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Abstract
In this paper, we solve a long-standing graph partition problem under vertex-compaction that has
been of interest since about 1999. The graph partition problem that we consider in this paper
is to decide whether or not it is possible to partition the vertices of a graph into six distinct
non-empty sets A, B, C, D, E, and F , such that the vertices in each set are independent, i.e.,
there is no edge within any set, and an edge is possible but not necessary only between the
pairs of sets A and B, B and C, C and D, D and E, E and F , and F and A, and there is no
edge between any other pair of sets. We study the problem as the vertex-compaction problem
for an irreflexive hexagon (6-cycle). Determining the computational complexity of this problem
has been a long-standing problem of interest since about 1999, especially after the results of
open problems obtained by the author on a related compaction problem appeared in 1999. We
show in this paper that the vertex-compaction problem for an irreflexive hexagon is NP-complete.
Our proof can be extended for larger even irreflexive cycles, showing that the vertex-compaction
problem for an irreflexive even k-cycle is NP-complete, for all even k ≥ 6.
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1 Introduction

The vertex-compaction problem and the compaction problem are special graph colouring
problems, and can also be viewed as graph partition problems. The colouring problem
is a classic problem in graph theory. The graph homomorphism problem, also called the
H-colouring problem, is a generalization of the colouring problem. The vertex-compaction
problem is the graph homomorphism problem with additional constraints. The compaction
problem is the vertex-compaction problem with additional constraints. We describe our
motivation and results after introducing the following definitions and problems.

1.1 Definitions
The pair of vertices of an edge in a graph are called the endpoints of the edge. An edge with
the same endpoints in a graph is called a loop. A vertex v of a graph is said to have a loop if
vv is an edge of the graph. A reflexive graph is a graph in which every vertex has a loop.
An irreflexive graph is a graph in which no vertex has a loop. Any graph, in general, is a
partially reflexive graph, in which its vertices may or may not have loops. Thus reflexive and
irreflexive graphs are special partially reflexive graphs. A bipartite graph G is a graph whose
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69:2 Vertex-Compaction to an Irreflexive Hexagon

vertex set can be partitioned into two distinct subsets GA and GB , such that each edge of G

has one endpoint in GA and the other endpoint in GB ; we say that (GA, GB) is a bipartition
of G. Thus a bipartite graph is irreflexive by definition. If uv is an edge of a graph then
vu is also an edge of the graph, i.e., we assume graphs to be undirected graphs. A cycle of
length k is called a k-cycle, k ≥ 3. A hexagon will be used as a synonym for a 6-cycle. We
shall denote an irreflexive k-cycle by Ck.

Let G be a graph. We use V (G) and E(G) to denote the vertex set and the edge set
of G respectively. Given an induced subgraph H of G, we denote by G−H, the subgraph
obtained by deleting from G the vertices of H together with the edges incident with them;
thus G−H is a subgraph of G induced by V (G)− V (H). The vertices in a set I ⊆ V (G)
are said to be independent if there is no edge in the subgraph of G induced by I. When a
set S is an argument of a mapping f , we define f(S) = {f(s)|s ∈ S}. The distance between
a pair of vertices u and v in G, denoted as dG(u, v) or dG(v, u), is the length of a shortest
path from u to v in G, if u and v are connected in G; we define dG(u, v) (and dG(v, u)) to
be infinite, if u and v are disconnected in G. The diameter of G is the maximum distance
between any two vertices in G. The distance between two sets X and Y of vertices in G,
denoted as dG(X, Y ) or dG(Y, X), is the minimum distance between any vertex of X and
any vertex of Y in G, i.e., dG(X, Y ) = min{dG(x, y)|x ∈ X, y ∈ Y }, where min A gives the
minimum element in a set A. If a set has only one vertex, we may just write the vertex
instead of the set. In the following, let G and H be graphs.

A homomorphism f : G → H, of G to H, is a mapping f of the vertices of G to the
vertices of H, such that if g and g′ are adjacent vertices of G then f(g) and f(g′) are adjacent
vertices of H. If there exists a homomorphism of G to H then G is said to be homomorphic
to H. Note that if G is irreflexive then G is k-colourable if and only if G is homomorphic to
the irreflexive complete graph Kk having k vertices. Thus the concept of a homomorphism
generalises the concept of a k-colourability, and the H-colouring problem is to decide whether
or not G is homomorphic to H. The H-colouring problem is trivial and easily seen to be
polynomial time solvable if H is bipartite or H has a loop. For any fixed non-bipartite
irreflexive graph H, it is shown in [Hell and Nesetril, 1990] that the H-colouring problem is
NP-complete.

