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Abstract
In this paper, we study the NP-complete colorful variant of the classical Matching problem,
namely, the Rainbow Matching problem. Given an edge-colored graph G and a positive integer
k, this problem asks whether there exists a matching of size at least k such that all the edges in the
matching have distinct colors. We first develop a deterministic algorithm that solves Rainbow

Matching on paths in time O?(
(

1+
√

5
2

)k

) and polynomial space. This algorithm is based on
a curious combination of the method of bounded search trees and a “divide-and-conquer-like”
approach, where the branching process is guided by the maintenance of an auxiliary bipartite
graph where one side captures “divided-and-conquered” pieces of the path. Our second result
is a randomized algorithm that solves Rainbow Matching on general graphs in time O?(2k)
and polynomial-space. Here, we show how a result by Björklund et al. [JCSS, 2017] can be
invoked as a black box, wrapped by a probability-based analysis tailored to our problem. We
also complement our two main results by designing kernels for Rainbow Matching on general
and bounded-degree graphs.

Keywords and phrases Rainbow Matching, Parameterized Algorithm, Bounded Search Trees,
Divide-and-Conquer, 3-Set Packing, 3-Dimensional Matching
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1 Introduction

The classical notion of matching has been extensively studied for several decades in the
area of Combinatorial Optimization [6, 14]. Given an undirected graph G, a set of edges
is called a matching if the edges are pairwise non-adjacent. That is, no two edges share a
common vertex. In the Maximum Matching problem, the objective is to find a matching
of maximum size. The first polynomial time algorithm for Maximum Matching was given
by Edmonds [6] in his classic paper Paths, Trees and Flowers. It is important to remark that
this is the paper which underlined the importance of study of polynomial time algorithms for
the first time. After a series of improvements, the current fastest algorithm for Maximum
Matching was given by Micali and Vazirani and it runs in time O(m

√
n) [15]. However,

finding a matching that satisfies some additional constraints often immediately becomes NP-
complete, where three notable examples are Minimum Maximal Matching [18], Induced
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Matching [17] and Multiple Choice Matching [11]. In this paper, we study the NP-hard
variant of Maximum Matching called Multiple Choice Matching from the viewpoint
of parameterized complexity.

The Multiple Choice Matching problem, also called Rainbow Matching, is one of
the NP-hard variant of Maximum Matching mentioned in the classical book by Garey and
Johnson [9, Problem GT55]. In this work, we will stick to the name Rainbow Matching.
This problem is formally defined as follows.

Rainbow Matching Parameter: k

Input: An undirected graph G, a coloring function χ : E(G)→ {1, . . . , q} and a positive
integer k.
Question: Does there exist a matching of size at least k such that all the edges in the
matching have distinct colors?

A matching where all the edges have distinct colors will be called colorful matching. Itai et
al. [11] showed, already in 1978, that Rainbow Matching is NP-complete on (edge-colored)
bipartite graphs. Close to three decades later, Le and Pfender [13] revisited the computational
complexity of this problem. Specifically, they showed that the Rainbow Matching problem
is NP-complete even on (edge-colored) paths, complete graphs, P8-free trees in which every
color is used at most twice, P5-free linear forests in which every color is used at most twice,
and P4-free bipartite graphs in which every color is used at most twice. In this paper, we
consider this problem from the parameterized rather than classical complexity perspective.

A parameterization of a problem is the association of an integer k with each input instance,
which results in a parameterized problem. For our purposes, we need to recall three central
notions that define the parameterized complexity of a parameterized problem. The first one
is the notion of a kernel. Here, a parameterized problem is said to admit a kernel of size f(k)
for some function f that depends only on k if there exists a polynomial-time algorithm, called
a kernelization algorithm, that translates any input instance into an equivalent instance of
the same problem whose size is bounded by f(k) and such that the value of the parameter
does not increase. In case the function f is polynomial in k, the problem is said to admit
a polynomial kernel. Hence, kernelization is a mathematical concept that aims to analyze
the power of preprocessing procedures in a formal, rigorous manner. The second notion
that we use is the one of fixed-parameter tractability (FPT). Here, a parameterized problem
Π is said to be FPT if there is an algorithm that solves it in time f(k) · |I|O(1), where |I|
is the size of the input and f is a function that depends only on k. Such an algorithm
is called a parameterized algorithm. In other words, the notion of FPT signifies that it is
not necessary for the combinatorial explosion in the running time of an algorithm for Π to
depend on the input size, but it can be confined to the parameter k. Finally, we recall that
Parameterized Complexity also provides tools to refute the existence of polynomial kernels
and parameterized algorithms for certain problems (under plausible complexity-theoretic
assumptions). We refer the reader to the books [3, 5] for more information on these notions
in particular, and on Parameterized Complexity in general. The notation O?(·) is used to
hide factors polynomial in the input size.

