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Abstract
We consider the problem of packing a family of disks “on a shelf,” that is, such that each disk
touches the x-axis from above and such that no two disks overlap. We prove that the problem
of minimizing the distance between the leftmost point and the rightmost point of any disk is
NP-hard. On the positive side, we show how to approximate this problem within a factor of 4/3

in O(n logn) time, and provide an O(n logn)-time exact algorithm for a special case, in particular
when the ratio between the largest and smallest radius is at most four.
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1 Introduction

Packing problems have a long history and abundant literature. Circular disks and spherical
balls, because of their symmetry and simplicity, are of particular interest from a theoretical
point of view. Historically, Johannes Kepler conjectured that an optimal packing of unit
spheres into the Euclidean three-space cannot have greater density than the face-centered
cubic packing [8]. The conjecture was first proven to be correct by Hales and Ferguson [7]. A
more recent treatment of the proof is given by Hales et al. [6]. The proof of the 2-dimensional
version of Kepler’s conjecture, that is, packing unit disks into the Euclidean two-space, is
elementary and attributed to Lagrange (1773).

Packing unit disks into 2-dimensional shapes in the plane is a well studied problem in
recreational mathematics. Croft et al. [2] give an overview of packing geometrical objects in
finite-sized containers, for instance finding the smallest square (circle, isosceles triangle, etc.)
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4:2 Placing your Coins on a Shelf

w

Figure 1 Illustration of the span w of a valid (but not optimal) placement of five discs.

such that a given number of n unit disks can be packed into it. Specht [10] presents the best
known packings of up to 10, 000 disks into various containers.

Algorithmically, many packing problems are NP-hard, some are not even known to be
in NP. Demaine, Fekete, and Lang showed that the problems whether a given set of circular
disks of arbitrary radii can be packed into a given square, rectangle, or triangle are all
NP-hard problems [3].

We will discuss a particular “nearly” one-dimensional packing problem for disks from an
algorithmic aspective. We are given a family of disks that we wish to arrange “on a shelf,”
that is, such that each disk touches the x-axis from above and such that no two disks overlap;
see Figure 1. The goal is to minimize the span of the resulting configuration, that is, to
minimize the horizontal distance between the leftmost point and the rightmost point of any
disk. In other words, we want to minimize the required width of the shelf. Obviously, this
problem is trivial for unit disks, so we allow the disks to have different sizes.

Related work. Independently from us, Dürr et al. [4] have studied the same problem, but
for an isosceles, right-angled triangle. Given n sizes of this triangle, they ask for the shortest
horizontal span in which the triangles can be arranged so that their lowest point lies on
the x-axis, while the triangles do not overlap. Their entirely independent results are quite
similar to ours: an NP-hardness proof by reduction from 3-Partition, a fast algorithm for
a special case, and a 3/2-approximation algorithm.

Klemz et al. [9] show that it is NP-hard to decide if n given disks fit around a large center
disk, such that each disk is in contact with the center disk while all disks are disjoint. Their
proof is by reduction from 3-Partition as well.

Stoyan and Yaskov [11] introduce the problem of packing disks of unequal sizes into a
strip of given height and minimizing the required width which is known as the circular open
dimension problem.

Our results. We first give some useful definitions and properties for touching disks in
Section 2. The hardness of the problem arises from the fact that disks can sometimes “hide”
in the holes formed by larger disks, as in Figure 2b. For this reason, in Section 3, we consider
the special case where, for any ordering of the disks, each disk can touch only its left and
its right neighbor (where the two walls bounding the span count as neighbors as well). In
particular, this implies that no disk will ever fit in a gap between two other disks. We
call this the linear case, see Figure 2a. It turns out that for this (linear) case the optimal
configuration depends only on the relative order of the disk sizes,1 so it suffices to sort the
disks in O(n logn) time to determine the optimal sequence.

1 The median disk for an odd number of disks is the only exception, it can be on either end, depending
on its actual size.
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(a) The linear case. (b) Small disks can “hide” between larger disks.

Figure 2 Illustration of different instances of the problem.
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Figure 3 The footpoint distance of two touching disks.

