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Abstract
A (possibly degenerate) drawing of a graph G in the plane is approximable by an embedding if
it can be turned into an embedding by an arbitrarily small perturbation. We show that testing,
whether a drawing of a planar graph G in the plane is approximable by an embedding, can be
carried out in polynomial time, if a desired embedding of G belongs to a fixed isotopy class, i.e.,
the rotation system (or equivalently the faces) of the embedding of G and the choice of outer face
are fixed. In other words, we show that c-planarity with embedded pipes is tractable for graphs
with fixed embeddings.

To the best of our knowledge an analogous result was previously known essentially only when
G is a cycle.
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1 Introduction

In the theory of graph visualization a drawing of a graph G = (V,E) in the plane is usually
assumed to be free of degeneracies, i.e., edge overlaps and edges passing through a vertex.
However, in practice degenerate drawings often arise and need to be dealt with.

Recent papers [1, 7] address a certain aspect of this problem for simple polygons which
can be thought of as straight-line (rectilinear) embeddings of graph cycles. Chang et al. [7]
gave an O(n2 logn)-time algorithm to detect if a given polygon with n vertices can be turned
into a simple (non self-intersecting) one by small perturbations of its vertices, or in other
words if the polygon is weakly simple. We mention that there exists an earlier closely
related definition of weakly simple polygons by Toussaint [6, 26], however, as pointed out
in [7] this notion is not well-defined for general polygons with “spurs”, see [7] for an overview
of attempts at combinatorial definitions of a polygon not crossing itself.

An O(n logn) improvement on the running time of the algorithm by Chang et al. was
announced very recently by Akitaya et al. [1]. The combinatorial formulation of this problem
corresponds to the setting of c-planarity with embedded pipes introduced by Cortese
et al. [10] well before the two aforementioned papers. Therein only an O(n3)-time algorithm
for the problem was given. Nevertheless, the algorithms in [1, 7] were built upon the ideas
from [10]. Moreover, to the best of our knowledge the complexity status of the c-planarity
with embedded pipes is essentially known only for cycles. Recently the problem was studied
for general planar graphs by Angelini and Da Lozzo [3], but they gave only an FPT algorithm.
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34:2 Embedding Graphs into Embedded Graphs

The introduction of this problem was motivated by a more general and well known problem
of c-planarity by Feng et al. [13, 14], whose tractability status was open since 1995 even
in much more restricted cases than the one that we consider. Biedl [4] gave a polynomial-
time algorithm for c-planarity with two clusters. Beyond two clusters a polynomial time
algorithm for c-planarity was obtained only in special cases, e.g., [9, 18, 19, 20, 21], and
most recently in [5, 8, 15].

There is, however, another tightly related line of research on approximability or realiza-
tions of maps pioneered by Sieklucki [24], Minc [22] and M. Skopenkov [25] that is completely
independent from the aforementioned developments, and that is also a major source of in-
spiration for our work. It can be easily seen that the result [25, Theorem 1.5] implies that
c-planarity is tractable for flat instances with three clusters or cyclic clustered graphs [17,
Section 6] with a fixed isotopy class of a desired embedding. An algorithm with a better
running time was given by the author in [15].

The aim of the present work is to show that c-planarity with embedded pipes is tractable
for planar graphs with a fixed isotopy class of embeddings, which extends results of [2, 3, 15].
Our work also implies the tractability of deciding whether a drawing is approximable by an
embedding in a fixed isotopy class, which extends results of [1, 7]. This also answers in the
affirmative a question posed in [7, Section 8.2] if the isotopy class of an embedding of G is
fixed.

Roughly, we are to decide if in the given isotopy of G an embedding approximating a
given (possibly degenerate) drawing of G class exists. The degenerate drawing of G is viewed
as a plane graph H and the degeneracies (if any) are captured by a simplicial map between
G and H. Let G and H be a pair of graphs such that H contains neither loops nor multiple
edges, i.e., H is simple. A map γ : V (G)→ V (H) is simplicial if for every edge uv ∈ E(G)
either γ(u) = γ(v) or γ(u)γ(v) is an edge of H. We partition V (G) into clusters Vν so that
γ(v) = ν if and only if v ∈ Vν . If it leads to no confusion, we do not distinguish between a
vertex or an edge and its representation in the drawing and we use the words “vertex” and
“edge” in both contexts. We are in the position to state our problem formally.

We are given an ordered triple (G,H, γ), where G is a planar graph (possibly with loops
and multiple edges) given by the isotopy class of an embedding of G in the plane, H is
a plane simple graph1, and γ : V (G) → V (H) is a simplicial map. We assume that the
drawing given by H is piece-wise linear. The feature size of H is the minimum of the set
consisting of the Euclidean non-zero distances between the endpoints of the line segments
defining the drawing of H, and the Euclidean distances between the line segments defining
the drawing of H. By treating a graph as a 1-dimensional topological space we extend the
definition of γ linearly to the edges of G. We want to decide if the given isotopy class of G
contains an embedding E such that ‖E(x)− γ(x)‖2 � ε, for all x ∈ G, where ε := ε(H) > 0
is smaller than half of the feature size of H. Thus, by the choice of ε a desired embedding of
G lies in a small neighborhood of H preserving the facial structure of the embedding of H.