1.1 Our Contribution

Our starting point is the FPT algorithm mentioned in the article of Le and Pfender [13]. This
algorithm is based on the connection between Rainbow Matching and 3-Set Packing. In
the 3-Set Packing problem, we are given a universe U , a set family F consisting of subsets
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of U of size at most 3 and an integer k, and the objective is to check whether there exists a
subfamily F′ ⊆ F containing at least k pairwise-disjoint sets. Observe that given an instance
I = (G,χ, k) of Rainbow Matching, we can view I as an instance of 3-Set Packing by
setting U = V (G) ∪ {1, . . . , q}, and letting F contain every set {u, v, χ(e)} corresponding
to an edge e = uv ∈ E(G). Now, observe that (G,χ, k) is a yes-instance of Rainbow
Matching if and only if (U,F, k) is a yes-instance of 3-Set Packing. This immediately
implies that known algorithms for 3-Set Packing can be employed to solve Rainbow
Matching. In particular, using the known algorithms for 3-Set Packing, we obtain the
following algorithms for Rainbow Matching: (1) a deterministic algorithm running in time
O?(8.097k) [19]; (2) a randomized algorithm running in time O?(1.49533k) = O?(3.3434k) [2].

Rainbow Matching on Paths. Our first contribution concerns the Rainbow Matching
problem on paths. We obtain the following algorithm, which is faster than the one that we
design later for general graphs.

I Theorem 1. There exists a deterministic algorithm for Rainbow Matching on paths

that runs in time O?

((
1 +
√

5
2

)k
)

and uses polynomial space.

The proof of Theorem 1 is based on a combination of the classical method of bounded
search trees [3, 5, 7, 8] together with a “divide-and-conquer-like” approach. The algorithm
always maintains a family of vertex-disjoint paths S, and the objective is to find a colorful
matching of size k that uses exactly one edge from each path in S and k − |S| edges from
P . We call this variant of Rainbow Matching the Disjoint Set Rainbow Matching
problem. Observe that when S = ∅, then Disjoint Set Rainbow Matching is precisely
Rainbow Matching. To compactly represent potential partial solutions to our problem at
every step of the recursion, that is, partial witnesses that there may indeed exist a colorful
matching that uses exactly one edge from each path in S, our algorithm works as follows.
The algorithm uses an auxiliary bipartite graph where we maintain a partial solution to our
problem, in terms of a matching in this bipartite graph. This has the additional benefit that
the measure becomes very simple: we just measure the size left to cover, i.e. k − t, where
t = |S| denotes the size of the partial solution. (We remark that we are able to construct
a solution in the same time as it takes to solve the decision version of the Disjoint Set
Rainbow Matching problem.)

Rainbow Matching on General Graphs. Our second contribution is an algorithm on general
graphs that is better than the known algorithms for 3-Set Packing. In particular, we
obtain the following result.

I Theorem 2. There exists a randomized algorithm for Rainbow Matching with constant,
one-sided error that runs in time O?(2k) and uses polynomial space.1

The proof of Theorem 2 is based on the general method described in [2] for solving
various packing and matching problems. We tailor the analysis of Bjorklund et al. [2] to
the Rainbow Matching problem. This gives us the desired saving over the algorithm for
3-Set Packing.

1 Specifically, if the algorithm determines that an input instance is a yes-instance, then this answer is
necessarily correct.

MFCS 2017
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Kernelization. Finally, we turn to consider the question of kernelization. Here, we exploit
the connection between our problem and 3-Set Packing to design a kernelization algorithm.
We also design a smaller kernel for Rainbow Matching on paths, or more generally, for
graphs of bounded degree.

I Theorem 3. Rainbow Matching admits a kernel of size O(k3) on general graphs.
Moreover, it admits a kernel of size O(dk2) on graphs of maximum degree d.