In Section 4, we show that in its general form, the problem is NP-hard. More precisely, we
show that given n disk sizes and a number δ > 0, it is NP-hard to decide if a non-overlapping
arrangement of the disks with horizontal span at most δ exists. Our NP-hardness proof is
by a reduction from 3-Partition, and exploits the fact that disks can “hide” in the holes
formed by larger disks.

Finally, in Section 5, we give an approximation algorithm that runs in O(n logn) time
and guarantees a span at most 4/3 times the optimal span.

2 Preliminaries

For reasons that will become obvious shortly, it will be convenient to define the size of a disk
as the square root of its radius. We will denote disks by capital letters, and their size by the
corresponding lower-case letter. Namely, disk A has size a, radius a2, and diameter 2a2.

In a valid placement, each disk A touches the x-axis in its lowest point. We will call
this point the footpoint of the disk and denote it

˙
A. All of our arguments are based on

calculations involving the distances between footpoints, so we start with the following lemma.

I Lemma 1. If A and B touch, then their footpoint distance
˙
A

˙
B is 2ab.

Proof. The statement holds for a = b, so we assume a > b and consider the right-angled
triangle with edge lengths

˙
A

˙
B, a2 + b2, and a2 − b2, see Figure 3. We obtain (

˙
A

˙
B)2 =

(a2 + b2)2 − (a2 − b2)2 = 4a2b2. J

I Lemma 2. Let G be the largest disk that fits in the gap formed by two touching disks A
and B. Then 1/g = 1/a+ 1/b.

Proof. Since G is the largest disk that fits in the gap, it must touch both A and B. By
Lemma 1 we have 2ab =

˙
A

˙
B =

˙
A

˙
G+

˙
G

˙
B = 2ag + 2gb, proving the lemma. J

I Lemma 3. Let G be the largest disk that fits in the gap between a disk A and the vertical
wall through A’s rightmost point. Then g = (

√
2− 1) · a.

ISAAC 2017



4:4 Placing your Coins on a Shelf

Proof. Again, G must touch both A and the wall, so we have a2 =
˙
A

˙
G + g2 = 2ag + g2.

The positive solution to g2 + 2ag − a2 = 0 is (
√

2− 1) · a. J

In any valid placement of the disks, their footpoints are distinct. Thus, the footpoints
induce a linear left-to-right order on the disks. We refer to this linear order as the footpoint
sequence of a valid placement. Further, disks are called consecutive or neighbors when their
footpoints are consecutive in the footpoint sequence.

3 The Linear Case

In this section, we consider linear case instances, that is, instances where in any valid
placement only consecutive pairs of disks can touch, only the first disk (with the leftmost
footpoint) touches the left wall, and only the last disk touches the right wall.

By Lemmas 2 and 3, this is true if and only if the following condition holds: Let A
be the largest disk, B the second largest, and Z the smallest disk in the collection. Then
1/z < 1/a+ 1/b, and z > (

√
2− 1)a. The condition holds in particular if the ratio between

the largest and smallest disk size is less than two (that is, if the ratio of diameters is less
than four), since then we have 1/z < 2/a 6 1/a+ 1/b and z > a/2 > (

√
2− 1)a.

In an optimal placement of a linear case instance, each disk must touch both its neighbors.
Thus, the ordering of the disks uniquely determines the exact placement of every disk in any
layout of minimal span. From now on, we represent placements by the ordering of the disks,
with the understanding that the placement minimizes the span for this ordering. It remains
to determine the optimal ordering. We will first give a lemma that allows us to improve a
given ordering.

I Lemma 4. Let D be a left-to-right or right-to-left ordering of the disks in a linear case
instance. Let A, B, Z be three disks that appear in this order in D such that AB is a
consecutive pair. Let D′ be the ordering obtained from D by reversing the subsequence from B

to Z. Then D′ has smaller span than D if one of the following is true:
1. Z is the last disk and a > b > z;
2. Z is the last disk and a < b < z;
3. a > y and b > z, where Y is the disk after Z in D;
4. a < y and b < z, where Y is the disk after Z in D.

Proof. First, suppose that Z is the last disk in D. Then, except for
˙
A

˙
B being replaced by

˙
A

˙
Z, each consecutive footpoint distance in D′ is the same as in D. So, since the last disk

in D′ is B, the change in span is
˙
A

˙
Z+b2−

˙
A

˙
B−z2 = 2az+b2−2ab−z2 = (b+z−2a)(b−z).