However, to view the problem from a perspective that is more combinatorial, we put
further restrictions on a desired embedding of G, which lead to the equivalent problem of c-
planarity with embedded pipes, see Figure 1. To this end we need to introduce a couple
of notions. Let dist(p,q) denote the Euclidean distance between p,q ∈ R2. Let dist(p, S) =
minq∈S dist(p,q), where S ⊂ R2. Let Nε(S) for S ⊂ R2 denote the ε-neighborhood of S,
i.e., Nε(S) = {p ∈ R2| dist(p, S) ≤ ε}. Let ε′ > 0 be a small value as described later. The

1 In other words, a (planar) graph drawn in the plane without edge crossings.
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Figure 1 Instance of c-planarity with embedded pipes. The partition of the vertex set of G into
clusters is encoded by the shape of vertices. An H-compatible embedding of a subgraph of G that
cannot be extended to the whole G (left). An H-compatible embedding of G (right) inside H. The
valves of ρ = νµ at Nε(ν) and Nε(µ) are highlighted by bold arcs.

thickening H of H is the union of Nε(ν), for all ν ∈ V (H) and Nε′(ρ), for all ρ ∈ E(H)2.
Let the pipe of ρ ∈ E(H) be the closure of Nε′(ρ) \ (Nε(ν)∪Nε(µ)), where ρ = νµ. Let the
valve of ρ at ν be the curve obtained as the intersection of Nε(ν) and the pipe of ρ. We
put ε′ < ε = ε(H), where ε(H) is the same as in the previous paragraph, so that the valves
are pairwise disjoint in H.

In the combinatorial formulation of the problem, we are to decide if the given isotopy
class of G contains an embedding contained in H, where the vertices in Vν , for every ν,
are drawn in the interior of Nε(ν) and every edge crosses the boundary of Nε(ν), for every
ν ∈ V (H), at most once. This does not change the problem as observed in [7]. Such an
embedding of G is H-compatible. Let Eνµ = {uv ∈ E(G)| v ∈ Vν , u ∈ Vµ}. An H-
compatible embedding of G is encoded by G,H, and a set of total orders (Eνµ, <ω), for
every νµ ∈ E(H) and a valve ω of νµ, where (Eνµ, <ω) encodes the order of crossings of ω
with edges along ω. The isotopy class of G is encoded by a choice of the outer face, a set of
rotations at its vertices and a containment relation of its connected components as described
in Section 2. Since we are interested only in combinatorial aspects of the problem, H is also
given by the isotopy class of its embedding. Throughout the paper we assume that G and
H are given as above.

I Theorem 1. There exists an O(n2)-time algorithm that decides if the given isotopy class
of G contains an H-compatible embedding. An H-compatible embedding of G can be also
constructed in O(n2) time if it exists. In other words, c-planarity with embedded pipes is
tractable, when an isotopy class of a desired embedding of G is fixed.

As a corollary of our result we obtain that we can test in polynomial time if a piecewise
linear drawing of a graph in the plane is approximable by an embedding and construct such
an embedding if it exists. As we previously discussed, this extends results in [1, 7] and
also [25].

I Corollary 2. There exists an O(n4)-time algorithm that decides if a piecewise linear (pos-
sibly degenerate) drawing of a graph in the plane is approximable by an embedding, and
constructs such an embedding if it exists, where n is the size of the representation of the
drawing.

Extensions of our results. By [23, Theorem 3.1] and Fáry–Wagner theorem [12], our result
holds also in the setting of rectilinear, i.e., straight-line, drawings of graphs. To extend it
further in this setting by allowing “forks” seems to be just a little bit technical.

2 Throughout the paper we denote vertices and edges of H by Greek letters.
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34:4 Embedding Graphs into Embedded Graphs

In a recent manuscript [16], we verified a conjecture of M. Skopenkov [25, Conjecture 1.6]
implying that our problem is tractable, when we lift the restriction on the isotopy class G.
This does not imply that the problem with the restriction on the isotopy class G is tractable
except when G is connected. The running time of the algorithm, that is implied by [16], is
O(|V |2ω), where O(nω) is the running time of the fastest algorithm for multiplying a pair
of n by n matrices. Since ω > 2 due to the matrix size, this is much worse that the running
time claimed by Theorem 1. Furthermore, the algorithm is not constructive.

As noted by Chang et al. [7], the technique of Cortese et al. [10] extends directly from
the plane to any closed two-dimensional surface. The same holds for our method, but since
considering general two-dimensional surfaces does not bring anything substantially new to
our treatment of the problem, for the sake of simplicity we consider only the planar case.

Strategy of the proof of Theorem 1. Recall that the input of our algorithm is a triple
(G,H, γ), where the partition of the vertex set of G corresponds to the map γ from the set
of vertices of G to the set of vertices of H. Hence, for v ∈ Vν , where ν ∈ V (H), we have
γ(v) = ν. The input (G,H, γ) is positive if there exists an H-compatible embedding of G
in the given isotopy class of G, and negative otherwise.

Main troubles in constructing a polynomial time algorithm for our problem are caused
by so called “spurs” such as the red vertex in Figure 1 (left), i.e., connected components in
subgraphs of G induced by clusters, whose all adjacent vertices belong to the same cluster.
Due to the presence of spurs it is hard to see that our problem is tractable even in the case,
when G is a path.

