
On-the-Fly Array Initialization in Less Space∗

Torben Hagerup1 and Frank Kammer2

1 Institut für Informatik, Universität Augsburg, Augsburg, Germany
hagerup@informatik.uni-augsburg.de

2 MNI, Technische Hochschule Mittelhessen, Gießen, Germany
frank.kammer@mni.thm.de

Abstract
We show that for all given n, t, w ∈ {1, 2, . . .} with n < 2w, an array of n entries of w bits each can
be represented on a word RAM with a word length of w bits in at most nw + dn(t/(2w))te bits
of uninitialized memory to support constant-time initialization of the whole array and O(t)-time
reading and writing of individual array entries. At one end of this tradeoff, we achieve initializa-
tion and access (i.e., reading and writing) in constant time with nw + dn/wte bits for arbitrary
fixed t, to be compared with nw + Θ(n) bits for the best previous solution, and at the opposite
end, still with constant-time initialization, we support O(log n)-time access with just nw +1 bits,
which is optimal for arbitrary access times if the initialization executes fewer than n steps.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Data structures, space efficiency, constant-time initialization, arrays

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.44

1 Introduction

Whereas the space used by an algorithm (measured in “memory units” such as words) is
usually bounded by its running time, there may be exceptions if the memory offers random
access, and it is occasionally useful to employ large arrays of which only a small part will ever
be accessed. A case in point are adjacency matrices, which are a convenient representation
of graphs if the algorithms to be executed issue adjacency queries (e.g., “does G contain an
edge from u to v?”) in an irregular pattern that cannot be served efficiently using adjacency
lists. Even if one can afford the space needed by an adjacency matrix, it may be prohibitively
expensive to clear all those entries in the matrix that do not correspond to edges in the
graph. The problem does not occur if the memory cells allocated to hold the adjacency
matrix can be assumed to be already initialized to some particular value (that can be taken
to signify “no edge”), but in general this is not a realistic assumption. Therefore the problem
of simulating an initialized array in an uninitialized memory has been considered since the
early days of computing.

Additional motivation for our work comes from the fact that certain modern programming
languages such as Java, VHDL and D stipulate that memory be initialized (e.g., cleared
to zero) before it is allocated to application programs [8, 12] or have this as the default
behavior [2]. The initialization is carried out for security reasons and to ease debugging by
making faulty programs more deterministic. If it can be ensured that application programs
access memory only through a well-defined interface, one may hope to let the interface provide
conceptually cleared memory while avoiding the overhead of clearing the memory physically.

∗ A fuller version of this paper is available as [11], https://arxiv.org/abs/1709.10477.

© Torben Hagerup and Frank Kammer;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 44; pp. 44:1–44:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/141727444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.44
https://arxiv.org/abs/1709.10477
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


44:2 On-the-Fly Array Initialization in Less Space

For some w ∈ N = {1, 2, . . .}, our model of computation is a word RAM [3, 9] with a
word length of w bits, where we assume that w is large enough to allow all memory words
in use to be addressed. As part of ensuring this, in the context of an array of size n we
always assume that n < 2w. The word RAM has constant-time operations for addition,
subtraction and multiplication modulo 2w, division with truncation ((x, y) 7→ bx/yc for
y > 0), left shift modulo 2w ((x, y) 7→ (x � y) mod 2w, where x � y = x · 2y), right shift
((x, y) 7→ x � y = bx/2yc), and bitwise Boolean operations (and, or and xor (exclusive
or)). We also assume a constant-time operation to load an integer that deviates from

√
w

by at most a constant factor – this enables the proof of Lemma 3. The problem of central
concern to us is to realize a clearable word array, defined as follows:

I Definition 1. A clearable word array is a data structure that can be initialized with an
integer n ∈ N and subsequently maintains an element of {0, . . . , 2w − 1}n, called its client
sequence and initially (0, 0, . . . , 0), under the following operations:
read(`) (` ∈ {0, . . . , n− 1}): If the client sequence before the call is (x0, . . . , xn−1), returns

x` without changing the client sequence.
write(`, x) (` ∈ {0, . . . , n − 1} and x ∈ {0, . . . , 2w − 1}): If the client sequence before the

call is (x0, . . . , xn−1), changes the client sequence to be (x0, . . . , x`−1, x, x`+1, . . . , xn−1).

The clearable word array is a special case of the initializable array of Navarro [15].
There are two differences. First, the data structure of Navarro is more general in that the
initialization, in addition to n, receives a second parameter v that is taken to be the initial
value of the array entries, i.e., the initial value of the client sequence is (v, v, . . . , v) rather
than (0, 0, . . . , 0). As is easy to see and will be discussed in Section 3, however, the more
general data structure reduces easily to the more restricted one. Second, Navarro does not
specify the nature of the array entries, which is of no relevance to his approach, whereas we
fix the array entries to be words, i.e., elements of {0, . . . , 2w − 1}. Again, this will turn out
to be a restriction of little consequence.

