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Abstract
In the recent years, intensive research work has been dedicated to prove conditional lower bounds
in order to reveal the inner structure of the class P. These conditional lower bounds are based on
many popular conjectures on well-studied problems. One of the most heavily used conjectures
is the celebrated Strong Exponential Time Hypothesis (SETH). It turns out that conditional
hardness proved based on SETH goes, in many cases, through an intermediate problem - the
Orthogonal Vectors (OV) problem.

Almost all research work regarding conditional lower bound was concentrated on time com-
plexity. Very little attention was directed toward space complexity. In a recent work, Goldstein
et al. [17] set the stage for proving conditional lower bounds regarding space and its interplay
with time. In this spirit, it is tempting to investigate the space complexity of a data structure
variant of OV which is called OV indexing. In this problem n boolean vectors of size c logn are
given for preprocessing. As a query, a vector v is given and we are required to verify if there is
an input vector that is orthogonal to it or not.

This OV indexing problem is interesting in its own, but it also likely to have strong implic-
ations on problems known to be conditionally hard, in terms of time complexity, based on OV.
Having this in mind, we study OV indexing in this paper from many aspects. We give some
space-efficient algorithms for the problem, show a tradeoff between space and query time, de-
scribe how to solve its reporting variant, shed light on an interesting connection between this
problem and the well-studied SetDisjointness problem and demonstrate how it can be solved
more efficiently on random input.
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1 Introduction

Recently, there is an intensive research work aimed at understanding the complexity within
the class P (decision problems that are solved by polynomial time algorithms). Specifically,
many conditional lower bounds have been proven on many polynomial algorithmic problems.
These lower bounds are based on some conjectures on well-studied problems, especially
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notable are 3SUM, APSP and SETH. The Strong Exponential Time Hypothesis (SETH) [18,
19] states the following:

I Conjecture 1 (Strong Exponential Time Hypothesis). There is no ε > 0 such that kSAT
can be solved in O(2(1−ε)n) for all k.

Many conditional lower bounds for both polynomial and exponential time solvable prob-
lems are based on this conjecture. A partial list includes [25, 21, 14, 28, 4, 6, 8, 16, 7, 2, 9,
1, 5, 22]. For polynomial time solvable problems many of the conditional lower bounds are
proven through the use of an intermediate problem called Orthogonal Vectors (OV) which
is defined as follows.

I Definition 1 (Orthogonal Vectors). Given a set S of n input vectors from {0, 1}d, decide
if there are u, v ∈ S such that u is orthogonal to v.

If SETH is true then there is no O(n2−ε) solution for OV for any ε > 0 (see [29, 30]). This
conditional lower bound on OV was heavily used to obtain conditional lower bounds on the
time complexity of a long list of algorithmic problems. This includes graph problems [28, 22],
dynamic problems [4], string problems [6, 7, 2, 9] and many other important problems from
a variety of research fields.

A recent work by Goldstein et al. [17] set the stage for proving conditional lower bounds
on space-time tradeoffs. Specifically, it was suggested that we can achieve space lower bounds
by considering a data structure variant of SAT. Given a formula φ in a CNF format and
a list of variables L from φ, we need to preprocess φ and L and create a data structure to
support the following queries. Given an assignment to all variables not in L we are required
to answer if this assignment can be completed to a full assignment that satisfies φ. A closely
related problem is Orthogonal Vectors Indexing (OV Indexing) that is defined as follows.

I Definition 2 (Orthogonal Vectors Indexing). Given a set S that contains n d-length boolean
vectors, preprocess S and answer queries of the following form: given d-length boolean vector
v, is there a vector in S which is orthogonal to v.

SETH can be reduced to OV indexing (see the details in the full version of this paper).
As a consequence of this reduction there is no polynomial time preprocessing algorithm for
OV indexing that achieves truly sublinear query time.

The main question that we consider is what the space requirements of OV indexing
are. In this paper we examine this question in detail from various aspects for the case that
d = c logn for some constant c > 1 (if c is non-constant its seems hard to achieve any
improvement due to the connection to SETH). On one hand, solving OV indexing for input
vectors of length c logn can be done easily using a lookup table of size nc. Using this table,
queries can be answered in constant time. On the other hand, without any preprocessing
queries can be answered in linear time. It is interesting to figure out what can be done
in between these two extremes. Can we achieve truly sublinear query time with less than
nc space? Is there a clear tradeoff between time and space? What can we say about the
reporting version of this problem? In this paper we investigate all these questions and more.

