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Abstract
In the stable marriage problem, we are given a set of men, a set of women, and each person’s
preference list. Our task is to find a stable matching, that is, a matching admitting no unmatched
(man, woman)-pair each of which improves the situation by being matched together. It is known
that any instance admits at least one stable matching. In this paper, we consider a natural
extension where k(≥ 2) sets of preference lists Li (1 ≤ i ≤ k) over the same set of people are
given, and the aim is to find a jointly stable matching, a matching that is stable with respect
to all Li. We show that the decision problem is NP-complete already for k = 2, even if each
person’s preference list is of length at most four, while it is solvable in linear time for any k if
each man’s preference list is of length at most two (women’s lists can be of unbounded length).
We also show that if each woman’s preference lists are same in all Li, then the problem can be
solved in linear time.
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1 Introduction

In this paper, we focus on the stable marriage problem [3] with incomplete preference lists
(SMI ). An instance I of SMI is a triple I = (U,W,L), where U and W are the sets of men
and women, respectively, such that |U | = |W |(= n), and L is the set of 2n preference lists,
one for each person. A person p’s preference list in L is denoted by L(p). Each person’s
preference list strictly orders a subset of the members of the opposite gender. If a person p
is included in L(q), we say that p is acceptable to q. If p is acceptable to q and vice versa,
(p, q) is called an acceptable pair.

A matching is a set of acceptable (man, woman)-pairs in which no person appears more
than once. For a matching M , a man m, and a woman w, if (m,w) ∈ M then we write
M(m) = w and M(w) = m. If there is no w (respectively, m) such that (m,w) ∈M , we say
that m (respectively, w) is single or unmatched in M . For a matching M , if (i) (m,w) is an
acceptable pair, (ii) m is single in M or prefers w to M(m), and (iii) w is single in M or
prefers m to M(w), then we say that (m,w) is a blocking pair for M in L, or (m,w) blocks
M in L. If there is no blocking pair for M in L, then we say that M is stable in L. It is
well-known that any SMI instance admits at least one stable matching [3].
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56:2 Jointly Stable Matchings

In this paper, we consider an extension of SMI where two or more sets of preference lists
are given. An instance I of the Stable Marriage problem with k Incomplete lists (SMkI) is a
(k+2)-tuple I = (U,W,L1, L2, . . . , Lk), where U andW are the same as above, and each Li is
a set of preference lists. It asks if there exists a matching M that is stable in every Li. Such a
matching M is called jointly stable. Let a and b be positive integers. The restriction of SMkI
where the lengths of preference lists of men are at most a and those of women are at most
b is denoted by (a, b)-SMkI. If a (respectively, b) is ∞, it means that the lengths of men’s
(respectively, women’s) preference lists are unbounded. Surprisingly, although this problem
is a natural extension of the classical stable marriage problem, to the best of the authors’
knowledge it has not been considered before in the literature. Note that since the number
of stable matchings grows exponentially in the size of the input [7, 5, 13], an algorithm of
enumerating all the stable matchings for each Li and computing their intersection is not
polynomial-time bounded.

Besides its theoretical interest, the problem has several applications: Consider a scenario
of assigning medical residents to hospitals, where each resident needs to take training in three
fixed clinical departments, e.g., surgery, pediatrics, and internal medicine, at an assigned
hospital. A resident r ranks hospitals according to her preference, but her ranking of hospitals
may differ depending on clinical departments. As a result, she has three (possibly different)
preference lists over hospitals, L1(r) for surgery, L2(r) for pediatrics, and L3(r) for internal
medicine. On the other hand, each clinical department may have its own criteria for ranking
residents, so each hospital h has three independent preference lists over residents, L1(h)
from surgery, L2(h) from pediatrics, and L3(h) from internal medicine. Clearly a blocking
pair in some Li may cause dissatisfaction to the corresponding resident and department, so
we want to avoid such an assignment. Another example is a match making of Judo team
competition. Suppose that there are five different weight classes, and one team consists of
five players, each from each class. As a personal preference, a player p of team T who belongs
to the weight class C is interested in only the players of the same class C, who are potential
candidates for p’s opponent. Therefore, each team has five preference lists corresponding to
weight classes, and a matching avoiding blocking pairs in any class is desirable. Precisely
speaking, the first and the second examples may be suitable to the Hospitals/Residents and
the stable roommates, respectively, but we consider in this paper the stable marriage model
as a first step.

1.1 Our Results
We show that (4, 4)-SMkI is NP-complete for any k ≥ 2, while (2,∞)-SMkI is solvable in
time O(kn) for any k. Therefore the complexity of (3, `)-SMkI for ` ≥ 3 is left open.

We also show that SMkI (with unbounded-length preference lists) is solvable in polynomial
time if L1(w) = L2(w) = · · · = Lk(w) holds for every woman w. This can be thought of as
a case where each woman has only one preference list, and one of its interpretations is a
modification of the previous example of assigning residents to hospitals, where each resident
has three preference lists as above, but each hospital has one preference list determined by
e.g., a personnel director of the hospital, rather than three independent lists coming from
each clinical department.

