
Complexity of the Multi-Service Center Problem∗

Takehiro Ito1, Naonori Kakimura2, and Yusuke Kobayashi3

1 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
takehiro@ecei.tohoku.ac.jp

2 Department of Mathematics, Keio University, Yokohama, Japan
kakimura@math.keio.ac.jp

3 Faculty of Engineering, Information and Systems, University of Tsukuba,
Tsukuba, Japan.
kobayashi@sk.tsukuba.ac.jp

Abstract
The multi-service center problem is a variant of facility location problems. In the problem, we
consider locating p facilities on a graph, each of which provides distinct service required by all
vertices. Each vertex incurs the cost determined by the sum of the weighted distances to the p

facilities. The aim of the problem is to minimize the maximum cost among all vertices. This
problem is known to be NP-hard for general graphs, while it is solvable in polynomial time when
p is a fixed constant. In this paper, we give sharp analyses for the complexity of the problem
from the viewpoint of graph classes and weights on vertices. We first propose a polynomial-time
algorithm for trees when p is a part of input. In contrast, we prove that the problem becomes
strongly NP-hard even for cycles. We also show that when vertices are allowed to have negative
weights, the problem becomes NP-hard for paths of only three vertices and strongly NP-hard for
stars.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases facility location, graph algorithm, multi-service location

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.48

1 Introduction

Facility location is one of the most well-studied topics in combinatorial optimization. There
are various kinds of settings depending on the situations. (See e.g., [4].) Generally, in facility
location problems, we are given a set of clients and a set of facilities in a graph, and we
aim to decide which facilities are open to satisfy the demand of the clients. For example,
the well-known k-center problem is to place k facilities in a graph so that the maximum
distance from each client to their closest facility is minimized [6, 7]. Note that this standard
situation assumes that all k facilities can provide the same service so that each client meets
their demand by only accessing one facility.

Yu and Li [10] recently proposed a new framework of facility location problems, called
multi-service location problems, motivated by the situation where each facility provides
different services and each client needs to access all facilities to meet their demand. As the
first problem of this kind, they proposed the p-service center problem defined as follows.
(The formal definition will be given in Section 2.) In the problem, we assume that clients

∗ This work is partially supported by JST ERATO Grant Number JPMJER1201, JST CREST Grant
Number JPMJCR1402, and JSPS KAKENHI Grant Numbers JP16H03118, JP16K00004, JP16K16010
and JP17K00028, Japan.

© Takehiro Ito, Naonori Kakimura, and Yusuke Kobayashi;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 48; pp. 48:1–48:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/141727445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.48
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

48:2 Complexity of the Multi-Service Center Problem

are all vertices in a graph G, and facilities can be located on any place in G even on an
edge. When we locate p facilities, each of which provides distinct service, the cost of each
client v is determined by the sum of the weighted distances to the p facilities, where the
weighted distance from v to a facility x is the shortest-path distance from v to x multiplied
by a positive weight (representing the demand) of v to the service provided by x. The aim of
the problem is to find a location of p facilities that minimizes the maximum cost among the
clients.

Yu and Li [10] studied the computational complexity of p-service center for several
cases. They designed a polynomial-time algorithm for general graphs when p is a fixed
constant, and an O(n log n)-time algorithm for trees having n vertices when restricted to
p = 2. On the negative side, they showed that the problem is NP-hard for general graphs
when p is a part of input. Anzai et al. [1] showed that this case remains NP-hard even for
split graphs with identical edge-length.

In this paper, we consider a simple generalization of p-service center, that is, each
client can have zero or negative weights (demands) to a facility; recall that the weight must
be positive in the original setting. This generalization is very simple, but enables us to
express several natural situations: a zero demand means that the client does not need the
service provided by the facility, while a negative demand means that the client refuses the
service provided by the facility; furthermore, any vertex can be a non-client by setting all
demands to be zero. In this paper, we sharply analyze the computational complexity of this
generalized problem from the viewpoint of graph classes and weights of vertices. Our main
contributions are summarized as follows:
(1) The problem with nonnegative weights is solvable in polynomial time for trees, even

when the number p of facilities is a part of input.
(2) The problem with nonnegative weights is strongly NP-hard for cycles with identical

edge-length. Thus, the problem cannot be solved in pseudo-polynomial time even for a
cycle unless P = NP.

(3) When clients are allowed to have negative weights, the problem becomes NP-hard even
for paths of only three vertices and strongly NP-hard for stars.