The centerpiece of our method is an extension of the definition of the derivative of maps
of intervals/loops (corresponding to the case, when G is a path/cycle, in our terminology) in
the plane introduced by Minc [22]. We adapt this notion to the setting of c-planarity with
embedded pipes. The derivative is an operator that takes (G,H, γ), and either detects that
there exists no H-compatible embedding of G in the given isotopy class of G, or outputs
(G′, H ′, γ′), that is also a valid input for our algorithm, such that (G,H, γ) is positive if
and only if (G′, H ′, γ′) is positive (Lemma 5). Intuitively, H ′ is reminiscent of the line
graph of H and the subgraphs of G, that are mapped by γ to the edges of H, are turned
into subgraphs of G′ mapped by γ′ into vertices of H ′. This results in a shortening of
problematic spurs, and zooming into the structure of the map γ. We show that by iterating
the derivative |E(G)| times we either detect that there exists no H-compatible embedding
of G in the given isotopy class of G, or we arrive at an input without problematic spurs
(Lemma 6). Since it is fairly easy to solve the problem for the latter inputs; the derivative
at every iteration can be computed in linear time in |V (G)|; and by derivating the size of
the input is increased only by a little, the tractability follows.

The operation of node expansion and base contraction introduced by Cortese et al. [10]
resemble the derivative. The main difference is that these two operations affect only a single
cluster or a pair of clusters in (G,H, γ), and therefore they are local, whereas the derivative
changes the whole input. We are very positive that our method is applicable to other graph
drawing problems related to c-planarity whose tractability is open. This is documented by
our recent manuscript [16] in which a similar technique was applied.

The derivative is applied to an input (G,H, γ), in which every cluster Vν induces in G
an independent set. Such an input is in the normal form. The detailed description of the
algorithm proving Theorem 1 is in Section 3. We show in Section 3.1 that an input can be
assumed to be in the normal form. The definition of the derivative is given in Section 3.2,
and sufficiently simplified inputs are dealt with in Section 3.3.
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2 Preliminaries

Throughout the paper we tacitly use Jordan-Schönflies theorem for polygons.
Let G = (V,E) denote a planar graph possibly with multiple edges and loops. For

V ′ ⊆ V we denote by G[V ′] the sub-graph of G induced by V ′. A star St(v) of a vertex
v in a graph G is the subgraph of G consisting of all the edges incident to v. Throughout
the paper we use standard graph theoretical notions such as path, cycle, walk, vertex degree
deg(v) etc., see [11].

A drawing D(G) is a representation of G in the plane, where every vertex in V is
represented by a point and every edge e = uv in E is represented by a simple piecewise
linear curve joining the points that represent u and v. Thus, a drawing can be thought
of as a map from G understood as a topological space into the plane. In a drawing, we
additionally require every pair of distinct curves representing edges to meet only in finitely
many points each of which is a proper crossing or a common endpoint. In a degenerate
drawing, we allow a pair of distinct vertices to be represented by the same point and a
pair of edges to be represented by the same curve. Note that we do not allow an edge
to pass through a vertex by the definition of the drawing, or in other words, we do not
allow a drawing to contain forks [7]. A drawing in which every vertex is represented by a
unique point and every edge by a unique curve is non-degenerate. In a non-degenerate
drawing, multiple edges are mapped to distinct arcs meeting at their endpoints. In the
paper we consider non-degenerate drawings, except for Corollary 2. An embedding is a
non-degenerate drawing with no edge crossings. A graph given by an embedding in the
plane is a plane graph. If it leads to no confusion, we do not distinguish between a vertex
or an edge and its representation in the drawing and we use the words “vertex” and “edge”
in both contexts.

The following lemma is well known.

I Lemma 3. Let G be a plane graph with n vertices such that G does not contain a pair
of multiple edges joining the same pair of vertices that form a face of size two, i.e., a lens,
except for the outer face. The graph G has O(n) edges.

The rotation at a vertex in an embedding of G is the counterclockwise cyclic order of
the edges, that are incident to the vertex, which is defined by the order of their end pieces
at the vertex in the embedding. The rotation at a vertex is stored as a doubly linked list of
edges. Furthermore, we assume that for every edge of G we store a pointer to its preceding
and succeeding edge in the rotation at both of its end vertices. The interior and exterior
of a cycle in an embedded graph is the bounded and unbounded, respectively, connected
component of its complement in the plane. Similarly, the interior of an inner face and
outer face in an embedded connected graph is the bounded and unbounded, respectively,
connected component of the complement of its facial walk in the plane bounded by the walk.
An embedding of a connected graph G is up to an isotopy described by the rotations at its
vertices and the choice of its outer (unbounded) face. If G is not connected the isotopy class
of its embedding is described by isotopy classes of its connected components G1, . . . , Gl and
the containment relation Gi ⊂ f , for every Gi, where f is a face of Gj , j 6= i, such that Gi
is embedded in the interior of f .

3 Proof of Theorem 1

Let (G,H, γ) be the input of our algorithm. We naturally extend γ to edges: γ(vu) = ρ = νµ,
for v ∈ Vν and u ∈ Vµ, and to subgraphs G1 of G: γ(G1) = H1 = (V (H1), E(H1)) such that

ISAAC 2017



34:6 Embedding Graphs into Embedded Graphs

V (H1) = {ν ∈ V (H)|γ(v) = ν, v ∈ V (G1)} and E(H1) = {ρ ∈ E(H)| γ(e) = ρ, e ∈ E(G1)}.
A vertex ν ∈ V (H) of degree two is redundant if Vν ⊆ V (G) is an independent set

consisting of vertices of degree two such that for every v ∈ Vν we have γ(vu) 6= γ(vw), where
u and w are the two neighbors of v. We assume that every edge of H is used by at least one
edge of G, i.e., for every ρ ∈ E(H) there exists e ∈ E(G) such that γ(e) = ρ.

3.1 The normal form
Similarly as in [15], the input (G,H, γ) is in the normal form if
1. every cluster Vν ⊆ V (G), for ν ∈ V (H), is an independent set without isolated vertices;

and
2. H does not contain a pair of redundant vertices joined by an edge.