For both a < b < z and a > b > z, this is negative, and so D′ has smaller span than D.
Now suppose Z is not the last disk, and let Y be the disk after Z. Here, except for

˙
A

˙
B being replaced by

˙
A

˙
Z and

˙
Z

˙
Y being replaced by

˙
B

˙
Y , each consecutive footpoint

distance in D′ is the same as in D. Thus, the change in span is
˙
A

˙
Z +

˙
B

˙
Y −

˙
A

˙
B −

˙
Z

˙
Y =

2(az + by − ab − zy) = 2(a − y)(z − b). For a > y and b > z or a < y and b < z, this is
negative. So, again D′ has smaller span than D. J

We label a given family of n disks in order of decreasing size as D1, D2, D3, . . . , Dn, and
in order of increasing size as S1, S2, S3, . . . , Sn. In other words, d1 > d2 > d3 > · · · > dn and
s1 6 s2 6 s3 6 · · · 6 sn. Thus, each disk has two names, and we have D1 = Sn, D2 = Sn−1,
and so on until Dn = S1.

We now prove our claim about the structure of the optimal ordering (see also Figure 4):
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D1 = S9 D2 = S8D3 = S7 D4 = S6D5 = S5 S4 = D6 S3S2 S1

Figure 4 An optimal placement in the linear case. For instance for k = 2, the disks in
{S1, S2, D1, D2} form the consecutive subsequence starting with S2 and ending with D2.

I Lemma 5. Let k be an integer with 1 6 k 6 n/2. In any optimal placement of n disks
with distinct sizes in a linear case instance, the k largest disks D1, . . . , Dk and the k smallest
disks S1, . . . , Sk appear as a consecutive subsequence terminated by the disks Sk and Dk. If
k > 1, then DkSk−1 and SkDk−1 are consecutive pairs.

Proof. We use induction over k. For k = 1, it suffices to prove that S1 and D1 are consecutive,
so assume for a contradiction that this is not the case. Let A = D1, Z = S1, assume A is to
the left of Z, and let B be the right neighbor of A. By Lemma 4 (Case 1 or 3), the sequence
can now be improved by reversing the subsequence from B up to Z.

Assume now that k > 1 and that the statement holds for k−1. This means that there is a
consecutive subsequence of the disks {S1, . . . , Sk−1, D1, . . . , Dk−1}, terminated by disk Sk−1
at the, say, right end and disk Dk−1 at the left end, as in the example of Figure 4.

We first show that the right neighbor of Sk−1 is Dk. Assume this is not the case. We
distinguish four cases:
1. If Dk appears to the right of Sk−1 (but not immediately adjacent), then we apply Lemma 4

(Case 2 or 4) with A = Sk−1, B the right neighbor of Sk−1, and Z = Dk.
2. If Dk appears to the left of Sk−1, then it must appear to the left of Dk−1. If Dk is not

the left neighbor of Dk−1, then apply Lemma 4 (Case 1 or 3) with A = Dk, B the right
neighbor of Dk, and Z = Sk−1.

3. If Dk is the left neighbor of Dk−1 and Sk−1 is not the rightmost disk, then apply Lemma 4
(Case 3) with A = Dk, B = Dk−1, and Z = Sk−1.

4. If Dk is the left neighbor of Dk−1 and Sk−1 is the rightmost disk, then Sk appears
somewhere to the left of Dk. We apply Lemma 4 (Case 1 or 3) with A = Dk−1, B = Dk,
and Z = Sk.

We next show that the left neighbor of Dk−1 is Sk. Assume this is not the case. If Sk

appears somewhere to the left of Dk−1, apply Lemma 4 (Case 1 or 3) with A = Dk−1, B the
left neighbor of Dk−1, and Z = Sk. If, on the other hand, Sk appears to the right of Dk,
apply Lemma 4 (Case 2 or 4) with A = Sk, B the left neighbor of Sk, and Z = Dk−1. (Note
that in this case B might be Dk.) J

I Theorem 6. Let D be a linear case instance of n disks D1, . . . , Dn of sizes d1 > d2 >
· · · > dn. If n is even, then the following ordering is optimal:

. . . , Dn−5, D5, Dn−3, D3, Dn−1, D1, Dn, D2, Dn−2, D4, Dn−4, D6, Dn−6 . . .