Thus, the problem is polynomially solvable only for trees with nonnegative weights, and is
computationally intractable even for a bit larger graph class or negative weights. Let us
remark that, while both of the algorithms by Yu and Li [10] require that the number p of
facilities is a fixed constant, our algorithm in (1) allows to have p as a part of input.

The rest of the paper is organized as follows. In Section 2, we give a formal definition of
the problem studied in this paper. In Section 3, we present a polynomial-time algorithm on
a tree. Section 4 is devoted to showing the hardness results.

2 Problem Definition

In this section, we formally define the problem studied in this paper.
Let G = (V, E) be an undirected connected graph. For a subgraph H of G, we sometimes

denote by V (H) and E(H) the vertex set and edge set of H, respectively. Assume that each
edge e ∈ E has a length `e ∈ R≥0, where R≥0 is the set of all nonnegative real numbers.
We may assume that all vertices in G are clients, and each facility can be located on any
place in G, even on an edge. We will refer to interior locations on an edge e ∈ E by their
distances along e from its two endpoints. Throughout the paper, a point on G indicates
either a vertex in V or an interior location on an edge in E. For notational convenience, we
sometimes denote simply by G the set of all points on the graph. For two points x, y ∈ G,
let dist(x, y) denote the shortest-path length between x and y.

T. Ito, N. Kakimura, and Y.Kobayashi 48:3

Let I be the set of facilities. Then, a location of I on a graph G = (V, E) is a tuple X

of |I| points on G (which are not necessarily distinct). We denote by GI the family of all
the locations of I on G. Suppose that each vertex v ∈ V has a weight wv,i ∈ R for a facility
i ∈ I, where R is the set of all real numbers; the weight wv,i represents the demand of v

to the service provided by i ∈ I. For each vertex v ∈ V and a location X ∈ GI , the cost
cost(v, X) of v to receive the service from X is defined as follows:

cost(v, X) :=
∑
i∈I

wv,i · dist(v, xi),

where xi denotes the point on G at which the facility i ∈ I is placed by X. In this paper, we
study the following problem:

The multi-service center problem
Instance. A graph G = (V, E), an edge length `e ∈ R≥0 for e ∈ E, a set I of

facilities, and a weight wv,i ∈ R for v ∈ V and i ∈ I.
Question. Find a location X of I on G that minimizes maxv∈V cost(v, X).

We call the problem p-service center if the number p of facilities is a fixed constant.
In addition, we sometimes write the name of the problem with its restriction: For example,
the problem is called multi-service center with nonnegative weights if all weights wv,i

are nonnegative for v ∈ V and i ∈ I.

3 Polynomial-Time Algorithm for Trees with Nonnegative Weights

Recall that Yu and Li [10] showed that p-service center with positive weights is solvable in
polynomial time for general graphs, and 2-service center with positive weights is solvable
in O(n log n) time for trees having n vertices. Both of the algorithms require that the number
p of facilities is fixed. In this section, we prove that multi-service center with nonnegative
weights is solvable in polynomial time for trees even when the number p of facilities is taken
as a part of input, as in the following theorem.

I Theorem 1. Multi-service center with nonnegative weights can be solved in polynomial
time for trees.

In the remainder of this section, we prove Theorem 1. For notational convenience, we
may assume that each edge of a given tree has a positive length; this assumption does not
lose the generality because we simply regard each edge e with `e = 0 as having a sufficiently
small positive length.

3.1 Technical highlights
We first explain our main ideas and proof techniques briefly.

To describe a polynomial-time algorithm for trees, let us first consider the case when
a graph is a path. In this case, it is not difficult to see that the problem can be reduced
to a linear programming problem. In fact, we can identify a point on the path with a
1-dimensional coordinate x by taking one of the end of the path as the origin. Then, the
distance from each client to x can be expressed by an absolute value function with respect to
x. Therefore, multi-service center for a path is equivalent to minimizing the maximum
of the sum of absolute value functions with nonnegative coefficients, which can be formulated
as a linear programming problem.

ISAAC 2017

48:4 Complexity of the Multi-Service Center Problem

e
1
: 1.2 e

2
: 2.5

e
3
: 2.0

e
4
: 1.8 e

5
: 1.6

e
6
: 2.1

(a)

x

r r r

u
x

v
x

1.2

(b)

v

x

(c)

Figure 1 (a) A tree with edge-lengths, (b) the admissible vector x̃ = (x̃(e1), . . . , x̃(e6))> =
(0, 2.5, 0, 0, 0, 1.2)> representing a point x, and (c) the admissible vector ṽ = (0, 2.5, 2.0, 1.8, 0, 0)>.

