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—— Abstract

In this paper we study succinct data structures for one-dimensional color reporting and color
counting problems. We are given a set of n points with integer coordinates in the range [1,m]
and every point is assigned a color from the set {1,...,0}. A color reporting query asks for the
list of distinct colors that occur in a query interval [a,b] and a color counting query asks for the
number of distinct colors in [a, b].

We describe a succinct data structure that answers approximate color counting queries in
O(1) time and uses B(n,m) + O(n) 4+ o(B(n,m)) bits, where B(n,m) is the minimum number
of bits required to represent an arbitrary set of size n from a universe of m elements. Thus we
show, somewhat counterintuitively, that it is not necessary to store colors of points in order to
answer approximate color counting queries. In the special case when points are in the rank space
(i.e., when n = m), our data structure needs only O(n) bits. Also, we show that £2(n) bits are
necessary in that case.

Then we turn to succinct data structures for color reporting. We describe a data structure that
uses B(n, m)+nHy(S)+o(B(n,m))+o(nlgo) bits and answers queries in O(k+1) time, where k
is the number of colors in the answer, and nHy(S) (d = log, n) is the d-th order empirical entropy
of the color sequence. Finally, we consider succinct color reporting under restricted updates. Our
dynamic data structure uses nHy(S) 4+ o(nlg o) bits and supports queries in O(k + 1) time.
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1 Introduction and Motivation

Range search problems are problems where a point set is preprocessed so that certain
information about a query region can be efficiently computed. These problems are of
fundamental importance in computational geometry, both in the study of their optimality
with respect to space and query time, and as tools employed to provide efficient solutions
to various geometric problems. In this paper we focus on the following two problems. One
dimensional color range reporting (counting): Given a set of colored points P, preprocess P
into an efficient data structure so that for any range Q = [a, b] the distinct colors contained
in PN Q can be reported (counted).

We study both problems in the context of succinctness, where the goal is to achieve
the optimal space requirement plus a lower order term, while maintaining fast query time.
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Designing succinct data structures is an area of interest in theory and practice motivated by
the need of storing large amount of data using the smallest space possible. In recent years
there has been a surge of interest in succinct data structures for computational geometry
[5, 8, 15]. For further reading and more in-depth coverage of succinct data structures we
refer the reader to the survey by Munro and Rao [16].

Previous Work. If the input points are in the rank space, one-dimensional color reporting
queries can be answered in O(k + 1) time using nH4(S) + o(n)lgo + O(nlglg o) bits [2, 4, 6],
where d = o(log, n) and H4(S) is the d-th order empirical entropy of the given sequence of
colors S. In the general case, one-dimensional color reporting queries can be answered in
O(lgn + k) time in the static and dynamic scenarios as shown by Janardan and Lopez [17]
and Gupta et al. [26]. Muthukrishnan [20] later described a static O(n) space data structure
that answers queries in O(k+1) time when all point coordinates are bounded by n. His result
implies an O(n)-words data structure that answer queries in O(min (Iglgm, y/lgn/lglgn)+k)
time using the reduction-to-rank-space technique, where O(min (Iglgm, \/lgn/lglgn)) is
the time needed to answer a predecessor query [27, 10]. A dynamic data structure of
Mortensen [18] supports queries and updates in O(lglgn+ k) and O(lglgn) time respectively
if the values of all elements are bounded by n. Finally, Nekrich and Vitter [22] presented
an O(n)-words static data structure that answers queries in O(k + 1) time; their result is
valid even in the case when point are not in the rank space. They also presented a dynamic
version of their structure that uses the same space and achieves the same query time while
handling updates in O(lg® n) time.

One-dimensional color counting in the rank space was studied by Gagie et al. [11]. They
gave a data structure that answers queries in O(lg“‘s n) time for any constant € > 0 and uses
nHo(S) + O(n) + o(nHy(S)) bits. Nekrich [21] described a data structure that uses O(nlgn)
bits and answers color counting queries in O(lgk/lglgn) time, where k is the number of
colors. A lower bound that follows from the predecessor problem [1, 3] holds for exact
one-dimensional color counting, and does not permit constant query time for a data structure
with space bounded by a polynomial function of n. We circumvent this lower bound by
focusing on approximate color counting. If we combine a reduction of one-dimensional color
counting to point counting in 2D with the result of Chan and Wilkinson [7], we obtain a data
structure that uses O(nlgn) bits and answer approximate color counting queries in O(lg® n)
time. The data structure of Nekrich [7] also uses O(nlgn) bits but answers approximate
color counting queries in O(1) time. In both [21] and [7] it is assumed that points are in the
rank space. In the general case, Saladi [24] presented a data structure that uses O(n) words
and answers queries in O(lglgU) time.