For odd n, the median disk needs to be appended at the end of the sequence with the larger
size difference.

Proof. Let D be in the given ordering, and assume a better ordering D′ exists. We can
modify the disk sizes slightly so as to make them unique while keeping D′ better than D.
But then we have a contradiction to Lemma 5. If n is odd, then the only possible placements
of the median disk are the left end and the right end, so choosing the end with the larger
size difference gives the optimal solution. J

ISAAC 2017



4:6 Placing your Coins on a Shelf

4 NP-Hardness of the General Case

Let us denote the decision version of our problem as CoinsOnAShelf. Its input is a set
of disks with rational radii and a rational number δ > 0, the question is whether there is a
feasible placement of the disks with span at most δ.

I Theorem 7. CoinsOnAShelf is NP-hard, even when the ratio of the largest and smallest
disk size is bounded by six and when all numbers are given in unary notation.

Our proof is by reduction from 3-Partition [5, Problem SP15]. An instance of 3-
Partition consists of 3m integers A = a1, . . . , a3m and another integer B, with

∑3m
i=1 ai =

mB and B/4 < ai < B/2 for all i. 3-Partition decides if there is a partition of A into m
three-element groups A1, . . . , Am such that

∑
a∈Ai

a = B for each group Ai.
Given a 3-Partition instance (A, B), we construct a family D of 12m + 11 disks, as

follows:
m+ 1 disks of size 1, we will refer to these disks as outer frame disks;
4(m+ 1) disks of size s0 = 33/100 = 0.33, we will refer to these disks as inner frame disks;
2(m + 1) disks of size s1 = s0/1+s0 = 33/133 (≈ 0.24812), we will refer to these disks as
large filler disks;
2(m+ 1) disks of size s2 = s1/1+s1 = 33/166 (≈ 0.198795), we will refer to these disks as
small filler disks;
2 disks of size s3 = 1−s2

0−2s0
4s0

= 2311/13200 (≈ 0.175076), referred to as end disks;

3m disks D1, . . . , D3m, referred to as partition disks, where di = 17
99

(
3

100
ai

B + 99
100

)
.

In the following, we will identify disks by their size or type. We observe that all disk sizes
are rational, where numerator and denominator can be computed in time polynomial in the
input size. The radius of a disk is obtained by squaring its size. Note that, if we multiply all
radii by the product of the denominators, then we obtain in polynomial time an instance of
our problem with integer radii.

I Lemma 8. Each end disk and partition disk has size at least s4 = 2261/13200 > 0.17128.

Proof. Since s3 > s4, the statement is trivial for end disks. Let ai ∈ A. From ai > B/4

follows that the size di of the corresponding partition disk is di > 17/99(3/400 + 99/100) =
17/99 · 399/400 = 2261/13200. J

Equivalence of the problem instances. We show that D has a placement with span 2(m+1)
if and only if (A, B) is a Yes-instance of 3-Partition, implying the NP-hardness of Coin-
sOnAShelf.

The m+ 1 outer frame disks alone already require a span of 2(m+ 1), so no better span is
possible. A placement of all disks of D with span 2(m+ 1) therefore implies that consecutive
outer frame disks touch, and that all remaining disks fit into the space under these outer
frame disks.

Let’s call the m spaces between two consecutive (and touching) outer frame disks gaps.
The space to the left of the leftmost outer frame disk is called the left end, the right end is
defined symmetrically.

I Lemma 9. There is only one pattern of frame and filler disks (ignoring end disks and
partition disks) that has span 2(m+ 1).
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(a) The overall picture for m = 3.

s0 s0 s0 s0s1 s1s2 s21 1

(b) The frame and filler disks inside a gap.

Figure 5 The unique pattern of span 2(m + 1) in Lemma 9.

The proof can be found in the full paper [1], here we only show the pattern in Figure 5a.
Each gap contains eight disks of sizes s2, s1, s0, s0, s0, s0, s1, s2; see Figure 5b. The left
end contains four disks of sizes s0, s0, s1, s2, the right end contains disks of sizes s2, s1, s0, s0.