1.2 Related Work

Le and Pfender [13] gave a factor ( 2
3 − ε) approximation algorithm for Rainbow Matching

on general graphs for every ε > 0. They also designed a few polynomial time algorithms
when the instances of Rainbow Matching are restricted to special graph classes. As stated
before, Le and Pfender [13] also related this problem to 3-Set Packing, and showed that
the problem is FPT. Moreover, they showed that the problem is FPT on P5 free forests
parameterized by the number of components. Colorful matchings have also been studied from
graph theoretic and combinatorial perspectives. For example, they are related to Ryser’s
famous conjecture regarding Latin transversal [16]. In the language of colorful matchings, the
conjecture says that every proper edge coloring of the complete bipartite graph K2n+1,2n+1
with 2n+ 1 colors contains a rainbow matching with 2n+ 1 edges. Additional examples are
studies of sufficient conditions for edge-colored graphs to guarantee the existence a colorful
matching of a certain size. Moreover, previous studied also examined what is the size of the
largest colorful matching in an edge-colored graph with additional restrictions. For more
information on these topics, we refer to [13] and references therein. Finally, let us mention
that colorful matchings belong to a family of problems called rainbow subgraph problems. A
rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors.
We refer to [12] for a survey containing results and questions regarding rainbow subgraps.

1.3 Preliminaries

Let [n] denote the set {1, . . . , n}. For a graph G, we let V (G) and E(G) denote its vertex
set and its edge set, respectively. For two vertices u, v ∈ V (G), we use uv to denote an edge
between u and v.

Reduction Rule. To design our kernelization algorithm, we rely on the notion of a reduction
rule. A reduction rule is a polynomial-time procedure that replaces an instance (I, k) of a
parameterized problem Π (where k is the parameter) by a new instance (I ′, k′) of Π. The
rule is said to be safe if (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance. As
customary in the field we allow reduction rule to return the answer yes or the answer no
(see [3, 5]).

2 Algorithm for Rainbow Matching on Paths

In this section we give a deterministic algorithm for Rainbow Matching on paths that is
faster than the algorithm we will present for Rainbow Matching on general graphs in the
next section. Towards that we will solve the following general problem, and from there solve
Rainbow Matching in paths.
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Disjoint Set Rainbow Matching Parameter: k

Input: A path P with edge coloring χ : E(G)→ [q], a collection S of (vertex disjoint)
paths (vertex disjoint from P ) of arbitrary lengths, and a positive integer k.
Question: Does there exist a colorful matching of size k that uses exactly one edge
from each path in S and k − |S| edges from P?

Note that Rainbow Matching is a special case of Disjoint Set Rainbow Matching,
where P is the input graph (a path), S = ∅ and k is the parameter. Thus, solving Disjoint
Set Rainbow Matching will yield an algorithm for Rainbow Matching.

Overview. To solve Disjoint Set Rainbow Matching, whenever possible we apply
reduction rules, or solve the instance in polynomial time. In the absence of either of these,
the algorithm branches on an edge, based on whether it is part of the solution or not.

Measure. We associate the measure µ(P,S, k) = k − |S| to the instance (P,S, k). We will
use this measure to bound the number of nodes in the search tree. When the instance is
clear from the context, we will simply use µ.

Auxiliary bipartite graph. At every step of the search we maintain a bipartite graph B(S)
on the vertex set ([q],S) and edge set containing pairs cP ′ ∈ [q]×S such that color c appears
on an edge in the path P ′ in (the collection) S.

We first prove a lemma which allows us to solve the Disjoint Set Rainbow Matching
problem when the measure is at most one.

I Lemma 4. If µ(P,S, k) ≤ 1, then we can test if (P,S, k) is a yes-instance in polynomial
time.

Proof. We divide the proof based on whether µ(P,S, k) < 0 or µ(P,S, k) = 0 or µ(P,S, k) =
1. If µ(P,S, C, k) < 0, then k < |S| and so clearly no matching of size k can exist which
chooses exactly one edge from each path in S.