1.2 Related Work
As noted above, there seems to be no research on stable matching problems considering
multiple preference lists over the same set of people. Only the related work we have found is
the bistable matching problem introduced by Weems [14]; given an instance I of the stable
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marriage problem (where preference lists are complete), let Î be the instance obtained by
reversing the ordering of each preference list of I. A matching is bistable if it is stable in both
I and Î. This is a special case of SM2I where all the preference lists are complete and L1(p)
is a reversed order of L2(p) for every person p. Weems showed an O(n2)-time algorithm to
find a bistable matching or to report that none exists. Sethuraman and Teo [11] showed that
the bistable roommates problem can also be solved in polynomial time. See pages 293–296
of [10] for a brief survey.

2 NP-completeness

In this section, we show the hardness result.

I Theorem 1. For k ≥ 2, (4, 4)-SMkI is NP-complete.

Proof. It is easy to see that (4, 4)-SMkI is in NP. In the following, we show that (4, 4)-SM2I
is NP-hard. To show the NP-hardness for general k, one may simply set L2 = L3 = · · · = Lk

in the reduction.

We give a polynomial-time reduction from the well-known NP-complete problem 3CNF
SAT. The definition of 3CNF SAT is as follows. Let x be a binary variable that takes 1(true)
or 0(false). A literal is a variable x or its negation x. A clause is a disjunction of literals, and
a Conjunctive Normal From (CNF) formula is a conjunction of clauses. A 3CNF formula is
a CNF formula in which each clause contains at most three literals. An instance of 3CNF
SAT is a 3CNF formula f and it asks if there exists an assignment to variables that makes
f true. We may assume without loss of generality that each clause contains exactly three
literals. (If a clause contains less than three literals, then repeat the same literal.)

Let f be an instance of 3CNF SAT, with variables x1, x2, . . . ,

xn and clauses C1, C2, . . . , Cm. We construct an instance I of (4, 4)-SM2I. For each i

(1 ≤ i ≤ n), let si be the number of occurrences of the variable xi. For the jth literal of the
variable xi (1 ≤ j ≤ si), we introduce two men ai,j and bi,j and two women ci,j and di,j .
We call them literal men and literal women. For each clause C`, we introduce nine men ui

`

(1 ≤ i ≤ 9) and nine women vi
` (1 ≤ i ≤ 9). We call them clause men and clause women.

Note that there are 15m men and 15m women in total.

The preference lists of literal people and clause people are given in Figures 1 and 2,
respectively. In ai,1 and di,1’s preference lists of L2 in Fig. 1, ci,j−1 and bi,j−1 are null; hence
their preference lists are of length two. Similarly, in bi,si

and ci,si
’s preference lists of L2,

di,j+1 and ai,j+1 are null. We then explain Ui,j and Vi,j in Fig. 1. Suppose that the jth
occurrence of xi is the tth literal of the clause C`. If this literal is positive, then Ui,j is null
and Vi,j = v4

` if t = 1, Vi,j = v7
` if t = 2, and Vi,j = v1

` if t = 3. If it is negative, then Vi,j

is null and Ui,j = u1
` if t = 1, Ui,j = u4

` if t = 2, and Ui,j = u7
` if t = 3. Finally, we explain

B`,1, B`,2, B`,3, D`,1, D`,2, and D`,3 in Fig. 2. Suppose that, for t = 1, 2, 3, the tth literal
of the clause C` is the jth occurrence of xi. If this literal is positive, then D`,t is null and
B`,t = bi,j ; otherwise, B`,t is null and D`,t = di,j . Now the reduction is completed. It is
not hard to see that the reduction can be performed in polynomial time and each person’s
preference list is of length at most four.

ISAAC 2017
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L1
ai,j : ci,j di,j ci,j : bi,j ai,j

bi,j : di,j Vi,j ci,j di,j : ai,j Ui,j bi,j

L2
ai,j : ci,j ci,j−1 di,j ci,j : bi,j ai,j+1 ai,j

bi,j : di,j di,j+1 ci,j di,j : ai,j bi,j−1 bi,j

Figure 1 Preference lists of literal people corresponding to the jth occurrence of the variable xi

(1 ≤ j ≤ si).