Our Results. We focus on studying one-dimensional color reporting and counting in the
succinct scenario. In Section 2 we solve an open problem from [24] by presenting a data
structure that answers approximate color counting queries in optimal O(1) time. Our data
structure uses B(n, m)+ O(n) + o(B(n, m)) bits, where B(n,m) = nlg (m/n) is the minimum
number of bits required to store a set of size n from a universe of m elements. Thus, we
demonstrate that is not necessary to store the colors of points in order to answer approximate
color counting queries. If points are in the rank space, our data structure needs only O(n)
bits and does not require access to the original data set. That is, similar to data structures
for answering range minimum queries [9] that can answer queries without storing the original
data set, we can construct a data structure for a colored set of points S and discard the
set S.
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Using our data structure, we are still able to obtain a constant factor approximation on
the number of colors in S N [a,b] for an arbitrary query interval [a, b].

Then we turn to the problem of reporting colors using succinct space. We describe a
data structure that answers color reporting queries in O(k + 1) time while using B(n, m) +
nHy(S) + o(B(n,m) + nlgo) bits in Section 4. This result is a succinct counterpart of the
data structure from [22] that also achieves optimal query time but uses O(nlgn) bits.

Finally we consider dynamic succinct color reporting in the rank space. We present a
succinct data structure that answers color reporting queries in optimal O(k + 1) time and
updates in O(lgn) time while using nHy(S) + o(nlg o) bits. Our data structure supports an
update operation that changes the color of a point in O(lgn) time.

Applications. Color reporting and counting queries are related to problems that arise in
string processing and databases. Color searching queries are helpful when we are interested
in (the number of) distinct object categories in a query range or look for distinct documents
that contain a query substring. One prominent example is the document counting queries on
a collection of documents. We keep documents (strings) di, ..., dp in a data structure so
that for any query string P the number of documents that contain P can be calculated. This
problem can be solved by answering color counting queries on the so called document array;
see [20, 12] for a detailed description. The document array, however, needs O(nlg D) bits of
space in the worst case. If the number of documents is large and the alphabet size is small,
the space usage of the document array can be significantly larger than the space needed to
store the document collection. Using the result of Theorem 4, we can answer approximate
document counting queries using O(n) additional bits.

In this paper we assume that the reader is familiar with basic concepts of succinct data
structures and range reporting.

2 Approximate Color Range Counting

In this section we present a data structure that uses B(n, m)+ O(n)+ o(B(n, m)) bits of space
and answers approximate color counting queries in constant time. A color range counting
query for an interval returns the number of distinct colors contained within the interval. For
any constant € > 0, our color range counting data structure returns in constant time an
approximate answer of at most (1 + ) of the correct answer.

2.1 Approximate Color Range Counting in Rank Space

We begin by describing a data structure for the problem in the special case when the input
points are in the rank space. The input consists of a sequence S = s1,...,s, of n colors.
A query is a range [a, b] where a,b € [n], and the answer is a (1 + ¢)-approximation of the
number of distinct colors found in s, ..., sp.

2.1.1 Space Inefficient Solution

First we describe a space inefficient solution that requires O(n Ig* n) bits of space and answers
one-dimensional approximate color counting queries in constant time.