In order to extend the above observation to the tree case, we identify a point on a tree with
a path from a specified vertex (a root). Then, we can represent a point on the tree by a vector
in the m-dimensional space, where m is the number of edges in the tree. (See Figure 1(b) as
an intuitive example; a formal definition will be given later.) This representation gives us a
linear programming problem to find p vectors in the m-dimensional space, as formulated in
Problem (3) later. However, since not all m-dimensional vectors correspond to a (feasible)
point on the tree, the linear programming problem is a relaxation of multi-service center.
The key ingredient of our algorithm is to prove that the linear programming problem has in
fact an optimal solution corresponding to an optimal facility location (Lemma 3). Since our
proof is constructive, we can find an optimal facility location in polynomial time by solving
the linear programming problem.

3.2 Algorithm

Let T = (V, E) be a tree. We choose an arbitrary vertex r in V as the root of T , and regard
T as a rooted tree. For notational convenience, when we denote an edge e by e = uv, we may
assume that u is the parent of v. For each vertex v on T , we denote by Pv the path in T from
r to v. For each interior point x of an edge ex = uxvx, we denote by Px the path in T from
r to vx, that is, Px = Pvx

. For each edge e = uv, let T − e be the subgraph of T obtained by
deleting e from T . Then, T − e consists of exactly two trees that have u and v, respectively;
we denote the two trees by Tu and Tv where u ∈ V (Tu) and v ∈ V (Tv), respectively.

Let x be any point on T , and assume that x is located on an edge ex = uxvx; note that
x = ux or x = vx may hold. Then, we can express the point x using a vector x̃ in RE

≥0,
defined as follows (see Figure 1(b)):

x̃(e) =

`e if e ∈ E(Pux) = E(Px) \ {ex},
dist(ux, x) if e = ex,

0 otherwise.
(1)

Conversely, we say that a vector x̃ ∈ RE
≥0 is admissible if there exist an edge ex = uxvx and

dx in [0, `ex
] such that x̃ has the form of (1) in which dist(ux, x) is replaced with dx. Then,

there exists a one-to-one correspondence between a point x ∈ T and an admissible vector x̃,
and hence any point on T can be represented as an admissible vector. When a vertex v ∈ V

and a point x on T are expressed by ṽ ∈ RE
≥0 and x̃ ∈ RE

≥0, respectively, it holds that

dist(v, x) =
∑
e∈E

|ṽ(e)− x̃(e)| (2)

T. Ito, N. Kakimura, and Y.Kobayashi 48:5

(see also Figure 1(c)), because we have

|ṽ(e)− x̃(e)| =

`e if e ∈ (E(Px) M E(Pv)) \ {ex},
dist(ux, x) if e = ex 6∈ E(Pv),
dist(vx, x) if e = ex ∈ E(Pv),
0 otherwise.

For a vertex v ∈ V and any vector x̃ ∈ RE
≥0 (which is not necessarily admissible), we

define

de(v, x̃) = |ṽ(e)− x̃(e)|,

where ṽ is a vector expressing v by (1). Consider the problem of finding |I| vectors x̃i ∈ RE
≥0

(i ∈ I) that minimizes

max
v∈V

∑
i∈I

(
wv,i

∑
e∈E

de(v, x̃i)
)

= max
v∈V

∑
i∈I

(
wv,i

∑
e∈E

|ṽ(e)− x̃i(e)|
)

(3)

subject to x̃i(e) ∈ [0, `e] for i ∈ I and e ∈ E. Note that, by (2), we have
∑

e∈E de(v, x̃) =
dist(v, x) for any point x on T and its corresponding admissible vector x̃. Hence, if we have
an additional constraint that each x̃i is admissible on the problem (3), then it is equivalent to
multi-service center. Thus the problem (3) can be seen as a relaxation of multi-service
center.

I Lemma 2. The optimal value of the problem (3) is smaller than or equal to that of
multi-service center with nonnegative weights.

Proof. Consider any optimal solution to multi-service center with nonnegative weights
which places each facility i ∈ I at a point xi on T . Then, the corresponding vectors x̃i form
a feasible solution of the problem (3), and its objective value is equal to the optimal value
of multi-service center with nonnegative weights because of (2). Thus, the statement
holds. J

We say that a feasible solution of the problem (3) is admissible if each vector x̃i (i ∈ I) of
the solution is admissible. Then, an admissible solution of the problem (3) gives a location of
I on T . Lemma 2 and the following lemma ensure that solving the problem (3) is equivalent
to solving multi-service center with nonnegative weights.