L1

u1
` : v1

` v2
` D`,1 v3

` v1
` : u2

` u3
` B`,3 u1

`

u2
` : v2

` v3
` v1

` v2
` : u3

` u1
` u2

`

u3
` : v3

` v1
` v2

` v3
` : u1

` u2
` u3

`

u4
` : v4

` v5
` D`,2 v6

` v4
` : u5

` u6
` B`,1 u4

`

u5
` : v5

` v6
` v4

` v5
` : u6

` u4
` u5

`

u6
` : v6

` v4
` v5

` v6
` : u4

` u5
` u6

`

u7
` : v7

` v8
` D`,3 v9

` v7
` : u8

` u9
` B`,2 u7

`

u8
` : v8

` v9
` v7

` v8
` : u9

` u7
` u8

`

u9
` : v9

` v7
` v8

` v9
` : u7

` u8
` u9

`

L2

u1
` : v1

` v4
` v2

` v3
` v1

` : u2
` u3

` u7
` u1

`

u2
` : v2

` v3
` v5

` v1
` v2

` : u3
` u8

` u1
` u2

`

u3
` : v3

` v1
` v2

` v3
` : u1

` u2
` u3

`

u4
` : v5

` v7
` v6

` v4
` v4

` : u4
` u5

` u1
` u6

`

u5
` : v6

` v4
` v8

` v5
` v5

` : u5
` u2

` u6
` u4

`

u6
` : v4

` v5
` v6

` v6
` : u6

` u4
` u5

`

u7
` : v9

` v1
` v7

` v8
` v7

` : u9
` u7

` u4
` u8

`

u8
` : v7

` v8
` v2

` v9
` v8

` : u7
` u5

` u8
` u9

`

u9
` : v8

` v9
` v7

` v9
` : u8

` u9
` u7

`

Figure 2 Preference lists of clause people corresponding to the `th clause.

We then proceed to the correctness proof. We first define partial matchings. For each i
and j, we define M1

i,j = {(ai,j , ci,j), (bi,j , di,j)} and M0
i,j = {(ai,j , di,j), (bi,j , ci,j)}. For each

`, we define

M1
` = {(u1

` , v
3
` ), (u2

` , v
1
` ), (u3

` , v
2
` ), (u4

` , v
4
` ), (u5

` , v
5
` ), (u6

` , v
6
` ), (u7

` , v
8
` ), (u8

` , v
9
` ), (u9

` , v
7
` )},

M2
` = {(u1

` , v
2
` ), (u2

` , v
3
` ), (u3

` , v
1
` ), (u4

` , v
6
` ), (u5

` , v
4
` ), (u6

` , v
5
` ), (u7

` , v
7
` ), (u8

` , v
8
` ), (u9

` , v
9
` )}, and

M3
` = {(u1

` , v
1
` ), (u2

` , v
2
` ), (u3

` , v
3
` ), (u4

` , v
5
` ), (u5

` , v
6
` ), (u6

` , v
4
` ), (u7

` , v
9
` ), (u8

` , v
7
` ), (u9

` , v
8
` )}.
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Suppose that f is satisfiable and let T be a satisfying assignment. We will construct a
jointly stable matching M for I. If T (xi) = 1, then we let M1

i,j ⊆M for all j. If T (xi) = 0,
then we let M0

i,j ⊆M for all j. Suppose that the clause C` is satisfied by its tth literal (if
there are more than one true literal, choose one arbitrarily). Then we let M t

` ⊆M . We show
that M is jointly stable.

I Lemma 2. The matching M constructed as above is jointly stable.

Proof. Consider literal people corresponding to xi, namely ai,j , bi,j , ci,j , and di,j (1 ≤ j ≤ si).
If T (xi) = 1, then all the men are matched with their first choices in both L1 and L2. Similarly,
if T (xi) = 0, then all the women are matched with their first choices. Therefore, no blocking
pair arises within literal people corresponding to the same variable. Since literal people
corresponding to different variables are unacceptable to each other, no blocking pair occurs
between them.

As for the 18 people corresponding to the clause C`, we can easily verify that, in any ofM1
` ,

M2
` , and M3

` , no blocking pair arises among them. Also, since clause people corresponding
to different clauses are unacceptable to each other, no blocking pair occurs between them.

Finally, we consider a possibility of a blocking pair between a literal person and a clause
person. Consider the clause C`. First, suppose that M1

` is chosen as a part of M . By
construction of M , this means that the clause C` is satisfied by its first literal. Suppose that
this literal is the jth occurrence of xi, and that it is a positive literal. Then by construction
of preference lists, D`,1 is null and B`,1 = bi,j , so only the possible blocking pair is (bi,j , v`,4)
in L1. However, since C` is satisfied by the first literal, it must be the case that T (xi) = 1.
By construction of M , M1

i,j ⊆M and hence bi,j is matched with his first choice woman in
L1, so he cannot form a blocking pair. Now suppose that the first literal of C` is the jth
occurrence of xi and it is a negative literal. Then B`,1 is null and D`,1 = di,j , so, only the
possible blocking pair is (u`,1, di,j) in L1. However, since C` is satisfied by the first literal,
we have that T (xi) = 0 and hence di,j is matched with her first choice man in L1, so di,j

cannot form a blocking pair. For the other two cases, that is, the case that M2
` is chosen

and M3
` is chosen, we can show that there is no blocking pair by a similar argument. J

Conversely, suppose that I admits a jointly stable matching M . We construct a satisfying
assignment T of f . First, we see basic properties of M .

I Lemma 3. For each i, either M1
i,j ⊆M for all j, or M0

i,j ⊆M for all j.

