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Abstract
Let C be the unit circle in R2. We can view C as a plane graph whose vertices are all the points
on C, and the distance between any two points on C is the length of the smaller arc between
them. We consider a graph augmentation problem on C, where we want to place k > 1 shortcuts
on C such that the diameter of the resulting graph is minimized.

We analyze for each k with 1 6 k 6 7 what the optimal set of shortcuts is. Interestingly, the
minimum diameter one can obtain is not a strictly decreasing function of k. For example, with
seven shortcuts one cannot obtain a smaller diameter than with six shortcuts. Finally, we prove
that the optimal diameter is 2 + Θ(1/k 2

3 ) for any k.
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1 Introduction

Graph augmentation problems have received considerable attention over the years. The goal
in such problems is typically to add extra edges to a given graph G in order to improve
some quality measure. One natural quality measure is the (vertex- or edge-)connectivity
of G. This has led to work where one tries to find the minimum number of edges that can be
added to the graph to ensure it is k-connected, for a desired value of k. Another natural
measure is the diameter of G, that is, the maximum distance between any pair of vertices.
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9:2 Shortcuts for the Circle

The goal then becomes to reduce the diameter as much as possible by adding a given number
of edges, or to achieve a given diameter with a small number of extra edges; see for example
the papers by Erdös, Rényi, and Sós [7, 8].

Chung and Garey [6] studied this problem for the special case where the original graph is
the n-vertex cycle. They showed that if k edges are added, then the diameter of the resulting
graph is at least n

k+2 − 3 for even k and n
k+1 − 3 for odd k, and that there is a way to add k

edges so that the resulting graph has diameter at most n
k+2 − 1 for even k and n

k+1 − 1 for
odd k. (For paths, slightly better bounds are known [13].)

The algorithmic problem of finding a set of k > 1 edges that minimizes the diameter of
the augmented graph was first asked by Chung [5] in 1987. Since then many papers have
considered the problem for general graphs, see [2, 9, 11, 12, 13]. Große et al. [10] were the
first to consider the diameter minimization problem in the geometric setting where the graph
is embedded in the Euclidean plane. They presented an O(n log3 n) time algorithm that
determined the optimal shortcut that minimizes the diameter of a polygonal path with n
vertices. The running time was later improved to O(n logn) by Wang [14].

In the above papers only the discrete setting is considered, that is, shortcuts connect
two vertices and the diameter is measured between vertices. In the continuous setting all
points along the edges of the network are taken into account when placing a shortcut and
when measuring distances in the augmented network. In the continuous setting, Yang [15]
studied the special case of adding a single shortcut to a polygonal path and gave several
approximation algorithms for the problem. De Carufel et al. [4] considered the problem for
paths and cycles. For paths they showed that an optimal shortcut can be determined in
linear time. For cycles they showed that a single shortcut can never decrease the diameter,
while two shortcuts always suffice. They also proved that for convex cycles the optimal pair
of shortcuts can be computed in linear time. Recently, Cáceres et al. [3] gave a polynomial
time algorithm that can determine whether a plane geometric network admits a reduction of
the continuous diameter by adding a single shortcut.

We are interested in a geometric continuous variant of this problem. Let C be a unit
circle in the plane. We define the distance d(p, q) between two points p, q ∈ C to be the
length of the smaller arc along C that connects p to q. Thus the diameter of C in this metric
is π. We now want to add a number of shortcuts—a shortcut is a chord of C—to improve the
diameter. Here the distance dS(p, q) between p and q for a given collection S of shortcuts is
defined as the length of the shortest path between p and q that can travel along C and along
the shortcuts where, if two shortcuts intersect in their interior, we do not allow the path
to switch from one shortcut to the other at the intersection point. In other words, if the
path uses a shortcut, it has to traverse it completely. Note that if we view the circle C as a
graph with infinitely many vertices (namely all points on C) where the graph distance is the
distance along C, then adding shortcuts corresponds to adding edges to the graph. For a
set S of shortcuts, define diam(S) := maxp,q∈C dS(p, q) to be the diameter of the resulting
“graph.” We are interested in the following question: given k, the number of shortcuts we are
allowed to add, what is the best diameter we can achieve? In other words, we are interested
in the quantity diam(k) := inf |S|=k diam(S).