Following the initialization of a clearable word array with an integer n, we call n the
universe size of the data structure. We shall have occasion to consider restricted clearable
word arrays that can be initialized only for certain specific universe sizes. Because the
connection between the client sequence of an initializable array and an array used to hold
it is often very close, it is easy to confuse the two. We may view the client sequence as an
array, but then use the letter ‘a’ to denote this abstract array (which is initialized) and ‘A’
to denote the corresponding physical array (which is not initialized).

2 Previous Work

Fredriksson and Kilpeläinen [7] give a detailed overview of the known approaches to array
initialization and compare them experimentally. In the discussion of their work, we assume
that the task is to realize an initializable array of n entries of b ≤ w bits each. Define the
redundancy of a data structure that solves this problem and occupies N bits to be N−nb, i.e.,
the number of bits used beyond the minimum of nb bits needed even without the requirement
of initializability.

A number of the methods described by Fredriksson and Kilpeläinen can be viewed
as special cases of a general trie method. Ignoring rounding issues, the trie method is
parameterized by an integer h ∈ N and a degree sequence (d1, d2, . . . , dh) of h positive
integers with

∏h
i=1 di = nb. It uses a tree T of height h in which all nodes of height i have

di children, for i = 1, . . . , h. Each node in T has an associated bit, the bits of each maximal
group of siblings are stored compactly, w bits to a word, and the nb bits at the leaves are
identified with the nb bits of the abstract array a.



T. Hagerup and F. Kammer 44:3

Let processing an inner node u in T be the following: If the bit associated with u has the
value 0 (informally, u has been initialized, but its children have not), initialize the bits of
all children of u, to 0 if the children are inner nodes and to the prescribed initial value v –
within groups of b siblings in the obvious manner – if they are leaves. If u has d children,
this can be done in O(dd/we) time. Finally set the bit associated with u to 1. If the value of
that bit is 1 already prior to the processing of u, the processing of u terminates immediately
after discovering this fact.

To initialize T , set the bit at its root to 0. In addition, it is permissible, as part of the
initialization, to process the inner nodes in an upper part of T in a top-down fashion, i.e.,
so that no nonroot node is processed before its parent. We will say that such nodes are
preprocessed. To read the `th entry of a, descend in T towards the `th group of b leaves. If
an inner node is encountered whose associated bit has the value 0, return v. If not, return
the value found in the `th group of b leaves. To write the `th entry of a, descend in the
same manner towards the `th group of b leaves, process every inner node encountered on
the way, and finally store the appropriate value in the bits of the `th group of b leaves. The
total number of bits used by the data structure is the number of nodes in T that are not
preprocessed, the initialization takes constant time plus time proportional to the sum of
dd/we over all degrees d of preprocessed nodes, the worst-case time of read is Θ(h), and the
worst-case time of write is the maximum over all leaves v in T of Θ(h +

∑
iddi/we), where

the sum ranges over those values of i ∈ {1, . . . , h} for which the ancestor of v of height i is
not preprocessed.

Fredriksson and Kilpeläinen consider the following special cases of the trie method:
Degree sequence (nb), preprocess the root (Plain); degree sequence (b, n), preprocess the
root (Simple); degree sequence (b, w, w, . . . , w) (Hierarchic); degree sequence (b, n/w, w)
(Simple-H); and degree sequence (b, w, n/w), preprocess the root (SHV). The redundancy is
0 for Plain and close to n (i.e., the number of nodes in T of height 1) for the other methods.
The initialization time is Θ(1 +nb/w) for Plain, Θ(1 +n/w) for Simple, Θ(1 +n/w2) for SHV
and Θ(1) for the other methods. The worst-case time for read is Θ(1 + logw n) for Hierarchic
and Θ(1) for the other methods. The worst-case time for write, finally, is Θ(1 + logw n) for
Hierarchic, Θ(1 + n/w2) for Simple-H and Θ(1) for the other methods.

None of the methods discussed above combines constant initialization time with constant
access time, and it is easy to see that this is true of every instance of the trie method.
Constant time for every operation is achieved by a folklore method that goes back at least to
the early 1970s (see [1, Exercise 2.12]). The folklore method uses a physical array A with the
index set {0, . . . , n− 1} and assigns the codes 0, 1, . . . to the indices of the abstract array a in
the order in which the indices are first used in calls of write, x` is stored in A[f(`)], where f(`)
is the code of `, two tables are used to keep track of the encoding function f and its inverse
f−1, and finally the data structure remembers the number k of codes assigned. To access x`,
first f(`) is looked up in the table of f . Because the table is not initialized, the purported
code j may not be correct, but j is the code of ` exactly if 0 ≤ j < k and the entry of j in the
table of f−1 is `. If not, the default initial value v is returned in the case of a read operation,
and the next available code is assigned to ` in the case of a write operation. The remainder
of the access is simply a reading or writing of A[f(`)]. The structure is initialized by setting
k to 0. In addition to the space needed to hold the actual data in A, it needs space for the
tables of f and f−1 and the counter k, so that its redundancy is 2ndlog2 ne+ dlog2(n + 1)e.