If µ(P,S, k) = 0, then k = |S|. Let Q1, . . . , Qk denote the paths in S. We will show that
there exists a colorful matching of size k that uses exactly one edge from each path in S if
and only if there is a matching in B(S) that saturates S. LetM be a colorful matching of
size k that uses exactly one edge from each path in S. Furthermore, for each i (1 ≤ i ≤ k) let
mi ∈M be the edge that is part of path Qi. Then {χ(mi)Qi | i ∈ [k]} forms a matching that
saturates S in B(S). In the reverse direction given a matchingM′ in B(S) that saturates
S, we obtain a colorful matchingM that uses exactly one edge from each path Qi in S, as
follows. SinceM′ saturates S we have that for every path Qi ∈ S there is an edge jQi for
some j ∈ [q]. This implies that there is an edge, say mi on Qi such that χ(mi) = j, i.e. mi

has color j. Since, the paths in S are pairwise vertex disjoint, the setM? = {mi | i ∈ [k]}
forms a matching in the graph P . Recall thatM′ is a matching in B(S) in which one of the
endpoints of the edges are from the set [q], thus, it follows thatM? is a colorful matching of
size k that uses exactly one edge from each path in S. Thus, implying that in this case we
can check whether or not (P,S, k) is a yes-instance in polynomial time by checking if the
bipartite graph B(S) has a matching that saturates S [10].

If µ(P,S, k) = 1, then k = |S|+ 1. In this case, we consider every edge e = uv on P . Let
us now consider a specific iteration concerning an edge e = uv on P . Then, we construct
B(S ∪ {uv}). Similar to the case of µ(P,S ∪ {uv}), k) = 0, we have now reduced the problem
into checking whether or not, there is a matching in B(S ∪ {uv})) that saturates S ∪ {uv}.

MFCS 2017
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This condition can be tested in polynomial time. If in at least one iteration, we found a
saturating matching then we have a yes-instance, and otherwise we have no-instance. This
completes the proof. J

Lemma 4 yields the following reduction rule.

I Reduction Rule 5. If µ(P,S, k) ≤ 1, then using Lemma 4 test whether or not (P,S, k) is
a yes-instance. If Lemma 4 returns yes, then return that (P,S, k) is a yes-instance; else,
return that (P,S, k) is a no-instance.

The safeness of Reduction Rule 5 follows from Lemma 4. The next reduction rule allows
us to identify a prefix of the path P such that there exists a colorful matching of size at least
k that contains exactly one edge from the prefix.

I Reduction Rule 6. In the instance (P,S, k), let P = v1, v2, . . . , vn−1, vn. Suppose that for
every index i ∈ [n− 1] the following property is true: when the subpaths Pi−1 = v1, . . . , vi−1
and P ′ = vi, vi+1 of P are added to S, the size of a maximum matching in the new bipartite
graph B(S ∪ {Pi−1, P

′}) (obtained after the addition of Pi−1 and P ′ to S, and suitable edges)
is at most |S|+ 1. Then, return that (P,S, C, k) is a no-instance.

Next we show that the correctness of Reduction Rule 6.

I Lemma 7. Reduction Rule 6 is safe.

Proof. For the sake of contradiction, we assume that (P,S, k) is a yes-instance. In this case
we will show that there exists an index i ∈ [n − 1] with the following property: when the
subpaths Pi−1 = v1, . . . , vi−1 and P ′ = vi, vi+1 of P are added to S, the size of a maximum
matching in the new bipartite graph B(S ∪ {Pi−1, P

′}) is |S|+ 2. This will be contradiction,
and thereby prove the lemma.

Since (P,S, k) is a yes-instance there exists a colorful matching of size k, denoted byM,
that uses k colors from [q], exactly one edge from each path in S, and k − |S| edges from
P . Thus, there is a maximum matching in the bipartite graph on B(S) that saturates every
vertex in the S-side. It is obtained by taking edges that connect a vertex in the S-side (i.e.
a path in the collection S) with the color that appears on the matching edge inM that is
part of the same path. We useM′ to denote this bipartite matching.

Let {ej1 , ej2 , . . . , ejk−|S|} denote the matching edges in M as they appear left to right
in P . For some i ≥ 3, let vivi+1 denote the edge ej2 (the matching edge with the second
smallest index in P ). It follows that edge ej1 appears in the subpath Pi−1 = v1, . . . , vi−1.
Note that the vertex χ(ej2) ∈ [q] is not saturated by M′ in B because ej2 is part of the
matching M while it is inside P . Similarly, the vertex χ(ej1) ∈ [q] is also not saturated
by M′ in B. Hence, when paths Pi−1 and P ′ are added to the bipartite graph, M′ can
be extended by exactly two more edges: edges between χ(ej1) and Pi−1 and χ(ej2) and P ′.
Thus, the new bipartite graph has a matching of size |S|+ 2. J

The safeness of Reduction Rule 6, leads us to the following conclusion.