I Lemma 3. The problem (3) has an admissible optimal solution. Furthermore, given an
optimal solution x̃i (i ∈ I) to the problem (3), we can construct an admissible optimal solution
in polynomial time.

Proof. Let x̃i ∈ RE
≥0 (i ∈ I) be an optimal solution to the problem (3). For each edge e ∈ E,

let Pe be the unique path in T from the root r to e which does not include e itself. Thus,
Pe = Pu for an edge e = uv. Let Fi = {e ∈ E | x̃i(e) > 0}. By definition, x̃i is admissible if
and only if it satisfies the following conditions:
(A) any two distinct edges e1, e2 ∈ Fi satisfy either e1 ∈ E(Pe2) or e2 ∈ E(Pe1); and
(B) for each edge e ∈ Fi, there is no edge e′ ∈ E(Pe) such that x̃i(e′) < `e′ .

Suppose that x̃i is not admissible for some i ∈ I. We will show that we can modify the
vector x̃i in polynomial time so that the resulting vector is admissible (i.e., satisfies both (A)
and (B) above), without increasing the objective value of (3).

ISAAC 2017

48:6 Complexity of the Multi-Service Center Problem

(a) (b)

r = v
1

v
1 v

q+1

v
q

v
p+1

v
pu

1

r

Tv
1

v
2

u
2

Tv
2

Tv
q+1

Tv
p

Figure 2 Illustration for the proof of Lemma 3.

We first modify x̃i so that it satisfies (A). Suppose that there exist two distinct edges
e1 = u1v1 and e2 = u2v2 in Fi such that both e1 6∈ E(Pe2) and e2 6∈ E(Pe1) hold. (See
Figure 2(a).) Define a new vector x̃′i by

x̃′i(e) =
{

x̃i(e)− ε if e ∈ {e1, e2};
x̃i(e) otherwise,

where ε = min{x̃i(e1), x̃i(e2)}. Then, x̃′i(e) ∈ [0, `e] for each e ∈ E, and hence x̃′i is feasible
to (3). We now claim that this modification does not increase the objective value as follows.
For each vertex z ∈ V expressed by z̃ ∈ RE

≥0 and an index q ∈ {1, 2}, we have

z̃(eq) =
{

0 if z ∈ V (Tuq
);

`eq
if z ∈ V (Tvq

),

where we recall that Tuq and Tvq are trees in T − eq such that uq ∈ V (Tuq) and vq ∈ V (Tvq).
We thus have

deq
(z, x̃′i)− deq

(z, x̃i) =
{
−ε if z ∈ V (Tuq

);
ε if z ∈ V (Tvq).

Since V (Tv1) ∩ V (Tv2) = ∅, the vertex z is contained in V (Tu1) or V (Tu2). Therefore, it
holds that∑

e∈E

de(z, x̃′i)−
∑
e∈E

de(z, x̃i) = de1(z, x̃′i)− de1(z, x̃i) + de2(z, x̃′i)− de2(z, x̃i) ≤ 0. (4)

In this way, while Fi violates (A), we can repeatedly replace x̃i with x̃′i as above. Since
this procedure decreases |Fi| monotonically, the number of repetition is at most |Fi| ≤ |E|.
Thus we can obtain x̃i satisfying (A) in polynomial time.

We next modify x̃i so that it also satisfies (B). If Fi = ∅, then x̃i(e) = 0 for any e ∈ E,
and hence x̃i is admissible. Otherwise, since x̃i satisfies (A), all the edges in Fi are on some
path P from r. Let V (P) = {v1, v2, . . . , vk+1} and E(P) = {e1, e2, . . . , ek} be the vertex set
and the edge set of P , respectively, such that v1 = r and ej = vjvj+1 for j = 1, . . . , k. (See
Figure 2(b).) Define p := min{j ∈ {1, . . . , k} | x̃i(ej) < `ej}; let p = +∞ if such j does not
exist. Define q := max{j ∈ {1, . . . , k} | x̃i(ej) > 0}; such j always exists because Fi ⊆ E(P).
Note that x̃i satisfies (B) if and only if p ≥ q. Suppose that x̃i does not satisfy (B), that is,
p < q. Then, p 6= +∞ holds, and hence we have x̃i(ep) < `ep