I Lemma 10. Three end/partition disks X, Y , and Z fit in the three gaps formed by the
three pairs of consecutive inner frame disks in a common gap if and only if x+ y + z 6 17/33.

Proof. By Lemma 2, the largest disk that fits in the space between two touching disks of
size s0 has size s0/2. By Lemma 8, an end/partition disk has size at least s4 > s0/2, so it
does not fit entirely in this space. It follows that the total footpoint distance of the sequence
1, s0, x, s0, y, s0, z, s0, 1 is at least 4s0 + 4s0x+ 4s0y + 4s0z = 4s0(x+ y + z + 1). X, Y , and
Z fit in the prescribed manner if and only if this total footpoint distance is at most two,
proving the lemma. J

I Lemma 11. Placing a disk X in the space between the two consecutive inner frame disks
in the left end or the right end causes the total span to increase if and only if x > s3.

Proof. If x 6 s0/2 < s3, the statement follows from Lemma 2, so assume x > s0/2. Then the
total width of the sequence 1, s0, x, s0 is 2s0 + 4s0x+ s2

0. The span increases if and only if
this is larger than one, proving the lemma. J

A 3-partition implies small span. Assume that A can be partitioned into m groups Ai

such that
∑

a∈Ai
a = B. Consider a group Ai = (ai1, ai2, ai3) and let X, Y , and Z be the

partition disks corresponding to ai1, ai2, ai3. Then we have

x+ y + z = 17
99

( 3
100

ai1 + ai2 + ai3

B
+ 3 · 99

100

)
= 17

33 .

By Lemma 10 this implies that X, Y , and Z can be placed in a common gap in the pattern of
Figure 5 without increasing the total span. Since there are m gaps, we can place all partition
disks into the m gaps. Finally, by Lemma 11, we can place the two end disks inside the left
end and the right end.

Small span implies a 3-partition. We assume now that a placement of the disks D with
span 2(m+ 1) exists. By Lemma 9, the frame and filler disks must be placed in the pattern
of Figure 5. It remains to discuss the possible locations of the end disks and the partition
disks. We need a number of observations about a placement of span 2(m+ 1):
1. The left end and right end can contain at most one end disk or partition disk, and only

between the two inner frame disks or between the outer frame disk and the small filler
disk, see top of Table 1.

2. A gap can contain at most three partition disks or end disks. If a gap contains three such
disks, each has to appear between two inner frame disks, see bottom of Table 1.

ISAAC 2017



4:8 Placing your Coins on a Shelf

Table 1 Impossible placements of end/partition disks. . .

. . . in the right end
sequence width
1 s0 s0 s4 2s0 + 2s2

0 + 2s0s4 + s2
4 > 1.0201

1 s1 s4 s0 s0 2s1 + 2s1s4 + 2s0s4 + 3s2
0 > 1.0209

1 s2 s4 s1 s0 s0 2s2 + 2s2s4 + 2s1s4 + 2s1s0 + 3s2
0 > 1.0411

1 s0 s4 s4 s0 2s0 + 4s0s4 + 2s2
4 + s2

0 > 1.0536
1 s4 s4 s2 s1 s0 s0 2s4 + 2s2

4 + 2s2s4 + 2s1s2 + 2s1s0 + 3s2
0 > 1.0584

1 s4 s2 s1 s0 s4 s0 2s4 + 2s2s4 + 2s1s2 + 2s1s0 + 4s0s4 + s2
0 > 1.0080

. . . in a gap
sequence total footpoint distance
1 s1 s4 s0 s0 s0 s0 1 2s1 + 2s1s4 + 2s0s4 + 6s2

0 + 2s0 > 2.0076
1 s2 s4 s1 s0 s0 s0 s0 1 2s2 + 2s2s4 + 2s4s1 + 2s1s0 + 6s2

0 + 2s0 > 2.0278
1 s0 s4 s4 s0 s0 s0 1 4s0 + 4s0s4 + 2s2

4 + 4s2
0 > 2.0403

1 s4 s4 s2 s1 s0 s0 s0 s0 1 2s4 + 2s2
4 + 2s4s2 + 2s2s1 + 2s1s0 + 6s2

0 + 2s0 > 2.0451
1 s4 s2 s1 s0 s4 s0 s4 s0 s0 1 2s4 + 2s4s2 + 2s2s1 + 2s1s0 + 8s0s4 + 2s2

0 + 2s0 > 2.0030
1 s4 s2 s1 s0 s4 s0 s0 s0 s1 s2 s4 1 4s4 + 4s4s2 + 4s2s1 + 4s1s0 + 4s0s4 + 4s2

0 > 2.0078

3. Since there are 3m+ 2 end and partition disks, (1) and (2) imply that each gap contains
three such disks, while the left end and right end each contain one.