A compaction c : G→ H, of G to H, is a homomorphism of G to H, such that for every
vertex x of H, there exists a vertex v of G with c(v) = x, and for every edge hh′ of H, h 6= h′,
there exists an edge gg′ of G with c(g) = h and c(g′) = h′. Note that the first part of the
definition for a compaction (the requirement for every vertex x of H) follows from the second
part unless H has isolated vertices. If there exists a compaction of G to H then G is said
to compact to H. Given a compaction c : G→ H, if for a vertex v of G, we have c(v) = x,
where x is a vertex of H, then we say that the vertex v of G covers the vertex x of H under
c; and if for an edge gg′ of G, we have c({g, g′}) = {h, h′}, where hh′ is an edge of H, then
we say that the edge gg′ of G covers the edge hh′ of H under c (note in the definition of
compaction, it is not necessary that a loop of H be covered by any edge of G under c).

We notice that the notion of a homomorphic image described in [Harary, 1969] (also cf.
[Hell & Miller, 1979]) coincides with the notion of a compaction in case of irreflexive graphs
(i.e., when G and H are irreflexive in the above definition for compaction).

A vertex-compaction c : G → H, of G to H, is a homomorphism of G to H, such
that for every vertex x of H there exists a vertex v of G with c(v) = x. If there exists a
vertex-compaction of G to H then G is said to vertex-compact to H. We define vertex and
edge covering under a vertex-compaction c similarly as for a compaction. Note that every
compaction is also a vertex-compaction.
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A retraction r : G → H, of G to H, with H as an induced subgraph of G, is a
homomorphism of G to H, such that r(h) = h, for every vertex h of H. If there exists a
retraction of G to H then G is said to retract to H. Note that every retraction r : G→ H is
necessarily also a compaction, and hence a vertex-compaction.

1.2 Vertex-Compaction, Compaction, and Retraction Problems

The problem of deciding the existence of a vertex-compaction to a fixed graph H, called the
vertex-compaction problem for H, and denoted as VCOMP-H, asks whether or not an input
graph G vertex-compacts to H.

Our graph partition problem is to decide whether or not it is possible to partition the
vertices of a graph into six distinct non-empty sets A, B, C, D, E, and F , such that the
vertices in each of these sets are independent, and an edge is possible but not necessary only
between the pairs of sets A and B, B and C, C and D, D and E, E and F , and F and
A, and there is no edge between any other pair of sets. We note that our graph partition
problem is the problem VCOMP-C6.

The problem of deciding the existence of a compaction to a fixed graph H, called the
compaction problem for H, and denoted as COMP-H, asks whether or not an input graph G

compacts to H. The compaction problem is a well studied problem over last several years,
and includes some popular problems. Results on the compaction problem can be found in
[Vikas, 1999, 2002, 2003, 2004a, 2004b, 2004c, 2005, 2011, 2013].

Note that unlike the H-colouring problem, the problems VCOMP-H and COMP-H are
still interesting if H is bipartite or H has a loop. Some work on graph partition problems
have also been studied in [Feder, Hell, Klein, and Motwani, 1999, 2003] and [Hell, 2014].

The problem of deciding the existence of a retraction to a fixed graph H, called the
retraction problem for H, and denoted as RET-H, asks whether or not an input graph G,
containing H as an induced subgraph, retracts to H. Retraction problems have been of
continuing interest in graph theory for a long time and have been studied in various literature
including [Hell, 1972], [Hell, 1974], [Nowakowski and Rival, 1979], [Pesch and Poguntke, 1985],
[Bandelt, Dahlmann, and Schutte, 1987], [Hell and Rival, 1987], [Pesch, 1988], [Bandelt,
Farber, and Hell, 1993], [Feder and Hell, 1998], [Feder and Vardi, 1993, 1998], [Feder, Hell,
and Huang, 1999], [Vikas, 2004b, 2004c, 2005], etc.

1.3 Motivation and Results

It can be shown that for every fixed graph H, if the problem COMP-H is solvable in
polynomial time then the problem VCOMP-H is also solvable in polynomial time (similarly
as in [Vikas, 2004b]). Whether the converse is true is not known. The problem COMP-C6
is shown to be NP-complete in [Vikas, 1999, 2004a]. It turns out that the unique smallest
bipartite graph H for which COMP-H is NP-complete is C6 [Vikas, 2004a]. Therefore, with
respect to the preceding question on converse, we are motivated to specifically determine
the computational complexity of our partition problem VCOMP-C6, to see whether like
COMP-C6, it is also NP-complete in support of the converse. We show in this paper that
VCOMP-C6 is NP-complete. Determining the computational complexity of VCOMP-C6 has
been a long-standing problem of interest since about 1999, especially after results on the
computational complexity of COMP-C6 obtained by the author appeared in 1999 [Vikas,
1999]. Determining the computational complexity of COMP-C6 was also a long-standing
problem of interest since about 1988, solved by the author in [Vikas, 1999, 2004a]. Although
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the problem VCOMP-C6 is only a little variation of the problem COMP-C6, it turns out to
be another difficult problem to determine its computational complexity.

