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Abstract
We investigate the equational theory of reversible Kleene lattices, that is algebras of languages
with the regular operations (union, composition and Kleene star), together with the intersection
and mirror image. Building on results by Andréka, Mikulás and Németi from 2011, we construct
the free representation of this algebra. We then provide an automaton model to compare rep-
resentations. These automata are adapted from Petri automata, which we introduced with Pous
in 2015 to tackle a similar problem for algebras of binary relations. This allows us to show that
testing the validity of equations in this algebra is decidable, and in fact ExpSpace-complete.
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1 Introduction

We are interested in algebras of languages, equipped with the constants empty language (0),
unit language (1, the language containing only the empty word), the binary operations
of union (+), intersection (∩), and concatenation (·), and the unary operations of Kleene
star (_?) and mirror image, also called converse, (_N). We call these algebras reversible
Kleene lattices. Given a finite set of variables X, and two terms e, f built from variables and
the above operations, we say that the equation e = f (respectively inequation e ≤ f) is valid
if the corresponding equality (resp. containment) holds universally. A free representation is
a setM together with a map h from terms to elements ofM such that e = f is valid if and
only if h maps e and f to the same element ofM.

It is well known that to any term over this syntax, one can associate a regular language,
and that comparing regular languages is decidable. In fact, the problem of comparing regular
expressions with intersection with respect to regular language equivalence is ExpSpace-
complete [12]. The difference with the work presented here is that we are considering
equations which are stable under substitution. Formally, this means that we do not interpret
the letter a as the singleton language {a}, but rather as a universally quantified variable
ranging over all languages. What is remarkable however is that testing the validity of
equations in reversible Kleene lattices is still an ExpSpace-complete problem, as we show in
this paper. Several fragments of this algebra have been studied:
Kleene algebra (KA) [9]: if we restricts ourselves to the operators of regular expressions (0,

1, +, ·, and _?), then the free representation is the set of regular languages, with the
usual definition of the language of an expression. Testing the validity of equations in KA
is thus a PSpace-complete problem [19, 14].

∗ An extended version of this abstract is available at https://hal.archives-ouvertes.fr/
hal-01474911, [5].
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66:2 Reversible Kleene Lattices

Kleene algebra with converse (KAC) [3]: if we add to KA the converse operation, then
the free representation consists of regular expressions over a duplicated alphabet, with a
letter a′ denoting the converse of the letter a. The associated decision problem is still
in PSpace.

Identity-free Kleene lattices (KL−) [1]: this algebra stems from the operators 0, +, ·, ∩
and _+, where the latter is the non-zero iteration. Andréka Mikulás and Németi studied
this fragment, and showed that the free representation of this algebra consists of languages
of series-parallel graphs, downward closed with respect to some graph preorder. We
reformulated their results with Pous [6], and introduced a new class of automata, called
Petri automata, able to recognise these languages of graphs. In [6] we provided a decision
procedure to compare these automata, thus yielding an ExpSpace decision procedure for
the equational theory of this algebra. It is in fact ExpSpace-complete, thanks to some
simple adaptation of a result by Fürer [12].

The present work is then an extension of identity-free Kleene lattices, by adding unit and
mirror image. The addition of mirror image is fairly simple, relying mainly on ideas from [3].
However, the seemingly small addition of 1 yields some complications. In fact, in [1, 6] there
is a free representation of Kleene allegories, an algebra over the same signature as reversible
Kleene lattices, but whose intended model is binary relations rather than languages. In this
context, adding 1 means moving from series-parallel graphs to graphs of tree-width 2, which
might have cycles. This is a significant problem for automata based decision procedures.

In the context of languages, adding 1 yields other problems. However, the free repres-
entation we get for reversible Kleene lattices remains more tractable than that of Kleene
allegories. In particular we do not create cycles in series parallel graphs, but rather have to
collect additional information. Let us illustrate the kind of reasoning we develop to study
these algebras with the following inequation: c · (1 ∩ a) ≤ a · c. On the left hand side (LHS),
the term 1 ∩ a appears. This term is either equal to 1 if the empty word belongs to language
a, or 0 otherwise. In the first case, the LHS is equal to c and we have 1 ≤ a, meaning that
c = 1 · c ≤ a · c. In the second case the LHS is equal to 0, which is contained in a · c as well.
The key observation here is that the second case does not really matter: in a term build
out of concatenations, intersections, converse, variables and units, if 0 appears somewhere
then the term will always evaluate to 0 and thus be contained in any other term. The free
representations we develop for union-free terms consist of pairs of a representation of a 1-free
term and a set of language variables which are assumed to contain the empty word. This
allows us to make the reasoning we used above automatic.

Following an approach similar to [6], we construct in Section 2 the free representation of
reversible Kleene lattices, and introducing a new Petri net-based automata model we show
in Section 3 that testing the validity of equations is a decidable problem, and in fact an
ExpSpace-complete one. We conclude and list some perspectives in Section 4.