Consider the balanced binary tree 7, where every leaf of 7 corresponds to an element
of S, and every internal node has two children. Given a node v € T, u;(u,) denotes the
left(right) child of u, S(u) denotes the set of all elements stored in the leaf descendants of u,
and a,(b,) denotes the rightmost(leftmost) element in S(w;)(S(u,)).
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Let 0 = 1 +¢. For each node u € T we store the unique values [y, ..., log, » in a fusion
tree [10], where I; (1 < i < loggn) is the maximum value satisfying the condition that
SL;y- -+, 8a, contains §° unique colors. Also, for each node u € T and each i (1 < i < logsn)
we store the unique values 71, ..., 7ilog; » in a fusion tree [10], where r;; (1 < j <logsn) is
the minimum value satisfying the condition that s;,,...,s,; contains 4’ unique colors that
are not present in s;,,..., Sq,, .
Query. Given a query [a,b] we find the lowest common ancestor u of a and b in 7. We
query the fusion tree stored on [y, ..., log, n to find the predecessor I; of a, then we query
the fusion tree stored on r;1,...,7; logs n and find the successor 7;; of b. Finally we return
8% 4+ 7 as an estimate for the number of distinct colors in [a, b].

» Lemma 1. The algorithm described above returns a (1 4 €)-approximation of the number
of distinct colors in Sq, ..., Sp.

Proof. Denote by x the number of distinct colors in s, ..., 84, and y the number of distinct
colors in sp,, ..., Sy that are not found in sg,...,S,,. Let ¥’ denote the number of colors in
Sby, - - - Sp that do not occur in l;, ..., s,,. By the definition of /; and r;;, x < §* < § -z and
Yy <67 <.y Sincey’ <y, d <§-y. Hence 0° + 67 < §(x +y). There are at most §* — x
colors that occur in ;, ..., s4,, but do not occur in s, ..., 84,. Hence y — (6* — z) < ¢/ and
y— (6" —x) < §7. If we add &° to both parts of the latter inequality, we obtain y+x < 67 4 §°.
Summing up

Ty <846 <z +y)
which completes the proof. |

» Theorem 2. There exists an O(nlg® n)-bit data structure that supports one-dimensional
(1 + &)-approzimate color range counting queries in constant time when the input points are
in the rank space.

2.1.2 Lower Bound

Next, we show using a simple proof that {2(n) bits are required for any data structure that
answers one-dimensional (1 + €)-approximate color range counting queries in the rank space.

We assume without loss of generality that o > |1 + ¢, otherwise no data structure is
needed since returning o for any query would be a correct (1 + ¢)-approximation of the exact
answer. Moreover, denote by ¢, ca, ..., ¢k the first K = |14 ] + 1 colors. Divide a sequence
S of size n to n/k blocks each of size k. We say that S satisfies property (x) if for each block
b in S one of the following two conditions hold:

either b consists of the color ¢; repeated k times,

or b= C1,C2,...,Ck.
Clearly, the number of sequences that satisfy () is 2(*/%) since there exist n/k blocks in a
sequence of size n and each block can have one of two different values. Moreover for any
two distinct sequences S; and Sy satisfying * differing at block b, there exist at least one
(1 4 e)-approximate range counting query, namely the query that asks for the number of
different colors in b, that will return different values. Thus, the information theoretic lower

bound for storing a one-dimensional (1 + £)-approximate range counting data structure is
2(1g2/*)) = Q(n/k) = 2(n/e) bits.

» Theorem 3. Any one-dimensional (1 + €)-approzimate range counting data structure
requires 2(n/€) bits.
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2.1.3 Compact Data Structure

In this subsection we show how to make the data structure of Theorem 2 compact by
bootstrapping. Let § = 1 4+ . We define the functions f(n) = 1g*n, fM(n) = fE=D(f(n)).
The function f*(n) is defined as f*(n) = 1+ f*(f(n)) for n > 2'¢ and f*(n) = 1 otherwise.
We start by modifying the tree T so that each leaf of T corresponds to a block of f(n)
consecutive elements of S (instead of a single element of S). Then, we define the family of
trees T;; where 1 <4 < f*(n)and 1 <j < n/f(i)(n) as follows. Tree 7;; spans the i*® block
of S of size f()(n) (i.e. S((i=1)F() (n)+1)» - - -+ S(if () (n))) and each leaf of T;; correspond to a
block of f(i+1)(n) consecutive elements. For each node u € 7Ti; we store in separate fusion
trees the sets of values: {I,|1 < p < logs f)(n)}, and for each 1 < p < logs f*(n) the set
{rpql, 1 < g <logs f()(n)} as defined in Section 2.1.1. Finally, for every two indices a and b
satisfying 1 < a < b < f(n) we store in a table B the index i such that a and b are in the
same block of size f*(n) but in different blocks of size fi™1(n). In other words, i must satisfy
the following conditions [a/f® (n)| = [b/f@(n)| and |a/f D (n)] # [b/fEHD (n)]