Similarly, our motivation for the partition problem COMP-C6 was with respect to the
retraction problem. It can be shown that for every fixed graph H, if the problem RET-H
is polynomial time solvable then the problem COMP-H is also polynomial time solvable
[Vikas, 2004b]. However, whether the converse is true is again not known. As discussed in
[Vikas, 1999, 2003], the question on converse was also asked by Peter Winkler in 1988 in
the context of reflexive graphs, and this was the general problem that motivated Winkler
for asking the computational complexity of COMP-H when H is a reflexive square, as the
unique smallest reflexive graph H for which RET-H is NP-complete is a reflexive square.
It has been shown in [Vikas, 1999, 2003] that when H is a reflexive square, COMP-H is
NP-complete. As discussed in [Vikas, 2004a], since the unique smallest bipartite graph H for
which RET-H is NP-complete is C6, we are therefore motivated, with respect to the above
question on converse, to know whether the problem COMP-C6 is also NP-complete like the
problem RET-C6 supporting the converse. As mentioned above, it is shown in [Vikas, 1999,
2004a] that COMP-C6 is NP-complete.

The problem RET-C6 is shown to be NP-complete in [Feder, Hell, and Huang, 1999], and
also independently by G. MacGillivray in 1988. Since C4 is a complete bipartite graph, it is
easy to see that RET-C4, and hence COMP-C4 and also VCOMP-C4, are all polynomial
time solvable. In fact, when H is a chordal bipartite graph (which includes C4), the problem
RET-H is polynomial time solvable [Bandelt, Dahlmann, and Schutte, 1987], and hence
COMP-H and VCOMP-H are also polynomial time solvable. Thus it follows that the unique
smallest bipartite graph H for which RET-H, COMP-H, and VCOMP-H are NP-complete is
C6.

It has been shown in [Hell and Nesetril, 1990] that the H-colouring problem is NP-
complete for any fixed irreflexive non-bipartite graph H. It follows that RET-H, COMP-H,
and VCOMP-H are also NP-complete for any non-bipartite irreflexive graph H, which
includes an irreflexive odd k-cycle, for all k ≥ 3.

As we mentioned earlier, the H-colouring problem is trivial and easily seen to be polynomial
time solvable when H is a bipartite graph. The natural question for bipartite graphs H, which
motivated Pavol Hell and Jaroslav Nesetril (personal communications) around 1988, was to
ask for the computational complexity of the H-colouring problem with added constraints,
namely the problem COMP-H, and in particular for the problem COMP-C6.

It can also be shown that for every fixed graph H, if the problem RET-H is polynomial
time solvable then the problem VCOMP-H is also polynomial time solvable (similarly as
in [Vikas, 2004b]), but whether the converse is true is not known. Hence, once again, in
relation to the converse and the problem RET-C6, we are motivated to know whether the
problem VCOMP-C6 is NP-complete.

The algorithms given in [Vikas, 2011, 2013] yield a polynomial time algorithm for VCOMP-
C6 for any input graph of diameter more than four, and it is suggested in [Vikas, 2011, 2013]
as a guidance that an input graph of diameter four could be a candidate for VCOMP-C6
to be possibly NP-complete. We are thus motivated to see whether VCOMP-C6 is indeed
NP-complete for an input graph of diameter four, guided by the algorithmic aspects of the
vertex-compaction problem studied in [Vikas, 2011, 2013]. The instance of the input graph
for which we show VCOMP-C6 to be NP-complete in this paper is indeed of diameter four.

Our proof and technique of construction for C6 can be extended for larger irreflexive
even cycles to show that VCOMP-Ck is NP-complete, for all even k ≥ 6. Our proof showing
NP-completeness of VCOMP-C6 directly uses graphs that we construct just by adding vertices
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Figure 1 Irreflexive Hexagon H

and edges. Our graphs therefore lay down the foundation for construction of graphs for the
case of a general irreflexive even k-cycle, by extending the paths constructed and adding
edges appropriately, showing NP-completeness of VCOMP-Ck, for all even k ≥ 6.

In Section 2, we present the proof showing NP-completeness of deciding the existence of
a vertex-compaction to an irreflexive hexagon, i.e., the problem VCOMP-C6. In Section 3,
we address how our NP-completeness proof of VCOMP-C6 can be extended for an irreflexive
even k-cycle, showing NP-completeness of VCOMP-Ck, for all even k ≥ 6.