Basic definitions and notations

For a pair p = 〈x, y〉, we denote by π1 (p) = x the first projection, and by π2 (p) = y the
second projection. The set of functions from a set A to a set B is written A → B, and
the set of partial functions from A to B is written A ⇀ B. The number of elements of a
finite set A is written |A|. The empty word is denoted by ε, and the set of words over the
alphabet Σ is Σ?. If w = x1 . . . xn is a word of length n, w[i, j] is the word xi . . . xj if i 6 j,
and undefined otherwise. If f is a function from some set X to {0, . . . , n}, x, y are elements
of X, and if f (x) 6 f (y), we use the notation wf [x, y] for the word w[f (x) , f (y)].
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G (a) := a

G (a · b) := a b

G ((a · b) ∩ c) :=
a b

c

G (a · (b ∩ c)) := a b

c

Figure 1 Graphs associated to terms.
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Figure 2 Graph homomorphism.

Let X be a finite set of variables, we define Ȧ := A∪{aN | a ∈ A} for every subset A ⊆ X.
The set Ẋ is called the duplicated alphabet, we let α, β range over Ẋ. Expressions over X
are given by the following grammar:

e, f ::= 0 | 1 | x | eN | e+ f | e · f | e ∩ f | e?. (x ∈ X)

The set of expressions over X is written E 〈X〉. The size of an expression e, written |e|, is
its number of symbols, i.e. the number of vertices in its syntax tree. Most of the time, we
will implicitly assume that the converse operator only appears as xN, with x ∈ X. This
is not restrictive, as every expression can be transformed linearly such that this property
holds. Given a second alphabet Σ, an interpretation is a map σ : X → P (Σ?) which
associates to every variable a a language σ (a). This map can be uniquely extended to a
homomorphism σ̂ : E 〈X〉 → P (Σ?) defined inductively:

σ̂ (0) = ∅ σ̂ (1) = {ε} σ̂ (a) = σ (a) σ̂ (eN) = σ̂ (e)N = {xn . . . x1 | x1 . . . xn ∈ σ̂ (e)}

σ̂ (e+ f) = σ̂ (e) ∪ σ̂ (f) σ̂ (e · f) = σ̂ (e) · σ̂ (f) σ̂ (e ∩ f) = σ̂ (e) ∩ σ̂ (f)

σ̂ (e?) = σ̂ (e)? = {w1 . . . wn | wi ∈ σ̂ (e)} .

We say that e = f (respectively e ≤ f) is valid, and write Lang |= e = f (resp. Lang |= e ≤ f),
when for every interpretation σ, we have σ̂ (e) = σ̂ (f) (resp. σ̂ (e) ⊆ σ̂ (f)).

It is interesting to note that as decision problems, the validity of equations and that of
inequations are equivalent. Indeed, the following equivalences hold:

Lang |= e = f ⇔ Lang |= e ≤ f ∧ Lang |= f ≤ e Lang |= e ≤ f ⇔ Lang |= e+ f = f.

2 The free representation of reversible Kleene lattices

2.1 Intuitions
First introduced in the context of relation algebra [2, 11], directed labelled 2-pointed graphs
can be used to describe the algebra of languages over the signature 〈·,∩〉. First, we associate
to every term u over this signature such a graph G (u). See Figure 1 for examples. The
set of such graphs is equipped with a preorder: G is smaller than H if there is a graph
homomorphism from H to G. Such a homomorphism is illustrated in Figure 2.

Already, this gives us a clue as to the (in)equational theory: the inequation u ≤ v is
valid if and only if G (u) is smaller than G (v). Moving to identity-free Kleene lattices, i.e. to

MFCS 2017
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Figure 3 Weak graph morphism: 〈G, {a}〉 J 〈H, ∅〉

the signature 〈0,+, ·,∩,_+〉, we associate to every term e a set G (e) of such graphs, and
then take its downward closure G (e) ↓ with respect to the preorder. This yields the free
representation of this algebra: the equation e = f is valid if and only if G (e) ↓ = G (f) ↓.

To move from identity free Kleene lattices to reversible Kleene lattices, two steps are
necessary: we need to add the converse, and to add the constant 1. The first step is somewhat
straightforward, thanks to results by Ésik et al. [3]: they showed that the free representation
of the algebra of languages with the regular operations together with converse is simply the
set of regular languages over a duplicated alphabet, where we add for every letter a new
letter representing its converse. This approach works well in our setting, by considering
graphs labelled with the duplicated alphabet.

For the second step, we draw our inspiration from Lemma 3.4 in [1], that established
that every term in E 〈X〉 is equivalent to a finite sum of terms of the form (1 ∩ a ∩ b . . .) · e,
where a, b, · · · ∈ X are letters, and 1 does not appear in e. For every interpretation
σ : X → P (Σ?), if there is some variable x ∈ {a, b, . . . } such that ε /∈ σ (x), then the
interpretation of 1 ∩ a ∩ b ∩ . . . is ∅. Otherwise, if the empty word is in the interpretation of
each of the a, b, . . . , then the interpretation is {ε}. If we now look at the interpretation of
the whole term, this means that:

σ̂ ((1 ∩ a ∩ b ∩ . . .) · e) =
®
σ̂ (e) if ∀x ∈ {a, b, . . . } , ε ∈ σ (x) ;
∅ otherwise.