A family of methods due to Navarro [15] combines the Hierarchic method above with the
folklore method. The idea is, starting from Hierarchic, to replace the nodes of height ≥ h + 2,
for some h ≥ 0, by an instance of the folklore data structure. This achieves the same effect

ISAAC 2017



44:4 On-the-Fly Array Initialization in Less Space

as processing the nodes that were removed and obviates the need to descend through these
nodes during an access. The initialization time is constant, the worst-case access time is
Θ(h + 1), and the redundancy is approximately 3n for h = 0 and approximately n for h ≥ 1.

3 Our Contribution

We give an upper-bound tradeoff that spans the entire range from minimal time to minimal
space. Our main result is the following:

I Theorem 2. There is a clearable word array that, for all given n, t ∈ N, can be initialized
for universe size n in constant time and subsequently occupies at most nw + dn(t/(2w))te
bits and supports read and write in O(t) time.

If w and hence (by assumption) n are bounded by constants, it is trivial to realize a
clearable word array with constant initialization and access times and zero redundancy
(initialize the array explicitly, i.e., use the Plain method of Fredriksson and Kilpeläinen).
Given a constant t ∈ N, we can therefore assume without loss of generality that w ≥ t2. Then
(t/w)2 ≤ 1/w and hence (2t/(2w))2t ≤ 1/wt. Theorem 2 (used with t doubled) thus implies
that for all constant t ∈ N, there is a clearable word array that can be initialized in constant
time, executes accesses in constant time and has redundancy dn/wte. The best previous
constant-time solution, due to Navarro [15] and discussed above, has redundancy n + o(n).

At the other end of the time-space tradeoff, for t = dlog2 ne, the redundancy of Theorem 2
is 1, i.e., the constant-time initialization costs only a single bit and accesses are still supported
in logarithmic time. If an initialization time of Θ(n) is acceptable, a clearable word array
with constant-time access can obviously be realized with zero redundancy – this is again the
Plain method of Fredriksson and Kilpeläinen. On the other hand, the redundancy cannot be
reduced below our bound of 1 for any access times unless the initialization writes to at least
n words, which needs at least n steps. To see this, assume that a clearable word array with
universe size n is represented in N bits for some N ∈ N. Because the client sequence can be
in any one of 2nw states, any two of which can be distinguished through read operations,
whereas its representation can be in only 2N states, we must have N ≥ nw, irrespectively of
all operation times. Moreover, if N = nw, every state of the client sequence is represented
by exactly one bit pattern of its representation. Since the client sequence is in a well-defined
state immediately after the initialization, this is impossible unless each of the nw bits of
its representation is forced to one specific value during the initialization, i.e., unless the
initialization writes to at least n words.

Note that it is a responsibility of the user of a clearable word array initialized for universe
size n to ensure that ` < n in all calls of the form read(`) or write(`, x) issued to the data
structure. Whereas the data structure can easily check the conditions ` ≥ 0 and 0 ≤ x < 2w,
when operated close to its minimum space it cannot afford to store the integer n. Thus illegal
calls of its operations may go undetected and may lead to attempted accesses to memory
words outside of the area assigned to the data structure.

Our result can be seen as a second application of the light-path technique, which was
introduced (but not named) in [10] and used there to construct space-efficient nonsystematic
choice dictionaries. From a technical perspective, the situation is simpler here, as there is no
need to store data in a particular compact representation and to provide conversion to and
from the compact representation. This gives us an opportunity to illustrate the light-path
technique in a purer setting. At a more abstract level, the fundamental idea is to upset the
structure of a simple table slightly in order to accommodate additional information in the



T. Hagerup and F. Kammer 44:5

table. Whereas this principle has been used before [4, 5, 14], curiously, it has not so far
been employed in the setting of initializable arrays even though it seems particularly natural
there. It may be noted that the c-color choice dictionaries of [10] could be used directly as
initializable arrays, but efficiently so only for arrays whose elements are drawn from a very
small range {0, . . . , 2b − 1}. This is because each element of that range would be considered
a separate color, i.e., we would have c = 2b.

Given the clearable word array of Theorem 2, it is easy to derive a more general data
structure that, for some integer b with 1 ≤ b ≤ w, maintains a client sequence in {0, . . . , 2b −
1}n, initially (0, 0, . . . , 0), under reading and writing of individual elements of the sequence.
Simply pack the n elements of the client sequence tightly in dnb/we words of w bits each,
initialize the used part of the last word to 0, maintain the other words in a clearable word
array, inspect a b-bit element of the client sequence by reading the at most two words over
which the b bits spread, picking out the relevant pieces of the words and concatenating the
pieces, and update a b-bit element of the client sequence correspondingly by splitting the
new value into at most two pieces and storing each piece appropriately in a word without
disturbing the rest of the word. The execution times are within a constant factor of those of
the clearable word array, and the number of bits needed is at most nb + dn(t/(2w))te.