2 Vertex-Compaction to an Irreflexive Hexagon

I Theorem 2.1. The problem of deciding the existence of a vertex-compaction to an irreflexive
hexagon is NP-complete.

Proof. Let H be the irreflexive hexagon h0h1h2h3h4h5h0 shown in Figure 1.
We shall prove that the problem of deciding the existence of a vertex-compaction to H,

i.e., the problem VCOMP-H, is NP-complete. Clearly, the problem VCOMP-H is in NP. We
give a polynomial transformation from the problem RET-H to VCOMP-H. As mentioned
earlier, it is known that the problem RET-H is NP-complete. Since only a bipartite graph
can be homomorphic to H, the problem RET-H remains to be NP-complete if the instance
of RET-H is restricted to be only a bipartite graph.

Let a bipartite graph G, containing H as an induced subgraph, be an instance of RET-H.
We construct in time polynomial in the size of G, a graph G′, containing G as an induced
subgraph, such that the following statements (i), (ii), and (iii) are equivalent:
(i) G retracts to H.
(ii) G′ retracts to H.
(iii) G′ vertex-compacts to H.
Since RET-H, with the instance restricted to be a bipartite graph, is NP-complete, this
shows that VCOMP-H is also NP-complete. We prove that (i) is equivalent to (ii), and (ii)
is equivalent to (iii), in two separate lemmas, Lemma 2.2 and Lemma 2.3, respectively.

One of the main challenges is to construct such a graph of diameter four. Let (GA, GB)
be a bipartition of G, and (HA, HB) be a bipartition of H, with HA ⊆ GA, and HB ⊆ GB.
We shall assume for convenience that h0 ∈ HB .

The construction of G′ is as follows. For each vertex a ∈ GA −HA, we add a new vertex
za adjacent to a and h1. For every pair of vertices a and b, with a ∈ GA−HA, b ∈ GB −HB ,
we add a new vertex zab adjacent to za and b. Thus for each a ∈ GA −HA, we have paths
azazabb, azazab′b′, for all b, b′ ∈ GB −HB . See Figure 2. In the figure, we have taken three
distinct vertices a, a′, and a′′ of GA−HA, and three distinct vertices b, b′, and b′′ of GB−HB .
Also, in the figures in this section, we are not depicting any edge that may be present between
a vertex of GA −HA and a vertex of GB −HB .

MFCS 2017
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Figure 2 Construction of G′, with za and zab, for every pair of vertices a and b, with a ∈ GA−HA,
b ∈ GB −HB

In the graph G′ constructed so far, the maximum distance between any pair of vertices
in V (G′)− V (H) is already four, i.e., dG′(v, v′) ≤ 4, with v, v′ ∈ V (G′)− V (H). This can
be observed due to the following paths and subpaths within those paths of length at most
four : azazabbza′b, zabzazab′b′za′b′ , azah1za′a′, bzabzazab′b′.

If we constructed the graph G′ including the vertices of H also, i.e., if we constructed G′

for every pair of vertices a and b, with a ∈ GA, b ∈ GB then the diameter of G′ would be
four.

We continue further with the construction of G′. For each vertex b ∈ GB −HB , we add
a new vertex xb adjacent to zab and h5, for all a ∈ GA −HA. For every pair of vertices a

and b, with a ∈ GA −HA, b ∈ GB −HB, we add a new vertex xba adjacent to xb and za.
Thus for each b ∈ GB −HB , we have paths zabxbxbaza, za′bxbxba′z′

a, for all a, a′ ∈ GA −HA.
See Figure 3.



Narayan Vikas 69:7

h

z

z

z

x
ab

a’b

a’’b

x
b

ba

x

x

ba’

ba’’

z

z

z

a

a’

a’’

x
b’

z

z

z

ab’

a’b’

a’’b’

x

x

x

b’a

b’a’

b’a’’

z

z

z

a

a’

a’’

z

z

z

x

x

x

x

b’’

ab’’

a’b’’

a’’b’’

b’’a

b’’a’

b’’a’’

z

z

z

a

a’

a’’

5

x

x

x

b

b’

b’’

Figure 3 Construction of G′, with xb and xba, for every pair of vertices a and b, with a ∈ GA−HA,
b ∈ GB −HB

The maximum distance between any pair of vertices in V (G′)− V (H) is still four. This
can be observed due to the following paths and subpaths within those paths of length at
most four : xbaxbxba′za′xb′a′ , xbaxbxba′za′za′b′ , xbaxbxba′za′a′, xbxbazazab′b′.