Consider now an inequation f1 ≤ f2, where fi = (1 ∩ ai,1 ∩ · · · ∩ ai,ni
) · ei for i ∈ {1, 2}. If

there exists a variable x ∈ {a2,1, . . . , a2,n2} \ {a1,1, . . . , a1,n1}, we can build an interpretation
σ such that (1) ε /∈ σ (x) and (2) σ̂ (f1) 6= ∅. The first condition ensures that the image of f2
will be ∅, hence the inequation is not valid. Thus for the inequation to be valid, we need
that {a2,1, . . . , a2,n2} ⊆ {a1,1, . . . , a1,n1}. Furthermore, for every σ such that there is an a1,i
whose interpretation does not contain the empty word, the image of f1 will be ∅, which is
trivially contained in the image of the f2. We reach the following equivalence: f1 ≤ f2 is
valid if and only if (1) {a2,1, . . . , a2,n2} ⊆ {a1,1, . . . , a1,n1} and (2) for every interpretation
σ such that the empty word is in the interpretation of every a1,j , we have σ̂ (e1) ⊆ σ̂ (e2).
This means that we need to compare 1-free expressions under the assumption that certain
variables contain the empty word.

This is the intuitions behind what we call weak graphs. Weak graphs are pairs of a graph
and a set of test variables. They are equipped with a preorder relation J, which relates
〈G,A〉 and 〈H,B〉 if B ⊆ A and there is a map ϕ from H to G such that every edge labelled
outside of A is preserved, but edges labelled with tests in A are either preserved or contracted.
Such a map is shown in Figure 3.

We then have theorems similar to those for identity free Kleene lattices and series
parallel graphs, in the sense that for every pair of terms u, v over the syntax 〈·,∩, 1,_N〉,
if we denote by WG (u) ,WG (v) their associated weak graphs, u ≤ v is valid if and only if
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WG (u) JWG (v). Furthermore, if we associate to every expression e in E 〈X〉 a downwards
closed set of weak graphs JJeK, the equation e = f is valid if and only if JJeK = JJfK.

2.2 Weak terms
We define the following two sets of terms over the alphabet X:
Ground terms: u, v ∈ GT 〈X〉 ::= 1 | a | aN | u · v | u ∩ v.
Simple ground terms: u, v ∈ GT− 〈X〉 ::= a | aN | u · v | u ∩ v.

We call the variables of the term u, and write var (u), the set of variables a ∈ X such that
a or aN appears in u. We call weak terms the elements of the set (GT− 〈X〉 ∪ {1})× P (X),
that is simple ground terms or 1 indexed with a set of test variables. The set of weak terms
is written WT 〈X〉. This set is equipped with two products, denoted by • and ‖, defined by:

1A • 1B := 1A∪B 1A • uB = uA • 1B := uA∪B uA • vB := (u · v)A∪B

1A ‖ 1B := 1A∪B 1A ‖ uB = uA ‖ 1B := 1A∪B∪var(u) uA ‖ vB := (u ∩ v)A∪B .

Given an interpretation σ : X → P (Σ?), the interpretation σ̃ (uA) of the weak term uA
is either ∅ if ∃a ∈ A : ε /∈ σ (a), or σ̂ (u) otherwise. We define a translation τ from ground
terms to weak terms:

τ (u · v) := τ (u) • τ (v) τ (u ∩ v) := τ (u) ‖ τ (v) ∀u ∈ {1} ∪ Ẋ, τ (u) := u∅.

This translation is faithful, in the sense that the following holds:

I Lemma 1. ∀u ∈ GT 〈X〉 ,∀σ : X → P (Σ?) , σ̂ (u) = σ̃ ◦ τ (u) .

Proof (Sketch). The proof relies on the fact that for every pair of weak terms x, y we have:

σ̃ (x • y) = σ̃ (x) · σ̃ (y) σ̃ (x ‖ y) = σ̃ (x) ∩ σ̃ (y) .

We then conclude by a simple induction on u. For concision, the full proof is omitted here. J

We can also define a converse translation κ : WT 〈X〉 → GT 〈X〉 which associate to a
weak term u{a1,...,an} the ground term (1 ∩ a1 ∩ · · · ∩ an) · u. It is immediate to check that
for every term x ∈WT 〈X〉 and every interpretation σ we have σ̃ (x) = σ̂ ◦ κ (x).

2.3 Weak graphs
A graph G in our setting is a tuple 〈VG, EG, iG, oG〉, where VG is a finite set of vertices,
EG ⊆ VG × Ẋ × VG is a set of labelled and directed edges, and iG, oG ∈ VG are two vertices,
called the input and output of the graph. Term graphs must further be series parallel[23],
iG must be the unique source vertex (i.e. with no incoming edge), and oG the unique sink
vertex (i.e. with no outgoing edge). We let G,H range over graphs. Term graphs can be
sequentially composed, by identifying the output of the first graph with the input of the
second one, or composed in parallel, by identifying the inputs of both graphs and identifying
theirs outputs. These two compositions are respectively denoted by ; and |. The set l (G) of
labels of a graph G is defined as the set of letters a ∈ X such that there is an edge in EG
labelled with either a or aN.

The graph of a simple ground term u, written G (u), is a term graph defined inductively:

G (α) :=
α

G (u · v) := G (u) ;G (v) G (u ∩ v) := G (u) | G (v) .

MFCS 2017
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We define the graph 1 as . Notice that it is not a term graph, as it is not
series parallel. We call weak graph a pair whose left part is either a term graph or 1, and
whose right part is a set of test variables. We denote the weak graph 〈G,A〉 by GA. For
every weak term x we associate a weak graph WG (x) as one would expect:

WG (1A) := 1A WG (uA) := G (u)A .