Understanding the space requirements of OV indexing is interesting in its own right, but
it can have many implications on other problems. Along the lines of Goldstein et al. [17] OV
indexing can serve as a basis for proving conditional hardness in terms of space for other
algorithmic problems. Specifically, as OV is a standard tool in demonstrating conditional
hardness of problems in terms of time it is likely that understanding the space hardness of
its data structure variant - OV indexing - can be applied to many problems shown to be hard
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based on OV. In the work by Goldstein et al. [17] there was an attempt to state a general
hardness conjecture for OV indexing. However, as no solution to neither OV indexing nor
the data structure variant of SAT was suggested in [17] (other than the trivial ones), a
more fine grained conjecture was out of reach. One major motivation for this paper is to
state such a conjecture based on improved upper bounds for OV indexing (see more detailed
discussion in the last section of this paper).

Related Work. The Partial Match problem and its variants were extensively studied for
decades. These problems are related to our OV indexing problem (see, for example, [3]).
One of the first works regarding Partial Match is by Rivest [26, 27]. However, his work
focused on the average case analysis of several solutions for the problem that in the worst
case do not achieve an improvement over the trivial solution, unless the number of "don’t
cares" symbols (corresponding to the zeroes in the OV indexing problem) in the query is not
too large. Many works on the Partial Match problem and its variants focus on improving the
time complexity rather than the space complexity which is the main concern of this paper.
Other works that do consider space complexity deal with the case of very large dimension
d that can be even linear in n [10, 13, 20]. This case admits very different behaviour from
the case we handle in this paper in which d = Θ(logn).

Our Results. In this paper we present the following results regarding OV indexing. We
suggest 3 algorithms that solve OV indexing with truly less that nc space and truly sublinear
query time. We show how to use the second and third algorithms we present to get a tradeoff
between space and query time. A variant of the first algorithm is used to prove the connection
between OV indexing and SetDisjointness, a problem which was considered by several papers
as the basis for showing space conditional hardness. We also solve the reporting variant of
OV indexing in which we need to report all input vectors that are orthogonal to our query
vector. Finally, we show that, on random input vectors, OV indexing can be solved more
efficiently in terms of space.

2 DivideByOnes: First Space-Efficient Solution for OV indexing

Our goal is to achieve an algorithm that has truly sublinear query time and requires O(nc−ε)
space for some ε > 0. This is an improvement over the trivial algorithm that uses nc space.
We note that in this solution and throughout this paper the notations Õ and Ω̃ (almost
always) suppress not just polylogarithmic factors as usual, but also all factors that are
smaller than nε for any ε > 0.

2.1 DivideByOnes Algorithm

Preprocessing. The first step is to save a set S1 of all vectors from S with at most c1 logn
ones for some constant 0 < c1 ≤ c/2. There are at most

∑c1 logn
k=0

(
c logn
k

)
≤ c1 logn

(
c logn
c1 logn

)
vectors in S1. We have that

(
c logn
c1 logn

)
≈ nc log c−c1 log c1−(c−c1) log (c−c1). We choose the largest

c1 such that the number of vectors in S1 will be Õ(n1−ε) for some ε > 0.
Let S2 be the set of vectors from S with more than c1 logn ones. Assume that c is an

integer. We split each vector in S2 into c parts each of length logn bits. As all the vectors
in S2 have at least c1 logn ones, we are guaranteed that at least one of the c parts of each
vector has at least c1

c logn ones.
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We have n possible vectors of size logn, so we create c arrays A1, A2, ..., Ac of length n
each, such that the ith entry in each array represents the logn-length boolean vector that
its numerical value is i. In the ith entry of an array Aj we create a list that contains each
vector v ∈ S2 such that: (i) The number of ones it has in its jth part is the maximum
among all its parts (ties are broken arbitrarily). (ii) The value of its bits in its jth part is
orthogonal to the value of the logn-length vector whose numerical value is i (the numerical
value of an m-length vector is the value of this boolean vector that is parsed as an m-length
boolean number).

To analyse the space consumed by these arrays one should notice that each vector v ∈ S2
appears only in one array. Moreover, as v appears only in the array that represents the part
in which v has the maximum number of ones, the number of lists in this array that contain
v is at most n

2
c1
c

logn
= n1− c1

c . Therefore, the total size of all arrays is no more than

n · n1− c1
c = n2− c1

c which is truly subquadratic.