Space Analysis. The number of nodes in T is reduced to n/f(n) and the space used
by 7 and fusion trees stored in its nodes is O(n/lgn) bits. The number of nodes in
Tij is fP(n)/ @+ (n) and the space used by 7;; and fusion trees stored in its nodes is
O(f(n)/1g (£ (n))) bits. Thus, the total space used by all such trees is:

f ) [n/fD(n) fr(n)
S| X o(Omieu@m) | = X (w10 - 0(1Ow)/ e m)))
()
=3 o(n/1g(s V)
Z;i(n)
=n 3 O(1/1e(/Y )
=0(n)

Finally, the table B uses o(n) bits. Thus, the total space used is O(n) bits.

Query. Given a query [a, b], if a and b are in two different blocks of size f(n), we can answer
queries using 7 in the same way as described in Subsection 2.1.1. Otherwise, we query B on
values (¢ mod f(n)) and (b mod f(n)) to find the index ¢ satisfying the condition that a
and b are in the same block of size f(*)(n) but in different blocks of size f@+1)(n). Finally,
we query T;|,/p(n] as we query T.

» Theorem 4. There exists a compact O(n)-bit data structure that supports one-dimensional
(1 + €)-approzimate color range counting queries in constant time when the input points are
in the rank space.

3 General Approximate Range Counting

In this section, we present a data structure that uses B(n,m) + O(n) + o(B(n,m)) bits of
space and answers (1 + ¢)-approximate color counting queries in constant time.

Let 6 =1+ ¢ and let z1,...,x, be the coordinates of the n given colored points P in
sorted order. Denote by P, the set of points whose z-coordinate rank is a multiple of
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[1g® n]. For each point p € P denote by L (p) the set of points to the left of p, and by R (p)
the set of points to the right of p.

For each point p € Prigs,,) we store in a fusion tree [10] the unique values 1. .., log; n
where I; (i € [logsn]) is the maximum value satisfying the condition that s, ..., s, contains
§% unique colors. Also, for each point p € Prigs 1 and each i € [logs n] we store in a fusion
tree [10] the unique values ri1,...,710g; n Where 745 (j € [logsn]) is the minimum value

satisfying the condition that s,11,..., s, contains ¢/ unique colors not present in s, ..., sp.

We also store a succinct point reportingjstructure [13] on Prigs p1-

Next, we divide z1,...,z, into n/[lg® n] blocks each of size [lg*n], except for the last
one. Using O(nlg*®m) bits [23] we store predecessor and successor data structures for each
block independently. Since the size of each block is at most [lg® n], answering predecessor
and successor queries within a block takes constant time. Finally, we store in O(n) bits the

compact data structure from Theorem 4 for answering queries in the rank space.

Query. Given a query [a,b] we check if a point p € Py, is in [a,b]. If so, we query
the fusion tree stored on Iy, ..., llogus n to find I; the predecessor of a, then we query the
fusion tree stored on r;1,...,7; log,,.n tO find 7;; the successor of b, afterwards we return
(I+e)+(1+e).

If such a point p does not exist, then both a and b are in one of the blocks whose size
is ﬂgg n]. Using the reporting data structure stored on P we get the rank of an arbitrary
point in [a, ] then determine which block does a and b belong to. Afterwards, using the
predecessor and successor structures, we determine the rank of a and b. Since the query is
now reduced to the rank space, we can answer it in constant time.

» Theorem 5. There exists an (B(n,m) 4+ O(n) + O(n1g"® m))-bit data structure that
supports one-dimensional (1 + €)-approximate color range counting queries in constant time.