I Lemma 8. If (P,S, k) is a yes-instance on which Reduction Rules 5 and 6 are not applicable,
then there exists an index i ∈ [n− 1] such that there exists a colorful matching of size k that
uses exactly one edge from the subpath Pi = v1, . . . , vi of P . Furthermore, such an index i
can be found in polynomial time.

Proof. Since Reduction Rules 5 and 6 are not applicable we have that µ(P,S, k) ≥ 2. This
implies that k ≥ |S|+ 2. Let i denote the smallest integer in [n− 1] for which the following
holds:
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Property (??) when the subpaths Pi−1 = v1, . . . , vi−1 and P ′ = vi, vi+1 of P are added
to M, the size of a maximum matching in the new bipartite graph B(S ∪ {Pi−1, P

′})
(obtained after the addition of Pi−1 and P ′ to S, and suitable edges) is |S|+ 2.
Observe that since k ≥ |S|+ 2 ≥ 2, such an integer i must exist.

Note that any colorful matching of size k uses at most one edge from Pi, else, it contradicts
the fact that i is the smallest integer that satisfies Property (??). Also note that since we
have a colorful matching of size at least 2 in Pi+1, so i ≥ 3. However, since there always
exists a colorful matching of size k that uses one of the first two edges of the path P ; hence,
the matching must use one of the edges on Pi. This implies that there exists a colorful
matching of size k that uses exactly one edge on Pi. Clearly, we can find the smallest integer
described in the statement of the lemma in polynomial time. This concludes the proof. J

Lemma 8 yields a branching rule that can be described as follows. Let Pi be the subpath
of P (given by Lemma 8) such that there exists a colorful matching of size k that uses exactly
one edge from it. We recursively solve two subproblems one where we assume that edge
vivi+1 is in the colorful matching of size k we are constructing, and the other where we
assume that edge vivi+1 is not part of the solution we are constructing. Note that this rule
is exhaustive because an edge (in particular, vivi+1) can either belong to a matching, or it
does not.

Algorithm. Now we can describe the branching rule in details along with the recursive call
to a subproblem. Let I = (P = v1, . . . , vn,S, k) be the instance of Disjoint Set Rainbow
Matching, where none of the Reduction Rules 5 or 6 are applicable. Let Pi be the subpath
of P as described in Lemma 8.

Branch 1: (The edge vivi+1 belongs to a colorful matching of size k.)
We recursively solve the problem on the instance (P \ {v1, . . . , vi+1},S ∪ {Pi−1} ∪
{[vivi+1]}, k). Since the size of S increases by 2, the measure µ decreases by 2. Observe
that by Lemma 8 we know that there exists a colorful matching of size k that uses exactly
one edge from the subpath Pi. However, since we have assumed that the edge vivi+1
belongs to the colorful matching of size k, thus, edge vi−1vi cannot be part of the same
matching, and so one of the edges in Pi−1 must be part of the matching as well. Thus, in
this case we know that two of the edges in our matching are due to the edge vivi+1 and
the other is from Pi−1.

Branch 2: (The edge vivi+1 does not belong to a colorful matching of size k.)
In this case we recursively solve the problem on (P \ {v1, . . . , vi},S ∪ {Pi}, k). Since the
size of S increases by 1 and k remains the same, the measure µ decreases by 1. The
correctness of this step follows from Lemma 8.

If either of the branches returns “yes”, we return the same. Else, we return that the given
instance is a no-instance.

The resulting branching vector for this algorithm is (2, 1). Thus, solving the polynomial
x2 ≥ x+ 1 for a positive root yields x ≥ 1

2 (1 +
√

5) = 1.6181. This upper bounds the running
time of our algorithm. The correctness of the algorithm follows from Lemmas 4, 7 and 8.

Recall that as explained at the very onset of our discussion: Since Rainbow Matching
is a special case of Disjoint Set Rainbow Matching, hence our algorithm can solve
Rainbow Matching by using the algorithm for the latter on the instance (G,S = ∅, k).
This completes the proof of Theorem 1.