Query. When we get a query vector u we first check in S1 if there is a vector that is
orthogonal to u. Then, we partition u to c equal parts. For each part j if the numerical
value of all bits in this part is i we check all the vectors in the ith list of Aj and verify if
one of them is indeed orthogonal to u. The problem with this process is that the length of
the list we check may be Ω̃(n), so our query time will be O(n) which is trivial. To overcome
this and obtain a constant query time for long lists, we need to treat lists whose length is
Ω̃(n) differently in the preprocessing phase.

Additional Preprocessing. For each entry i in some array that the length of the vectors
list in it is not truly sublinear, we store a bitmap that tells for all possible values of the other
(c− 1) logn bits whether there is a vector in S that is orthogonal to these bits and the logn
bits represented by i. The size of the bitmap is 2(c−1) logn = nc−1. As calculated before, the
total number of vectors in all lists of the array is n2− c1

c . Consequently, the number of lists
that have Ω̃(n) vectors in them is no more than n1− c1

c . Therefore, the space needed for all
bitmaps is nc−

c1
c .

2.1.1 Generalization to klogn
We can generalize the above solution by partitioning the vectors to parts whose size is k logn
for some k > 0. First we consider the case that k divides c. In this case, the algorithm
continues in same way as for the case that k = 1. The number of lists in each array is
nk. Each input vector v has at least c1

c k ones in the part with the largest number of
ones. Consequently, each input vector v occurs in nk−

c1
c k lists in the array corresponding

to the part with most ones in v. The total size of all arrays and lists is O(nk+1− c1
c k). The

number of long lists is at most O(nk−
c1
c k). Each bitmap has size nc−k. Therefore, the

space usage for handling long lists is O(nc−
c1
c k). The total space of the data structure is

O(nk+1− c1
c k + nc−

c1
c k). By setting k = c− 1 (if possible, otherwise see the next paragraph)

we get the lowest space complexity, which is O(nc−c1(1− 1
c )).

In case k does not divide c, we can partition each vector to b ck c parts of length k logn.
However, we are left with one part P whose length is smaller than k logn. It can be the
case that for some input vector v the number of ones in each of the parts of length k logn is
smaller than c1

c k, as there can be many ones in P . In order to solve this problem we can do
the following. Let c′1 = c1 − ε for any ε > 0. We define k′ = bkε cε and c

′ = b cεcε. It is clear
that k′ > k − ε and c′ > c − ε. Each input vector v can be partitioned to m1 = b cεc parts
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P1, P2, ..., Pm1 whose length is ε and another optional part P whose length is less than ε. If
we ignore the bits of any vector in P , we are still guaranteed that there are at least c′1 ones in
the rest of the vector. We can choosem2 = bkε c parts from them1 parts P1, P2, ..., Pm1 . This
will give us exactly k′ logn bits. There are m3 =

(
m1
m2

)
options of how to choose m2 parts out

of the m1 parts. The number m3 is constant as k, c and ε are all constants. Therefore, we
can create m3 arrays A1, A2, ..., Am3 each one of them represents some k′ logn bits from our
input vectors. We handle these arrays as in the regular case explained above. The crucial
point one should observe is that for each input vector v there must be k′ logn bits among
these m3 options that contains at least c

′
1
c k of the ones in v. Let Ai be the array representing

k′ logn bits out of the m3 options that contains the maximum number of ones in v. We are
guaranteed that v will appear in at most nk′−

c′1
c k
′ lists in Ai. We continue the solution as

in the regular case. Following the analysis of the regular case, we have that the total space
of the data structure will be O(nk′+1−

c′1
c k
′ +nc−

c′1
c k
′). As k− ε < k′ ≤ k and c′1 = c1− ε, we

get that the total space is O(nk+1− c1−ε
c (k−ε) + nc−

c1−ε
c (k−ε)). Setting k = c − 1 as before,

we get that the space is O(nc−
c1−ε
c (c−1−ε)). We can make this space complexity as close as

we wish to the space complexity for the case k divides c by choosing ε whose value is very
close to 0. Consequently, we have the following result (c1 is the largest number that satisfies(
c logn
c1 logn

)
= Õ(n1−δ) for some δ > 0):

I Theorem 3. For every ε > 0 the DivideByOnes algorithm solves OV indexing with truly
sublinear query time using O(nc−

c1−ε
c (c−1−ε)) space.