Next, we describe how to reduce the space of the predecessor and successor data structures.
We use a well known trick and split the universe [m] into n subranges r1,...,r, each of size
m/n. We also use succinct rank and select data structures that store a bit vector of size
n using n + o(n) bits and answers rank and select queries in constant time [19]. For each
non-empty subrange r; we store a predecessor and successor structure for every block of 1g? n
consecutive elements and a point reporting structure P; on all the points within r;. These
structures are stored consecutively in an array A. To locate the data structures for any range
r; within A, we count the number of points in the ranges r; for j < ¢ then scale that number.
For that purpose, we construct a bit vector B of size 2n bits, with rank and select queries,
that stores a zero for each range r; followed by n; ones, where n; is the number of points in
the range r;. To count the number of points preceding r;, we use a select query to get the
position k of the i*" zero in B, then with a rank query we count the number of ones before
position k.

Given a non-empty query range [a, b] such that there exist at most lg® n points between
a and b, a belongs to r; where ¢ = [a/(m/n)] and b belongs to r; where j = [b/(m/n)],
we find the rank of a in the following manner. First, we map a to a’ =a —im/n and b to
b =b— jm/n. If the range [a’,m/n] is empty in P;, we use rank and select queries to get s
the number of ones before the (i + 1) zero in B, the rank of a will be s + 1. Otherwise, we
find a point p in P; within the range [a’,m/n] if ¢ and j are different or within the range
[a/,V'] if i and j are the same. If p’s rank within 7; is k, we query the |k/lg® n] successor
data structure to find the rank of a’ in r;. Then, we add the number of points occurring
in each range r; where [ < 7 to this rank to get the rank of a. We obtain the rank of b in a
similar manner.
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The extra space used is o(B(n,m)) bits for the point reporting structures stored on the
ranges 1, . .., rn, O(nlg?®(m/n)) = o(B(n,m)) bits for the predecessor and successor data
structures, and O(n) bits for the bit vector B.

» Theorem 6. There exists an (B(n,m)+ O(n)+o(B(n, m))-bit data structure that supports
one-dimensional (1 + €)-approxzimate color range counting queries in constant time.

4 1D Color Range Reporting

Using similar techniques to those used in the previous section, we present in this section a
succinct data structure that uses B(n, m) + nHg(S) + o(B(n,m) + nlgo) bits of space and
answers color reporting queries in optimal O(k + 1) time.

If the input points are in the rank space (i.e. the z-coordinates of the input points are
1,... n and the input consists of a sequence S = s1, ..., s, of n colors, a query is a range [a, b]
where a,b € [n], and the answer is the distinct colors found in s,,...,sp), one-dimensional
color range reporting can be solved in O(k + 1) time using nHg(S) 4+ o(n)lgo + O(nlglgo)
bits [2, 4, 6].

This solution can be extended to general one-dimensional range reporting by storing the
z-coordinates of the points in sorted order in an indexable dictionary that supports select
queries in constant time using B(n, m)+o(B(n, m)) bits [25] in addition to the data structure
described in [2, 4, 6]. We can find the predecessor or successor of any x-coordinate in O(lgn)
time by answering O(lgn) select queries. Hence, we can reduce any query [a, b] to the rank
space in O(lgn) additional time.

» Theorem 7. There exists an (B(n,m)+nHg(S)+o(B(n,m)+nlgo))-space data structure
that supports one-dimensional color range reporting queries in O(lgn + k)time.

4.1 Improved Data Structure

Next, we show how to improve the query time obtained from Theorem 7 to O(k + 1), while
using the same amount of space.

Let x1,...,x, be the coordinates in sorted order of the n given colored points P. We
denote by Prig2,,) the set of points whose x-coordinate rank is a multiple of ﬂg2 n]. For
each point p € P we denote by L (p) the set of points to the left of p, and by R (p) the set
of points to the right of p. For every color z the set Min (p) contains the minimal element
e € L(p) of color z, and the set Max (p) contains the maximal element e € R (p) of color z.

Data Structure. For each point p € P42 ,,7, We store the smallest [lgn] elements of Min (p)
and the largest [lgn] elements of Max (p). We also store two succinct one-dimensional point
reporting data structures [13], one on every point in P, and the other on every point in
Prig2 - Next, we store a data structure similar to the one used in subsection 3 that can find
in constant time the ranks of a query [a, b] if [a,b] is not empty, and a and b belong to the
same block of size lg? n, Finally, we store the data structure from Theorem 7.