We can also easily derive a data structure more general than that of Theorem 2 in that the
client sequence is initialized to (g(0), . . . , g(n−1)), where g : {0, . . . , n−1} → {0, . . . , 2w−1}
is some function, rather than to (0, 0, . . . , 0). The simple idea is to swap the representations
of the “internal” and “external” initial values. Both read(`) and write(`, x) then begin by
evaluating g(`). If reading the value associated with ` in a normal clearable word array yields
the value 0, read(`) returns g(`). If the value read is g(`), read(`) returns 0, and every other
value read is returned as it is. Similarly, if x = g(`), write(`, x) actually writes the value 0 to
the normal clearable word array, x = 0 causes the value g(`) to be written, and every other
value of x is written as it is. The initialization and access times are those of Theorem 2 plus
whatever time is needed to initialize g and to evaluate it on one argument, respectively, and
the space requirements are those of Theorem 2 plus those of g. It is easy to see that the
generalizations described in this and the previous paragraph can be combined.

Very recently, giving a clever twist to the folklore method, Katoh and Goto [13] devised a
clearable word array that executes every operation in constant time but, when the universe
size is n, uses just nw + 1 bits.

4 The Construction

In this section we prove Theorem 2. At a very low and technical level, we need the following
staple of word-RAM computing.

I Lemma 3 ([6, 10]). Given a nonzero integer
∑w−1

i=0 2ibi, where bi ∈ {0, 1} for i =
0, . . . , w− 1, constant time suffices to compute max I and min I, where I = {i | 0 ≤ i ≤ w− 1
and bi = 1}.

Let a colored tree be an ordered outtree, each of whose leaves is either white or black.
Given a colored tree T , we extend the colors at the leaves of T to its inner nodes as follows:
If the leaf descendants of an inner node u all have the same color (white or black), then u

has that same color. If u has both a white and a black leaf descendant, u is gray. Clearly
every ancestor of a node v has the same color as v or is gray. In particular, every ancestor of
a gray node is gray. Define the navigation vector of an inner node to be the sequence of the
colors of its children in the order from left to right.

ISAAC 2017



44:6 On-the-Fly Array Initialization in Less Space

Figure 1 Example light paths (drawn thicker). Top nodes, historians and proxies are labeled “t”,
“h” and “p”, respectively, and a subscript identifies the associated light path.

Recall that the left spine of a rooted ordered tree T is the maximal path in T that starts
at the root of T and, whenever it contains an inner node u, also contains the leftmost child
of u. Define the preferred child of a white or gray inner node in a colored tree T to be its
leftmost gray child if it has at least one gray child, and its leftmost white child otherwise.
Call an edge in T light if it leads from a gray inner node to its preferred child or lies on
the left spine of a subtree of T whose root is white and has a gray parent of which it is the
preferred child. In other words, every gray inner node picks the edge to its preferred child to
be light, whereas a white inner node does so only if “prompted” by its parent. The light
edges induce a collection of node-disjoint paths called light paths, each of which ends at a
leaf in T . When P is a light path that starts at a (gray) node u and ends at a (white) leaf v,
we call u the top node, v the proxy and the leftmost leaf descendant of u (that may coincide
with v) the historian of P and of every node on P . These concepts are illustrated in Fig. 1.
A gray node that is not the root of T is a top node exactly if it is not the preferred child of
its parent, i.e., if it has at least one gray left sibling. No proper ancestor of a top node u can
have a descendant of u as its leftmost leaf descendant, so a leaf is the historian of at most one
light path. If h is the historian of a light path P , the top node and the proxy of P are also
said to be the top node and the proxy, respectively, of h. A leaf ` cannot be the historian of
one light path and the proxy of another, since otherwise the two corresponding top nodes
would both be ancestors of ` and the path between them would contain only gray nodes and
be part of a light path, a contradiction. A similar argument shows that in the left-to-right
order of the leaves of T , no historian or proxy lies strictly between a historian and its proxy.
Define the history of a light path that contains the nodes u1, . . . , uk, in that order, to be the
sequence (q1, . . . , qk−1), where qi is the navigation vector of ui, for i = 1, . . . , k − 1 (uk, as a
leaf, has no navigation vector).

The following lemma describes the work-horse of our data structure.

I Lemma 4. Let d and t be given positive integers with 2dt ≤ w such that d is a power
of 2. Then there is a clearable word array that can be initialized for universe size n = dt in
constant time and subsequently occupies nw + 2 bits and, if given access to the parameters d

and t, supports read and write in O(t) time.

Proof. Without loss of generality assume that d ≥ 2. We use a conceptual colored tree T

that is a complete d-ary tree of height t and identify the n leaves of T , in the order from
left to right, with the integers 0, . . . , n− 1. Let r be the root of T and, for each node u in



T. Hagerup and F. Kammer 44:7

T , let Tu be the maximal subtree of T rooted at u. We represent a node u of height j in T

through the pair (j, k), where k is the number of nodes in T of the same height as u and
strictly to its left (in other words, the nodes on each level in T are numbered consecutively
in the order from left to right, starting at 0). Then navigating in T is easy: If u is not the
root r, its parent is (represented through) (j + 1, bk/dc), if u is not a leaf, its children are
(j − 1, kd), . . . , (j − 1, kd + (d− 1)), u’s leftmost leaf descendant is (0, kdj) (identified with
the integer kdj), and if u is not a leaf and ` is a leaf descendant of u, then viachild(u, `), the
child of u that is an ancestor of `, is (j − 1, b`/dj−1c). The assumption that d is a power
of 2 ensures that we can compute the necessary powers of d in constant time by means of
multiplication and left shift. This requires the availability of log2 d, which can be computed
from d in constant time according to Lemma 3.