3 TopLevelsQueryGraph: Second Space-Efficient Solution for OV
indexing

There are two problems with the previous solution. The first one is the sharp separation
between long lists (having Õ(n) vectors) and short lists. For long lists we use a large amount
of space and answer queries very quickly in constant time, while for short lists we just save
the vectors in the lists and spend time in the query stage. The second problem is that each
input vector is saved many times in different lists.

3.1 Query Graph
In order to improve the space requirements for sublinear query time we introduce the notion
of a query graph. The idea of the query graph is to create a tradeoff between query time
and space and save each vector just once. We are now ready to define the query graph. A
query graph is a directed acyclic graph G = (V,E) such that each vertex vi in V represents
a boolean vector αi of length k logn. There is an edge (vi, vj) ∈ E if the vectors αi and
αj differ on exactly one element which is 0 in αi and 1 in αj . Following this definition the
query graph can be viewed as a layered graph with k logn layers. The jth layer in this graph
contains all the nodes vi such that the number of ones in αi is exactly j. All the edges from
the vertices in the jth layer are directed to vertices in the (j+ 1)th layer. We call the layers
for small values of j top layers and the layers with high values of j bottom layers.

Let W be a set of indices such that W ⊆ [c logn] and |W | = k logn. We want each
vertex vi that represents a vector αi to contain a list Li of input vectors such that their
elements in the indices specified by W are orthogonal to αi. This is the same as we did
in the previous construction as each entry in an array contains all input vectors that are
orthogonal to the value of this entry in indices of the relevant part. However, instead of

ISAAC 2017
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saving all input vectors that are orthogonal to αi in the indices specified by W , we just
pick all the input vectors that their elements in the indices specified by W are exactly the
complements of the elements in αi. All these vectors are saved in the list Li in vertex vi.
Using these lists, we have the following easy observation:

I Observation 1. Given a set W ⊆ [c logn] such that |W | = k logn, the complete list of
input vectors such that their values in the indices specified by W are orthogonal to some αi
can be recovered by concatenating all lists of vectors in the vertices that are reachable from
vertex vi in the query graph G.

3.2 TopLevelsQueryGraph Algorithm
We start the preprocessing phase by constructing a query graph G. Now, following the
last observation, instead of saving each vector many times in all the lists that their index
is orthogonal to our query in the relevant indices (as suggested by the previous solution),
we can save each vector in just one list and recover the original list by traversing G. We
start the traversal from the vertex vi such that the values of the query vector in the indices
specified byW are equal to αi. We can use any standard graph traversal algorithm to obtain
all the input vectors that are orthogonal to the query vector in the indices specified by W .
The number of vertices that we visit in the traversal of the query graph for a query vector
q that have k′ logn ones in the indices specified by W is 2k logn−k′ logn = nk−k

′ .
We can identify two types of nodes in the query graph. A node vi that has an empty

list Li is considered a black node, otherwise it is considered a white node. We note that the
number of white nodes is at most n and it can be O(n) if the input vectors are split between
many lists. In order to achieve a truly sublinear query time we would like the number of
nodes we visit during the traversal in the query graph to be truly sublinear. Moreover, as
the number of white nodes can be Θ(n) we need to make sure that the total number of white
nodes we visit is truly sublinear even if we know how to avoid black nodes. As mentioned
before, the number of nodes we visit during our traversal is nk−k′ which is truly sublinear
if we set k − k′ < 1. This means that we need to handle queries that match some vertex vi
in the top levels of the query graph differently. For all vertices vi in the x top levels of the
graph we create a list L′i of all input vectors that are orthogonal to αi. Then, for each list
L′i we create a bitmap to quickly identify if there is a vector in the list that is orthogonal
to our query. The size of each bitmap is nc−k. The total number of bitmaps we create
is Õ(

(
k logn
x logn

)
) for x ≤ k/2 as the number of vectors in the jth level of the query graph is(

k logn
j logn

)
(we choose j logn positions for the ones in αi out of k logn positions). Moreover,

the number of layers is logarithmic in n. Thus, the total required space for handling the
top layers of the query graph is Õ(nc−k

(
k logn
x logn

)
). The binomial coefficient

(
k logn
x logn

)
can be

approximated by nk log k−x log x−(k−x) log (k−x) using Stirling’s approximation. So, the total
space for the top layers is approximately Õ(nc−k+k log k−x log x−(k−x) log (k−x)).