The weak graph GA is smaller than HB , written GA J HB , if B ⊆ A and there exists a
function ϕ : VH → VG such that ϕ (iH) = iG, ϕ (oH) = oG, and for every edge 〈x, α, y〉 in
EH , either 〈ϕ (x) , α, ϕ (y)〉 ∈ EG or α ∈ Ȧ and ϕ (x) = ϕ (y). The relation J is a preorder.
We will show in the next section that for any two ground terms u and v, the following holds:

Lang |= u ≤ v ⇔WG (τ (u)) JWG (τ (v)) .

The first important lemma is the following. It generalises [1, Lemma 2.5] by including 1
and _N, thus moving from series parallel graphs to weak graphs.

I Lemma 2. ∀u ∈WT 〈X〉, there exists a word wu and an interpretation σu such that for
every v ∈WT 〈X〉, wu ∈ σ̃u (v)⇔WG (u) JWG (v).

Proof. Let WG (u) = 〈〈Vu, Eu, iu, ou〉 , A〉. Let µ : Vu → {1, . . . , |Vu|} be a bijective map
such that 〈x, α, y〉 ∈ Eu ⇒ µ (x) < µ (y)1. In particular, µ (iu) = 1 and µ (ou) = |Vu|. Let
n = 2× (|Vu| − 1), and Σu an alphabet composed of n distinct letters x1, . . . , xn.

We define wu = x1x2 . . . xn, and f : Vu → {0, . . . , n} such that f (x) = 2 (µ (x)− 1).
Notice that f (iu) = 0 and f (ou) = n. We now define σu:

σu (a) :=


{
wfu[x, y]

∣∣ 〈x, a, y〉 ∈ Eu} ∪ ¶wfu[x, y]N
∣∣∣ 〈x, aN, y〉 ∈ Eu© ∪ {ε} if a ∈ A{

wfu[x, y]
∣∣ 〈x, a, y〉 ∈ Eu} ∪ ¶wfu[x, y]N

∣∣∣ 〈x, aN, y〉 ∈ Eu© if a /∈ A

Notice that for every α ∈ Ẋ, ε ∈ σ̂u (α)⇔ α ∈ Ȧ, and that if x 6= y then wfu[x, y] ∈ σ̂u (α) if
and only if 〈x, α, y〉 ∈ Eu.

Let v = tB ∈ WT 〈X〉. First, suppose that ∃a ∈ B \ A. We know that ε /∈ σu (a),
meaning that σ̃u (v) = ∅. We also know by definition of J that WG (u) 6JWG (v). Thus the
equivalence holds, as both sides are false. In the following, we thus assume that B ⊆ A.

If t = 1, then σ̃u (v) = {ε}. This means that wu ∈ σ̃u (v) if and only if wu = ε. By
definition, this is equivalent to n = 0, which is again equivalent to |Vu| = 1 thus to u = 1A.
We conclude this case by noticing that the only graph G such that GA J 1B is 1 itself.

The other case is when t is a simple ground term. Then an induction much like in the
proof of [1, Lemma 2.5] allows to conclude. We omit this part of the proof here. J

The other important lemma is a generalisation of [1, Lemma 2.3]. It will allow us to
factor any interpretation of u through the weak graph WG (u).

I Lemma 3. For every simple ground term u, every interpretation σ : X → P (Σ?), and
every word w ∈ Σ? of length n:

w ∈ σ̂ (u)⇔ ∃ϕ : Vu → {0, . . . , n} :
®
ϕ (iu) = 0 ∧ ϕ (ou) = n

〈x, α, y〉 ∈ Eu ⇒ wϕ[x, y] ∈ σ̂ (α) .

It can be proved by a simple induction on u; for concision, we omit this proof.

1 Remember that both term graphs and 1 are directed acyclic graphs.
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2.4 Freeness results
We can now establish our first freeness result:

I Theorem 4. ∀x, y ∈ GT 〈X〉, WG (τ (x)) JWG (τ (y))⇔ Lang |= x ≤ y.

Proof. The statement of the theorem is equivalent to the following, thanks in part to
Lemma 1: ∀x, y ∈ WT 〈X〉 ,WG (x) J WG (y) ⇔ ∀Σ,∀σ : X → P (Σ?) , σ̃ (x) ⊆ σ̃ (y). We
let x = uA and y = vB , and proceed to prove both implications.

Suppose WG (x) JWG (y), let σ be an interpretation, and w a word of length n. The
case of 1 being trivial, we consider here the case where both u and v are simple ground
terms. Assume w ∈ σ̃ (x), then we need to prove that w ∈ σ̃ (y). First notice that because
σ̃ (x) 6= ∅ it must be the case that ∀a ∈ A, ε ∈ σ (a). By Lemma 3, we have a function
ϕ : Vu → {0, . . . , n} such that ϕ (iu) = 0, ϕ (ou) = n, and 〈x, α, y〉 ∈ Eu ⇒ wϕ[x, y] ∈ σ̂ (α).
By definition of J, we also have a function ψ : Vv → Vu such that ψ (iv) = iu, ψ (ov) = ou,
and for every edge 〈x, α, y〉 in Ev, either 〈ψ (x) , α, ψ (y)〉 ∈ Eu or α ∈ Ȧ and ψ (x) = ψ (y).
We define Φ = ϕ ◦ ψ. Now we may check that Φ (iv) = ϕ (iu) = 0; Φ (ov) = ϕ (ov) = n; and
if 〈x, α, y〉 ∈ Ev, then either
〈ψ (x) , α, ψ (y)〉 ∈ Eu, which means wΦ[x, y] = wϕ[ψ (x) , ψ (y)] ∈ σ̂ (α);
or α ∈ Ȧ and ψ (x) = ψ (y), which entails wΦ[x, y] = ε ∈ σ̂ (α).