For each vertex a ∈ GA − HA (hence dG(h0, a) is odd as we are assuming that h0 ∈
HB ⊆ GB), we add to G new vertices ua

1 adjacent to h0; ua
2 adjacent to ua

1 , a, and h1; wa
1

adjacent to h3, ua
1 , and a; ya

1 adjacent to h1, ua
1 , and a; ya

2 adjacent to ya
1 , h4, wa

1 , and ua
2 .

See Figure 4. Note that there could be edges in G from a to some vertices of H but in
Figure 4, we are not depicting these edges.

For each vertex b ∈ GB − HB (hence dG(h0, b) is even), we add to G new vertices ub
1

adjacent to h0 and b; wb
1 adjacent to h3 and ub

1; wb
2 adjacent to wb

1, b, and h2; yb
1 adjacent to

h5, ub
1, and wb

2; yb
2 adjacent to yb

1, h2, wb
1, and b. See Figure 5. There could be edges in G

from b to some vertices of H but in Figure 5, we are not depicting these edges.
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Figure 4 Construction of G′ for a vertex a in GA −HA
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Figure 5 Construction of G′ for a vertex b in GB −HB

For every vertex a ∈ GA −HA, we further make za adjacent to ua
1 and ya

2 . For every pair
of vertices a and b, with a ∈ GA −HA, b ∈ GB −HB , we further also make zab adjacent to
wb

1 and yb
1.

For every vertex b ∈ GB −HB , we also further make xb adjacent to ub
1, yb

2, and wb
2. For

every pair of vertices a and b, with a ∈ GA−HA, b ∈ GB−HB , we further make xba adjacent
to wa

1 , ya
1 , and ua

2 . See Figure 6.
This completes the construction of G′. The diameter of the graph G′ is four. We now

prove the following two lemmas in order to prove the theorem.

I Lemma 2.2. G retracts to H if and only if G′ retracts to H.

Proof. If G′ retracts to H then it is clear that G also retracts to H, as G is a subgraph of
G′. Now suppose that G retracts to H, and let r : G → H be a retraction. We define a
retraction r′ : G′ → H as follows.

We define r′ for the vertices v of G (that are also vertices of G′) as
r′(v) = r(v).

We define r′ for the newly added vertices of G′, with a ∈ GA −HA, as follows.
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Figure 6 Construction of G′ for a pair of vertices a and b, with a ∈ GA −HA, b ∈ GB −HB

If r(a) = h1 or h3, then we define
r′(ua

1) = h1, r′(ua
2) = h2,

r′(wa
1) = h2,

r′(ya
1 ) = h2, r′(ya

2 ) = h3,
r′(za) = h2.

If r(a) = h5, then we define
r′(ua

1) = h5, r′(ua
2) = h0,

r′(wa
1) = h4,

r′(ya
1 ) = h0, r′(ya

2 ) = h5,
r′(za) = h0.

We define r′ for the newly added vertices of G′, with b ∈ GB −HB , as follows.
If r(b) = h0 or h2, then we define

r′(ub
1) = h1,

r′(wb
1) = h2, r′(wb

2) = h1,
r′(yb

1) = h0, r′(yb
2) = h1,

r′(xb) = h0.
If r(b) = h4, then we define

r′(ub
1) = h5,

r′(wb
1) = h4, r′(wb

2) = h3,
r′(yb

1) = h4, r′(yb
2) = h3,

r′(xb) = h4.
We define r′ for the vertices zab and xba of G′, with a ∈ GA −HA, b ∈ GB −HB , as follows.
If r(a) = h1 or h3, and r(b) = h0 or h2, then we define

r′(zab) = h1, r′(xba) = h1.
If r(a) = h1 or h3, and r(b) = h4, then we define

r′(zab) = h3, r′(xba) = h3.
If r(a) = h5, and r(b) = h0 or h2, then we define

r′(zab) = h1, r′(xba) = h5.
If r(a) = h5, and r(b) = h4, then we define

r′(zab) = h5, r′(xba) = h5.

We now verify that r′ : G′ → H is indeed a homomorphism (and hence a retraction). We
do this by considering all the edges ab of G′, and proving that r′(a)r′(b) is an edge of H.
Before verifying, we point out that, as far as C6 is concerned, we could use the vertices ya

1

MFCS 2017
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and yb
1 instead of the vertices za and xb, respectively, but we have continued to keep za and

xb, as construction similar to them would be needed in the construction for larger cycles,
with a ∈ GA −HA, b ∈ GB −HB .

Consider first an edge gg′, with gg′ ∈ E(G). We have from our definition of r′ that
r′(g) = r(g) and r′(g′) = r(g′). Since r : G→ H is a homomorphism, r(g)r(g′) must be an
edge of H. Hence r′(g)r′(g′) = r(g)r(g′) is an edge of H.

