ¢ of T in a leaves-to-root fashion, using the
procedures described above. The number of times any procedure is called is upper-bounded
by O(n), and the running time of every procedure is upper-bounded by the worst-case
running time of the procedure for forget nodes. There, for each record  in the data table
of the child of ¢, the algorithm takes its witness ()3 and uses branching to construct at
most k9(A%) new witnesses (after the necessary conditions are checked). Each such witness
Q. gives rise to a set of records that can be computed in time 3%, which are then added
to My (unless they are already there). All in all, the running time of this procedure is
upper-bounded by 20(AK?) . O(AK) . 3Ak — 2O(Ak2), and the run-time of the algorithm
follows. |

5 Lower Bounds of EDP for Parameters of the Augmented Graph
This section is devoted to a proof of the following theorem.

» Theorem 3. EDP is W[1]-hard parameterized by the feedback vertex set number of the
augmented graph.

Note that since the feedback vertex set number upper-bounds the treewidth, Theorem 3
complements the result in [22] showing that EDP is solvable in polynomial time for bounded
treewidth.

As intermediate steps for the proof of Theorem 3 we establish the W[1]-hardness of
several interesting variants of a multidimensional version of the well-known SUBSET SuMm
problem as well as several directed and undirected versions of EDP, which we believe are
interesting in their own right. Namely, the proof starts by showing W([1]-hardness for the
following problem using a reduction from the well-known MULTI-COLORED CLIQUE (MCC)
problem [7].

MULTIDIMENSIONAL SUBSET SuM (MSS)

Input: An integer k, a set S = {s1,...,8,} of item-vectors with s; € N*
for every ¢ with 1 < ¢ < n and a target vector ¢t € N¥.

Parameter: k

Question: Is there a subset S’ C S such that ESES’ s =17

Using a reduction from MSS, the proof then continues by establishing W[1]-hardness for
the following more relaxed version of MSS.
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MULTIDIMENSIONAL RELAXED SUBSET SUM (MRSS)

Input: An integer k, a set S = {s1,...,8,} of item-vectors with s; € N*
for every i with 1 < ¢ < n, a target vector ¢ € N*, and an integer
K.

Parameter: k+ k'
Question: Is there a subset S’ C S with |S’| < k' such that ZSES’ s> t?

Next, we reduce from MRSS to the following directed variant of EDP.

MurtipLE DIRECTED EDGE DisjoINT PaTHS (MDEDP)

Input: A directed graph G, a set P of £ triples (s;,t;,n;) with 1 < ¢ < ¢,
si,ti € V(G), and n; € N.

Parameter: fvs(G) + |P|

Question: Is there a set of pairwise edge disjoint paths containing n; paths
from s; to t; for every ¢ with 1 <1 < 47

In the above, G denotes the underlying undirected graph of a given directed graph G.

Using a known result that allows to reduce the directed EDP problem to the undirected
EDP problem given by Vygen [21], we then show that the undirected variant of the above
problem, which we refer to as MUEDP, of MDEDP is also W[1]-hard. The final step of the
proof is then a straightforward reduction from MUEDP to the EDP problem parameterized
by the feedback vertex set number of the augmented graph.

6 An fpt-Algorithm for EDP using the Augmented Graph

In light of Theorem 3, it is natural to ask whether there exist natural structural parameters
of the augmented graph which would give rise to fpt-algorithms for EDP but which cannot
be used on the input graph. In other words, does considering the augmented graph instead
of the input graph provide any sort of advantage in terms of fpt-algorithms? In this section
we answer this question affirmatively by showing that EDP is fixed-parameter tractable
parameterized by the so-called fracture number of the augmented graph. We note that a
parameter similar to the fracture number has recently been used to obtain fpt-algorithms
for Integer Linear Programming [8].

» Definition 16. A vertex subset X of a graph H is called a fracture modulator if each
connected component in H \ X contains at most |X| vertices. We denote the size of a
minimum-cardinality fracture modulator in H as frac(H) or the fracture number of H.

We begin by making a simple structural observation about fracture modulators.

» Lemma 17. Let (G, P) be an instance of EDP and let k be the fracture number of its
augmented graph. Then there exists a fracture modulator X of G of size at most 2k such
that X does not contain any terminal vertices. Furthermore, such a fracture modulator X
can be constructed from any fracture modulator of size at most k in linear time.

We note that the problem of computing a fracture modulator of size at most k has been
recently considered in the context of Integer Linear Programming [8].