The actual data is stored in a word array A with index set {0, . . . , n − 1} and in two
additional root bits. The three colors white, gray and black are encoded in two bits, the
navigation vector of an inner node in T is represented by the 2d-bit concatenation of the
representations of its d (color) elements, and the history of a k-node light path is represented
by the 2d(k − 1)-bit concatenation of the representations of its k − 1 (navigation-vector)
elements. The relation 2dt ≤ w ensures that every history fits in a w-bit word. Assume that
a history of fewer than w bits is “right-justified” in the word so that the position in the word
of the navigation vector of a node depends only on the height of the node.

With the aid of an algorithm of Lemma 3, the preferred child of a given white or gray
inner node u in T can be computed in constant time from the navigation vector of u or a
history that contains that navigation vector. This may need a couple of bit masks (informally,
ones that correspond to all nodes having the same color) that can easily be obtained via
multiplication with the integer 1dt,2 = (22dt − 1)/3, whose (2dt)-bit binary representation is
0101 · · · 0101. Because 22dt may not be representable in a w-bit word (namely if 2dt = w),
the computation of 1dt,2 needs a little care, but is still easy to do in constant time.

The client sequence (x0, . . . , xn−1) is represented in A[0], . . . , A[n− 1] and the two root
bits according to the following storage invariants: First, the two root bits indicate the color
of the root r of T . Second, for ` = 0, . . . , n− 1,

if ` is a historian, A[`] stores the history of the proxy of ` (hence the term “historian”),
if ` is black and not a historian, A[`] stores x`,
if ` is a proxy whose historian h is black, A[`] stores xh (as a “proxy” for h), and
if ` is white and neither a historian nor a proxy whose historian is black, the value of
A[`] may be arbitrary.

Note that because every proxy is white, for each ` ∈ {0, . . . , n − 1} exactly one of the
four cases above applies. In particular, although a proxy may coincide with its historian,
this is not the case if the historian is black. The data structure is initialized by coloring r

white (i.e., by setting the root bits accordingly).
In terms of the abstract array a, the leaf colors white and black signify “not yet written to,

and therefore still containing the initial value 0” and “written to at least once”, respectively.
For the actual array A, this translates approximately into white and black meaning “not
initialized” and “initialized to a meaningful value”, respectively.

The data structure does not explicitly store the color of any node except r. Instead node
colors must be deduced from histories. It turns out that the colors of all nodes other than r

are implied by the histories of the light paths. A white leaf ` offers potential for storing
a history (namely in its associated word A[`]), but we cannot know in advance where to
find a white leaf. This motivates the introduction of historians and proxies. We actually
need the history of a light path P when, during a descent in T from r to a leaf, we reach

ISAAC 2017



44:8 On-the-Fly Array Initialization in Less Space

the top node of P . The historian of P provides a fixed place (namely at the leftmost leaf
descendant) at which to look for the history, but if the historian is black, then its own data
must be accommodated somewhere else – this is the role of the (white) proxy. How this
works is perhaps best illustrated by the following detailed description of the realization of
the operation read, which basically carries out a descent in T . The call leftmostleaf (u) is
assumed to return (the integer identified with) the leftmost leaf descendant of the node u.

read(`):
u := r; (∗ start at the root ∗)
while u is gray do

if u is a top node then (∗ switch to a new history ∗)
h := leftmostleaf (u); (∗ u’s historian ∗)
H := A[h]; (∗ u’s history ∗)

u := viachild(u, `); (∗ continue towards ` ∗)
if u is white then return 0; (∗ the initial value ∗)
(∗ now ` is black ∗)
if u = r or ` 6= h then return A[`]; (∗ ` is neither a historian nor a proxy ∗)
(∗ now ` is a black historian ∗)
return A[p], where p is the leaf at the end of the light path that contains u’s parent;

The procedure discovers a white ancestor of ` and returns 0, determines that ` is black
and not a historian and returns A[`], or identifies ` as a black historian and returns A[p],
where p is the proxy of `. In all cases, the return value is correct.

Whenever the color of a node u is queried, either u = r, in which case the color of u is
given by the root bits, or the color of u can be deduced in constant time from the history
stored in H, one of whose elements is the navigation vector of the parent of u. Similarly, if
u 6= r, we can decide in constant time whether u is a top node by looking at the navigation
vector of its parent. The light path that contains u’s parent can be followed in constant time
per node, again by inspection of H. Thus read can be executed in O(t) time.

To execute write(`, x), we carry out two phases. The purpose of the first phase is to take
the data structure to a legal state in which ` is black and all values of the client sequence
(x0, . . . , xn−1) except possibly x` are correct, i.e., unchanged. The second phase concludes
the writing by setting x` to x. In the description of the two phases, we leave to the reader
details such as how to determine the color of a given node; in all cases, one can proceed
similarly as in the implementation of read.