4. By (1) and Lemma 11, the left end and the right end can contain only disks of size at
most s3. We can assume that these are the two end disks (otherwise, swap them with an
end disk).

5. Consider a gap. It contains exactly three partition disks X, Y , and Z. By Lemma 10, we
have x+ y + z 6 17/33. Let a, b, c be the elements of A corresponding to X, Y , and Z.
Then we have

x+ y + z = 17
99

( 3
100

a+ b+ c

B
+ 3 · 99

100

)
6

17
33 ,

which implies a + b + c 6 B. It follows that we have partitioned the elements of A
into m groups A1, A2, . . . , Am with

∑
a∈Ai

a 6 B. Since
∑

a∈A a = mB, we must have∑
a∈Ai

a = B for each i, so (A, B) is a Yes-instance of 3-Partition.
This concludes the proof of Theorem 7, noting that by Lemma 8 all disks have size at
least s4 > 1/6.

5 A 4/3-Approximation

In this section, we give a greedy algorithm and prove that it computes a 4/3-approximation
to the problem.

Our algorithm starts by sorting the disks D1, D2, . . . , Dn by decreasing size, such that
d1 > d2 > · · · > dn. It then considers the disks one by one, in this order, maintaining a
placement of the disks considered so far. Each disk D is placed as follows:
1. If there is a gap between two consecutive disks A and B in the current placement that is

large enough to contain D, then we place D in this gap, touching the smaller one of the
two disks A and B.

2. Otherwise, let A be the leftmost disk in the current placement (that is, the disk with the
leftmost footpoint—this is not necessarily the disk defining the left end of the current
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1

2

3

ttt

Figure 6 Support of three disks of radius 1, 2 and 3 respectively.

span), and let Z be the rightmost disk. Since d 6 a, we can place D so that it touches A
from the left (candidate placement DA), and since d 6 z, we can place D so that it
touches Z from the right (candidate placement DZ).

3. If one of the candidate placements DA or DZ does not increase the span, we place D in
this way.

4. Otherwise, we place D at DA if a > z and at DZ otherwise.
The algorithm can be implemented to run in time O(n logn) as follows: We maintain a
priority queue that stores, for each pair of consecutive disks, the size of the largest disk that
will fit between them. Since we are placing disks in order of decreasing size, a newly placed
disk can only touch its two neighbors, and so it will fit into the gap if and only if its size is
at most the stored gap size.

For the analysis of the approximation factor, we will assume, without loss of generality,
that the final disk Dn is placed using the last rule (as otherwise it does not contribute to the
final span and can be ignored in the analysis). We also assume that dn = 1.

Next, let’s call a disk D large if d > 2, and small otherwise. We have the following:

I Lemma 12. Any two consecutive small disks placed by the algorithm touch.

Proof. Assume, for a contradiction, that D is the first small disk whose placement causes
two small disks to be consecutive but non-touching.

If D was placed by the third or fourth rule (at the left or right end of the sequence), it
is touching its only neighbor. Therefore, D must have been placed in a gap between two
disks A and B. If both A and B are small, they must be touching (since D is the first small
disk that will not touch a neighboring small disk). But by Lemma 2 that implies that the
gap between A and B is too small to contain a disk of size d > 1. It follows that at most one
of A and B is small, say B. But then the algorithm will place D such that it touches B, a
contradiction. J

We now associate with each disk a support interval. The support interval of a disk A is
the interval [

˙
A− 2a+ 1,

˙
A+ 2a− 1]. Since 0 6 (a− 1)2 = a2 − 2a+ 1, we have 2a− 1 6 a2,

and so the support interval of a disk lies within the disk’s span, see Figure 6.

I Lemma 13. In any feasible placement of disks of size at least one, the open support
intervals of the disks are disjoint.