Now consider the edges ua
1h0, ua

2h1, ub
1h0, wa

1h3, wb
1h3, wb

2h2, ya
1 h1, ya

2 h4, yb
1h5, yb

2h2,
zah1, and xbh5, with a ∈ GA − HA, b ∈ GB − HB. From the definition of r′, we have
r′(hi) = r(hi) = hi, for all i = 0, 1, 2, 3, 4, 5. Depending on the value of r(a), we note from
our definition of r′ that r′(ua

1) = h1 or h5, r′(ua
2) = h2 or h0, r′(wa

1) = h2 or h4, r′(ya
1 ) = h2 or

h0, r′(ya
2 ) = h3 or h5, and r′(za) = h2 or h0. Hence r′(ua

1)r′(h0), r′(ua
2)r′(h1), r′(wa

1)r′(h3),
r′(ya

1 )r′(h1), r′(ya
2 )r′(h4), and r′(za)r′(h1) are always edges of H. Similarly, depending on

the value of r(b), from our definition of r′, we have r′(ub
1) = h1 or h5, r′(wb

1) = h2 or
h4, r′(wb

2) = h1 or h3, r′(yb
1) = h0 or h4, r′(yb

2) = h1 or h3, and r′(xb) = h0 or h4. Thus
r′(ub

1)r′(h0), r′(wb
1)r′(h3), r′(wb

2)r′(h2), r′(yb
1)r′(h5), r′(yb

2)r′(h2), and r′(xb)r′(h5) are always
edges of H.

The remaining edges of G′ can also be verified. Since r′(h) = r(h) = h, for all h ∈ V (H),
the homomorphism r′ : G′ → H is a retraction. We have thus proved the lemma. J

I Lemma 2.3. G′ retracts to H if and only if G′ vertex-compacts to H.

Proof. If G′ retracts to H then by definition G′ vertex-compacts to H. Now suppose that
G′ vertex-compacts to H. We shall prove that G′ also retracts to H. Let c : G′ → H be
a vertex-compaction. We let U = {uv

1|v ∈ V (G − H)} ∪ {h1, h0, h5} and W = {wv
1 |v ∈

V (G−H)} ∪ {h2, h3, h4}.
Since h0 is adjacent to every other vertex in U , and G′ is bipartite, the subgraph of G′

induced by the vertices in U is of diameter two. Hence, the vertices of c(U) induce a path
of length one or two in H, as H is irreflexive. Thus c(U) has either two or three vertices.
Similarly, c(W ) has either two or three vertices. We shall prove that c(U) and c(W ) both
have three vertices.

Suppose that c(U) has only two vertices. Then we know that the vertices in c(U) are
adjacent in H. Without loss of generality, let c(U) = {h0, h1} and c(h0) = h0 (due to
symmetry of vertices in H). Hence c(U − {h0}) = {h1}. We note that dG′(U − {h0}, g) < 3,
for all g ∈ V (G′). Hence dG′(U −{h0}, g) < dH(c(U −{h0}) = h1, h4) = 3, for all g ∈ V (G′).
This implies that c(g) 6= h4, for all g ∈ V (G′), which is impossible, as c : G′ → H is
a vertex-compaction. Hence it must be that c(U) has three vertices. We also note that
dG′(W − {h3}, g) < 3, for all g ∈ V (G′), and hence, similarly, it must be that c(W ) also has
three vertices.

Thus c(U) and c(W ) both induce paths having three vertices in H. Without loss of
generality, let c(U) = {h1, h0, h5} (due to symmetry). This implies that c(h0) = h0. We
first prove that c(h3) = h3. We note that the diameter of G′ is 4, and hence our vertex-
compaction c : G′ → H must also be a compaction, as otherwise the diameter of G′ will
be greater than 4. Let some edge gg′ of G′ cover the edge h3h4 or h3h2 of H under c,
with c(g) = h3 and c(g′) = h4 or h2 (indeed there exists such an edge in G′, as the vertex-
compaction c is also a compaction). We note that h3 is at distance 2 from c(U) in H, as
dH(c(U), h3) = dH(h1, h3) = 2. Further, both h4 and h2 are at distance 1 from c(U) in H,
as dH(c(U), h4) = dH(h5, h4) = 1, and dH(c(U), h2) = dH(h1, h2) = 1. Thus it must be that
dG′(U, g) ≥ 2 and dG′(U, g′) ≥ 1. Since there is no vertex at distance more than 2 from U in
G′, we have dG′(U, g) = 2 and dG′(U, g′) = 1 or 2. Further, since G′ is bipartite, it must be
that dG′(U, g) = 2 and dG′(U, g′) = 1.
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We note that the only vertices that could possibly be at distance 1 from U in G′, as
possible candidates for g′, are : h2, h4, wa

1 , wb
1, ya

1 , yb
1, ua

2 , b, za, and xb, with a ∈ GA −HA,
b ∈ GB−HB . The only vertices that could possibly be at distance 2 from U in G′, as possible
candidates for g, are : h3, ya

2 , yb
2, wb

2, a, zab, and xba, with a ∈ GA − HA, b ∈ GB − HB.
Thus g and g′ are among these vertices.