Using Lemma 3 again, we get that w ∈ σ̂ (v). Because B ⊆ A, we also have that σ̃ (y) = σ̂ (v).
Hence σ̃ (x) ⊆ σ̃ (y).

For the converse, we now assume that WG (x) 6JWG (y). Using Lemma 2, we know that
wx ∈ σ̃x (x) and that wx /∈ σ̃x (y). This proves that σ̃x (x) 6⊆ σ̃x (y). J

We define the set of weak terms JeK of an expression e by structural induction:

J0K := ∅ J1K := {1∅} JαK := {α∅} Je+ fK := JeK ∪ JfK

Je · fK := {u • v | u ∈ JeK ∧ v ∈ JfK} Je ∩ fK := {u ‖ v | u ∈ JeK ∧ v ∈ JfK}

Je?K := {u1 • · · · • un | n > 0 ∧ ∀0 6 i 6 n, ui ∈ JeK}

The downward closure JS of a set of weak terms S is the set of weak terms x such that there
exists a weak term y ∈ S satisfying WG (x) JWG (y). The function J is a closure operator.
The set of downward closed sets of weak terms is the free representation of reversible Kleene
lattices:

I Theorem 5. ∀e, f ∈ E 〈X〉: JJeK ⊆ JJfK⇔ Lang |= e ≤ f .

Proof. We use the fact that for every interpretation σ,

σ̂ (e) =
⋃
u∈JeK

σ̃ (u) =
⋃

u∈JJeK

σ̃ (u) .

This can be proved using [1, Lemma 2.1], and Lemmas 1 and 2 and Theorem 4.
Suppose JJeK ⊆ JJfK, and let σ be an interpretation.

σ̂ (e) =
⋃

u∈JJeK

σ̃ (u) ⊆
⋃

u∈JJfK

σ̃ (u) = σ̂ (f) .

For the converse, suppose JJeK 6⊆ JJfK. Because J is a closure operator, this means
JeK 6⊆ JJfK. Let u ∈ JeK \ JJfK. By Lemma 2, we have wu ∈ σ̃u (u) ⊆ σ̂u (e), but because
u /∈ JJfK, for every v ∈ JfK, we have WG (u) 6J WG (v) thus wu /∈ σ̃u (v). Hence wu is not
in the set

⋃
v∈JfK σ̃u (v) = σ̂u (f). J

MFCS 2017
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Figure 4 Weak Petri automaton.
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Figure 5 A run R in the automaton of Figure 4.
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Figure 6 Trace of R.

3 Decidability and complexity

To decide the equational theory of identity-free Kleene lattices, we used Petri automata[6].
This was a new style of automaton, which was designed to recognise sets of series parallel
graphs. We modify this model slightly to recognise weak graphs, provide a construction
to build automata out of expressions, and an algorithm to decide language containment
(up-to closure by J) for these automata. This algorithm itself is inspired by the simulation
algorithm for simple Petri automata. We conclude this section by showing that the problem
is complete of the class ExpSpace.

3.1 Weak Petri automata
A weak Petri automaton is a Petri automaton [6, 4] whose transitions are labelled with sets
of letters2. Formally, an automaton A over the finite alphabet X is a triple 〈P, T, ι〉 where P
is a finite set of places, ι ∈ P is the initial place, and T ⊆ P (P )× P (X)× P

(
Ẋ × P

)
is a

set of transitions. Each transition t ∈ T is composed of three parts: its input ▹t ⊆ P , its set
of tests Êt ⊆ X, and its output t▹ ⊆ Ẋ × P . It will also be useful to write π2 (t▹) for the set
of output places of t, i.e.

{
p ∈ P

∣∣ ∃α ∈ Ẋ : 〈α, p〉 ∈ t▹
}
. The transition t is called final if

t▹ = ∅, and initial if ▹t = {ι}.
We will add a few constraints on this definition along the way, but we need more

definitions to state them. An example of such an automaton is depicted in Figure 4. The
graphical representation used here draws round vertices for places and rectangular vertices
for transitions, with the incoming and outgoing arcs to and from the transition corresponding
respectively to the inputs and outputs of said transition. The set of tests of a transition is
written inside the rectangle. The initial place is denoted by an unmarked incoming arc.