We remark that (2) is required only due to the running time analysis. We do not forbid
redundant vertices completely, since we do not allow H to contain multiple edges. Indeed,
suppressing all vertices of degree two in a graph can lead to multiple edges. In what follows
we show how to either detect that no H-compatible embedding in the given isotopy class of
G exists just by considering the subgraph of G induced by a single cluster Vν , or construct an
input (GN , HN , γN ) in the normal form, which is positive if and only if the input (G,H, γ)
is positive. Clearly, (2) can be assumed without loss of generality. Before establishing the
other condition we introduce a couple of definitions.

A contraction of an edge e = uv in an embedding of a graph is an operation that turns
e into a vertex by moving v along e towards u while dragging all the other edges incident
to v along e. By a contraction we can introduce multiple edges or loops at the vertices.
We will also use the following operation which can be thought of as the inverse operation
of the edge contraction in an embedding of a graph. A vertex split, see Figure 2 Left, in
an embedding of a graph G is an operation that replaces a vertex v by two vertices u and
w joined by a crossing-free edge so that the neighbors of v are partitioned into two parts
according to whether they are joined with u or w in the resulting drawing. The rotations at
u and w are inherited from the rotation at v. When applied to G, the operations are meant
to return a graph given by an isotopy class of its embedding; the same applies to vertex
multisplit defined later. Note that a contraction can be carried out in O(1) time, since it
amounts to merging a pair of doubly linked lists, and redirecting at most four pointers. The
same applies to the vertex split.

In order to satisfy (1), by a series of successive edge contractions we contract each
connected component of G[Vν ], for all ν ∈ V (H), to a vertex. Since rotations are stored as
doubly linked lists, contracting all such connected components can be carried out in linear
time. We delete any created loop and isolated vertices. If a loop at a vertex from Vν contains
a vertex from a different cluster Vµ, ν 6= µ, in its interior we know that the input is negative,
since for every µ all the vertices in Vµ must be contained in the outer face of G[Vν ] if the
input is positive. All this can be easily checked in time linear in |V (G)| by the breadth-first
or depth-first search algorithm. If a loop at a vertex from Vν does not contain a vertex from
a different cluster, deleting the loop preserves the existence of an H-compatible embedding
in the given isotopy class of G. Indeed, isolated vertices and deleted empty loops can be
reintroduced in an H-compatible embedding of the resulting graph, and contracted edges
recovered via vertex splits. Let (GN , HN , γN ) denote the resulting input in the normal form.
We proved the following.

I Lemma 4. If a loop at a vertex v of G obtained during the previously described procedure
contains in its interior a vertex u of G satisfying γ(v) 6= γ(u), then the input (G,H, γ) is
negative. Otherwise, the input (G,H, γ) is positive if and only if (GN , HN , γN ) is positive.
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Figure 2 Left: Operation of vertex split (top) and multisplit (bottom). Right: The derivative
of (G,H, γ) in the normal form. On the left the input after splitting vertices, and on the right the
obtained derivative; in the example we have H ′ = H ′

ν , since every other Hµ, for ν 6= µ, is a trivial
graph with one vertex.

3.2 Derivative

We present the operation of the derivative that simplifies the input, and whose iterating
results in an input that is easy to deal with. Such inputs are treated in Section 3.3. Before
we describe the derivative we give a couple of definitions.

A vertex multisplit, see Figure 2 Left, in an embedding of a graph G is an operation
producing an embedding of a graph obtained from G by replacing a vertex v and its adjacent
edges with a star ({v, v1, . . . , vl}, {vv1, . . . , vvl}), where l ≤ deg(v), so that the resulting
underlying graph has vertex set V (G)∪{v1, . . . , vl} and edge set (E(G)\{vu1, . . . , vudeg(v)})∪
{vijuj | j = 1, . . . , deg(v)}∪{vv1, . . . , vvl}, where u1, . . . , udeg(v) are neighbors of v in G and
1 ≤ ij ≤ l, for all j. The rotations at v1, . . . , vl are inherited from the rotation at v so that
by contracting all the edges of St(v) in the resulting graph we obtain the original embedding
of G. Note that a vertex multisplit can be carried out in O(deg(v)) time.

The rotation of ν ∈ V (H) is consistent with the rotation of v ∈ Vν if the rotation given
by (γ(vv1), . . . , γ(vvdeg(v))), where (vv1, . . . , vvdeg(v)) is the rotation at v in an embedding
of G in the given isotopy class, is the rotation at ν ∈ V (H) in the embedding of H.

The derivative of (G,H, γ) is the input (G′, H ′, γ′) obtained as follows, see Figure 2
Right.

First, we construct the graph G′ from G by applying the following procedure to every
vertex v ∈ V (G) such that the star γ(St(v)) has at least two edges, and thus, v is not a
“spur”. In fact, we construct an auxiliary input (G′, H, γ), where by slightly abusing the
notation we will extend γ to take values on the vertices of G′. (In the second step we use
(G′, H, γ) to construct (G′, H ′, γ′).) The input (G,H, γ) is clearly negative, if there exists
a vertex v in G with four incident edges vv1, . . . , vv4 ∈ E(G) such that vv1, vv2, vv3 and
vv4 appear in the rotation at v in the given order and γ(vv1) = γ(vv3) 6= γ(vv2), γ(vv4).
Otherwise, the following operations of vertex split and multisplit are applicable to G. Let
the valency of a vertex v ∈ V (G) be val(v) := |E(γ(St(v)))|. Thus, the valency count the
size of the set of edges of H that the edges incident to v are mapped to.