Answering Queries. We report all colors in a query range [a,b] as follows. Using the
reporting data structure stored on Pz ,,1, we search for some p € P2 ,1 N [a, b].

If such a point p exist, we traverse the list L (p) until an element p’ > b is found or the
end of L (p) is reached. We also traverse the list R (p) until an element p’ < a is found or
the end of R (p) is reached. If we reach neither the end of L (p) nor the end of R (p), then
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all distinct colors in [a, b] are reported. Otherwise, the range [a, b] contains more than lgn
distinct colors. In that case we use the data structure from Theorem 7.

If @ and b belong to a continuous block of lg? n points, we find their ranks in a similar
manner to subsection 3, then solve the problem in the rank space as described in the previous
subsection.

» Theorem 8. There exists a (B(n,m) + nHy(S) + O(n) + o(B(n,m) + nlgo))-bit data
structure that supports one-dimensional color range reporting queries in O(k + 1) time.

Note that n = o(nlgo) as long as o is not a constant. If o is a constant, we solve the
problem using a different approach. We store a separate succinct range emptiness data
structure [13] for every subset of points with a given color. To answer a query [a, b], for each
color ¢ we query the range emptiness data structure associated with ¢ to check if a point with
color ¢ occurs in the range [a,b], if so we report ¢. The query runtime is a constant since
the number of colors is constant and range emptiness queries take constant time. Hence, we
obtain the following theorem.

» Theorem 9. There exists an (B(n,m)+nHg(S)+o(B(n,m)+nlgo))-space data structure
that supports one-dimensional color range reporting queries in O(k + 1) time.

5 Dynamic Color Reporting in Rank Space

Finally, we describe a succinct data structure that uses nHy(S) + o(nlg o) bits of space and
answers color reporting queries in optimal O(k 4 1) time when the input points are in the
rank space, while supporting the following update operation in O(lgn) time: given an index
i and a color ¢, set the color of the i** element to c.

» Theorem 10. There exists an (nHy(S) + o(nlgo) + O(n))-bit data structure that supports
one-dimensional color range reporting queries in O(k + 1) time and updates in O(lgn) time
when points are in the rank space.

Proof. Let the input sequence be S = s1,...,s,, and T be the complete balanced binary
tree where every leaf of T corresponds to an element of S and every internal node has
two children. For any node u € T, S(u) denotes the set of all elements stored in the leaf
descendants of u. For i € {1,...,n} denote by [;(r;) the height of the highest ancestor u of
the node corresponding to 4 such that 7 is the leftmost(rightmost) element in S(u) with color
S;-

We store S in a dynamic data structure using nHy(S) + o(nlgo) bits that supports
access in O(1) time and Update, Rank, and Select in O(lgn/lglgn) time [14]. We divide S
into blocks of 1gn elements each, then we subdivide each block to subblocks of size lglgn
elements. For each subblock b;; (0 < i < n/lgn and 0 < j < lgn/lglgn) in block b; we
store:

The maximum value mﬁj of the sequence l;1gntjiglgn, - - - lilgnt(j+1)1g1gn and a succinct

range maximum data structure [9] Tilj to answer range maximum queries on it.

The maximum value mj; of the sequence ri1gntjigign; - -+ Tilg n+(j+1) g lg n a0 a succinct

range maximum data structure [9] T7; to answer range maximum queries on it.

The space used is O(lglgn) bits per subblock, which sums to O(n) bits. For each block b;
we store:

l

The sequence my, . .. its maximum value m!, and a succinct range maximum

1
U Iglgn>
data structure [9] T! to answer range maximum queries on it.



H. El-Zein, J.l. Munro, and Y. Nekrich

The sequence myjy, ..., M}, ,, its maximum value m;, and a succinct range maximum

data structure [9] T} to answer range maximum queries on it.
The space used is O(lgn/lglgn) bits per block, which sums to O(n/lglgn) bits. Finally,
using Lemma 1 from a result by Nekrich et al. [22] we store using O(n) bits two-dimensional
point reporting structures T and T" containing the set of points (i,m!) and (i, m}) where
1 <i < n/lgn. These structures support queries in O(k + 1) time and updates in O(lg® n)
time.