» Lemma 18 ([8, Theorems 7 and 8]). There exists an algorithm which takes as input a
graph G and an integer k, runs in time at most O((k + 1)*|E(G)|), and outputs a fracture
modulator of cardinality at most k if such exists. Moreover, there is a polynomial-time
algorithm that either computes a fracture modulator of size at most (k + 1)k or outputs
correctly that no fracture modulator of size at most k exists.
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For the rest of this section, let us fix an instance (G, P) of EDP with a fracture modulator
X of G of cardinality k& which does not contain any terminals. Furthermore, since the
subdivision of any edge (i.e., replacing an edge by a path of length 2) in (G, P) does not
change the validity of the instance, we will assume without loss of generality that G[X] is
edgeless; in particular, any edges that may have had both endpoints in X will be subdivided,
creating a new connected component of size 1.

Our next step is the definition of configurations. These capture one specific way a
connected component C' of G — X may interact with the rest of the instance. It will
be useful to observe that for each terminal pair ab there exists precisely one connected
component C' of GP — X which contains both of its terminals; we say that ab occurs in C.
For a connected component C, we let C* denote the induced subgraph on GP[C U X].

A trace is a tuple (x1,...,2¢) of elements of X. A configuration is a tuple («, 3) where

« is a multiset of at most k traces, and

3 is a mapping from subsets of X of cardinality 2 to [k?].

A component C of G admits a configuration (a, 3) if there exists a set of edge disjoint
paths F in C* and a surjective mapping 7 (called the assignment) from « to the terminal
pairs that occur in C with the following properties.

For each terminal pair st that occurs in C:

F either contains a path whose endpoints are s and ¢, or
F contains an s-xq path for some x; € X and a t-xz5 path for some distinct zo € X
and there exists a trace L = (x1,...,22) € « such that 7(L) = st.

for each distinct a,b € X, F contains precisely 5({a,b}) paths from a to b.

F contains no other paths than the above.

Intuitively, a stores information about how one particular set of edge disjoint paths A
which originate in C is routed through the instance: they may either be routed only through
C™ (in which case they don’t contribute to «), or they may leave C* (in which case « stores
the order in which these paths visit vertices of X, i.e., their trace). On the other hand, 3
stores information about how paths that originate outside of C' can potentially be routed
through C' (in a way which does not interfere with A). Observe that for any particular
a there may exist several distinct configurations ((«, 81), (o, 82) and so forth); similarly,
for any particular 8 there may exist several distinct configurations ((«1,8), (a2, ) and so
forth).

If a set F of edge disjoint paths in CT satisfies the conditions specified above for a
configuration (o, ), we say that F gives rise to («, ). Clearly, given F and (o, 8), it is
possible to determine whether F gives rise to («a, ) in time polynomial in |V(C)|.

While configurations capture information about how a component can interact with a set
of edge disjoint paths, our end goal is to have a way of capturing all important information
about a component irrespective of any particular selection of edge disjoint paths. To this
end, we introduce the notion of signatures. A signature of a component C, denoted sign(C),
is the set of all configurations which C' admits. The set of all configurations is denoted by A.

» Lemma 19. Given a component C, it is possible to compute sign(C) in time at most
kO ) Furthermore, |sign(C)| < [A] < kO*)

Our next step is the formulation of a clear condition linking configurations of components
in GF — X and solving (G, P). This condition will be of importance later, since it will be
checkable by an integer linear program. For a trace «, we say that a,b occur consecutively
in « if elements a and b occur consecutively in the sequence « (regardless of their order),
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ie, a=(...,a,b,...) or a = (...,b,a,...). Let D be the set of connected components of
G - X.

A configuration selector is a function which maps each connected component C in G — X
to a configuration («,3) € sign(C). We say that a configuration selector S is wvalid if it
satisfies the condition that dem(ab) < sup(ab) for every {a,b} C X, where dem (demand)
and sup (supply) are defined as follows: dem(ab) is the number of traces in Jgcp S(C)
where ab occur consecutively and sup(ab) is the sum of all the values (a,b) in Jocp S(C).

The next, crucial lemma links the existence of a valid configuration selector to the exis-
tence of a solution for EDP.

» Lemma 20. (G, P) is a YEs-instance if and only if there is a valid configuration selector.

The problem whether there is a valid configuration selector can be easily translated into
an integer linear program with a number of variables that can be bounded in terms of k. It
then follows from [18] that the problem is fixed-parameter tractable parameterized by k.

» Lemma 21. There exists an algorithm which takes as input an EDP instance (G, P) and
a fracture modulator X of G¥' and determines whether there exists a valid configuration

O(k2)
selector S in time at most 22" -V(@)].

» Theorem 4. EDP is fized-parameter tractable parameterized by the fracture number of
the augmented graph.

Proof. We begin by computing a fracture modulator of the augmented graph by Lemma 18.
We then use Lemma 21 to determine whether a valid configuration selector S exists, which
by Lemma 20 allows us to solve EDP. <

Having established that EDP is fixed-parameter tractable parameterized by the fracture
number, let us briefly consider potential extensions of the parameter. In particular, one
might be tempted to think that tractability still applies if instead of bounding the size of
each component one only bounds the number of terminal pairs in each component. We
conclude this section by showing that this is not the case: even if both the deletion set and
the number of terminal pairs in each component are bounded by a constant, EDP remains
NP-complete.