Proof. We first show that, for each i and j, either M1
i,j ⊆ M or M0

i,j ⊆ M . Suppose not.
Since ci,j and di,j are the only acceptable men to ai,j and bi,j in L1 and L2 in common,
at least one of ai,j and bi,j , say mi,j , is single in M . For the same reason, at least one of
ci,j and di,j , say wi,j , is single in M . Then (mi,j , wi,j) blocks M (in both L1 and L2), a
contradiction.

Now suppose that the statement of the lemma is false. Then there are i and j (1 ≤ j ≤
si − 1) such that (i) M1

i,j ⊆ M and M0
i,j+1 ⊆ M or (ii) M0

i,j ⊆ M and M1
i,j+1 ⊆ M . In

case of (i), (ai,j+1, ci,j) blocks M in L2, while in case of (ii), (bi,j , di,j+1) blocks M in L2, a
contradiction. J

I Lemma 4. For each `, either M1
` ⊆M , M2

` ⊆M , or M3
` ⊆M .

Proof. Suppose that there is a man m` ∈ {u1
` , u

2
` , u

3
`} who is not matched with any of v1

` ,
v2

` , and v3
` in M . Note that D`,1 is a literal woman (if not null), who is not acceptable to

u1
` in L2. Hence it must be the case that m` is single in M . By a similar argument, there

ISAAC 2017
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Table 1 27 matchings and corresponding blocking pairs in L2.

Matching BP Matching BP Matching BP

X1
` ∪ Y 1

` ∪ Z1
` (u7

` , v1
` ) X2

` ∪ Y 1
` ∪ Z1

` (u5
` , v8

` ) X3
` ∪ Y 1

` ∪ Z1
` (u5

` , v8
` )

X1
` ∪ Y 1

` ∪ Z2
` (u7

` , v1
` ) X2

` ∪ Y 1
` ∪ Z2

` (u8
` , v2

` ) X3
` ∪ Y 1

` ∪ Z2
` –

X1
` ∪ Y 1

` ∪ Z3
` (u4

` , v7
` ) X2

` ∪ Y 1
` ∪ Z3

` (u5
` , v8

` ) X3
` ∪ Y 1

` ∪ Z3
` (u5

` , v8
` )

X1
` ∪ Y 2

` ∪ Z1
` (u7

` , v1
` ) X2

` ∪ Y 2
` ∪ Z1

` (u1
` , v4

` ) X3
` ∪ Y 2

` ∪ Z1
` (u1

` , v4
` )

X1
` ∪ Y 2

` ∪ Z2
` (u7

` , v1
` ) X2

` ∪ Y 2
` ∪ Z2

` (u1
` , v4

` ) X3
` ∪ Y 2

` ∪ Z2
` (u1

` , v4
` )

X1
` ∪ Y 2

` ∪ Z3
` – X2

` ∪ Y 2
` ∪ Z3

` (u1
` , v4

` ) X3
` ∪ Y 2

` ∪ Z3
` (u1

` , v4
` )

X1
` ∪ Y 3

` ∪ Z1
` (u7

` , v1
` ) X2

` ∪ Y 3
` ∪ Z1

` – X3
` ∪ Y 3

` ∪ Z1
` (u2

` , v5
` )

X1
` ∪ Y 3

` ∪ Z2
` (u7

` , v1
` ) X2

` ∪ Y 3
` ∪ Z2

` (u8
` , v2

` ) X3
` ∪ Y 3

` ∪ Z2
` (u2

` , v5
` )

X1
` ∪ Y 3

` ∪ Z3
` (u4

` , v7
` ) X2

` ∪ Y 3
` ∪ Z3

` (u4
` , v7

` ) X3
` ∪ Y 3

` ∪ Z3
` (u2

` , v5
` )

is a woman w` ∈ {v1
` , v

2
` , v

3
`} who is single in M . Then (m`, w`) blocks M in L1 and L2, a

contradiction. Therefore, u1
` , u2

` , and u3
` are matched with v1

` , v2
` , and v3

` in M . There are
six possible ways, namely,

X1
` = {(u1

` , v
1
` ), (u2

` , v
2
` ), (u3

` , v
3
` )}, X2

` = {(u1
` , v

2
` ), (u2

` , v
3
` ), (u3

` , v
1
` )},

X3
` = {(u1

` , v
3
` ), (u2

` , v
1
` ), (u3

` , v
2
` )}, X4

` = {(u1
` , v

1
` ), (u2

` , v
3
` ), (u3

` , v
2
` )},

X5
` = {(u1

` , v
2
` ), (u2

` , v
1
` ), (u3

` , v
3
` )}, and X6

` = {(u1
` , v

3
` ), (u2

` , v
2
` ), (u3

` , v
1
` )}.