. Define a new vector x̃′i by

x̃′i(e) =

x̃i(e) + ε if e = ep;
x̃i(e)− ε if e = eq;
x̃i(e) otherwise,

T. Ito, N. Kakimura, and Y.Kobayashi 48:7

where ε = min{`ep − x̃i(ep), x̃i(eq)}. Then, x̃′i(e) ∈ [0, `e] for each e ∈ E, and hence x̃′i is
feasible to (3). We now claim that this modification does not increase the objective value as
follows. For any vertex z ∈ V , we have

dep
(z, x̃′i)− dep

(z, x̃i) =
{

ε if z ∈ V (Tvp
);

−ε if z ∈ V (Tvp+1),

and

deq
(z, x̃′i)− deq

(z, x̃i) =
{
−ε if z ∈ V (Tvq

);
ε if z ∈ V (Tvq+1),

where we recall that Tvp and Tvp+1 are trees in T − ep such that vp ∈ V (Tvp) and vp+1 ∈
V (Tvp+1), and recall that Tvq

and Tvq+1 are trees in T − eq such that vq ∈ V (Tvq
) and

vq+1 ∈ V (Tvq+1). Since V (Tvp) ∩ V (Tvq+1) = ∅, we can see that the objective value does not
increase similarly to (4).

Therefore, we can repeat replacing x̃i with x̃′i as above while x̃i violates (B). Since this
procedure either increases p or decreases q monotonically, we can finally obtain x̃i satisfying
p ≥ q, that satisfies (B), in polynomial time.

In this way, we can obtain an optimal solution x that is admissible in polynomial time. J

We are now ready to prove Theorem 1.

Proof of Theorem 1. It follows from Lemmas 2 and 3 that it suffices to solve the problem (3).
Note that

∑
i∈I

(
wv,i

∑
e∈E |ṽ(e)− x̃i(e)|

)
is a separable-convex function. Since the maximum

of convex functions is also convex, so is the objective function of (3). Therefore, the
problem (3) is a convex programming problem, which can be solved in polynomial time (see
e.g., [3]).

In fact, we can reduce the problem (3) to the following linear programming problem:

minimize c

subject to
∑
i∈I

(
wv,i

∑
e∈E

|ṽ(e)− x̃i(e)|
)
≤ c (v ∈ V),

x̃i(e) ≤ `e (i ∈ I, e ∈ E),
x̃i ∈ RE

≥0 (i ∈ I),
c ∈ R≥0,

where x̃i(e) (i ∈ I, e ∈ E) and c are variables. Note that the first constraint can be described
by linear inequalities, since the left-hand side is

∑
i∈I

(
wv,i

∑
e∈E

|ṽ(e)− x̃i(e)|
)

=
∑
i∈I

wv,i

 ∑
e∈E(Pv)

(`e − x̃i(e)) +
∑

e∈E\E(Pv)

x̃i(e)

 .

Therefore, it is a linear programming problem with polynomial size, which can be solved in
polynomial time (see e.g., [9]). J

4 Hardness Results

In this section, we show that multi-service center is computationally intractable even
for very restricted instances. We emphasize again that our analyses are sharp in contrast to
Theorem 1.

ISAAC 2017

48:8 Complexity of the Multi-Service Center Problem

4.1 Technical Highlights
Recall that, in multi-service center, we are allowed to place each facility at any point on
a graph (even on an edge), which makes a solution flexible. We design reductions so that
reduced instances force all facilities to be placed at only vertices in any optimal solution.
To ensure this condition, we need to analyze the structure of optimal solutions carefully.
Interestingly, we will verify this condition for cycles (Theorem 7) by using the nonsingularity
of a “distance matrix” [2], which has been studied in the area of algebraic graph theory.

4.2 NP-hardness for paths and stars with negative weights
In this subsection, we show that multi-service center is intractable even for paths and
stars if weights of vertices take negative integers. More specifically, the problem is NP-hard
for paths of only three vertices, and is strongly NP-hard for stars. Indeed, a path of three
vertices is a star, and hence we will construct a common reduction from the following problem:

The equally partition problem
Instance. A set A of elements, a bound b ∈ Z≥0, and a size si ∈ Z≥0 for each

i ∈ A such that
∑

i∈A si = mb for some positive integer m.
Question. Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that∑

i∈Aj
si = b for all j ∈ {1, 2, . . . , m}?

Here, Z≥0 is the set of all nonnegative integers. We summarize our reduction from equally
partition to multi-service center as in the following theorem.

I Theorem 4. There is a polynomial-time reduction from equally partition to multi-
service center for instances such that
(a) G = (V, E) is a star K1,m with the center vertex r having m leaves;
(b) `e := 1 for every e ∈ E;
(c) I := A; and
(d) for v ∈ V and i ∈ I (= A),

wv,i :=
{
−si if v ∈ V \ {r};
−si · 2(m−1)

m if v = r.