Since c(h0) = h0 and H is bipartite, c(h3) 6= h4 or h2. Suppose that c(h3) 6= h3. Then
no edge of G′ with h3 as an endpoint covers the edge h3h4 or h3h2 of H under c. Hence
gg′ must be an edge among ya

2 wa
1 , yb

2wb
1, ya

2 ya
1 , yb

2yb
1, ya

2 za, ya
2 ua

2 , ya
2 h4, yb

2h2, yb
2b, yb

2xb, aya
1 ,

aua
2 , awa

1 , aza, wb
2wb

1, wb
2b, wb

2xb, wb
2yb

1, zabwb
1, zabyb

1, zabb, zabza, zabxb, xbaza, xbawa
1 , xbaya

1 ,
xbaua

2 , xbaxb, and possibly ab, with a ∈ GA −HA, b ∈ GB −HB, where the first vertex in
each of these edges stand for g and the second for g′, and in order to meet the rquirements of
the edge gg′, the first vertex in each of these edges is assumed to achieve distance 2 from U in
G′ and hence may map to h3 under c, and the second vertex in each of these edges is assumed
to achieve distance 1 from U in G′ and hence may map to h4 or h2 under c. We shall be
always mentioning these edges in this order. Further, if ah2 or ah4 is an edge of G, for some
vertex a ∈ GA −HA, then we need to include such an edge also for gg′. These edges for gg′

are all the possible edges of G′ that may cover the edge h3h4 or h3h2 of H under c assuming
that c(h3) 6= h3. Since c(h3) ∈ HA (as c(h0) = h0 ∈ HB) and c(h3) 6= h3, we have c(h3) = h1
or h5. The outline for proving that c(h3) 6= h3 is impossible is as follows. We suppose
that c(h3) = h1, and consider each of the possible edges for gg′ mentioned above, and show
that they do not cover the edge h3h4 under c (i.e., c({g, g′}) 6= {h3, h4}). Symmetrically, if
c(h3) = h5 then it can be shown that none of the possible edges for gg′ mentioned above can
cover the edge h3h2 under c (i.e., c({g, g′}) 6= {h3, h2}). Thus let c(h3) = h1.

Consider first the edges ya
2 wa

1 and yb
2wb

1, with a ∈ GA −HA, b ∈ GB −HB . We consider
them together as an edge yv

2wv
1 , with v ∈ V (G −H). Suppose that yv

2wv
1 covers the edge

h3h4 under c. Then c(yv
2) = h3 and c(wv

1) = h4. By assumption, we have c(h3) = h1. Since
wv

1 is adjacent to h3, this implies that c(wv
1) = h0 or h2. Thus c(wv

1) 6= h4, and we have a
contradiction.

Next consider the edges awa
1 , wb

2wb
1, and zabwb

1, with a ∈ GA−HA, b ∈ GB−HB . Similar
to the above, since c(wv

1) must be adjacent to c(h3) = h1, it is impossible that c(wv
1) = h4,

with v ∈ V (G−H), and hence the above edges cannot cover the edge h3h4 under c.
Now consider the edges ya

2 ya
1 and yb

2yb
1, with a ∈ GA −HA, b ∈ GB −HB. We consider

them together as an edge yv
2yv

1 , with v ∈ V (G − H). Suppose that yv
2yv

1 covers the edge
h3h4 under c. Then c(yv

2) = h3 and c(yv
1) = h4. Since c(uv

1) must be adjacent to both
c(h0) = h0 and c(yv

1) = h4, this implies that c(uv
1) = h5. Since c(wv

1) must be adjacent to
both c(uv

1) = h5 and c(yv
2) = h3, it must be that c(wv

1) = h4. This implies that yv
2wv

1 covers
the edge h3h4 under c, which we have already proved does not hold.

The remaining edges for gg′ can be verified also. Symmetrically, if c(h3) = h5 then no
possible edge for gg′ can cover the edge h3h2 under c. We thus establish that c(h3) = h3,
and hence c(W ) = {h2, h3, h4}.