Now, a query vector q that matches a vertex vi in the x top levels can be answered
in constant time by just looking at the proper entry in the bitmap of vi. Otherwise, the
number of vertices we need to traverse in the query graph will be at most nk−x which is
truly sublinear if k − x < 1. The problem is that the total number of vectors in the lists
of these vertices can be θ(n). To overcome this problem, we change the way we handle any
list Li in the (k − x) logn bottom levels according to the number of elements in it. If the
number of elements in the list is O(n1−k+x) we do nothing - the elements are kept in the
list with no special treatment. Otherwise, we save a bitmap over all the possibilities of the
other bits in the query vector. The size of the bitmap, as before, is nc−k. The number of
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lists that have more than O(n1−k+x) elements is at most nk−x. Therefore, the space for all
the bitmaps of the long lists is nc−x. We have that the total space of our data structure
is Õ(nc−k+k log k−x log x−(k−x) log (k−x) + nc−x). To obtain the best space complexity (while
preserving the truly sublinear query time), we set k very close to 1.3 and x to 0.3. The space
complexity of this solution using these values is approximately Õ(nc−0.3). To conclude, we
obtain the following result:

I Theorem 4. The TopLevelsQueryGraph algorithm solves OV indexing with truly sublinear
query time using approximately Õ(nc−0.3) space.

4 BottomLevelsQueryGraph: Third Space-Efficient Solution for OV
indexing

We can use the query graph to obtain another solution to the OV indexing problem. This
time we focus on the x bottom levels of the query graph. For each vertex vi in the x bottom
levels of the query graph we save a bitmap to quickly identify if there is an input vector
such that (a) Its bits in the indices specified by W are the complements of αi and (b) It is
orthogonal to our query vector. The space we invest in these bitmaps is Õ(nc−k

(
k logn
x logn

)
).

Then, for every vertex vi which is not in the x bottom levels of the query graph we save in
its list Li all the input vectors that are orthogonal to αi, but do not appear in the any of the
lists of the vertices in the x bottom. For every list Li that its length is θ̃(n) we save a bitmap
to get the answer in Õ(1) time. Because we do not include in any list Li vectors from the
lists in the x bottom levels, we are guaranteed that each input vector appears in at most
nk−x lists. In our view of the query graph, this means that if an input vector appears in the
list Li of some vertex vi it will be duplicated in the lists of all vertices that vi is reachable
from them. Consequently, the total number of vectors in all lists above the x bottom levels
is at most n1+k−x. Therefore, the number of bitmaps we will save for lists of size θ̃(n) is at
most nk−x. Each bitmap is of nc−k space, so the size of all bitmaps is nc−x. The total size
of the data structure is again Õ(nc−k+k log k−x log x−(k−x) log (k−x) + nc−x).

Upon receiving a query vector q, if it matches a vertex in one of the x bottom levels,
we immediately get the answer by looking at the right entry in the bitmap in that vertex.
Otherwise, we need to look not just at the bitmap of the vertex that matches our query,
but rather we have to go over all the vertices vi in the (k − x) logn level (the top level of
the x bottom levels) such that αi is orthogonal to q in the positions specified by W . In all
these vertices we check in their bitmap if there is an input vector that is orthogonal to q. If
k − x < 1 we ensure that the query time is sublinear in n. All in all, we obtain a solution
that has the same query time and space complexities as the previous one using a different
approach, as summarized in the following theorem:

I Theorem 5. The BottomLevelsQueryGraph algorithm solves OV indexing with truly sub-
linear query time using approximately Õ(nc−0.3) space.

5 Space and Query Time Tradeoff for Solving OV indexing

In all the solutions we presented so far we tried to minimize the space usage and still achieve
a sublinear query time. However, obtaining a tradeoff between the space and query time
would be of utmost interest. We know how to obtain constant query time by using nc space.
But can we obtain, for example, O(

√
n) query time using just nc−ε space for some ε > 0? In

the first method we have suggested there is an inherent problem to achieve this as all lists

ISAAC 2017
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can have more than O(
√
n) vectors. In the second and third solutions we can improve the

query time by choosing larger x. However, as x becomes k/2 the space of the data structure
becomes Õ(nc). The following theorem demonstrates how to obtain any polynomial query
time while consuming O(nc−γ) space for some γ > 0.