It is obvious that π = diam(0) > diam(1) > · · · > diam(k) > · · · > limk→∞ diam(k) = 2.
Our main results are as follows.
For 1 6 k 6 7, we determine diam(k) exactly. Our results show that diam(k) is not
strictly decreasing as a function of k. This not only holds at the very beginning—it is
easy to see that diam(1) = diam(0)—but, interestingly also for certain larger values of k.
In particular, we show that diam(7) = diam(6).
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Figure 1 For a shortcut s of length a = |s|, (left) α(a) = a+ 2δ(a) and (right) the umbra U(s)
(consisting of two arcs of length a in thick black) and radiance (in thick blue).

We have diam(8) < diam(7).
We show that diam(k) = 2 + Θ(1/k 2

3 ).

We rely on a number of numerical calculations. A Python script that performs these
calculations can be found at http://github.com/otfried/circle-shortcuts.

2 The umbra and the region of a shortcut

A shortcut s is a chord of C. A shortcut of length a = |s| ∈ [0, 2] spans an angle of α(a) ∈ [0, π],
where α(a) := 2 arcsin

(
a
2
)
. The following function δ : [0, 2] 7→ [0, π/2− 1] will play a key role

in our arguments:

δ(a) := α(a)− a
2 = arcsin

(a
2

)
− a

2 .

Note that both α(a) and δ(a) are increasing and convex functions, and α(a) = a + 2δ(a).
See Figure 1. To simplify the notation, we will allow shortcuts themselves as the function
argument, with the understanding that α(s) = α(|s|) and δ(s) = δ(|s|).

We parameterize the points on the circle C using their polar angle in [0, 2π). For a
shortcut s with endpoints u and v we will write s = uv if the counter-clockwise arc ıuv is the
shorter arc of C connecting u and v. Only for |s| = 2, we have s = uv = vu; in this case u
and v are antipodal points, that is v = u+ π.

The inner umbra of a shortcut s = uv is the arc ū1v1 where u1 = u+δ(s) and v1 = v−δ(s).
The outer umbra is the set of antipodal points of the inner umbra, that is the arc ū′1v′1 where
x′ = x + π. Together they form the umbra U(s) of s. Since α(s) = |s| + 2δ(s), the inner
and outer umbra have length |s|. The radiance of s consists of the two arcs v̂u′ and v̂′u.
For |s| = 2, we cannot distinguish inner and outer umbra, and the radiance consists of two
isolated points, see Figure 1.

Let p ∈ U(s). Then a path going from p to one endpoint of s and traversing the shortcut
is at least as long as going directly from p to the other endpoint—so the shortcut is not
useful. This gives us the following observation:

I Observation 1. Given a set S of shortcuts, if the shortest path γ from p to q uses
shortcuts s1, s2, . . . , sm ∈ S in this order, then p 6∈ U(s1) and q 6∈ U(sm). If γ traverses si
from its endpoint ui to its other endpoint vi, then vi /∈ U(si+1) and ui+1 /∈ U(si) for
i = 1, . . . ,m− 1.

ISAAC 2017
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Figure 2 (left) (θ, ξ) corresponds to the pair of points p = θ − ξ/2 and q = θ + π + ξ/2. (right)
S(δ∗) represents all pair of points p = θ − ξ/2 and q = θ + π + ξ/2 with −δ∗ 6 ξ 6 δ∗.

(For the boundary cases, we will assume that a shortest path uses the minimum number
of shortcuts possible.) An immediate implication is that one shortcut alone cannot help to
improve the diameter, that is, diam(1) = diam(0) = π.