Proof. Consider the function f(a, b) = (a+ b− 1)/ab for a, b > 1. Since f(1, ·) = f(·, 1) = 1
and the partial derivatives of f are negative for a, b > 1, we have f(a, b) 6 1.

Consider two consecutive touching disks of size a and b. Their footpoints are at dis-
tance 2ab. The support intervals cover 2a + 2b − 2 of this distance. From f(a, b) 6 1 it
follows that 2a+ 2b− 2 6 2ab, and so the support intervals do not overlap. J
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Lemma 13 implies that the total length of the support intervals is a lower bound for the
span of a family of disks. We will show that our greedy algorithm computes a solution where
the support intervals cover at least 3/4 of the span, implying approximation factor 4/3.

Consider a pair of two consecutive disks A and B placed by the algorithm, and let G be
the (imaginary) largest disk that can be placed in the gap between A and B. Since Dn was
not placed in this gap, we have g < 1. By Lemma 1, we have

˙
A

˙
B =

˙
A

˙
G+

˙
G

˙
B = 2ag+ 2gb =

2g(a+ b).
Consider first the case where A and B touch. Lemma 2 gives 1/g = 1/a + 1/b or

g = ab/(a+ b). The support intervals cover 2a+ 2b− 2 of the footpoint distance 2ab, so the
ratio is 1/a+ 1/b− 1/ab. For 1 6 a, b under the constraint 1/a+ 1/b > 1 this is minimized
at a = b = 2 and we have 1/a+ 1/b− 1/ab > 3/4, so the claim holds for this interval.

Now suppose that A and B do not touch. By Lemma 12, this means at least one of the
disks is large, say A, that is a > 2. The footpoint distance

˙
A

˙
B is 2g(a+ b) 6 2(a+ b), and

the support intervals cover 2a+ 2b− 2 of this distance, so the ratio is

2a+ 2b− 2
2g(a+ b) >

a+ b− 1
a+ b

= 1− 1
a+ b

.

If a > 3 or b > 2, we already have 1− 1/(a+ b) > 3/4, and this bound is good enough.
It remains to consider the situation when 2 6 a < 3 and 1 6 b 6 2. Without loss of

generality, we assume that B is to the right of A. We denote the first disk to the right
of A that is touching A as D. By the nature of our algorithm, when B was placed, it was
placed inside the space between A and D (possibly, other disks were already present in this
space at that time). Since B does not touch A, the disk D must be smaller than A, that is
1 6 d 6 a < 3.

We analyze the entire interval [
˙
A,

˙
D] as a whole. Since A and D touch, the length of this

interval is 2ad. In between A and D, some k > 1 disks have been placed, with B being the
leftmost of these.

We first consider the case k > 2. If two disks X and Y of size one fit between A and D,
then we have

2ad =
˙
A

˙
D =

˙
A

˙
X +

˙
X

˙
Y +

˙
Y

˙
D > 2a+ 2 + 2d,

and from a < 3 follows

d >
a+ 1
a− 1 = 1 + 2

a− 1 > 2.

The total length of the support intervals in the interval
˙
A

˙
D is at least 2a− 1 + 2d− 1 + 2k >

2(a+ d+ 1). The distance
˙
A

˙
D is 2ad. For 2 6 a, d 6 3, the ratio (a+ d+ 1)/ad is at least

7/9 > 3/4, implying the claim.
In the second case, B is the only disk between A and D. This means that B touches D.

The total support interval length in the interval
˙
A

˙
D is

2a− 1 + 4b− 2 + 2d− 1 = 2a+ 4b+ 2d− 4.

Let G be the largest disk that fits in the gap between A and B. Its size is determined by the
equality 2ag + 2gb + 2bd = 2ad, so g = (a − b)d/(a + b). Since Dn was not placed in this
gap, we have g < 1, and so (a− b)d < a+ b. Minimizing the expression

a+ 2b+ d− 2
ad
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under the constraints 2 6 a 6 3, 1 6 d 6 a, 1 6 b 6 2, and (a − b)d < a + b leads to the
minimum 7/9 > 3/4 for a = d = 3 and b = 3/2.