I Theorem 6. For any ε > 0 there is a solution to OV indexing that its query time is O(nε)
and the space complexity is O(nc−γ) for γ > 0.

Proof. The idea is to combine the second and third solutions. We can save bitmaps for both
the x top levels and the x bottom levels of the query graph using Õ(nc−k

(
k logn
x logn

)
) space.

Then, for every vertex that is not in the x top or bottom levels we do the same as in the second
solution - save a bitmap for every node whose list is of length θ(nδ) or more for some δ > 0.
The total cost of these bitmaps is Õ(nc−k+1−δ). When we get a query vector q that matches
a vertex vi in our query graph. If vi is on the x top or bottom levels, we just check the right
entry in the bitmap of vi. Otherwise, we start a traversal from vi to all the vertices that are
reachable from it except those in the x bottom levels. The number of vertices we visit is at
most

((k−x) logn
x logn

)
if k/3 < x. This is approximately Õ(n(k−x) log k−x−x log x−(k−2x) log (k−2x)).

It is easy to verify that as x gets close to k/2 the exponent of this expression is very close
to 0. Therefore, the total query time is Õ(nδ+(k−x) log (k−x)−x log x−(k−2x) log (k−2x)) as the
query time in each vertex we visit is at most nδ. By choosing suitable value of k ≥ 1,
x < k/2 and δ > 0, we can obtain a query time of Õ(nε) for any ε > 0 using a data structure
that consumes Õ(nc−γ) space for some constant γ > 0. J

6 The Reporting Version of OV indexing

In the reporting version of OV indexing, given a query vector q we are required not just to
decide if there is a vector in S that is orthogonal to q, but rather we are required to report
all input vectors in S that are orthogonal to q.

To solve this version we can use the same methods as we have described for the decision
version. However, the only part of these solutions that does not support reporting is the use
of bitmaps. Using a bitmap we can answer the query quickly if there is an input vector that
is orthogonal to our query vector, but we are unable to discover the list of input vectors that
are orthogonal to the query if there are such vectors. The following lemma demonstrates
how to construct a data structure that uses almost the same space as a bitmap, but supports
efficient reporting.

I Lemma 7. Given n c logn-length boolean vectors, there is a data structure that uses Õ(nc)
preprocessing time and upon receiving a query vector v report on all t input vectors that are
orthogonal to v in time O(t logn)

6.1 Improving The Query Time
We can remove the dependency on n in the query time as shown by the following theorem1.

I Theorem 8. Given n c logn-length boolean vectors, there is a data structure that uses
Õ(nc) space and upon receiving a query vector v report on all t input vectors that are ortho-
gonal to v in O(t) time.

1 All missing proofs appear in: https://arxiv.org/abs/1710.00586
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We can plug in the data structure from the previous theorem into any of the three
solutions for OV indexing and get solutions for the reporting version of OV indexing that
have the same space usage (up to logarithmic factors) and just an additive O(t) to the query
time.

7 Reducing OV indexing to SetDisjointness

In this section we present a connection between OV indexing and the problem of SetDis-
jointness. In the problem of SetDisjointness we are given m sets S1, S2, ..., Sm such that the
total number of elements in all sets is N and after preprocessing them we need to answer
queries of the following form: given a pair of indices (i, j), decide whether Si∩Sj is empty or
not. The problem can be generalized to k-SetDisjointness in which we are given as a query
a k-tuple (i1, i2, ..., ik) and we are required to answer if the intersection Si1 ∩Si2 ∩ ...∩Sik is
empty or not. The SetDisjointness problem was the first problem used to show conditional
lower bounds on space complexity(see [12, 24, 15, 23]). Therefore, it should be interesting
to see the connection between our OV indexing problem and the fundamental problem of
SetDisjointness. Other problems connected to SetDisjointness are discussed in [17]. Cur-
rently, the best known space-query time tradeoff for k-SetDisjointness is S × T k = O(Nk),
where S is the space complexity and T is the query time [11, 17].

We begin by presenting a simple reduction from OV indexing to k-SetDisjointness for
k = c logn. Given an instance of OV indexing with n c logn-length boolean input vectors
we can create an instance of k-SetDisjointness in the following way. We create c logn sets.
The set Si contains all the vectors that have 0 in their ith element. Then, given a query
vector q that has ones in the elements whose indices are (i1, i2, ..., ik) all that we need in
order to answer this query is to verify if the intersection Si1 ∩Si2 ∩ ...∩Sik is empty or not.
If it is empty then we know that there is no input vector that has zeroes in all the position
of the ones in q, which means that no input vector is orthogonal to q. Otherwise, there is
an input vector which is orthogonal to q.