Another useful observation is the following (remember that d(p, q) = min(|Ùpq|, |Ùqp|) is the
distance along C without shortcuts):

I Observation 2. Given a set S of shortcuts, if the shortest path from p to q uses the set of
shortcuts {s1, s2, . . . , sm} ⊆ S, then dS(p, q) > d(p, q)− 2

∑m
i=1 δ(si).

Indeed, if γ is the shortest path, we can replace each shortcut si by walking along the circle
instead, increasing the path length by exactly 2δ(si).

Let us now fix a target diameter of the form π−δ∗, for some δ∗ ∈ [0, π−2]. To achieve the
target diameter, pairs of points p, q ∈ C that span an angle of at most π − δ∗ do not need a
shortcut, so it suffices to consider pairs of points p, q ∈ C where q = p+π+ξ, for −δ∗ 6 ξ 6 δ∗.
We represent these point pairs by the rectangle S(δ∗) = [0, 2π] × [−δ∗,+δ∗], where (θ, ξ)
corresponds to the pair of points p = θ − ξ/2 and q = θ + π + ξ/2, as illustrated in Figure 2.
So the counter-clockwise angle from p to q is π + ξ.

S(δ∗) is topologically a cylinder: the right edge θ = 2π is identified with the left edge θ = 0.
Furthermore, if the point pair (p, q) ∈ C × C corresponds to (θ, ξ), then the point pair (q, p)
corresponds to (θ + π,−ξ). Since dS(p, q) = dS(q, p), we could therefore identify the middle
segment θ = π with the left edge θ = 0, but with opposite orientation, resulting in a Möbius
strip topology. As will become clear shortly, for our purposes it is easier to work with the
cylinder topology, but keep in mind that, for instance, the upper boundary ξ = δ∗ and the
lower boundary ξ = −δ∗ of S(δ∗) really represent the same point pairs.

For a shortcut s, we define the region R(s, δ∗) ⊂ S(δ∗) consisting of those pairs (θ, ξ) ∈ S

where ds(θ − ξ/2, θ + π + ξ/2) 6 π − δ∗. In the following, we will use ds(p, q) for d{s}(p, q).)
Let us fix a shortcut s of length a > 0, and let α = α(a) and δ = δ(a). Rotating a

shortcut around the origin means translating R(s, δ∗) horizontally in (the cylinder) S(δ∗).
We can thus choose s to be vertical and connect the points −α/2 and α/2. This implies that
the umbra of s consists of the two intervals [−α/2 + δ, α/2− δ] and [π − α/2 + δ, π + α/2− δ].
The radiance of s consists of the two intervals [α/2, π − α/2] and [π + α/2, 2π − α/2].

The following function gives the length of the path from p to q that uses the shortcut s
from top to bottom, that is from the point α/2 to −α/2:

f(θ, ξ) := |α/2− p|+ a+ |q − (2π − α/2)|, where (p, q) = (θ − ξ/2, θ + π + ξ/2).

By the observation about the Möbius topology above, it suffices to understand R(s, δ∗)
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Figure 3 The regions A,B,C,D.

for 0 6 θ 6 π. We claim that for 0 6 θ 6 π we have ds(p, q) < π − δ∗ if and only if
f(θ, ξ) < π − δ∗.

This is clearly true if the shortest path from p to q uses s from top to bottom, or not at
all, because the length of the shorter circle arc between p and q is π−|ξ| > π− δ∗. It remains
to consider the case when the shortest path uses s from bottom to top. This can only happen
when p is closer to the bottom end of s than to its top end—in other words, when π < p < 2π.
Since 0 6 θ 6 π and p = θ − ξ/2, this implies either θ < δ∗

/2 and ξ > 2θ, or θ > π − δ∗
/2 and

ξ < −2(π − θ). Since q = θ + π + ξ/2, the first case implies π 6 q 6 π + δ∗ < 2π, while the
second case implies π < 2π − δ∗ 6 q 6 2π. In both cases, q lies closer to the bottom end of
the shortcut than to its top end, a contradiction to the shortcut being used from bottom to
top to go from p to q.