Notice that equally partition corresponds to an NP-hard problem partition [5, SP12] if
m = 2. In addition, for general m, equally partition contains all instances of a strongly
NP-hard problem 3-partition [5, SP15]. Thus, the following corollary can be obtained from
Theorem 4.

I Corollary 5. The following (i) and (ii) hold.
(i) Multi-service center is NP-hard even when G = (V, E) is a path of three vertices,

`e = 1 for every e ∈ E, and wv,i = wv′,i for any v, v′ ∈ V and i ∈ I.
(ii) Multi-service center is NP-hard in the strong sense even when G = (V, E) is a star,

and `e = 1 for every e ∈ E.

As described in Theorem 4, our reduction from equally partition to multi-service
center is as follows. Suppose that we are given an instance of equally partition, that
is, a set A of elements, a bound b ∈ Z≥0, and a size si ∈ Z≥0 for each i ∈ A such that∑

i∈A si = mb. Then, we construct a corresponding instance of multi-service center

T. Ito, N. Kakimura, and Y.Kobayashi 48:9

as follows. Let G = (V, E) be a star K1,m with the center vertex r and having m leaves
v1, v2, . . . , vm. Set `e := 1 for every e ∈ E, and define I := A. For v ∈ V and i ∈ I (= A), set

wv,i :=
{
−si if v ∈ V \ {r};
−si · 2(m−1)

m if v = r.

This reduction can be done in polynomial time.
To show the correctness of our reduction above, it suffices to prove the following lemma.

I Lemma 6. The original instance of equally partition has a desired partition if and
only if there is a location X of I for the corresponding instance of multi-service center
such that maxv∈V cost(v, X) ≤ −2(m− 1)b.

Proof. Necessity (“only if” part). Suppose that the original instance of equally parti-
tion has a partition (A1, A2, . . . , Am) of A such that

∑
i∈Aj

si = b for all j ∈ {1, 2, . . . , m}.
In this case, we place the facilities in Aj at the vertex vj ∈ V , that is, for each i ∈ Aj , we define
xi := vj in the corresponding instance of multi-service center. Since (A1, A2, . . . , Am) is
a partition of A = I, this properly defines a location X of I. Then, for each leaf vj ∈ V \ {r},
we can estimate the cost of v to receive the service from X as follows:

cost(vj , X) =
∑
i∈I

wvj ,i · dist(vj , xi) = 2 ·
∑

i∈I\Aj

(−si) = −2(m− 1)b.

Similarly, for the center vertex r of the star, its cost can be estimated as follows:

cost(r, X) =
∑
i∈I

wr,i · dist(r, xi) =
∑
i∈I

(
−si ·

2(m− 1)
m

)
= −2(m− 1)b.

Therefore, X is a location of I for the corresponding instance of multi-service center
such that maxv∈V cost(v, X) ≤ −2(m− 1)b, as required.

Sufficiency (“if” part). Suppose that there is a location X ∈ GI of I for the corresponding
instance of multi-service center such that maxv∈V cost(v, X) ≤ −2(m− 1)b. For each
facility i ∈ I, let xi denote the point on G at which i is placed by X. Since r is the center
vertex of the star, dist(r, xi) ≤ 1 for any i ∈ I. In addition, since wr,i is negative for any
i ∈ I, we have

cost(r, X) =
∑
i∈I

wr,i · dist(r, xi) ≥
∑
i∈I

(
−si ·

2(m− 1)
m

)
= −2(m− 1)b.

Since we have assumed that maxv∈V cost(v, X) ≤ −2(m− 1)b, the inequality above is tight.
We thus have dist(r, xi) = 1 for any i ∈ I. Observe that dist(r, xi) = 1 means that xi

is equal to one of the points v1, v2, . . . , vm. With this observation, we obtain a partition
(A1, A2, . . . , Am) of A by defining Aj := {i ∈ I | xi = vj} for each j ∈ {1, 2, . . . , m}.

We now claim that
∑

i∈Aj
si = b for all j ∈ {1, 2, . . . , m}, and hence (A1, A2, . . . , Am) is

a desired partition for equally partition. To see this, we evaluate cost(vj , X) as follows:

max
j∈{1,2,...,m}

cost(vj , X) = max
j∈{1,2,...,m}

(∑
i∈I

wvj ,i · dist(vj , xi)
)

≥ 1
m

m∑
j=1

∑
i∈I

wvj ,i · dist(vj , xi) = 1
m

m∑
j=1

∑
i∈I\Aj

(−si) · 2

= − 2
m

∑
i∈I

(m− 1)si = −2(m− 1)b.