To complete the proof, we need to argue about the part of the span that does not lie
between two footpoints, in other words, the two intervals between the left wall (defined by the
leftmost point on any disk) and the leftmost footpoint, and between the rightmost footpoint
and the right wall. Recall that we assumed that placing Dn increased the total span. This
implies that Dn was placed using the algorithm’s last rule and therefore touches one of the
two walls, let’s say the right wall. Let A and B be the leftmost two disks (in footpoint order),
and let Y and Z be the rightmost two disks (in footpoint order). By assumption, Z = Dn

and so z = 1. Since Dn was placed using the last rule, we have y > a, and Z touches Y . Let
us call G the (imaginary) largest disk that would fit into the space between the left wall
and A. Since Dn was not placed in this position, we have g < 1. Note that the left wall is at
coordinate

˙
G− g2, the right wall at coordinate

˙
Z + 1. We now distinguish two cases.

We first consider the case where a > 3/2. We then analyze the two intervals [
˙
G− g2,

˙
A]

and [
˙
Y,

˙
Z+ 1] together. Their total length is g2 + 2ga+ 2y+ 1 < 2y+ 2a+ 2, and the support

intervals of A, Y , and Z cover 2a− 1 + 2y − 1 + 2 = 2y + 2a of this. The ratio is

2y + 2a
2y + 2a+ 2 = 1− 1

y + a+ 1 > 1− 1
4 = 3

4 since y > a > 3/2.

In the second case we have a < 3/2. Then B must be touching A. This is true if b > a,
because then A was placed later than B using the third rule. When b < a, then it follows from
Lemma 12. The distance between

˙
G−g2 and

˙
B is then g2 +2ag+2ab 6 2ab+2a+1 6 3b+4.

Since B fits inside the span, we must have b2 6 3b+ 4, which solves to −1 6 b 6 4.
We now analyze the intervals [

˙
G− g2,

˙
B] and [

˙
Y,

˙
Z + 1] together. Their total length is

g2 + 2ga+ 2ab+ 2y + 1 < 2y + 2a+ 2ab+ 2,

while the support intervals of A, B, Y , and Z cover

4a− 2 + 2b− 1 + 2y − 1 + 2 = 2y + 4a+ 2b− 2.

Since y > a, we can lower-bound the ratio

2y + 4a+ 2b− 2
2y + 2a+ 2ab+ 2 >

6a+ 2b− 2
4a+ 2ab+ 2 = 3a+ b− 1

2a+ ab+ 1 .

Consider the function h(a, b) = 3a+ 2b− 3ab/2 over the domain 1 6 a 6 3/2 and 1 6 b 6 4.
For fixed b, the function h(a, b) is linear in a, so h(a, b) > min

{
h(1, b), h(3/2, b)

}
. We have

h(1, b) = 3 + 2b− 3b/2 = 3 + b/2 > 7/2 and h(3/2, b) = 9/2 + 2b− 9b/4 = 9/2− b/4 > 7/2.
It follows that 3

2a+ b− 3
4ab >

7
4 , and so

3a+ b− 1 >
3
2a+ 3

4ab+ 3
4 = 3

4
(
2a+ ab+ 1

)
.

Note that in this second case we have used the interval [
˙
A,

˙
B] to help bound the coverage of

the two end intervals. This could be a problem if the same interval was also needed to help
bound a larger interval of the form [

˙
A,

˙
C], where A and C touch and B was inserted into

this interval later. But note that we needed to analyze [
˙
A,

˙
C] as a whole only if c < 3. Since

a < 3/2, no disk of size one would then fit into the gap between A and C, so this situtation
cannot occur.

This completes the proof of the following theorem.

I Theorem 14. The greedy algorithm computes a 4/3-approximation in time O(n logn).
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6 Conclusions

Our best approximation algorithm achieves an approximation factor of 4/3. We were unable
to find a polynomial time approximation scheme, so it would be natural to try to prove that
the problem is APX-hard. This, however, seems unlikely to be true, for the same reasons as
outlined by Dürr et al. [4]: The ideas they present appear to transfer to our problem, and
would lead to an 2O(logO(1) n) algorithm with approximation factor (1 + ε). APX-hardness,
on the other hand, would imply that for some ε > 0 this approximation problem is NP-hard,
implying subexponential algorithms for NP.
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