Runs and reachable states

We define the operational semantics of weak Petri automata. Let us fix for the remainder
of this section an automaton A = 〈P, T, ι〉. A state of this automaton is a set of places.
In a given state S ∈ P (P ), a transition t is enabled if ▹t ⊆ S. In this case, we may

2 In the following, we use the definitions from [4]. They differ slightly from those from [6], despite being
overall equivalent.
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fire t, leading to a new state S′ = (S \ ▹t) ∪ π2 (t▹). This will be denoted in the following
by S

t−−→A S
′. We extend this notation to sequences of transitions in the natural way:

if S0
t1−−→A S1 and S1

t2;...;tn−−−−−−→A Sn then we write S0
t1;t2;...;tn−−−−−−−→A Sn. In this case we say

that 〈S0, t1; t2; . . . ; tn, Sn〉 is a valid run, or simply run, from S0 to Sn. If S0 = {ι} then
the run is initial and if Sn is empty then it is final. A run which is both initial and final is
called accepting. An accepting run of the automaton from Figure 4 is depicted in Figure 5.
A state S is reachable in A if there is an initial run leading to S.

We may now state the first two constraints we impose on automata: if S is reachable
in A and S

t−−→A S
′, then (S \ ▹t) ∩ π2 (t▹) = ∅, and for each transition t ∈ T , and every

triple 〈p, α, β〉 ∈ P × Ẋ × Ẋ, we have: {〈α, p〉 , 〈β, p〉} ⊆ t▹ ⇒ α = β. These constraints
correspond to the classic Petri net property of safety, also called one-boundedness.
I Remark. These constraints are decidable: the set of transitions is finite, and because
reachable states are subsets of a fixed finite set, there are only finitely many. Thus checking
whether an automaton satisfies these two requirements only entails a finite number of tests.

We introduce some attributes of a run R: its input IR, its output OR, its excess ER, its
tests AR, and its internal labels ΛR. Let R = S0

t1−−→A S1 . . .
tn−−→A Sn be a valid run in

some automaton A. IR is the set of tokens (places) in S0 which are consumed during the
run; ER is the rest of the tokens from S0, those which are not moved; ΛR is the set of labels
appearing in some t▹i such that the associated token is consumed later on; AR is the union of
the sets of tests of R’s transitions; and OR is the set of outputs which are not consumed in
the remainder of the run. Formally:

IR := {p ∈ S0 | ∃i : p ∈ ▹ti} OR :=
¶
〈α, p〉

∣∣∣ ∃i : 〈α, p〉 ∈ t▹i ∧
Ä
∀j > i, p /∈ ▹tj

ä©
AR :=

⋃
i

Êti ER := S0 \ IR ΛR :=
¶
α
∣∣∣ ∃p,∃i < j : 〈α, p〉 ∈ t▹i ∧ p ∈ ▹tj

©
.

In the example run of Figure 5, we have IR = {1}, ER = ∅, OR = ∅, AR = {a},
and ΛR = {a, b, c}.

Traces

The trace language of an automaton can be obtained by extracting from every accepting run
a weak graph, called its trace. Consider an accepting run 〈{ι} , t0; . . . ; tn, ∅〉. The graph of
its trace is constructed by creating a vertex k for each transition tk of the run. We add an
edge 〈k, a, l〉 whenever there is some place q such that 〈a, q〉 ∈ t▹k, and tl is the first transition
after tk in the run with q among its inputs. The set of tests of the trace is AR. The trace of
the run in Figure 5 is presented in Figure 6. The definition we give below is a generalisation
for arbitrary valid runs, which coincides with the informal presentation we just gave on
accepting runs.

Let R = 〈S, t0; . . . ; tn, S′〉 be a run in A. For every k and p ∈ π2 (t▹k) \ S′, we define

ν (k, p) = min {l | l > k and p ∈ ▹tl} .

The trace of R, denoted by G (R), is the pair 〈GR, AR〉, where GR has vertices VR =
{0, . . . , n} ∪ S′ and edges defined by:

ER = {〈k, a, l〉 | 〈a, p〉 ∈ t▹k and (l = p ∧ p ∈ S′) ∨ (l = ν (k, p))} .

The language L (A) of an automaton A is the set of traces of accepting runs of A. In the
following, we will only consider automata such that if 〈G,A〉 ∈ L (A), then either G is either
isomorphic to 1 or is a term graph: that is, if GA is a weak graph.

MFCS 2017
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3.2 From expressions to automata
In this section, we show how to build inductively from an expression e an automaton Ae
whose language is L (Ae) =WG (JeK), following [4]. For 0, 1 and atoms, we give a graphical
description of the automata:

A0 := 0 A1 := 0 ∅ Aα := 10 ∅∅
α

For the inductive cases, let Ae = 〈Pe, Te, ιe〉 and Af = 〈Pf , Tf , ιf 〉, and suppose Pe ∩ Pf = ∅.
Intuitively, the automaton for e+ f is the union of Ae and Af , where we copy the initial

transitions of Af so that they start from ιe instead of ιf . Formally:

Ae+f = 〈Pe ∪ Pf , Te ∪ Tf ∪ T, ιe〉 , where T =
¶¨
{ιe} ,Êt, t▹∂ ∣∣∣ ¨{ιf} ,Êt, t▹∂ ∈ Tf© .