If val(v) = 2, we apply the operation of vertex split to v thereby turning it into an edge
uw as follows. Let E(γ(St(v))) = {ρ1, ρ2}. Let v1, . . . , vdeg(v) be the neighbors of v. Let
{v1 . . . vl} ∪ {vl+1 . . . vdeg(v)} be the partition of the neighbors of v such that γ(vv1) = . . . =
γ(vvl) = ρ1 and γ(vvl+1) = . . . = γ(vvdeg(v)) = ρ2. We put γ(u), γ(w) := γ(v), and join u
by an edge with the vertices in {v1 . . . vl} and w with the vertices in {vl+1 . . . vdeg(v)}.

If val(v) ≥ 3, we analogously apply the operation of vertex multisplit to v so that we
replace v with a star ({v, v1, . . . , vl}, {vv1, . . . , vvl}) with l := val(v) edges, in which the set
of incident edges of every leaf vertex vi is {vvi} ∪ {viu| vu ∈ γ−1[ρi]}, where E(γ(St(v))) =
{ρ1, . . . , ρl}, and for every such leaf γ(vi) := γ(v).

ISAAC 2017



34:8 Embedding Graphs into Embedded Graphs

Let V≥3 ⊂ V (G) denote the set of vertices in G consisting of the vertices v ∈ V (G) with
val(v) ≥ 3. Note that V≥3 can be treated also as a subset of V (G′). Let E2 ⊂ E(G′) denote
the set of edges in G′ consisting of every edge uw obtained by splitting v ∈ V (G) such that
val(v) = 2. Let C denote the set of connected components of G′ \E2 \V≥3. Note that every
connected component of C is mapped to an edge of H by γ.

Second, we construct H ′: V (H ′) := {ρ∗|ρ ∈ E(H)} ∪ {νv| v ∈ V≥3}, and E(H ′) :=
{νvρ∗| ρ ∈ E(γ(St(v)))}∪{γ(C)∗γ(D)∗| C,D ∈ C s.t. there exists e ∈ E2 joining C with D}.
We put γ′(v) := γ(C)∗, for v ∈ V (C) where C ∈ C; and γ(v) := νv, for v ∈ V≥3.

Finally, the embedding of H ′, if it exists, is constructed as follows. For ν ∈ V (H), let Cν
be the cycle with the vertex set {ρ∗| ρ = νµ ∈ E(H)} that captures the rotation at ν, i.e.,
a pair of vertices ρ∗0 and ρ∗1 is joined by an edge in Cν if ρ0 and ρ1 are consecutive in the
rotation at ν. Let H ′ν , for ν ∈ V (H), denote the subgraph of H ′ induced by {ρ∗| ρ = νµ ∈
E(H)}∪{νv|γ(v) = ν}. Let Ĥ ′ν be obtained from H ′ν by adding to H ′ν (1) the missing edges
of the cycle Cν ; and (2) a new vertex joined by the edges exactly with all the vertices of
Cν . Note that Ĥ ′ν is vertex three-connected, and hence, if Ĥ ′ν is planar, then the rotations
at vertices in its embedding are determined up to the choice of orientation.

Suppose that every Ĥ ′ν , for ν ∈ V (H), is a planar graph. Let us fix for every ν ∈ V (H) an
embedding ofH ′ν , in which the cycle Cν bounds the outer face and its orientation corresponds
to the rotation of ν. Such an embedding is obtained as a restriction of an embedding of Ĥ ′ν .
Note that for every ν the graph H ′ν does not have multiple edges. Since H also does not
have multiple edges, H ′ν and H ′µ, for ν 6= µ, are either disjoint (if νµ 6∈ E(H)) or intersect
in a single vertex (νµ)∗ (if νµ ∈ E(H)). It follows that H ′ does not have multiple edges.
The desired embedding of H ′ is obtained by combining embeddings of H ′ν , for ν ∈ V (H),
in the same isotopy class as the embeddings of H ′ν , that we fixed above, by identifying the
corresponding vertices so that the restriction of the obtained embedding of H ′ to every H ′ν
has the rest of H ′ in the interior of the outer face (of this restriction).

Note that the construction of (G′, H ′, γ′) can be carried out in O
(∑

v∈V (G′) deg(v)
)

=
O(|V (G)|) thanks to the doubly-linked lists that we use to store the rotations of the vertices
of G and H.

I Lemma 5. The input (G,H, γ) is negative if one of the following three conditions is
satisfied. (1) There exists a vertex v in G with four incident edges vv1, . . . , vv4 ∈ E(G)
such that vv1, vv2, vv3 and vv4 appear in the rotation at v in the given order and γ(vv1) =
γ(vv3) 6= γ(vv2), γ(vv4). (2) The graph Ĥ ′ν , for some ν ∈ V (H), is not planar. (3) The
rotation of a vertex νv ∈ V (H ′ν), for some ν ∈ V (H) and v ∈ V (G′), in the obtained
embedding of H ′ν is not consistent with the rotation of v in G′.

Otherwise, the input (G,H, γ) is positive if and only if the input (G′, H ′, γ′) is positive.