The first phase begins by following the path P in T from r to ` until encountering a node
that is not gray. This can be done similarly as in the implementation of read: Each node
visited is tested for being a top node, and at each top node a new history is fetched and
subsequently used. This computation, in particular, can determine the color of `. If ` is
already black, the first phase terminates without modifying the data structure. Assume in
the remaining discussion of the first phase that ` is white and consider the consequences of
an update that changes the color of ` from white to black. We will use the terms “old” and
“new” to describe the situation before and after the update, respectively.

Because the color of an inner node in T is a function of the colors of its children, only
nodes on P can change their color as a result of the update. The first phase proceeds to find
the first node v on P (i.e., the node on P of minimal depth) that changes its color. The
following observations show that this can be done in a single traversal of P and characterizes
the possible scenarios in a useful way. If some proper ancestor of ` is white (before the
update), all proper ancestors of the first white node ṽ on P are gray both before and after



T. Hagerup and F. Kammer 44:9

Figure 2 Left: The situation of Case 1 and, after a swap of the labels “pu” and “p′
u”, also of

Case 2. Right: The situation of Cases 4 and 5.

the update, and all descendants of ṽ on P other than ` are white before and gray after the
update. Thus v = ṽ. In the opposite case, namely if all proper ancestors of ` are gray, let v

be the last node on P that has a white or gray sibling if there is at least one such node, and
take v = r otherwise. It is easy to see that all proper ancestors of v are gray both before and
after the update and, by backwards induction on P , that all descendants of v, including v

itself, are black after the update. In this case, therefore, v = v.
As can be seen from the observations above, no descendant of v has more than one gray

child before or after the update under consideration. Therefore the only node in Tv that
can be a top node before or after the update is v itself, the only node in Tv that can be a
historian before or after the update is the leftmost leaf descendant hv of v, and before as
well as after the update at most one node in Tv is a proxy. Moreover, at most one node in T

other than v can become or stop being a top node as a result of the update, and this node, if
it exists, must be the leftmost gray sibling of v and to the right of v.

If v = r, change the root bits to reflect the new color of the root. Otherwise compute u

as the top node of the light path that contains the (gray) parent of v, let hu be the historian
of u (before and after the update) and let pu and p′u be the proxies of u before and after the
update, respectively, which can be found by following the old and new light paths that start
at u. Store the new history of p′u in A[hu]. In particular, this registers the new color of v. To
compute the history, it suffices to record the new navigation vectors encountered on the path
in T from u to p′u. Now consider five cases that together cover all possible situations and do
not overlap. Even though every color change is irreversible, Cases 1 and 2 show some aspects
of being reverses of each other, and so do Cases 4 and 5. These four cases are illustrated in
Fig. 2.

Case 1: v has a parent z and is the preferred child of z after the update. Thus v changes
its color from white to gray without becoming a top node. If hu is black before the update,
then execute A[p′u] := A[pu], which moves xhu

from the old to the new proxy of hu. This
overwrites no relevant information, as p′u is white and neither a historian nor a proxy before
the update unless p′u coincides with hu or pu, in which case the assignment is not carried
out or has no effect. Let v∗ be the preferred child of z before the update and let h∗ be the
leftmost leaf descendant of v∗. If v∗ is white before the update (this includes the case v∗ = v),
nothing more needs to be done. If v∗ is gray (before and after the update), it is a right
sibling of v, and it becomes a new top node whose historian h∗ and proxy pu must have their
associated information updated accordingly. To this end first execute A[pu] := A[h∗] and
subsequently store in A[h∗] the history of the new light path that starts at v∗ and ends at pu.
If pu = h∗, the two assignments write to the same word, but then any relevant information
present in A[h∗] before the update was already copied to A[p′u].

ISAAC 2017



44:10 On-the-Fly Array Initialization in Less Space

Case 2: v has a parent z and is the preferred child of z before, but not after the update.
After the update, v is black and no descendant of v is a historian or a proxy, except that
hv may coincide with hu. Let v∗ be the preferred child of z after the update and let h∗ be
the leftmost leaf descendant of v∗. If v∗ is gray, it is a right sibling of v and a top node
with historian h∗ and proxy p′u before the update, whereas after the update p′u is the proxy
of u and h∗ is neither a historian nor a proxy unless h∗ = p′u. If h∗ is black, then execute
A[h∗] := A[p′u], which moves xh∗ to the correct place and overwrites a history that is no
longer useful. Finally, independently of the color of v∗ and as in Case 1, if hu is black, then
execute A[p′u] := A[pu].

In the remaining cases 3–5 v is a preferred child neither before nor after the update, so
there are no changes to light paths outside of Tv (i.e., the set of light edges outside of Tv

remains the same). In particular, p′u = pu. Moreover, v is not a leftmost child.
Case 3: v is a leaf with at least one white left sibling. There are no changes to light

paths, so nothing needs to be done.
Case 4: v is a top node after the update. Before the update, v is white, so no descendant

of v is a historian or a proxy at that time (informally, no information is stored below v).
Compute the proxy pv of v after the update and store the new history of pv in A[hv]. This
involves following the new light path that starts at v and recording the new navigation
vectors encountered on the way.