MFCS 2017
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3 FPT Algorithm for Rainbow Matching on General Graphs

This section is inspired by the proof of Theorem 4 in [2], which solves 3-Set Packing in time
O?(3.3434k). We show that by an analysis tailored to Rainbow Matching, we improve
upon the time complexity O?(3.3434k). More precisely, the objective of this section is to
prove Theorem 2.

Towards the proof of Theorem 2, we need to consider a problem called 3-Set Prepacking,
which was introduced in [2]. The input of this problem consists of an n-element universe
U , an n1-element subuniverse U1 ⊆ U , a family F of 3-sets, a positive integer k, and three
non-negative integers p0, p1 and p2 whose sum is k. The task is to determine whether there
exists a subfamily F ′ ⊆ F of size k such that the 3-sets in F ′ are pairwise-disjoint, and for
all i ∈ {0, 1, 2}, there exist exactly pi sets S in F ′ such that |S ∩ U1| = i. We would need to
rely on the following result.

I Proposition 9. There exists a randomized algorithm for 3-Set Prepacking with constant,
one-sided error that runs in time O?(23p0+2p1+p2) and uses polynomial space. Specifically,
if the algorithm determines that an input instance is a yes-instance, then this answer is
necessarily correct.

Let us denote the algorithm given by Proposition 9 by PrepackAlg. We present a reduction
from our problem to 3-Set Prepacking. For this purpose, we describe a procedure Reduce
that given an instance (G,χ : V (G)→ [q], k) of Rainbow Matching, constructs an instance
reduce(G,χ, k) = (U,U1,F , k, p0, p1, p2) of 3-Set Prepacking with the same parameter
k. Let us denote n1 = |V (G)| = n − q, where n would denote |U |. First, Reduce sets
U = V (G) ∪ [q], F = {{u, v, χ(uv)} : uv ∈ E(G)}, p0 = 0, p1 = 0 and p2 = k. Second,
Reduce sets U1 = V (G). Let us now argue that we obtain an equivalent instance.

I Lemma 10. Let (G,χ : V (G) → [q], k) be an instance of Rainbow Matching. Then,
reduce(G,χ, k) = (U,U1,F , k, p0, p1, p2) is a yes-instance of 3-Set Prepacking if and only
if (G,χ : V (G)→ [q], k) is a yes-instance of Rainbow Matching.

Proof. In the first direction suppose that reduce(G,χ, k) = (U,U1,F , k, p0, p1, p2) is a yes-
instance of 3-Set Prepacking. In particular, we then have that there exists a subfamily
F ′ ⊆ F of size k such that the 3-sets in F ′ are pairwise-disjoint. Let us denoteM = {uv ∈
E(G) : ∃S ∈ F ′ s.t. {u, v} ⊆ S}. Since |F ′| = k, we have that |M| = k, and since the 3-sets in
F ′ are pairwise-disjoint, we have thatM is a colorful matching. Thus, (G,χ : V (G)→ [q], k)
is a yes-instance of Rainbow Matching.

In the other direction suppose (G,χ : V (G) → [q], k) is a yes-instance of Rainbow
Matching. Then there exists a colorful matching M of size k. Let us denote F ′ =
{{u, v, χ(uv)}| uv ∈M}. Since the size ofM is k, we have that the size of F ′ is k and since
M is a colorful matching we have that the sets in F ′ are pairwise disjoint. Notice that every
set in F ′ exactly two elements from U1. Therefore, for all i ∈ {0, 1, 2}, there exist exactly pi

sets S in F ′ such that |S ∩ U1| = i. Thus, (U,U1,F , k, p0, p1, p2) is a yes-instance of 3-Set
Prepacking. J

Let us now prove Theorem 2.

Proof of Theorem 2. Given an instance (G,χ : V (G) → [q], k) of Rainbow Matching,
we construct the instance reduce(G,χ, k) = (U,U1,F , k, p0, p1, p2) of 3-Set Prepacking.
Then, we run the algorithm given by Proposition 9. We accept if and only if the algorithm
from Proposition 9 accepted. The correctness follows from Proposition 9 and Lemma 10.
Since, p0 = p1 = 0 and p2 = k, by Proposition 9, the total running time is O?(2k). J
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4 Kernelization Algorithms