For the product, we want an automaton Ae·f such that L (Ae·f ) = L (Ae) • L (Af ). This
property is satisfied by the automaton 〈Pe ∪ Pf , T+

e ∪ Tf ∪ T, ιe〉 where T+
e is the set of

non-final transitions in Te, and T = {〈▹t, A ∪B, t▹〉 | 〈▹t, A, ∅〉 ∈ Te ∧ 〈{ιf} , B, t▹〉 ∈ Tf}.
Instead of defining directly an automaton for e?, we give an automaton for the non-zero it-

eration e+, and then define Ae? to be A1∪e+ . Using the last two constructs, the automaton Ae+

is easy to define: Ae+ = 〈Pe, Te ∪ {〈▹t, A ∪B, t▹〉 | 〈▹t, A, ∅〉 ∈ Te ∧ 〈{ιe} , B, t▹〉 ∈ Te} , ιe〉.
Finally, we then define Ae∩f to be the automaton 〈Pe ∪ Pf ∪ {ι} , T1 ∪ T2 ∪ T3 ∪ T4, ι〉,

where ι is a fresh place, and:
T1 is the set of non-initial, non-final transitions of Te and Tf ;
T2 is the set of triples

¨
{ι} ,Át1 ∪ Át2, t▹1 ∪ t▹2∂ such that t1 (resp. t2) is initial but not final

in Te (resp. Tf );
T3 is the set of triples

¨
▹t1 ∪ ▹t2,Át1 ∪ Át2, ∅∂ such that t1 (resp. t2) is final but not initial

in Te (resp. Tf );
T4 is the set of triples 〈{ι} , A, ∅〉 such that 1A ∈ Je ∩ fK.

This definition is effective, as the set of A ⊆ X such that 1A ∈ JeK can be computed in
space O

(
|e| × 2|X|

)
. Using the proofs for Petri automata as a guideline, it is a simple exercise

to check that the correctness of the construction, that is L (Ae) =WG (JeK).

3.3 Comparing automata
The algorithm to compare weak Petri automata relies on the notion of simulation. Similarly
to many finite transition systems, the language of an automaton A is included in that of the
automaton B if B can simulate A.

I Definition 6 (Simulation). Let A1 = 〈P1, T1, ι1〉 and A2 = 〈P2, T2, ι2〉 be two automata, we
say that A2 can simulate A1 if there exists a function 4 associating to every subset of X a
set of triples from P (P1)× P (X)× P (P2 ⇀ P1), such that: (We denote the fact that the
triple 〈S,B,E〉 is contained in the image by 4 of the set A by S 4BA E.)
(correspondence) if S 4BA E and η ∈ E then range (η) ⊆ S;
(initialisation) {ι1} 4∅A {[ι2 7→ ι1]};
(totality) if ∅ 4AA E then ∃η ∈ E : dom (η) = ∅;
(progress) if S 4BA E and S t−−→A1 S

′, then S′ 4B∪ÊtA E′, where E′ is the set of all η′ such
that there is a map η in E, and a run R in A2 from dom (η) to dom (η′) s.t.:

IR = {p | η (p) ∈ ▹t} ΛR ∪AR ⊆ Ȧ ∀ 〈α, p〉 ∈ OR, 〈α, η′ (p)〉 ∈ t▹

∀p ∈ ER, η (p) = η′ (p) .
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I Lemma 7. L (A1) ⊆ JL (A2) if and only if A2 can simulate A1.

Proof. We start by showing the right to left direction: suppose that A2 can simulate A1, as
witnessed by the function 4, and consider an accepting run R = 〈S0, t1; . . . ; tn;Sn〉 in A1:

S0 = {ι1} ∀1 6 i 6 n, Si−1
ti−−→A1 Si Sn = ∅.

We write Bi =
⋃
j<i
Átj . Using the relations 4Bi

AR
, we can find a sequence of Ei (for 0 6 i 6 n)

such that Si 4Bi

AR
Ei, E0 = {[ι2 7→ ι1]}, and there is some ηn ∈ En which has an empty

domain. Backtracking from this ηn using the progress condition allows us to find a sequence
of maps (ηi)06i6n, with domains (Ti)06i6n such that there are valid runs Ri in A2 from Ti−1
to Ti, and satisfying:

T0 = {ι2} Tn = ∅ IRi
= {p | ηi−1 (p) ∈ ▹ti} ΛRi

∪ARi
⊆ ȦR

∀ 〈α, p〉 ∈ ORi
, 〈α, ηi (p)〉 ∈ t▹i ∀p ∈ ERi

, ηi−1 (p) = ηi (p) .

We now build the run R′ by concatenating the Ris. We obtain an accepting run in A2, whose
set of tests is

⋃
iARi

⊆ AR. To any transition t′j in R′, the function ϕ associates the index i of
the run Ri from which this transition was extracted. The function ϕ witnesses G (R) J G (R′).

For the converse direction, we prove an intermediary result. Let R = 〈S0, t1; . . . ; tn, Sn〉
be an accepting run in A1 and R′ be an accepting run from A2 such that G (R) J G (R′),
with ϕ as the witnessing function. Notice that if the transition t′i is a cause of t′i+1 in R′
(i.e. they cannot be exchanged without changing the trace), either ϕ (i) = ϕ (i+ 1), or tϕ(i)
is a cause of tϕ(i+1) in R, thus ϕ (i) < ϕ (i+ 1). This means that we may permute transitions
in R′ without changing the trace, to obtain a run R′′ such that i < j ⇒ ϕ (i) 6 ϕ (j).