It follows that for 0 6 θ 6 π, we have (θ, ξ) ∈ R(s, δ∗) if and only if f(θ, ξ) 6 π − δ∗. To
analyze f , we partition the rectangle [0, π]× [−δ∗, δ∗] into regions, depending on the signs of
α/2− p and q − (2π − α/2). First, we have p < α/2 if and only if ξ > 2θ − α. This is the light
gray region above the blue line in Figure 3(left). Second, we have q > 2π − α/2 if and only if
ξ > 2π − α− 2θ. This is the dark gray region above the green line in Figure 3(left). If the
two regions do not intersect then we get three regions as shown in Figure 3(left). Otherwise,
if α > π − δ∗, or equivalently, δ∗ > π − a − 2δ, then the regions intersect and we get four
regions as illustrated in Figure 3(right). We now study R(s, δ∗) independently for each of
the three or four regions.

In region A, we have p < α/2 and q < 2π − α/2. It follows that

f(θ, ξ) = α/2− p+ α− 2δ + 2π − α/2− q
= −θ + ξ/2 + α− 2δ + 2π − θ − π − ξ/2

= π − 2δ + 2(α/2− θ).

This implies that f(θ, ξ) 6 π − δ∗ if and only if θ > α/2 + δ∗
/2− δ = a/2 + δ∗

/2. This is the
blue area as shown in Figure 4.

In region B, we have p > α/2 and q > 2π − α/2. This implies

f(θ, ξ) = p− α/2 + α− 2δ + q − 2π + α/2

= θ − ξ/2 + α− 2δ + θ + π + ξ/2− 2π
= 2(θ − (π − α/2)) + π − 2δ,

and so we have f(θ, ξ) 6 π − δ∗ if and only if θ 6 π − α/2− δ∗
/2 + δ. This is the green area

in Figure 4.

ISAAC 2017
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Figure 4 The region R(s, δ∗) in four different situations.

Next, in region C, we have p > α/2 and q 6 2π − α/2. Therefore,

f(θ, ξ) = p− α/2 + α− 2δ + 2π − α/2− q
= θ − ξ/2− 2δ + 2π − θ − π − ξ/2

= π − 2δ − ξ.

We have f(θ, ξ) 6 π − δ∗ if and only if ξ > δ∗ − 2δ. This is the red area in Figure 4.
When α > π − δ∗ regions A and B intersect in region D, as shown in Figure 3(right). In

region D we have p < α/2 and q > 2π − α/2, and therefore

f(θ, ξ) = α/2− p+ α− 2δ + q − 2π + α/2

= 2α− 2δ − 2π − θ + ξ/2 + θ + π + ξ/2

= 2(α− δ)− π + ξ

= 2(a+ δ)− π + ξ,

since α− δ = a+ δ. Thus, we have f(θ, ξ) 6 π− δ∗ if and only if ξ 6 2(π− a− δ)− δ∗. This
is the yellow area in region D in Figure 4. There are two cases that can occur, as is shown
on the bottom left and bottom right of Figure 4. The discussion of these cases can be found
in the proof of the following lemma, given in the full paper [1].

I Lemma 3. Let δ∗ ∈ [0, π − 2], and let s be a shortcut of length a ∈ (0, 2]. Then, the
region R(s, δ∗) of s in the cylinder S(δ∗) = [0, 2π]× [−δ∗,+δ∗] forms two identical rectangles
whose width is exactly π − a− δ∗ and whose height is

2δ∗ if δ∗ 6 δ(a)
2δ(a) if δ∗ > δ(a) and δ∗ 6 π − a− δ(a)
2(π − a− δ∗) otherwise.