It is easy to see that X4
` is blocked by (u3

` , v
1
` ), X5

` is blocked by (u2
` , v

3
` ), and X6

` is blocked
by (u1

` , v
2
` ) in L1. Therefore, only X1

` , X2
` , and X3

` can be a part of M . The same argument
applies to u4

` , u5
` , u6

` , v4
` , v5

` , v6
` and u7

` , u8
` , u9

` , v7
` , v8

` , v9
` , implying that only

Y 1
` = {(u4

` , v
4
` ), (u5

` , v
5
` ), (u6

` , v
6
` )}, Y 2

` = {(u4
` , v

5
` ), (u5

` , v
6
` ), (u6

` , v
4
` )},

Y 3
` = {(u4

` , v
6
` ), (u5

` , v
4
` ), (u6

` , v
5
` )},

and

Z1
` = {(u7

` , v
7
` ), (u8

` , v
8
` ), (u9

` , v
9
` )}, Z2

` = {(u7
` , v

8
` ), (u8

` , v
9
` ), (u9

` , v
7
` )},

Z3
` = {(u7

` , v
9
` ), (u8

` , v
7
` ), (u9

` , v
8
` )}

are valid.
Therefore, there are 27 possible combinations. Note that M1

` = X3
` ∪ Y 1

` ∪ Z2
` , M2

` =
X2

` ∪ Y 3
` ∪ Z1

` , and M3
` = X1

` ∪ Y 2
` ∪ Z3

` . We show that the remaining 24 matchings are
unstable in L2. Table 1 shows 27 matchings in “Matching” columns and corresponding
blocking pairs of 24 matchings in “BP” columns. This completes the proof. J

By Lemma 3, either M1
i,j ⊆M for all j or M0

i,j ⊆M for all j holds. In the former case,
we set T (xi) = 1, otherwise, we set T (xi) = 0. We show that T satisfies f . Suppose not, and
let C` be an unsatisfied clause. For t = 1, 2, 3, let the tth literal of C` be the jtth occurrence
of the variable xit

. We will show three claims:
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Claim 1. M1
` 6⊆M . Consider the first literal of C`. Suppose that it appears positively in

C`. Then by construction of the preference lists, the lists of bi1,j1 and v4
` in L1 are as follows:

bi1,j1 : di1,j1 v4
` ci1,j1 v4

` : u5
` u6

` bi1,j1 u4
`

Since C` is unsatisfied, T (xi1) = 0 and so by construction of T , M0
i1,j1
⊆M , i.e., M(bi1,j1) =

ci1,j1 . If M1
` ⊆M , then M(v4

` ) = u4
` and hence (bi1,j1 , v

4
` ) blocks M in L1, a contradiction.

Next, suppose that the first literal of C` is negative, i.e., xi1 . Then by construction, the
preference lists of di1,j1 and u1

` in L1 are as follows:

u1
` : v1

` v2
` di1,j1 v3

` di1,j1 : ai1,j1 u1
` bi1,j1

Since C` is unsatisfied, T (xi1) = 1 and so by construction of T , M1
i1,j1
⊆M , i.e., M(di1,j1) =

bi1,j1 . If M1
` ⊆M , then M(u1

`) = v3
` and hence (u1

` , di1,j1) blocks M in L1, a contradiction.
Therefore, we can conclude that M1

` 6⊆M .

Claim 2. M2
` 6⊆ M . Consider the second literal of C`, and first suppose that it is a

positive literal, i.e., xi2 . Then by construction, the preference lists of bi2,j2 and v7
` in L1 are

as follows:

bi2,j2 : di2,j2 v7
` ci2,j2 v7

` : u8
` u9

` bi2,j2 u7
`

Since C` is unsatisfied, T (xi2) = 0 and hence by construction of T , M0
i2,j2

⊆ M , i.e.,
M(bi2,j2) = ci2,j2 . If M2

` ⊆ M , then M(v7
` ) = u7

` and hence (bi2,j2 , v
7
` ) blocks M in L1, a

contradiction.
Next, suppose that the second literal of C` is xi2 . Then by construction, the preference

lists of di2,j2 and u4
` in L1 are as follows:

u4
` : v4

` v5
` di2,j2 v6

` di2,j2 : ai2,j2 u4
` bi2,j2

Since C` is unsatisfied, T (xi2) = 1 and by construction of T , M1
i2,j2
⊆M , i.e., M(di2,j2) =

bi2,j2 . If M2
` ⊆M , then M(u4

`) = v6
` and hence (u4

` , di2,j2) blocks M in L1, a contradiction.
Therefore, we can conclude that M2

` 6⊆M .

Claim 3. M3
` 6⊆M . Consider the third literal of C`. First, suppose that it is a positive

literal xi3 . Then by construction, the preference lists of bi3,j3 and v1
` in L1 are as follows:

bi3,j3 : di3,j3 v1
` ci3,j3 v1

` : u2
` u3

` bi3,j3 u1
`

Since C` is unsatisfied, T (xi3) = 0 and thus by construction of T ,M0
i3,j3
⊆M , i.e.,M(bi3,j3) =

ci3,j3 . If M3
` ⊆M , then M(v1

` ) = u1
` and hence (bi3,j3 , v

1
` ) blocks M in L1, a contradiction.