ISAAC 2017

48:10 Complexity of the Multi-Service Center Problem

Since we have assumed that maxv∈V cost(v, X) ≤ −2(m− 1)b, the inequality above is tight.
Then, the tightness of the inequality shows that

∑
i∈I wvj ,idist(vj , xi) = −2(m−1)b for every

vj ∈ V \ {r}. Therefore, we have

−2(m− 1)b =
∑
i∈I

wvj ,i · dist(vj , xi) =
∑

i∈I\Aj

(−si) · 2 = −2

mb−
∑
i∈Aj

si

 .

We thus have
∑

i∈Aj
si = b for all j ∈ {1, 2, . . . , m}, as claimed. J

This completes the proof of Theorem 4, and hence Corollary 5 follows.

4.3 Strong NP-hardness for cycles with nonnegative weights
We show that the problem is strongly NP-hard even when restricted to cycles with identical
edge-length and nonnegative integer weights.

I Theorem 7. Multi-service center with nonnegative weights is NP-hard in the strong
sense even when G = (V, E) is a cycle, `e = 1 for every e ∈ E, and wv,i = wv′,i ∈ Z≥0 for
any v, v′ ∈ V and i ∈ I.

Thus, multi-service center cannot be solved in pseudo-polynomial time even for such
restricted instances unless P = NP.

In the remainder of this subsection, we prove the theorem by giving a polynomial-time
reduction from a strongly NP-hard problem 3-partition to multi-service center for such
restricted instances. The 3-partition problem is defined as follows (see, e.g., [5, SP15]):

The 3-partition problem
Instance. A set A of 3m elements, a bound b ∈ Z≥0, and a size si ∈ Z≥0 with

b
4 < si < b

2 for each i ∈ A such that
∑

i∈A si = mb.
Question. Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that∑

i∈Aj
si = b for all j ∈ {1, 2, . . . , m}?

Note that since b
4 < si < b

2 for each i ∈ A, we have |Aj | = 3 for all j ∈ {1, 2, . . . , m}. It is
known that 3-partition remains NP-hard in the strong sense even if m is restricted to be
odd [8].

Suppose that we are given a set A of 3m elements, a bound b ∈ Z≥0, and a size si ∈ Z≥0
for each i ∈ A as an instance of 3-partition, where m is an odd number. We construct
a corresponding instance of multi-service center as follows. Let G = (V, E) be a cycle
with m vertices such that V = {v1, v2, . . . , vm}, E = {v1v2, v2v3, . . . , vm−1vm, vmv1}, and
`e := 1 for every e ∈ E. Define I := A, and set wv,i := si for v ∈ V and i ∈ I (= A). This
reduction can be done in polynomial time.

To show the correctness of our reduction above, it suffices to prove the following lemma.

I Lemma 8. The original instance of 3-partition has a desired partition if and only if
there is a location X of I for the corresponding instance of multi-service center such that

max
v∈V

cost(v, X) ≤ (m2 − 1)b
4 .

Proof. Necessity (“only if” part). Suppose that the original instance of 3-partition has a
partition (A1, A2, . . . , Am) of A such that

∑
i∈Aj

si = b for all j ∈ {1, 2, . . . , m}. In this case,
we place the (three) facilities in Aj at the vertex vj ∈ V , that is, for each i ∈ Aj , we define

T. Ito, N. Kakimura, and Y.Kobayashi 48:11

xi := vj in the corresponding instance of multi-service center. Since (A1, A2, . . . , Am) is
a partition of A = I, this properly defines a location X of I. Then, for each vertex v ∈ V ,
we can estimate the cost of v to receive the service from X as follows:

cost(v, X) =
∑
i∈I

wv,i · dist(v, xi) =
m∑

j=1

∑
i∈Aj

wv,i · dist(v, vj)

=

m∑
j=1

dist(v, vj)
∑
i∈Aj

si

 = b

m∑
j=1

dist(v, vj) = 2b

(m−1)/2∑
k=1

k = (m2 − 1)b
4 .

Therefore, X is a location of I for the corresponding instance of multi-service center
such that maxv∈V cost(v, X) ≤ (m2−1)b

4 , as required.