Note that if δ∗ 6 δ(2) = π/2−1, then it always holds that δ∗ 6 π−a− δ(a) for any 0 6 a 6 2
since π − a − δ(a) > π − 2 − δ(2) = δ(2) > δ∗. Hence, the last case of Lemma 3 where
δ∗ > π − a− δ(a) only happens when δ∗ > δ(2) = π/2− 1.
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Table 1 The values a∗
k, δ∗

k, and π − δ∗
k.

k a∗
k δ∗

k diam(S) = π − δ∗
k

2 1.4782 0.0926 3.0490
3 1.8435 0.2509 2.8907
4 1.9619 0.3943 2.7473
5 1.9969 0.5164 2.6252
6 2.0000 0.5708 2.5708

We will also be interested in the length of the intersection of R(s, δ∗) with the middle
line M = {ξ = 0} of S(δ∗). Note that M has length 2π. We have the following corollary to
Lemma 3:

I Corollary 4. Let δ∗ ∈ [0, π − 2], and let s be a shortcut of length a ∈ (0, 2]. Then

|M ∩R(s, δ∗)| =
{

2(π − a− δ∗) if δ(a) > δ∗
/2

0 otherwise.

3 Up to five shortcuts

In this section we derive the exact value of diam(k) for k ∈ {2, 3, 4, 5}, and show the unique
optimal configuration of shortcuts in each case. The proof is quite easy, comparing the areas
of R(s, δ∗) with the area of S(δ∗), if one assumes that the shortest path between any pair of
points uses at most one shortcut. Showing that using a combination of shortcuts does not
help takes considerable additional effort.

Using only one shortcut. Again we consider a target diameter of the form π − δ∗, with
δ∗ ∈ [0, π − 2]. By Lemma 3, the region R(s, δ∗) of a shortcut s of length a consists of two
rectangles of width π − a− δ∗ and height 2δ(a) for δ(a) < δ∗, and height 2δ∗ for δ(a) > δ∗.
We define a∗ such that δ(a∗) = δ∗, or a∗ = 2 when δ∗ > δ(2).

Then the area A(a, δ∗) of R(s, δ∗) is

A(a, δ∗) =
®

4δ∗(π − a− δ∗) for a > a∗

4δ(a)(π − a− δ∗) for a 6 a∗

I Lemma 5. For fixed δ∗ 6 0.7, the function a 7→ A(a, δ∗) is increasing for a 6 a∗ and
decreasing for a > a∗. Its maximum value is A(a∗, δ∗) = 4δ∗(π − a∗ − δ∗).

The proof can be found in the full paper [1].
Let k ∈ {2, 3, 4, 5}. Since a 7→ a + δ(a) is an increasing function that maps [0, 2]

to [0, π/2 + 1], there is a unique a∗k that solves the equation

a∗k + δ(a∗k) = k − 1
k

π.

We set δ∗k := δ(a∗k), and will show that this number determines the optimal diameter for
k shortcuts. Table 1 shows the numerical values. For completeness, we already include the
case k = 6 in the table by setting a∗6 = 2.

I Lemma 6. For k ∈ {2, 3, 4, 5} there is a set S of k shortcuts that achieves diam(S) = π−δ∗k.
Assuming that no pair of points uses more than one shortcut, this is optimal and the solution
is unique up to rotation.

ISAAC 2017
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Figure 5 The optimal shortcut configurations for k = 2, 3, 4, 5.

Proof. By Lemma 3, the region R(s, δ∗k) of a shortcut s of length |s| = a∗k consists of two
rectangles of height 2δ∗k and width π − (a∗k + δ∗k) = π/k. Each rectangle covers the entire
height of S(δ∗), and by rotating s about the origin we can translate the rectangles anywhere
inside S(δ∗). This implies that we can use k such rectangles to cover the range 0 6 θ 6 π.
Then for every (θ, ξ) ∈ S(δ∗) there is a shortcut s such that ds(θ− ξ/2, θ+ π + ξ/2) 6 π − δ∗k,
and diam(S) = π − δ∗k. Figure 5 shows the resulting configurations.

Assume now that a set S = {s1, . . . , sk} of k shortcuts is given with diam(S) 6 π − δ∗,
where δ∗ > δ∗k, and that no pair of points uses more than one shortcut. This implies that the
regions R(si, δ∗) must entirely cover the strip S(δ∗), and in particular

k∑
i=1

A(|si|, δ∗) > 4δ∗π.