Next, suppose that the third literal of C` is negative, i.e., xi3 . Then by construction, the
preference lists of di3,j3 and u7

` in L1 are as follows:

u7
` : v7

` v8
` di3,j3 v9

` di3,j3 : ai3,j3 u7
` bi3,j3

Since C` is unsatisfied, T (xi3) = 1 and by construction of T , M1
i3,j3
⊆M , i.e., M(di3,j3) =

bi3,j3 . If M3
` ⊆M , then M(u7

`) = v9
` and hence (u7

` , di3,j3) blocks M in L1, a contradiction.
Therefore, we can conclude that M3

` 6⊆M .

From Claims 1, 2, and 3, none of M1
` , M2

` , and M3
` can be a part of M , but this

contradicts Lemma 4. Hence we conclude that T satisfies f , which completes the proof of
Theorem 1. J
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In the above reduction, we have exploited existence of pairs that are acceptable in L1
but not in L2, or vice versa. Then one may be curious about whether SMkI is solvable in
polynomial time if the set of acceptable pairs is the same in all Li. However, this is unlikely,
as shown in the following corollary. Let SMk denote the special case of SMkI where all the
preference lists are complete. Clearly SMk satisfies the above mentioned condition.

I Corollary 5. For k ≥ 2, SMk is NP-complete.

Proof. Apparently SMk ∈ NP. For the NP-hardness, in the reduction given in the proof of
Theorem 1, make every preference list complete by appending missing persons to the tail of
the list in an arbitrary order. It is not hard to see that the same correctness proof (with
slight modifications) applies. J

3 Tractable Cases

In this section, we assume without loss of generality that acceptability is mutual, i.e., m
is acceptable to w in Li if and only if w is acceptable to m in Li. This is because, if for
example m is acceptable to w while w is not acceptable to m, then (m,w) can neither be a
part of a matching nor a blocking pair. Hence we may remove m from w’s list safely, without
changing the set of jointly stable matchings. This preprocessing can be done in time linear
in the total length of the input preference lists.

However, even if (m,w) is an acceptable pair in Li but is an unacceptable pair in Lj

(j 6= i), we must not remove m and w from each other’s list in Li. This is because, although
(m,w) cannot be a pair in a jointly stable matching, it may block some matching in Li and
removing it may change the set of jointly stable matchings.

3.1 Length–Two Preferences Lists of One Side
Our first positive result is for instances in which the length of preference lists of one side,
say men’s side, is bounded by two. The proof of Theorem 6 exploits a partially-ordered set
(poset) of rotations and its relation to the whole set of stable matchings. These structural
properties were originally studied for complete preference lists, but they can be extended
easily and naturally to incomplete preference lists. Here we give brief explanations about
them. See [5] for more detail. Readers who are familiar with these notions may skip the
following two paragraphs.

Let I be an instance of SMI and M be a stable matching for I. For a man m matched
in M , sM (m) denotes the first woman w in m’s list such that w is matched in M and w
prefers m to M(w). Note that m prefers M(m) to sM (m); otherwise, (m, sM (m)) blocks
M . Also, nextM (m) denotes the partner of sM (m) in M , that is, nextM (m) = M(sM (m)).
Let ρ = (m0, w0), (m1, w1), . . . , (mr−1, wr−1) (r ≥ 2) be a sequence of pairs such that each
pair in ρ is contained in M and mi+1 = nextM (mi) for each i, where i+ 1 is taken modulo
r. Then we call ρ a rotation exposed in M . By eliminating a rotation ρ from M , we mean
to replace pairs (m0, w0), (m1, w1), . . . , (mr−1, wr−1) by (m0, w1), (m1, w2), . . . , (mr−1, w0)
in M . The resulting matching, denoted by M/ρ, is also stable in I. Note that each man
included in ρ has a worse partner in M/ρ than in M .

Let Π be the set of rotations that are exposed in one or more stable matchings for
I. We can define a partial order � on Π, and (Π,�) is called the rotation poset of I. A
subset P ⊆ Π is called a closed subset of Π if ρ ∈ P and ρ′ � ρ then ρ′ ∈ P . There is a
one-to-one correspondence between the stable matchings for I and the closed subsets of Π by
the mapping defined as follows. Let M0 be the man-optimal stable matching of I (which is



S. Miyazaki and K. Okamoto 56:9

guaranteed to exist and can be found by the men-oriented Gale-Shapley algorithm in time
linear in the total length of preference lists). Let P be a closed subset of Π. If we eliminate
rotations in P one by one according to the order �, we obtain a stable matching for I.
Conversely, any stable matching for I is obtained by this procedure for some closed subset
of Π. In particular, the empty set corresponds to the man-optimal stable matching and
the whole set Π corresponds to the woman-optimal stable matching (which is the opposite
extreme to the man-optimal stable matching). The rotation poset can be constructed in
time linear in the total length of preference lists (Sec. 3.3 of [5]).

I Theorem 6. (2,∞)-SMkI is solvable in time O(kn).