3.3 Locally injective inputs
Let the potential p(G,H, γ) = |E(G)| − |E(H)|. Obviously, p(G,H, γ) ≥ 0, and
p(G,H, γ) = 0 if G is isomorphic to H. The input in the normal form (G,H, γ) is loc-
ally injective if
(i) the restriction of γ to V (St(v)) is injective, for all v ∈ V (G); and
(ii) for every degree one vertex v in G its unique incident edge e satisfies the following. If

γ(e) = γ(f) then e = f for all f ∈ E(G).
Given an input (G,H, γ), the vertex v ∈ V (G) is fixed if the condition of property (i)

holds for v, and v is alone in its cluster, i.e., γ(u) = γ(v) implies u = v. If v is fixed then
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Figure 3 Constructing the normal form and derivating one more time the derivative from Figure 2
on the left, we obtain an input that is strongly locally injective in the normal form on the right.

we call γ(v) = ν ∈ V (H) also fixed. Note that the edges incident to fixed vertices do not
contribute to the potential.

For a non-locally injective (G,H, γ) in the normal form, by Lemma 5 we either easily
detect that there does not exist an H-compatible embedding of G in the given isotopy class,
or we construct the input (G′, H ′, γ′) having a smaller potential after being brought to
the normal form, such that (G′, H ′, γ′) is positive if and only if (G,H, γ) is positive. The
following lemma implies that by iterating the derivative at most |E(G)| = O(|V (G)|) many
times we obtain an input that is locally injective.

I Lemma 6. If (G,H, γ) is in the normal form then p((G′)N , (H ′)N , (γ′)N ) ≤ p(G,H, γ).
If additionally (G,H, γ) is not locally injective then the inequality is strict.

Given an input (G,H, γ) in the normal form. As in Section 3.2, let V≥3 ⊆ V (G) denote
the set of vertices in G consisting of the vertices v ∈ V (G) with val(v) ≥ 3. The input is
strongly locally injective if it is locally injective and
(iii) every vertex in V≥3 is fixed.

For convenience, we would like to work with strongly locally injective inputs, see Figure 3.
The following lemma shows that if the input (G,H, γ) is locally injective, but not strongly,
we just derivate it one more time in order to arrive at a strongly locally injective input.

I Lemma 7. Suppose that (G,H, γ) in the normal form is locally injective. Then in
((G′)N , (H ′)N , (γ′)N ), every vertex v ∈ V ((G′)N ), such that val(v) ≥ 3, is fixed. Moreover,
((G′)N , (H ′)N , (γ′)N ) is still locally injective.

Proof. The lemma follows directly from the definition of the derivative. J

Deciding in, roughly, quadratic time in p(G,H, γ), which is sufficient for us, whether the
strongly locally injective input (G,H, γ) is positive, is quite straightforward. The reason
is that in this case the order of crossings of a valve with edges, that are incident to the
same vertex v of G, along the valve in an H-compatible embedding of G is determined by
the rotation at v. In order to decide if a desired H-compatible embedding of G exists, we
just detect if for every valve ω such an order of all the edges crossing ω exists, such that
together the orders are compatible. To this end we consider relations between unordered
pairs of edges of G such that the edges in a pair are mapped by γ to the same edge of H,
and two pairs are related if they intersect in a pair of vertices. In the following we assume
that (G,H, γ) is strongly locally injective.

Let Ξ = {{e, f}| e, f ∈ E(G) s.t. e 6= f and γ(e) = γ(f)}. Two elements {e1, f1} ∈ Ξ
and {e2, f2} ∈ Ξ are neighboring if |e1 ∩ e2| = 1, |f1 ∩ f2| = 1 and γ(e1 ∩ e2) = γ(f1 ∩ f2);
we write {e1, f1} ∼ {e2, f2}. An element {e1, f1} ∈ Ξ is a boundary pair if there exists

ISAAC 2017
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at most one {e2, f2} ∈ Ξ such that {e1, f1} and {e2, f2} are neighboring. Let Ξ1, . . .Ξl be
equivalence classes of the transitive closure of the relation ∼. A boundary pair {e1, f1} ∈ Ξ
is determined if there exists a pair of edges e2 and f2 such that |e1 ∩ e2| = 1, |f1 ∩ f2| = 1,
γ(e1 ∩ e2) = γ(f1 ∩ f2) and γ(e2) 6= γ(f2). By properties (i) and (iii) of strong local
injectivity, the subgraph GΞ of G induced by

⋃
{e,f}∈Ξ{e, f} has maximum degree two.

First, we consider the case when a connected component of GΞ does not contain a vertex of
degree one.

I Lemma 8. If there exists an equivalence class Ξc, such that the subgraph GΞc
of G induced

by
⋃
{e,f}∈Ξc

{e, f} is a cycle, then (G,H, γ) is a negative input.

Note that Lemma 8 does not cover the case when GΞc
is a union of two cycles. By (ii), it

must be that if Ξc contains a boundary pair, then it, in fact, contains exactly two boundary
pairs, both of which are determined. Hence, in the following we assume that every Ξc
either gives rise to a pair of cycles, or contains exactly two determined boundary pairs.
We construct for every valve ω of ρ ∈ E(H) the relation (Eρ, <ω), where Eρ = {e ∈
E(H)| γ(e) = ρ}. We define relations (Eρ, <ω) by propagating relations enforced by the
determined boundary pairs, for every determined pair contained in Ξ. We assume that
(Eρ, <ω) encodes the increasing order of the crossing points of edges with ω as encountered
when traversing ω ⊂ Nε(ν) in the direction inherited from the counterclockwise orientation
of the boundary of Nε(ν).