If we choose a∗ such that δ(a∗) = δ∗, then a∗ > a∗k. By Lemma 5 we have

A(|si|, δ∗) 6 A(a∗, δ∗) = 4δ∗(π − a∗ − δ∗).

From kA(a∗, δ∗) > 4δ∗π we have k(π − a∗ − δ∗) > π, or a∗ + δ∗ 6 k−1
k π, which implies

a∗ = a∗k and δ∗ = δ∗k. But then the regions R(si, δ∗k) must be non-overlapping, and the
solution is unique up to rotation. J

Shortcuts cannot be combined. It remains to show that the configurations in Figure 5
are optimal even if combinations of shortcuts can be used. We start by defining µk ∈ [0, 2] to
be such that δ(µk) = δ∗k/2. By Lemma 3, R(s, δ∗k) intersects the middle line M if and only
if |s| > µk. In other words, for two antipodal points p and q we can have ds(p, q) 6 π − δ∗k
only if |s| > µk.

We handle the somewhat special case k = 2 first.

I Lemma 7. If S is a set of two shortcuts that achieves diameter diam(S) 6 π− δ∗2 , then S
is identical to the configuration of Figure 5 up to rotation.

Proof. Let S = {s1, s2} with |s1| 6 |s2|. Let p and q be the midpoints of the inner and
outer umbra of s2. The shortest path between p and q cannot use s2 at all by Observation 1,
so ds1(p, q) 6 π− δ∗2 . This implies |s1| > µ2 ≈ 1.2219. Since δ∗2 ≈ 0.0926 < µ2/2, the interval
[q − δ∗2 , q + δ∗2 ] lies in U(s2), and so we have ds1(p, q′) 6 π − δ∗2 for all q′ ∈ [q − δ∗2 , q + δ∗2 ].
This implies |s1| > a∗2.

We next observe that U(s1)∩U(s2) = ∅. Otherwise, Observation 1 applied to an antipodal
pair in U(s1) ∩ U(s2) implies diam(S) = π, a contradiction.

The two arcs between the inner and outer umbras of s1 have length π − |s1| 6 π − a∗2.
The inner umbra U(s2) has length |s2| > a∗2 and lies in one of these arcs. That leaves a gap of
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Figure 6 The two shortcuts must intersect.

Figure 7 An optimal configuration of six shortcuts.

most π−2a∗2 = 2δ∗2 between the two inner umbras (by definition of a∗2, we have a∗2 +δ∗2 = π/2).
Since δ(s2) > δ(s1) > δ∗2 , this implies that the two shortcuts intersect, see Figure 6.

Let x be the length of overlap of the arcs of s1 and s2, that is, x = |ū1v2| in Figure 6.
Any path that uses both s1 and s2 has length at least |s1|+ |s2|+ x > 2a∗2 + x = π− 2δ∗2 + x.
This is bounded by π − δ∗2 only if x 6 δ∗2 . But then the arc v̄1u2 has length at most

2π − α(s1)− α(s2) + x 6 2π − 2(a∗2 + 2δ∗2) + δ∗2 = π + (π − 2a∗2)− 3δ∗2 = π − δ∗2 ,

and there is no reason to use the two shortcuts at all. It follows that there is no pair of
points that uses more than one shortcut, and Lemma 6 implies the claim. J

For 3 6 k 6 6, the key insight is the following lemma, proven in the full paper [1].

I Lemma 8. Let S be a set of k shortcuts for k ∈ {3, 4, 5, 6} such that diam(S) 6 π − δ∗k.
Then there is no antipodal pair of points p, q ∈ C such that the path of length dS(p, q) uses
more than one shortcut.

I Lemma 9. Let S be a set of k shortcuts for k ∈ {3, 4, 5} such that diam(S) 6 π − δ∗k.
Then there is no pair of points p, q ∈ C such that the path of length dS(p, q) uses more than
one shortcut.