Proof. We first compute the man-optimal stable matchings Mi for Li (i = 1, 2, . . . , k) using
the men-oriented version of the Gale-Shapley algorithm. For each Li, any stable matching
leaves the same set of men and women unmatched [4]. Thus if there are i and j (i 6= j) such
that the set of matched people in Mi and that in Mj are different, then we can immediately
answer “no”. In the following, we assume that the sets of matched people are the same in all
Mi.

For each i, we compute all the rotations ρi
1, ρ

i
2, . . . , ρ

i
ni

with respect to Li. Since the
length of each man’s preference list is at most two, each man is contained in at most one
rotation. This means that all the rotations are mutually incomparable in the rotation poset.
Hence there is a one-to-one correspondence between the set of stable matchings for Li and
the power set of {ρi

1, ρ
i
2, . . . , ρ

i
ni
}: the subset S ⊆ {ρi

1, ρ
i
2, . . . , ρ

i
ni
} corresponds to the stable

matching Mi,S obtained by eliminating all the rotations in S from Mi. Consider a man m
who is matched in Mi. If m is not included in a rotation, his partner is the same in all the
stable matchings of Li. If he is included in a rotation ρi

j , then he is matched in Mi,S with
his first choice if ρi

j 6∈ S and with his second choice if ρi
j ∈ S.

The remaining task is to check if there are k subsets Si ⊆ {ρi
1, ρ

i
2, . . . , ρ

i
ni
} (1 ≤ i ≤ k)

such that M1,S1 = M2,S2 = · · · = Mk,Sk
. For this purpose, we introduce a binary variable xi

j

for ρi
j (1 ≤ i ≤ k, 1 ≤ j ≤ ni), where xi

j = 1 means to put ρi
j in Si. We then construct a

2CNF SAT instance as follows.
For each man m who is matched in M1 (and equivalently in all Mi), we fix the

value of variables or construct 2CNF clauses to ensure that m’s partners coincide in all
M1,S1 ,M2,S2 , . . . ,Mk,Sk

. If (m,w) is a pair in some stable matching of L, w is called m’s
stable partner in L. Also, if w is m’s stable partner in all Li, w is called m’s jointly stable
partner. If m has no jointly stable partner, we immediately output “no”. If m has one jointly
stable partner w, then for each i, we enforce the variable (if any) to match m with w in Mi,Si .
Namely, if m is not included in a rotation, then there is no variable and we do nothing. If
m is included in a rotation ρi

j and w is his first (second) choice in Li, then we set xi
j = 0

(xi
j = 1). During this course, if some variable is fixed differently, then we immediately output

“no”. Finally, suppose that m has two jointly stable partners w′ and w′′. This means that for
each i, Li(m) contains both w′ and w′′ and m is included in a rotation of Li. Let ρi

ji
be the

rotation that includes m. For i = 2, . . . , k, we construct two clauses as follows: If the order
of w′ and w′′ is same in L1(m) and Li(m), then we construct (x1

j1
∨ xi

ji
) and (x1

j1
∨ xi

ji
);

otherwise, we construct (x1
j1
∨ xi

ji
) and (x1

j1
∨ xi

ji
). The construction of 2CNF formula is

completed by doing this for all the men m who are matched in M1. It is not hard to see that
a satisfying assignment corresponds to subsets Si such that M1,S1 = M2,S2 = · · · = Mk,Sk

.
Recall that men’s preference lists are of length at most two and acceptability is mutual

by assumption, so the total lengths of Li is O(n). Therefore, for each i, finding Mi and
computing the set of rotations of Li can be done in O(n) time, and hence in O(kn) time
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in total. Constructing 2CNF clauses for each man can be done in time O(k), and therefore
O(kn) for at most n men. The resulting 2CNF formula has size O(kn). Finally, solving
2CNF satisfiability problem can be done in linear time [2, 1]. Thus overall time-complexity
is O(kn). J

3.2 Identical Preference Lists of One Side
The next polynomial-time solvable case is that each woman’s preference lists are identical in
all Li. It should be noted that this condition is different from the so-called master lists, in
which all the women have the same preference list. In our case, w and w′ may have different
preference lists.

I Theorem 7. If each woman’s preference lists in all Li (1 ≤ i ≤ k) are identical, SMkI is
solvable in time O(N), where N is the total length of preference lists in an input.

Proof. Let I = (U,W,L1, L2, . . . , Lk) be an instance of SMkI. We first note that, since
L1(w) = L2(w) = · · · = Lk(w) for every woman w, for each man m the sets of women
included in Li(m) are the same for all i, due to the mutual-acceptability assumption made at
the beginning of this section. Now we construct a set L of preference lists from L1, L2, . . . , Lk

as follows: For each woman w, let L(w) := L1(w). For each man m, the set of women
included in L(m) is the same as in Li(m), and their order is defined as follows. Let w′ and
w′′ be women in L(m). If m prefers w′ to w′′ in all Li(m), then m prefers w′ to w′′ in L(m).
If m prefers w′ to w′′ in some Li(m) and w′′ to w′ in some Lj(m), then m is indifferent
between w′ and w′′ in L(m). It is not hard to see that L(m) is a partially-ordered list and
hence I ′ = (U,W,L) can be regarded as an instance of the Stable Marriage problem with
Partially-ordered and Incomplete lists (SMPI ).