Sufficiency (“if” part). Suppose that there is a location X ∈ GI of I for the corresponding
instance of multi-service center such that maxv∈V cost(v, X) ≤ (m2−1)b

4 . For each facility
i ∈ I, let xi denote the point on G at which i is placed by X. We will prove the following (a)
and (b):
(a) X places all facilities in I at vertices of G; and
(b)

∑
i:xi=vj

si = b for every vj ∈ V .
Then, by defining Aj := {i ∈ I | xi = vj} for each j ∈ {1, 2, . . . , m}, we obtain a desired
partition (A1, A2, . . . , Am) of A for the original instance of 3-partition.

We first prove (a). To see properties of the location X, we begin with the following claim.

I Claim 9. For any point x on G, it holds that
∑m

j=1 dist(vj , x) ≥ m2−1
4 . Furthermore,∑m

j=1 dist(vj , x) = m2−1
4 holds if and only if x is a vertex of G.

Proof of the claim. Let ε ≥ 0 be the distance from x to the nearest vertex in V . Then,

m∑
j=1

dist(vj , x) =
(m−1)/2∑

k=1
(k − ε) +

(m−1)/2∑
k=0

(k + ε) = m2 − 1
4 + ε.

This shows the claim, because ε = 0 if and only if x is a vertex of G. J

By Claim 9, we have

max
v∈V

cost(v, X) = max
v∈V

(∑
i∈I

wv,idist(v, xi)
)

≥ 1
m

∑
v∈V

∑
i∈I

sidist(v, xi) = 1
m

∑
i∈I

(
si

∑
v∈V

dist(v, xi)
)

≥ 1
m

∑
i∈I

(
si ·

m2 − 1
4

)
= (m2 − 1)b

4 . (5)

Since we have assumed that maxv∈V cost(v, X) ≤ (m2−1)b
4 , all the inequalities above are

tight. The tightness of the inequality in (5) shows that the point xi is a vertex of G for each
i ∈ I by Claim 9.

We then prove (b). Define yu :=
∑

i:xi=u si for each u ∈ V , and define y ∈ RV as the vector
consisting of yu’s. The tightness of the above inequalities shows that

∑
i∈I sidist(v, xi) =

ISAAC 2017

48:12 Complexity of the Multi-Service Center Problem

(m2−1)b
4 for every v ∈ V , which is equivalent to

∑
u∈V

yudist(v, u) = (m2 − 1)b
4 for every v ∈ V . (6)

Let D ∈ RV×V be the distance matrix of G defined by Duv = dist(u, v) for u, v ∈ V . Then,
(6) is represented as Dy = (m2−1)b

4 ·1, where 1 is the all-one vector in RV . Since D1 = m2−1
4 ·1

by a simple calculation, we have

D(y − b1) = 0. (7)

It is shown in [2, Theorem 3.4] that the determinant of D is equal to m2−1
4 , which implies

that D is nonsingular. Thus, (7) shows that y = b1, that is, yu = b for every u ∈ V . J

This completes the proof of Theorem 7.
We finally note that our reductions indeed show that multi-service center remains

computationally hard even with an additional constraint that all facilities must be placed at
only vertices.

References
1 Toshimitsu Anzai, Takehiro Ito, Akira Suzuki, and Xiao Zhou. The multi-service center

decision problem is NP-complete for split graphs. In the 6th World Congress on Engineering
and Technology (CET 2016), 2016.

2 Ravindra B. Bapat, Stephen J. Kirkland, and Michael Neumann. On distance matrices
and Laplacians. Linear Algebra and Its Applications, 401:193–209, 2005.

3 Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004.

4 Zvi Drezner and Horst W. Hamacher, editors. Facility Location: Applications and Theory.
Springer-Verlag, Berlin Heidelberg, 2002.

5 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman & Co., New York, NY, USA, 1990.

6 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

7 Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10:180–184, 1985.

8 Sadish Sadasivam and Huaming Zhang. NP-completeness of st-orientations for plane graphs.
Theoretical Computer Science, 411:995–1003, 2010.

9 Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1986.

10 Hung-I Yu and Cheng-Chung Li. The multi-service center problem. In the 23rd Interna-
tional Symposium on Algorithms and Computation (ISAAC 2012), volume 7676 of Lecture
Notes in Computer Science, pages 578–587, 2012.

	Introduction
	Problem Definition
	Polynomial-Time Algorithm for Trees with Nonnegative Weights
	Technical highlights
	Algorithm

	Hardness Results
	Technical Highlights
	NP-hardness for paths and stars with negative weights
	Strong NP-hardness for cycles with nonnegative weights