In this section we give a proof for Theorem 3. We first describe a kernel on general graphs.
The kernelization algorithm on general graphs is actually a known kernel for 3-Set Packing
given in [3, Theorem 12.20] (also see [1, 4]). The best known kernel for 3-Set Packing is
given by Abu-Khzam [1] and it has O(k2) elements and O(k3) sets. However, as we explain
now, we cannot use the kernel given by Abu-Khzam [1] directly for our purposes. This
is in contrast to the fact that one can use the best known parameterized algorithms for
3-Set Packing to design parameterized algorithms for Rainbow Matching. Given an
instance (G,χ, k) of Rainbow Matching, we can transform it to an instance (U,F, k) of
3-Set Packing as explained in the introduction. Now if we apply a kernelization algorithm
for 3-Set Packing, then it will return an equivalent instance (U ′,F′, k′) of 3-Set Packing
and not of Rainbow Matching. A priori, it is not clear how we can transform (U ′,F′, k′)
to an instance of Rainbow Matching without increasing the size bounds on the kernel we
obtain for Rainbow Matching. Thus, to design a kernelization algorithm for Rainbow
Matching we give a kernelization algorithm for 3-Set Packing such that it is easy to
transform an instance of the latter to an instance of Rainbow Matching. This kernel is
given here mainly for completeness.

4.1 Kernelization for Rainbow Matching on general graphs
Now we give the kernelization algorithm alluded to in the first part of Theorem 3. Towards
that we will use the sunflower lemma – a classical result of Erdős and Rado. We first define
the terminology used in the statement of the lemma. A sunflower with k petals and a core
Y is a collection of sets S1, . . . , Sk such that Si ∩ Sj = Y for all i 6= j; the sets Si \ Y are
petals and we require none of them to be empty. Note that a family of pairwise disjoint sets
is a sunflower (with an empty core).

I Proposition 11. [3, pg 38] (Sunflower lemma) Let A be a family of sets (without duplicates)
over a universe U , such that each set in A has cardinality exactly d. If |A| > d!(k − 1)d,
then A contains a sunflower with k petals and such a sunflower can be computed in time
polynomial in |A|, |U |, and k.

Proof of first part of Theorem 3. Given an instance (G,χ, k) of Rainbow Matching, we
view this as an instance J of 3-Set Packing as follows: U = V (G) ∪ {1, . . . , q} and F

consists of a set {u, v, χ(uv)} corresponding to every edge e = uv ∈ E(G).

I Reduction Rule 12. Let (U,F, k) be an instance of 3-Set Packing and suppose that F
contains a sunflower S = {S1, . . . , S3(k−1)+2} of cardinality 3k− 1 with core Y . Then, return
(U ′,F′, k), where U ′ =

⋃
X∈F′ X, and F′ = (F \ S1) is obtained by deleting a set S1 from F.

To show the correctness of Reduction Rule 12, we need to show the following lemma.

I Lemma 13. Reduction Rule 12 is safe.

Proof. We will prove that (U,F, k) is a yes-instance of 3-Set Packing if and only if (U ′,F′, k)
is a yes-instance of 3-Set Packing. It is clear that if (U ′,F′, k) is a yes-instance of 3-
Set Packing then so is (U,F, k); so the backward direction holds straightaway.

For the forward direction, we assume that we have a solution S to (U,F, k), i.e., a set of
k pairwise disjoint sets. If S does not contain S1, then it is also a solution for (U ′,F′, k). So
let us assume that S1 ∈ S. Observe that the number of elements appearing in the sets in S,
apart from those present in S1, is 3(k − 1). Also, note that no set in S \ {S1} intersects the

MFCS 2017



71:10 Parameterized Algorithms and Kernels for Rainbow Matching

core Y . Thus, the number of sets in the sunflower S that intersects the elements present
in the sets of S is upper bounded by 1 + 3(k − 1) (the first one for S1). This implies there
exists a set S? ∈ S that is pairwise disjoint with every set in S \ {S1}. Thus, (S \ {S1}) ∪ S?

is a solution of size k for (U ′,F′, k). This completes the proof. J

Now, we are ready to describe the kernelization algorithm. If the number of sets in F is
more than 6(3k− 2)3, then the kernelization algorithm applies the sunflower lemma to find a
sunflower of size 3k − 1, and applies Reduction Rule 12 on this sunflower.