We now recall the super-stability [5, 6] in the case that preference lists are not necessarily in
a total order. For a matching M , (m,w) is a blocking pair in super-stability if (1) (m,w) 6∈M
but m and w are acceptable to each other, (2) m is single in M , or prefers w to M(m), or
is indifferent between w and M(m), and (3) w is single in M , or prefers m to M(w), or
is indifferent between m and M(w). We say that a matching is super-stable if it admits
no blocking pair in super-stability. Irving [6] developed an O(n2)-time algorithm to find a
super-stable matching or to report that no super-stable matching exists when preference
lists are complete and may include ties. Manlove [8] extended this algorithm for incomplete
preference lists, and showed that it runs in time O(N) where N is the total length of
preference lists in an input. Also, Manlove showed that the same algorithm is applicable
for partially-ordered preference lists, i.e., SMPI (page 169 of [10]). Therefore, to complete
the proof, it suffices to show that a matching M is jointly stable in I if and only if M is
super-stable in I ′.

First suppose that M is not a jointly stable matching of I and hence has a blocking pair
(m,w) in Li for some i. Then w is single in M or prefers m to M(w) in Li(w). In the latter
case, w prefers m to M(w) also in L(w). Similarly, m is single in M or prefers w to M(w)
in Li(m). In the latter case, m prefers w to M(m) or is indifferent between them in L(m).
Thus (m,w) is a blocking pair in super-stability for M and therefore M is not super-stable
in I ′.

Conversely, suppose that M is not super-stable in I ′. Then, there is a blocking pair
(m,w) in super-stability. Since L(w) is a total order, w is unmatched in M or prefers m to
M(w) in L(w). In the latter case, w prefers m to M(w) in all Li(w). Note that m either (i)
is unmatched in M , or (ii) prefers w to M(m) in L(m), or (iii) is indifferent between w and
M(m) in L(m). In the case of (i), (m,w) is a blocking pair for M in all Li. In the case of
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(ii), m prefers w to M(m) in all Li(m), so again (m,w) is a blocking pair for M in all Li. In
the case of (iii), m prefers w to M(m) in Li(m) for some i, so that (m,w) is a blocking pair
for M in Li. In any case, M in not jointly stable in I.

Constructing I ′ from I and solving I ′ can both be done in O(N) time, hence the theorem
follows. J

As a byproduct of the above proof, we can show the existence of the man-optimal and
woman-optimal stable matchings. Let us call a jointly stable matching M man-optimal if for
any man m and any jointly stable matching M ′, either M(m) = M ′(m) or m prefers M(m)
to M ′(m) in all Li. The woman-optimal jointly stable matching is defined similarly.

Let I = (U,W,L1, L2, . . . , Lk) be an SMkI instance and I ′ = (U,W,L) be the SMPI
instance constructed as in the above proof. It is known that the set of super-stable matchings
for an SMPI instance form a distributive lattice ([12, 9] and page 169 of [10]), so there
are the man-optimal and the woman-optimal stable matchings for I ′, denoted MU and
MW , respectively. Since women’s preference lists are the same in L and all Li, MW is
the woman-optimal jointly stable matching for I. Consider a man m and suppose that
m is indifferent between w1 and w2 in L(m). It is known that it cannot be the case that
m is matched with w1 in one super-stable matching and with w2 in another super-stable
matching. Thus by the man-optimality of MU , for every man m, either MU (m) = M(m) or
m prefers MU (m) to M(m) in L(m) for any super-stable matching M . This implies that by
construction of L, either MU (m) = M(m) or m prefers MU (m) to M(m) in Li(m) for all i,
implying the existence of the man-optimal jointly stable matching.

4 Conclusion

In this paper, we considered a variant of the stable marriage problem in which we are given k
sets of preference lists L1, L2, . . . , Lk, and are asked to determine the existence of a matching
that is stable with respect to all Li (1 ≤ i ≤ k). We have shown that the problem is
NP-complete for k ≥ 2 even if all the preference lists are of length at most four, while it is
solvable in linear time if each man’s preference list is of length at most two. We also showed
that the problem is solvable in linear time if every woman has an identical preference list in
all Li.

An important future work is to determine the complexity of the problem when the lengths
of preference lists are bounded by three, namely, (3, `)-SMkI for ` ≥ 3. Another direction is
approximability of SMkI; given an instance, find a matching that is stable in as many Li as
possible. Finding a stable matching in any one list is a trivial k-approximation algorithm.
On the other hand, using Theorem 1 we can easily deduce an approximation hardness of 2− ε
for even k and 2− 2

k+1 − ε for odd k, for any positive constant ε under P 6=NP. Narrowing
this gap is an interesting future work. Considering an alternative optimization criteria, e.g.,
minimizing the total number of blocking pairs over all Li, would also be attractive.
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