Answering Queries: Given a query [a, b, we find the lowest common ancestor u of a
and b. Let u;(u,) be the left(right) child of u, ¢ be the rightmost child of u;, and let h denote
the height of u; and wu,..

To get all distinct colors in [a, ¢] = [a,b] N S(w;), it is sufficient to report all colors s; in
that range with r; > h. We maintain the invariant that each color is reported on its right
most occurrence.

If [a, c] was contained in a single subblock b;;, we query 17 for all the distinct colors as
follows. We get the largest element r4 in ry, ..., 7., if s4 was previously reported we return,
otherwise we report sq and recurse on the interval [d, ¢] followed by [a,d]. Note that it is
important to recurse on [d, c] before [a, d] to maintain the invariant mentioned above, which
guarantees that r4 = min (r,,...,7.) will be smaller than h if the color s4 was previously
reported.

Otherwise, if [a, ¢] spans several subblocks but is contained in a single block b; we proceed
as follows. We first query the rightmost subblock partially spanned by [a, ¢|. Then, we query
T7 to get all the subblocks b;; spanned by [a, ¢] satisfying the condition that mg; > hin
order from right to left. We query each one of them in that order, then we query the leftmost
subblock that is partially spanned by [a, c].

Finally, if [a, ¢] spans several blocks we first query the rightmost block partially spanned
by [a,c]. Then, we query T" to get all the blocks ¢ spanned by [a, ¢] satisfying the condition
that m] > h in order from right to left. We query each one of them in that order, then we
query the leftmost block that is partially spanned by [a, ¢].

Similarly, to report all the distinct colors in [c 4+ 1,b] = [a,b] N S(u,) it is sufficient to
report all colors s; in that range with I; > h. We do this in a similar way to the method
used to query [a, c], while maintaining the invariant that each color is reported on its left
most occurrence.

Updating the Sequence: If the color of position ¢ was updated from ¢ to ¢’ the
following values could get modified: r;, r, where a is the first index before ¢ with color ¢, 7
where b is the first index after ¢ with color ¢/, [;, l; where d is the first index after ¢ with
color ¢, and [, where ¢ is the first index before 7 with color ¢'.

We can find the value r; of any index i in O(lgn/lglgn) time by using Rank and Select
queries to get the first index j before ¢ with the same color as index i, then computing the
lowest common ancestor of 7 and j. Similarly, to get the value [;, we use Rank and Select
queries to get the first index j after ¢ with the same color as index ¢, then we compute the
lowest common ancestor of 7 and j.

Since we don’t store the values r1,...,7, and Iy, ..., [, explicitly, once one of them changes
(say r, where a is in subblock b;;) we recompute all values r; where j € b;; and reconstruct
T};. Recomputing all values r; where j € b;; takes O(lglgn -lgn/lglgn) = O(lgn) time

and reconstructing 77; takes O(lglgn) time. If mj; changed, we rebuild 77 in O(Ign) time.

Finally, if m; changed we update its value in 7" in O(lg® n) time. Since only a constant
number of values get updated, the runtime is O(Ign). <
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Succinct Color Searching in One Dimension

If o is a constant then the O(n) additional bits stored by the data structure are no
longer a lower order term, so we handle this case separately. We divide S into blocks of size
lgn/21go. We store a lookup table using O(\/ﬁlg2 n) bits to answer color range queries
over every possible block of this size. Also, we store the data structure from Theorem 10 on

the sequence S’ = ¢/, .. with alphabet 0’ = 27, where s} denotes the subset of

° 8/2 lIgon/lgn
colors found on the i*" block of/S. The total space used is nHy(S) + o(nlgo) + O(n/lgn)
bits. To answer a query Q, we use the lookup table to get the colors in the (two) blocks
which are not completely spanned by Q, then we use the data structure from Theorem 10 to
get the colors in the blocks that are fully spanned by Q. Each color will be reported at most

a constant number of times. The query time is O(k + 1) = O(1) and update time is O(Ign).

» Theorem 11. There exists an (nHy(S) + o(nlgo))-bit data structure that supports one-
dimensional color range reporting queries in O(k + 1) time and updates in O(lgn) time when
points are in the rank space.

Acknowledgment. The first author gratefully acknowledges the discussions he had with
Rahul Saladi on the problem.
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