Case 5: v is a top node before the update. Because v is black after the update, no
descendant of v is a historian or a proxy at that time. Before the update, since ` is the only
white descendant of v, it is its proxy. If hv is black (i.e., if hv 6= `), then copy the value of
A[`], namely xhv

, to A[hv]. This overwrites an old history that is no longer useful.
The second phase of the execution of write(`, x) simulates the execution of read(`) until

the point when the routine is ready to return as its answer the value of A[i] for some i (that
is either ` or the proxy of `). Instead of returning A[i], it finishes by storing x in A[i]. Since
i is not a historian, it is easy to see that a subsequent call of read(`) will return x and that
the update of A[i] leaves the data structure in a legal state and does not change the value of
any elements of the client sequence (x0, . . . , xn−1) except x`. J

The next lemma and its proof show how to handle the case of an “incomplete tree”
elegantly and, following the initialization, without any overhead to test for special cases.

I Lemma 5. There is a clearable word array that, for all given n, d, t ∈ N with 2dt ≤ w and
n ≤ dt such that d is a power of 2, can be initialized for universe size n in constant time and
subsequently occupies nw + 2 bits and, if given access to d and t, supports read and write in
O(t) time.

Proof. We use the construction of the previous proof for universe size dt, but provide for its
storage only a word array A with index set {0, . . . , n − 1} in addition to two root bits. If
n = dt, nothing more needs to be said. If n < dt, before executing any true write operation,
we change the color of the root from white to gray (of course, by modifying the root bits) and
store in A[0] a history that corresponds to the leaves 0, . . . , n−1 being white and n, . . . , dt−1
being black. Provided that only legal accesses are subsequently attempted, this prevents
the data structure from ever choosing a proxy larger than n − 1, and it will process the
operations correctly without ever attempting to access one of the nonexisting array elements
A[n], . . . , A[dt − 1].

The computational steps just described are conceptually part of the initialization of the
data structure, but the computation of the history to be stored in A[0] may take more than
constant time. In order to guarantee a constant initialization time, we postpone the steps



T. Hagerup and F. Kammer 44:11

and execute them as an initial part of the first and only execution of a write operation that
begins with a white root, until which point we remember n in A[0]. Since the steps are easily
carried out in O(t) time, the bound of O(t) for the execution time of write remains valid. J

We now take the step to values of n larger than dt.

I Lemma 6. There is a clearable word array that, for all given n, t ∈ N, can be initialized
for universe size n in constant time and subsequently occupies at most nw + dn(t/(2w))te
bits and, if given access to n and t, supports read and write in O(t) time.

Proof. When c ∈ N is an arbitrary constant, we can assume without loss of generality that
n is a multiple of c. This is because we can initialize up to c− 1 “left-over” words in constant
time. Moreover, a word RAM with a word length of w bits can simulate one with a word
length of cw bits with constant slowdown, i.e., every instruction can be simulated in constant
time. By these observations, we can essentially pretend to be working on a word RAM with
a word length of cw bits (of course, the values communicated to and from a user of the data
structure are still w-bit quantities). In particular, we view A as consisting of n/c large words
of cw bits each, and the condition 2dt ≤ w of Lemma 5 can be relaxed to 2dt ≤ cw. We use
this with c = 16, for which choice the condition becomes d ≤ 8w/t.

Assume that t ≤ w. This entails no loss of generality because reducing larger values of t

to w does not increase the space bound of the lemma (recall that w ≥ dlog2 ne). Compute
d as the largest power of 2 no larger than 8w/t and note that d ≥ 4w/t ≥ 2. Dividing the
universe {0, . . . , n/c− 1} into ranges of dt consecutive elements each, except that the last
range may be smaller, we store each subsequence of the client sequence corresponding to a
range in an instance of the data structure of Lemma 5, called a tree, except that the root
bits are handled slightly differently. Altogether we have N = dn/(cdt)e ≤ dn(t/(2w))te trees.

If N = 1, i.e., if there is only a single tree, we use a single root bit to distinguish between
black and nonblack (i.e., white or gray). In order to indicate a white root, in addition to
initializing the root bit to the value that denotes a nonblack color, we store in A[0] a value
that cannot be the history of a gray root, such as one in which all colors in the navigation
vector of the root are white. The total redundancy is 1 = N ≤ dn(t/(2w))te.

If N > 1, we solve the problem of initializing the N trees differently. Each tree has
two root bits, and we must set these to indicate a white root. Assume, for convenience,
that the root color white is represented through two bits with a value of zero. Then the
task is to clear the 2N root bits, i.e., to set them to zero. Pack the 2N root bits tightly
in M = b2N/wc fully occupied words and at most one partially occupied word. If there
is an only partially occupied word, clear it explicitly. As for the M fully occupied words,
maintain these, if M ≥ 1, in a clearable word array implemented with the folklore method
discussed near the end of Section 2. In addition to the M words, this needs space for two
tables with altogether 2M entries and one counter that takes values in {0, . . . , M}. Each
table entry fits in a w-bit word, and except in the trivial case w = 1, the counter can be
stored in N bits, so the redundancy is at most 3Mw + N ≤ 7N . Since N > 1, we even
have 8N ≤ 16(n/c)(t/(4w))t = n(t/(4w))t ≤ dn(t/(2w))te. This slightly stronger bound is
irrelevant here, but useful in a proof of Theorem 2. J

In order to derive Theorem 2 from Lemma 6 and its proof, we show in [11] how to “hide”
the parameters n and t in the data structure essentially without additional space or how to
make do without them.