We now prove that c(h1) 6= c(h5). Suppose to the contrary that c(h1) = c(h5). Since
c(h0) = h0, we have c(h1), c(h5) ∈ {h1, h5}. Without loss of generality, let c(h1) = c(h5) = h1
(due to symmetry). Since c(U) = {h1, h0, h5}, it must be that c(uv

1) = h5 for some vertex
v of G − H. Since c(wv

1), c(h2), and c(h4) must all be adjacent to c(h3) = h3, we have
c(wv

1), c(h2), c(h4) ∈ {h2, h4}. Since c(wv
1) must be adjacent to c(uv

1) = h5, it must be that
c(wv

1) 6= h2, and hence c(wv
1) = h4. Since c(h2) must be adjacent to c(h1) = h1, it must be

that c(h2) 6= h4, and hence c(h2) = h2. Since c(h4) must be adjacent to c(h5) = h1, it must
be that c(h4) 6= h4, and hence c(h4) = h2. Now c(ya

2 ) must be adjacent to c(h4) = h2 and
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c(wa
1) = h4, implying that c(ya

2 ) = h3, with a ∈ GA −HA. Also, c(yb
2) must be adjacent to

c(h2) = h2 and c(wb
1) = h4, implying that c(yb

2) = h3 also, with b ∈ GB − HB. Thus we
have, in general, c(yv

2) = h3. We also have that c(ya
1 ) must be adjacent to c(h1) = h1 and

c(ua
1) = h5, implying that c(ya

1 ) = h0, with a ∈ GA −HA. Also, we have that c(yb
1) must be

adjacent to c(h5) = h1 and c(ub
1) = h5, implying that c(yb

1) = h0 also, with b ∈ GB −HB.
Thus we have, in general, c(yv

1) = h0. This is impossible as c(yv
1) must be adjacent to

c(yv
2) = h3.
Thus c(h1) 6= c(h5), i.e., c({h1, h5}) = {h1, h5}. Without loss of generality, suppose

that c(h1) = h1 and c(h5) = h5 (due to symmetry). Since c(h3) = h3, we have c(h2), c(h4)
∈ {h2, h4}. Since c(h2) must be adjacent to c(h1) = h1, it must be that c(h2) 6= h4, and
hence c(h2) = h2. Since c(h4) must be adjacent to c(h5) = h5, it must be that c(h4) 6= h2,
and hence c(h4) = h4. We already have c(h0) = h0 and c(h3) = h3. Thus we have c(hi) = hi,
for all i = 0, 1, 2, 3, 4, 5. Hence c : G′ → H is a retraction, proving the lemma. J

We have thus proved Theorem 2.1. J

3 Vertex-Compaction to an Irreflexive k-Cycle

Our proof of Theorem 2.1 showing NP-completeness of VCOMP-C6 directly uses graphs
that we construct simply by adding vertices and edges. Our technique of construction of
graphs therefore lays down the foundation for construction of graphs for the case of a general
irreflexive even k-cycle, by extending the paths constructed and adding edges appropriately,
showing NP-completeness of VCOMP-Ck, for all even k ≥ 6.

In [Vikas, 1999, 2004a], it is shown that the problem COMP-Ck is NP-complete, for
all even k ≥ 6. The problem RET-Ck is shown to be NP-complete, for all even k ≥ 6, in
[Feder, Hell, and Huang, 1999], and independently by G. Macgillivray in 1988. To prove
NP-completeness of VCOMP-Ck, we give a transformation from RET-Ck to VCOMP-Ck,
for all even k ≥ 6. In our construction to prove NP-completeness of VCOMP-Ck, with even
k ≥ 6, we now have for example paths Zab, Xba, Ua, Ub, Wa, Wb, Ya, and Yb of appropriate
lengths instead of the vertices zab, xba, ua

1 , ua
2 , ub

1, wa
1 , wb

1, and wb
2 that we used in the

construction in the proof of Theorem 2.1 for proving NP-completeness of VCOMP-C6, and
we add edges chosen appropriately.

Considering k = 4, it is easy to see that the problems VCOMP-C4, COMP-C4, and
RET-C4 are polynomial time solvable, as C4 is a complete bipartite graph. We now consider
odd k ≥ 3. Note that a graph G is homomorphic to a graph H if and only if the disjoint
union G ∪H vertex-compacts, compacts, and retracts to H. Thus we have a polynomial
transformation from the H-colouring problem to the problems VCOMP-H, COMP-H, and
RET-H. The H-colouring problem is shown to be NP-complete for any fixed non-bipartite
irreflexive graph H in [Hell & Nesetril 1990]. Hence, it follows that the problems VCOMP-H,
COMP-H, and RET-H are also NP-complete when H is any non-bipartite irreflexive graph.
Thus, in particular, the problems VCOMP-Ck, COMP-Ck, and RET-Ck are NP-complete,
for all odd k ≥ 3.
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