Proof. By Lemma 8 pairs of antipodal points cannot use more than one shortcut. This implies
that the middle line M of S(δ∗k) is covered by the regions R(si, δ∗k). The region R(si, δ∗k)
intersects M only if |si| > µk, so by Corollary 4 R(si, δ∗k) covers at most 2(π−µk− δ∗k) of M.
Calculation shows that (k − 1)(π − µk − δ∗k) < π, so all k shortcuts have length at least µk.
Since 2µk > π, this implies that no shortcuts can be combined. J

Combining Lemmas 6, 7, and 9, we obtain our first theorem.

I Theorem 10. For k ∈ {2, 3, 4, 5} there is a set S of k shortcuts that achieves diam(S) =
π − δ∗k. This is optimal and the solution is unique up to rotation.
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9:10 Shortcuts for the Circle

Figure 8 A shortcut configuration S of 8 shortcuts with diam(S) < diam(6), and the corresponding
regions in the strip S(δ∗).

4 Six and seven shortcuts

The configuration of six shortcuts of length 2 (that is, all shortcuts are diameters of the circle)
shown in Figure 7 achieves diameter π − δ(2) = π/2 + 1. Unlike the cases 2 6 k 6 5, this
configuration is not unique—it can be perturbed quite a bit without changing the diameter.

It remains to argue that the configuration is indeed optimal, that is, there is no set S of
six shortcuts that achieves diam(S) < π − δ(2). Here, we cannot use a simple area argument
as in the case k < 6, as the regions of the optimal solution in S(δ∗6) overlap heavily.

In fact, we can show that even if we allow seven shortcuts, there is no set S of shortcuts
that achieves diam(S) < π − δ(2). This implies a collapse between the cases of k = 6 and
k = 7, that is, diam(7) = diam(6) = π − δ(2). The proof is quite long and rather technical,
and can be found in the full paper [1].

I Theorem 11. There is a set S of six shortcuts that achieves diam(S) = π− δ(2) = π/2 + 1.
There is no configuration of six or seven shortcuts that has diameter smaller than π/2 + 1.
Therefore, we have diam(7) = diam(6) = π/2 + 1.

5 Eight shortcuts

With eight shortcuts we can improve on the diameter, obtaining diam(8) < diam(7) =
diam(6). Our construction S consists of six long shortcuts with length a1 ≈ 1.999870869 and
two short ones with length a2 ≈ 0.988571799, placed as in Figure 8(left), and achieves the
diameter diam(S) ≈ π − 0.5822245291 = 2.559368125 < diam(6).

We obtained this construction by maximizing δ∗ with constraints π − a1 − δ∗ > π/6,
π − a2 − δ∗ > π/2, and δ(a1) + δ(a2) > δ∗. We can thus cover S(δ∗) as seen in the diagram
in Figure 8(right). In particular, we have π − a2 − δ∗ = π/2 and δ(a1) + δ(a2) = δ∗, while
we have a strict inequality π − a1 − δ∗ > π/6 in our construction. So, in the strip S(δ∗), the
regions slightly overlap.

6 An asymptotically tight bound

In this final section, we show that diam(k) = 2 + Θ(1/k 2
3 ) as k goes to infinity.

I Theorem 12. To achieve diameter at most 2 + 1/m, Θ(m 3
2 ) shortcuts are both necessary

and sufficient.

Proof. We prove the necessary condition first. Consider two points p, q that form an angle
of π − t/m, for some integer 0 6 t 6

√
m− 2. Consider two intervals Ip and Iq, both of arc

length 4/m, and centered at p and q, respectively. We claim that if there is no shortcut
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π + t/m

Iqq

p

Ip

r

2/m

> π − 4
»

1
m

Figure 9 (left) If there is no shortcut between Ip and Iq then the shortest path from p to q must
visit a point r on the circle not in either interval. (center) Shortcut between every pair that makes
an angle larger than π − 4

√
1/m. (right) Adding shortcuts of arc length π − t/m.

connecting a point of Ip with a point of Iq, then the distance between p and q is larger
than 2 + 1/m.