Let {e1, f1} ∈ Ξc ⊆ Ξ be determined. Let Ξc = {{e1, f1}, . . . {em, fm}} such that
{ep, fp} ∼ {ep+1, fp+1}. Let γ(e1) = γ(f1) = νµ, γ(e0) = νµ′, γ(f0) = νµ′′, where µ′ 6= µ′′

and |e0 ∩ e1| = 1 and |f0 ∩ f1| = 1. W.l.o.g. we suppose that νµ, νµ′ and νµ′′ appear in
the rotation of ν in this order counterclockwise. Let ω1 be the valve of νµ at ν. Let ω2 be
the valve of νµ at µ. We put the relation f1 <ω1 e1 into (Eνµ, <ω1) and e1 <ω2 f1 into
(Eνµ, <ω2). Recursively, we put fp+1 <ω2p+1 ep+1 into (Eνµ, <ω2p+1) and ep+1 <ω2(p+1) fp+1
into (Eνµ, <ω2(p+1)), if fp <ω2p−1 ep and ep <ω2p

fp, and vice-versa, where ω2p and ω2p+1
are valves contained in the boundary of the same disc.

If GΞc
is a union of two disjoint cycles we add fp <ω2p

ep and ep <ω2p−1 fp, or fp >ω2p
ep

and ep >ω2p−1 fp for every p, in correspondence with the isotopy class of G.

I Lemma 9. Suppose that every equivalence class Ξc contains exactly two determined bound-
ary pairs, or GΞc

is a union of two disjoint cycles. We can test in O((p(G,H, γ))2 + |V (G)|)
time if (G,H, γ) is positive or negative.

3.4 Algorithm
We give a description of the decision algorithm proving the first part of the theorem. The
running time analysis using Lemmas 6, 7 and 9, and the constructive algorithm is omitted
in this extended abstract.

Decision Algorithm. Let (G,H, γ) = (G0, H0, γ0) be the input. We work with inputs in
which G contains multiple edges and loops. However, w.l.o.g. we assume that G does not
contain a pair of multiple edges joining the same pair of vertices that form a face of size two,
i.e., a lens, except for the outer face. Moreover, we assume that whenever a lens is created
during the execution of the algorithm, the lens is eliminated by deleting one of its edges.

An execution of the algorithm is divided into steps. During the s-th step we process
(Gs, Hs, γs) and output (Gs+1, Hs+1, γs+1) as follows.
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First, by following the procedure described in Section 3.1 we either construct an instance
((Gs)N , (Hs)N , (γs)N ) in the normal form that is positive if and only if (Gs, Hs, γs) is pos-
itive, or output that (G,H, γ) is negative, if the hypothesis of the first part of Lemma 4 is
satisfied.

Second, if ((Gs)N , (Hs)N , (γs)N ) is not strongly locally injective we proceed as follows. If
(Gs, Hs, γs) satisfies the hypothesis of the first part of Lemma 5 with ((Gs)N , (Hs)N , (γs)N )
playing the role of (G,H, γ) we output that (G,H, γ) is negative; otherwise we construct the
derivative ((GNs )′, (HN

s )′, (γNs )′) = (Gs+1, Hs+1, γs+1) defined in Section 3.2 and proceed to
the (s + 1)-st step. Otherwise, ((Gs)N , (Hs)N , (γs)N ) is strongly locally injective and we
construct equivalence classes Ξ1, . . .Ξl from Section 3.3 defined by ((Gs)N , (Hs)N , (γs)N )
and proceed as follows.

We check if there exists a class Ξc satisfying the hypothesis of Lemma 8. If this is the
case, then we output that (G,H, γ) is negative. Otherwise, we construct relations (Eρ, <ω),
for every ρ ∈ (Hs)N and its valve ω. If there exists (Eρ, <ω) that is not a total order we
output that (G,H, γ) is negative; otherwise we check if the isotopy class of an H-compatible
embedding of Gs enforced by relations (Eρ, <ω) is the same as the given one and output
that (G,H, γ) is positive if and only if this is the case.

The correctness of the algorithm follows directly from Lemma 4,5,8, and 9.

References
1 Hugo A. Akitaya, Greg Aloupis, Jeff Erickson, and Csaba Tóth. Recognizing weakly

simple polygons. In 32nd International Symposium on Computational Geometry (SoCG
2016), volume 51 of Leibniz International Proceedings in Informatics (LIPIcs), pages
8:1–8:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.SoCG.2016.8.

2 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Strip
planarity testing for embedded planar graphs. Algorithmica, 77(4):1022–1059, 2017.

3 Patrizio Angelini and Giordano Da Lozzo. Clustered Planarity with Pipes. In Seok-
Hee Hong, editor, 27th International Symposium on Algorithms and Computation (ISAAC
2016), volume 64 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–
13:13, 2016.

4 Therese C. Biedl. Drawing planar partitions III: Two constrained embedding problems.
Rutcor Research Report 13-98, 1998.

5 Thomas Bläsius and Ignaz Rutter. A new perspective on clustered planarity as a combinat-
orial embedding problem. In Christian A. Duncan and Antonios Symvonis, editors, Graph
Drawing - 22nd International Symposium, GD 2014, Würzburg, Germany, September 24-
26, 2014, Revised Selected Papers, volume 8871 of Lecture Notes in Computer Science,
pages 440–451. Springer, 2014. doi:10.1007/978-3-662-45803-7_37.

6 David Dylan Bremner. Point visibility graphs and restricted-orientation polygon covering.
PhD thesis, Simon Fraser University, 1993.

7 Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1655–1670, 2015.