We would like to show this reduction to other values of k, especially small and constant.
The idea is to use the first solution that we have suggested to obtain the following result:

I Theorem 9. There is a reduction from OV indexing to k-SetDisjointness that can be used
to solve OV indexing with truly sublinear query time and O(nc−γ) space for some 0 < γ < 1.

8 OV indexing for Random Input

The solution to OV indexing that we have described in Section 3 is limited by the tradeoff
between the bitmaps for the lists in the top levels of the query graphs (lists in vertices vi
such that αi has a small number of ones) and the bitmaps for long lists in the bottom levels
of the query graph. Therefore, we may improve the solution by making the lists in the
bottom levels short, as for short lists we only save the elements themselves. We also note
that we can also benefit from making the lists in the bottom levels very long, since their
number is small. Consequently, the costly lists are those that are not too short and not too
long.

In the solution we have presented in Section 3, we pick a set W of the indices for the
query graph. Our solution works for any choice of W , but the question is whether there is a
choice of W that will make the list shorter or longer, so we can utilize it for a more compact
solution to OV indexing. In the following lemma we show that for random input vectors
that are uniformly distributed the probability for choosing W such that there are lists that
are not short is small.

ISAAC 2017
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I Lemma 10. The size of every list Li in the query graph of the second solution of OV
indexing is at most logarithmic w.h.p. for any choice of W (the set of k logn indices) on
random input vectors, where k ≥ 1.

The last lemma guarantees that on random input vectors for any choice of W the length
of all lists in the query graph are supposed to be of length at most 4c logn w.h.p. Therefore,
instead of saving bitmaps for both lists in the top levels of the query graph and long lists in
the bottom levels of the query graph, we need to save bitmaps just for the former as the latter
do not exist. Consequently, for c logn-length input vectors we just create the query graph
with nodes representing logn-length vectors and save bitmaps for the top δ logn levels, for
some δ > 0. The space required by these bitmaps is nc−1+ε, for some ε > 0 that can be as
small as possible by choosing appropriate small value for δ. To conclude, we have obtained
the following result:

I Theorem 11. OV indexing on random input vectors can be solved in expected truly sub-
linear query time using O(nc−1+ε) space, for any ε > 0.

This improved space complexity for random input makes it tempting to think that the
same property holds even for worst case input. More specifically, it is enough to have just
one W that will map all input vectors to short or long lists. It turns out that for worst case
input this cannot be achieved. In the following lemma we show how to create a worst case
input vectors such that many lists in the query graph are neither too short nor too long.

I Lemma 12. There exist n c logn-length input vectors such that for all W ⊆ [k logn] there
are Θ(n) vectors that are mapped by hW to lists of size between n1/6 and n2/3

In the last lemma we can obtain values other than n1/6 and n2/3 by changing the basic
block size from 0.5 logn to some other r logn for r > 0.

This demonstrates that for worst-case input vectors, as opposed to random input vectors,
there can be O(n) vectors that are mapped to lists that are neither too short nor too long.
The exact size can be controlled by proper choices of block and group size.

9 Further Research

In this paper we presented several algorithms to solve OV indexing that obtain truly sub-
linear query time and require O(nc−γ) space for some constant 0 < γ < 1. For random
input vectors we demonstrated in Section 8 how to obtain sublinear query time solution to
OV indexing using O(nc−γ) for any 0 < γ < 1. We note that the preprocessing time of all
algorithms is polynomial in n.

The main question regarding OV indexing, following this paper, is can one obtain a sub-
linear query time solution to OV indexing that requires only O(nc−1) space. This question
is interesting even if we allow an unlimited preprocessing time. We conjecture that there is
no such solution to OV indexing:

I Conjecture 2. There is no truly sublinear query time solution to OV indexing that requires
only O(nc−1) space.

Even if that conjecture is false, it is of utmost interest to find the exact lower bound
on the space requirements of OV indexing for both unlimited and polynomial preprocessing
time. Finding the exact space requirements can be used to obtain conditional lower bounds
on the space complexity of many problems known to be conditionally hard in terms of time
based on OV.
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