If there is no such shortcut, then the shortest path from p to q must visit a point r on
the circle not in either interval, see Figure 9(left). The sum |pr|+ |rq| is minimized when r
is the point making angle 2/m with q, so we have α(pr) = π − (t+ 2)/m and α(rq) = 2/m.

This gives us

|qr| = 2 sin 2
2m = 2 sin 1

m
>

2
m
− 2

3!
1
m3 >

2
m
− 1

3m = 5
3m,

|pr| = 2 sin(π2 −
t+ 2
2m ) = 2 cos t+ 2

2m > 2 cos
√
m

2m = 2 cos 1
2
√
m

> 2− 1
4m,

and so |pr|+ |rq| > 2 + 1/m.
We now subdivide C into Θ(m) intervals of length at least 6/m. Consider a pair of

intervals I, J at arc distance at least π − 1/
√
m. Then there are points p ∈ I and q ∈ J

with Ip ⊂ I and Iq ⊂ J and p, q forming an angle of the form π − t/m for an integer
0 6 t 6

√
m − 2. It follows that there must be some shortcut connecting I and J . Since

there are Θ(m3/2) such pairs of intervals, we must have at least Ω(m3/2) shortcuts.

We now turn to the sufficient condition, and construct a set of Θ(m3/2) shortcuts that
give a diameter of 2 + 1/m.

We start by placing 4πm points uniformly around the circle, and connect each pair that
makes an angle larger than π − 4

√
1/m, as shown in Figure 9(center). This creates Θ(m3/2)

shortcuts and ensures that for points p, q with angle larger than π − 4
√

1/m the distance
between p and q is bounded by 2 + 1/m.

It remains to add shortcuts to decrease the distance of point pairs p, q that form an arc
between 2 and π − 4

√
1/m. For each integer t with 4

√
m < t < 2m we will create a set

of shortcuts of arc length π − t/m, see Figure 9(right). These shortcuts will be used for
pairs p, q forming an arc between π − t/m and π − (t− 1)/m.

Let us fix such a t, and consider a shortcut s of arc length π − t/m. Then the length of
the shortcut is

|s| = 2 sin π − t/m2 = 2 cos t

2m.

Using the bound cosx 6 1− x2

2 + x4

24 6 1− ( 1
2 −

1
24 )x2 = 1− 11

24x
2 for x < 1, we have

|s| 6 2− 211
24

t2

4m2 = 2− 11
48

t2

m2 < 2− 1
6
t2

m2 = 2− 2∆,
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where we define ∆ = 1
12 ( tm )2. Since t > 4

√
m we have ∆ > 16

12
1
m > 1

m .
We repeat shortcuts of this length every arc interval of length ∆. Consider now a pair of

points p, q forming an angle in the interval π− t/m to π− (t− 1)/m. We can go from p to q
by first going to the nearest shortcut along an arc of length at most ∆, then following the
shortcut of length at most 2− 2∆, and finally going backwards by at most ∆, or forward by
at most 1/m < ∆. It follows that the distance between p and q is at most 2− 2∆ + 2∆ = 2.

The number of shortcuts of length π− t/m is 2π/∆, and so the total number of shortcuts
of this type is

2m∑
t=4
√
m+1

24πm
2

t2
= 24πm2

2m∑
t=4
√
m+1

1
t2

6 24πm2
∫ ∞

4
√
m

1
x2 dx = 6πm3/2.

This completes the proof. J

7 Conclusions

We have given exact bounds on the diameter for up to seven shortcuts. In all cases, the
shortcuts are of equal length. For k = 8, however, our upper bound construction uses
shortcuts of two different lengths. On the other hand, it is not difficult to see that eight
shortcuts of equal length cannot even achieve a slightly better diameter than diam(6). In
general, what is the diameter achievable with k shortcuts of equal length?

We have shown that for k = 0 and k = 6 we have diam(k) = diam(k + 1). Are there any
other values of k for which this holds?
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