» Theorem 22. EDP is NP-complete even if the augmented graph GT of the instance has
a deletion set D of size 6 such that each component of G — D contains at most 1 terminal
pair.

The proof of Theorem 22 is based on a polynomial reduction from the MULTIPLE EDGE
D1sJOINT PaTHS (MEDP) problem, where given an undirected graph G, three pairs (s1,t1),
(s2,t2), and (s3,t3) of terminals and three integers ni, ns, and n3 one asks whether there is a
set of pairwise edge disjoint paths containing n; paths between s; and t;, ny paths between
s9 and ta, and n3 paths between s3 and t3. MEDP is known to be strongly NP-complete [21,
Theorem 4].

7 Conclusion

Our results close a wide gap in the understanding of the complexity landscape of EDP pa-
rameterized by structural parameterizations. On the positive side we present three novel
algorithms for the classical EDP problem: a polynomial-time algorithm for instances with
a FVS of size one, an fpt-algorithm w.r.t. the treewidth and maximum degree of the input
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graph, and an fpt-algorithm for instances that have a small deletion set into small compo-
nents in the augmented graph. On the negative side we solve a long-standing open problem
concerning the complexity of EDP parameterized by the treewidth of the augmented graph:
unlike related multicut problems [13], EDP is W[1]-hard parameterized by the feedback
vertex set number of the augmented graph.

—— References

1

10

11

12

13

14

15

16

17

18

19

Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. STAM J. Comput., 25(6):1305-1317, 1996.

Hans L. Bodlaender, Pal Grgnas Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michal Pilipczuk. A Kq 5-approximation algorithm for treewidth. STAM J.
Comput., 45(2):317-378, 2016.

Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. J. Algorithms, 21(2):358-402, 1996.

Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An O(sqrt(n)) approximation
and integrality gap for disjoint paths and unsplittable flow. Theory of Computing, 2(7):137—
146, 2006.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
Reinhard Diestel. Graph Theory. Springer-Verlag, Heidelberg, 4th edition, 2010.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

Pavel Dvorak, Eduard Eiben, Robert Ganian, Dusan Knop, and Sebastian Ordyniak. Solv-
ing integer linear programs with a small number of global variables and constraints. In
IJCAI 2017, pages 607-613, 2017.

Alina Ene, Matthias Mnich, Marcin Pilipczuk, and Andrej Risteski. On routing disjoint
paths in bounded treewidth graphs. In Proc. SWAT 2016, volume 53 of LIPIcs, pages
15:1-15:15. Schloss Dagstuhl, 2016.

Krzysztof Fleszar, Matthias Mnich, and Joachim Spoerhase. New algorithms for maximum
disjoint paths based on tree-likeness. In Proc. ESA 2016, pages 42:1-42:17, 2016.

Jorg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation
algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3-20, 1997.

Georg Gottlob and Stephanie Tien Lee. A logical approach to multicut problems. Inf.
Process. Lett., 103(4):136-141, 2007.

Richard M Karp. On the computational complexity of combinatorial problems. Networks,
5(1):45-68, 1975.

Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Stephan Kreutzer. An excluded half-
integral grid theorem for digraphs and the directed disjoint paths problem. In Proc. STOC
2014, pages 70-78. ACM, 2014.

T. Kloks. Treewidth: Computations and Approzimations. Springer Verlag, Berlin, 1994.
Stavros G. Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using
packing integer programs. Math. Program., 99(1):63-87, 2004.

H. W. Lenstra and Jr. Integer programming with a fixed number of variables. MATH.
OPER. RES, 8(4):538-548, 1983.

Takao Nishizeki, Jens Vygen, and Xiao Zhou. The edge-disjoint paths problem is NP-
complete for series-parallel graphs. Discrete Applied Mathematics, 115(1-3):177-186, 2001.



R. Ganian, S. Ordyniak, and M. S. Ramanujan 36:13

20  Neil Robertson and Paul D. Seymour. Graph minors XIII. The disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65-110, 1995.

21  Jens Vygen. Np-completeness of some edge-disjoint paths problems. Discrete Applied
Mathematics, 61(1):83-90, 1995.

22 Xiao Zhou, Syurei Tamura, and Takao Nishizeki. Finding edge-disjoint paths in partial
k-trees. Algorithmica, 26(1):3-30, 2000.

ISAAC 2017



	Introduction
	Preliminaries
	Basic Notation
	Edge Disjoint Path Problem
	Parameterized Complexity
	Treewidth

	Closing the Gap on Graphs of Feedback Vertex Number One
	Treewidth and Maximum Degree
	Lower Bounds of EDP for Parameters of the Augmented Graph
	An fpt-Algorithm for EDP using the Augmented Graph
	Conclusion