It is interesting to note that we can add an additional operation to our clearable word
array, namely an iteration that enumerates all first arguments of past write operations

ISAAC 2017



44:12 On-the-Fly Array Initialization in Less Space

(informally, the positions to which writing took place). For this we would iterate over the
codes handed out by the folklore method and the associated trees, which is easy, enumerate
all leaves of each tree whose root is black, and for each tree whose root is gray carry out a
depth-first search (say) of its gray nodes and enumerate all leaf descendants of their black
children. The time needed is proportional to the number k of leaves enumerated plus the
total number of gray nodes, a quantity that is clearly bounded by (t + 1)k and never larger
than 2n. The iteration must be called with an argument that indicates n.

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.
2 Andrei Alexandrescu. The D Programming Language. Addison-Wesley, 2010.
3 D. Angluin and L. G. Valiant. Fast probabilistic algorithms for Hamiltonian circuits and

matchings. J. Comput. Syst. Sci., 18(2):155–193, 1979. doi:10.1016/0022-0000(79)
90045-X.

4 Amos Fiat, J. Ian Munro, Moni Naor, Alejandro A. Schäffer, Jeanette P. Schmidt, and
Alan Siegel. An implicit data structure for searching a multikey table in logarithmic time.
J. Comput. Syst. Sci., 43(3):406–424, 1991. doi:10.1016/0022-0000(91)90022-W.

5 Gianni Franceschini and Roberto Grossi. No sorting? Better searching! ACM Trans.
Algorithms, 4(1):2:1–2:13, 2008. doi:10.1145/1328911.1328913.

6 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993. doi:10.1016/0022-0000(93)
90040-4.

7 Kimmo Fredriksson and Pekka Kilpeläinen. Practically efficient array initialization. J.
Softw. Pract. Exper., 46(4):435–467, 2016. doi:10.1002/spe.2314.

8 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java Language
Specification, Java SE 8 Edition. Oracle America, 2015.

9 Torben Hagerup. Sorting and searching on the word RAM. In Proc. 15th Annual Symposium
on Theoretical Aspects of Computer Science (STACS 1998), volume 1373 of LNCS, pages
366–398. Springer, 1998. doi:10.1007/BFb0028575.

10 Torben Hagerup and Frank Kammer. Succinct choice dictionaries. Computing Research
Repository (CoRR), arXiv:1604.06058 [cs.DS], 2016. arXiv:1604.06058.

11 Torben Hagerup and Frank Kammer. On-the-fly array initialization in less space. Comput-
ing Research Repository (CoRR), arXiv:1709.10477 [cs.DS], 2017. arXiv:1709.10477.

12 IEC/IEEE International Standard; Behavioural languages — Part 1–1: VHDL Language
Reference Manual. IEC 61691–1–1:2011(E) IEEE Std 1076-2008, 2011. doi:10.1109/
IEEESTD.2011.5967868.

13 Takashi Katoh and Keisuke Goto. In-place initializable arrays. Computing Research Repos-
itory (CoRR), arXiv:1709.08900 [cs.DS], 2017. arXiv:1709.08900.

14 J. Ian Munro. An implicit data structure supporting insertion, deletion, and search in
O(log2 n) time. J. Comput. Syst. Sci., 33(1):66–74, 1986. doi:10.1016/0022-0000(86)
90043-7.

15 Gonzalo Navarro. Spaces, trees, and colors: The algorithmic landscape of document re-
trieval on sequences. ACM Comput. Surv., 46(4):52:1–52:47, 2014. doi:10.1145/2535933.

http://dx.doi.org/10.1016/0022-0000(79)90045-X
http://dx.doi.org/10.1016/0022-0000(79)90045-X
http://dx.doi.org/10.1016/0022-0000(91)90022-W
http://dx.doi.org/10.1145/1328911.1328913
http://dx.doi.org/10.1016/0022-0000(93)90040-4
http://dx.doi.org/10.1016/0022-0000(93)90040-4
http://dx.doi.org/10.1002/spe.2314
http://dx.doi.org/10.1007/BFb0028575
http://arxiv.org/abs/1604.06058
http://arxiv.org/abs/1709.10477
http://dx.doi.org/10.1109/IEEESTD.2011.5967868
http://dx.doi.org/10.1109/IEEESTD.2011.5967868
http://arxiv.org/abs/1709.08900
http://dx.doi.org/10.1016/0022-0000(86)90043-7
http://dx.doi.org/10.1016/0022-0000(86)90043-7
http://dx.doi.org/10.1145/2535933

	Introduction
	Previous Work
	Our Contribution
	The Construction