Now, the sets of transitions sharing the same value ϕ (i) are contiguous, meaning that
R′′ can be split as the sequence of sub-runs R1; . . . ;Rn, such that ϕ maps every transitions
in Ri to i. (It may be the case that some of these runs are empty.) As G (R) J G (R′′), we
know that AR′′ ⊆ AR, which means that ∀i, ARi ⊆ AR. Inside the run Ri, we know that the
internal edges of the graph of Ri are labelled with letters from AR, as both their extremities
are mapped to i. This means ΛRi ⊆ ȦR.

We know define the ηi. First, we set η0 (ι2) = ι1, and ∀p ∈ ERi
, ηi−1 (p) = ηi (p). If on

the other hand 〈α, p〉 ∈ ORi
, let k be the index in R′′ corresponding to the output state

of Ri, and j = νR′′ (p, k). As j cannot be in Ri, we know ϕ (j) > ϕ (k). Thus, in the graph
of R there is an edge 〈ϕ (k) , α, ϕ (j)〉. By definition of the graph of a run, there must be a
pair 〈α, q〉 ∈ t▹ϕ(k) such that νR (q, ϕ (k)) = ϕ (j). Then this q is a suitable choice for ηi (p).

It is then a simple matter of unfolding the definitions to check that:

IRi = {p | ηi−1 (p) ∈ ▹ti} ∀ 〈α, p〉 ∈ ORi , 〈α, ηi (p)〉 ∈ t▹i ∀p ∈ ERi , ηi−1 (p) = ηi (p) .

This means that whenever we have R and R′ accepting runs from respectively A1 and A2
s.t. G (R) J G (R′), we can find a sequence of ηi satisfying all four conditions of a simulation.
Thus, if L (A1) ⊆ JL (A2), for every reachable state S of A1, we set 4BA to relate S to the
set of all maps η such that there is an index i, an accepting run R in A1, and an accepting
run R′ of A2 satisfying (1) AR = A, (2)

⋃
j<i
Átj = B, (3) S = Si, (4) G (R) J G (R′) and

(5) the construction we just provided produces ηi = η. J

3.4 Complexity
I Corollary 8. The theory of reversible Kleene lattices is ExpSpace-complete.

MFCS 2017



66:12 Reversible Kleene Lattices

Proof. The equational theory of identity-free Kleene lattices being already ExpSpace-
complete [8, Proposition 10.2], we know the problem at hand to be ExpSpace-hard.

Let e, f ∈ E 〈X〉, we ask whether Lang |= e ≤ f . By Theorem 5, this reduces to testing
if JJeK ⊆ JJfK, which is equivalent to JeK ⊆ JJfK by the properties of the closure operator.
Using the construction in Section 3.2, this is amounts to checking if L (Ae) ⊆ JL (Af ). This
later question can be decided by looking for a simulation function, thanks to Lemma 7.

We now inspect the space complexity of this method. Let n,m, x be respectively the size
of e, the size of f and the size of the alphabet. By analysing each step in Section 3.2, we get
that the number of places of Ae is less than 2×n (similarly for Af ). The number of transitions
is harder to work out from the construction, but because T ⊆ P (P )×P (X)×P

(
Ẋ × P

)
,

we know it is bounded by 22n+x+2x×2n. Using Savitch’s theorem [22], we only need to show
that there is a non-deterministic semi-algorithm to refute the existence of a simulation, which
uses only exponential space in n,m and x. Here is such a procedure:
1. choose A ⊆ X;
2. start with S = {ι1}, B = ∅ and E = {[ι2 7→ ι1]};
3. if 〈S,B〉 = 〈∅, A〉 and E does not contain a map η whose domain is empty return False;
4. choose t ∈ T1 such that ▹t ⊆ π1 (S), fire t from S, and update B as Êt ∪B;
5. update E according to the progress condition in Definition 6;
6. go to step 3.
All of these computations can be performed using exponential space. For instance, S, being a
pair of a set of places in Ae and a set of letters, can be stored in space 2n log (2n)× x log (x),
and E only needs space (2n+ 1)2m × 2m log (2n+ 1). J

4 Conclusion

We showed that the free representation of reversible Kleene lattices consists of downward
closed sets of weak terms, or equivalently of downward closed sets of weak graphs. By
considering a suitable variation of Petri automata, and producing an algorithm to decide
language containment of these automata, we showed that testing the validity of equations in
reversible Kleene lattices is an ExpSpace-complete problem.

The results we obtained here could be naturally extended in a number of ways.
We would like to add to our model some features of programming languages which have
been studied independently, among which tests [16], and nominal structures [13, 18, 17, 7].
Although Kleene algebra is known not to be finitely axiomatisable [20], several authors
have proposed semi-axiomatisations [15, 9, 21]. A complete axiomatisation of Kleene
algebra with converse, relative to an axiomatisation of KA, is also known [10]. As far
as we know, no axiomatisation of reversible Kleene lattices exists. We believe the free
representation we defined in Section 2 could help establishing such an axiomatisation.
Since we provide here an algorithm, it would be interesting to implement it. Such a
procedure could fit in very well in a proof assistant such as Coq.

Although the weak Petri automata introduced in this paper were just a means to an end,
we are wondering whether this might be an interesting model of computation in itself. We
are confident that we could reuse to technology of boxes introduced in [8, 4] to get a Kleene
theorem for these automata. Their semantics could also be reformulated with transitions
labelled with weights chosen from a finite lattice (instead of sets of letters from the alphabet).
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