8 Markus Chimani, Giuseppe Di Battista, Fabrizio Frati, and Karsten Klein. Advances on
testing c-planarity of embedded flat clustered graphs. In Christian A. Duncan and Antonios
Symvonis, editors, Graph Drawing - 22nd International Symposium, GD 2014, Würzburg,
Germany, September 24-26, 2014, Revised Selected Papers, volume 8871 of Lecture Notes in
Computer Science, pages 416–427. Springer, 2014. doi:10.1007/978-3-662-45803-7_35.

ISAAC 2017

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.8
http://dx.doi.org/10.1007/978-3-662-45803-7_37
http://dx.doi.org/10.1007/978-3-662-45803-7_35


34:12 Embedding Graphs into Embedded Graphs

9 Pier Francesco Cortese, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and
Maurizio Pizzonia. C-planarity of c-connected clustered graphs. J. Graph Algorithms
Appl., 12(2):225–262, 2008.

10 Pier Francesco Cortese, Giuseppe Di Battista, Maurizio Patrignani, and Maurizio Pizzonia.
On embedding a cycle in a plane graph. Discrete Mathematics, 309(7):1856 – 1869, 2009.

11 Reinhard Diestel. Graph Theory. Springer, New York, 2010.
12 István Fáry. On straight line representation of planar graphs. Acta Univ. Szeged. Sect. Sci.

Math., 11:229–233, 1948.
13 Qing-Wen Feng, Robert F. Cohen, and Peter Eades. How to draw a planar clustered graph.

In Ding-Zhu Du and Ming Li, editors, Computing and Combinatorics, volume 959 of Lecture
Notes in Computer Science, pages 21–30. Springer Berlin Heidelberg, 1995.

14 Qing-Wen Feng, Robert F. Cohen, and Peter Eades. Planarity for clustered graphs. In
Paul Spirakis, editor, Algorithms — ESA ’95, volume 979 of Lecture Notes in Computer
Science, pages 213–226. Springer Berlin Heidelberg, 1995.

15 Radoslav Fulek. C-planarity of embedded cyclic c-graphs. In International Symposium on
Graph Drawing and Network Visualization, pages 94–106. Springer, 2016.

16 Radoslav Fulek and Jan Kyncl. Hanani-tutte for approximating maps of graphs. CoRR,
abs/1705.05243, 2017. arXiv:1705.05243.

17 Radoslav Fulek, Jan Kynčl, Igor Malinovic, and Dömötör Pálvölgyi. Clustered planarity
testing revisited. Electronic Journal of Combinatorics, 22, 2015.

18 Michael T. Goodrich, George S. Lueker, and Jonathan Z. Sun. C-planarity of extrovert
clustered graphs. In Patrick Healy and Nikola S. Nikolov, editors, Graph Drawing, 13th
International Symposium, GD 2005, Limerick, Ireland, September 12-14, 2005, Revised
Papers, volume 3843 of Lecture Notes in Computer Science, pages 211–222. Springer, 2005.
URL: https://doi.org/10.1007/11618058_20, doi:10.1007/11618058_20.

19 Carsten Gutwenger, Michael Jünger, Sebastian Leipert, Petra Mutzel, Merijam Per-
can, and René Weiskircher. Advances in c-planarity testing of clustered graphs. In
Stephen G. Kobourov and Michael T. Goodrich, editors, Graph Drawing, 10th Inter-
national Symposium, GD 2002, Irvine, CA, USA, August 26-28, 2002, Revised Papers,
volume 2528 of Lecture Notes in Computer Science, pages 220–235. Springer, 2002. URL:
https://doi.org/10.1007/3-540-36151-0_21, doi:10.1007/3-540-36151-0_21.

20 Vít Jelínek, Eva Jelínková, Jan Kratochvíl, and Bernard Lidický. Clustered planarity:
Embedded clustered graphs with two-component clusters. In Ioannis G. Tollis and Maurizio
Patrignani, editors, Graph Drawing, 16th International Symposium, GD 2008, Heraklion,
Crete, Greece, September 21-24, 2008. Revised Papers, volume 5417 of Lecture Notes in
Computer Science, pages 121–132. Springer, 2008. doi:10.1007/978-3-642-00219-9_13.

21 Eva Jelínková, Jan Kára, Jan Kratochvíl, Martin Pergel, Ondřej Suchý, and Tomáš
Vyskočil. Clustered planarity: Small clusters in cycles and Eulerian graphs. J. Graph
Algorithms Appl., 13(3):379–422, 2009.

22 Piotr Minc. Embedding simplicial arcs into the plane. Topol. Proc. 22, pages 305–340,
1997.

23 Ares Ribó Mor. Realization and Counting Problems for Planar Structures: Trees and
Linkages, Polytopes and Polyominoes. PhD thesis, Freie U., Berlin, 2006.

24 K Sieklucki. Realization of mappings. Fundamenta Mathematicae, 65(3):325–343, 1969.
25 Mikhail Skopenkov. On approximability by embeddings of cycles in the plane. Topology

and its Applications, 134(1):1–22, 2003.
26 Godfried Toussaint. On separating two simple polygons by a single translation. Discrete

& Computational Geometry, 4(3):265–278, 1989.

http://arxiv.org/abs/1705.05243
https://doi.org/10.1007/11618058_20
http://dx.doi.org/10.1007/11618058_20
https://doi.org/10.1007/3-540-36151-0_21
http://dx.doi.org/10.1007/3-540-36151-0_21
http://dx.doi.org/10.1007/978-3-642-00219-9_13

	Introduction
	Preliminaries
	Proof of Theorem 1
	The normal form
	Derivative
	Locally injective inputs
	Algorithm