The algorithm applies this procedure exhaustively, and obtains a new family of sets
F′ of size at most 6(3k − 2)3. This concludes the size bound on the family (U ′,F′, k) of
3-Set Packing. Observe that throughout the process, we have never reduced the size of
any set in the family and each set in the family still corresponds to an edge and its color.
Thus, given (U ′,F′, k), let W be the vertices present in U ′. Then we return (G[W ], χ′, k),
where edge coloring χ′ is the restriction of χ to the edges present in G[W ]. This concludes
the description of the kernelization algorithm. J

4.2 A Kernel on graphs of bounded degree
In this section we design a small kernel for Rainbow Matching on graphs of bounded
degree. Let (G,χ, k) be an instance of Rainbow Matching. Throughout this section we
assume that the maximum degree of G is upper bounded by a fixed constant d.

For i ∈ [q], let Ei = {e ∈ E(G) | χ(e) = i}. We call the set of edges Ei as a color class
with color i. Next we give reduction rule that bounds the size of each color class.

I Reduction Rule 14. If there exists i ∈ [q] such that |Ei| ≥ 2d(k − 1) + 1 then delete Ei

and reduce k by 1. That is, we obtain an instance (G′, χ′, k − 1). Here, G′ is obtained by
deleting all the edges in Ei and edge coloring χ′ is obtained by restricting χ to the edges in
G′.

I Lemma 15. Reduction Rule 14 is safe.

Proof. We will prove that G has a colorful matching of size k if and only if G′ has a colorful
matching of size k− 1. We first prove the forward direction. If G has a colorful matchingM
of size k that contains an edge uv ∈ Ei, thenM\{uv} is a colorful matching of size k− 1 in
the graph G′. IfM does not have an edge of color i, thenM itself is a colorful matching of
size at least k − 1 for G′.

For the backward direction, letM′ be a colorful matching of size k − 1 of G′. Observe
thatM′ has 2(k− 1) distinct vertices and each vertex has degree at most d. If every edge in
M′ has an endpoint that is adjacent to an edge in Ei, then the vertices inM′ can share at
most 2d(k − 1) vertices. That is, at most 2d(k − 1) edges from Ei can share vertices with
M′. Since, |Ei| ≥ 2d(k − 1) + 1, Ei has at least one edge that does not share a vertex with
M′. Let that edge be uv. Then, it follows thatM′ ∪ {uv} is a k size colorful matching of G,
and our proof is complete. J

We apply Reduction Rule 14 exhaustively. If the premise of the rule is not satisfied, then
for each color i, we have that |Ei| ≤ 2d(k − 1). Next we give a polynomial time procedure
that either outputs a colorful matching of size at least k or bounds the number of colors.

I Lemma 16. Let (G,χ, k) be an instance of Rainbow Matching for which Reduction
Rule 14 is not applicable. Then, in polynomial time either we can conclude that (G,χ, k) is a
yes-instance or the number of distinct colors in the instance is upper bounded by 2d(k − 1).
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Proof. We iteratively try to build a colorful matching of size k. If we fail to do so, then it
will enable us to bound the number of color classes. LetM be an empty set. We repeat the
below procedure until the graph is empty.
1. Pick an edge uv of G arbitrarily, and add it to M. Let the edges incident on u have

colors c1
u, c

2
u, . . . , c

`
u and the edges incident on v have colors c1

v, c
2
v, . . . , c

p
v.

2. Delete all the edges in
⋃`

i=1 Eci
u
and

⋃p
i=1 Eci

v
. Let the resulting graph be also called G.

If we can continue the above process for k steps (i.e. |M| ≥ k) then M is a colorful
matching of size at least k. In this case we outputM as the desired colorful matching. To
see its correctness, observe that in every iteration we deleted the edges incident on both
the endpoints of the added toM. So, the edges we added toM are indeed pairwise vertex
disjoint. Also, note that we delete all the edges with colors that are used on the edges that
are incident to the edges that were added toM. Hence, the edges inM have distinct color.

Otherwise, our procedure ends within at most k − 1 steps, and so |M| ≤ k − 1. Now, let
us count the number of color classes we delete in each iteration. In other words, we count
the number of color classes that are deleted each time we add an edge to M . If all the edges
incident on u have distinct colors then ` ≤ d because degree of u is at most d. Similarly,
we are argue that p ≤ d. Together they imply that we delete at most 2d color classes in
each iteration. Hence, in at most k − 1 iterations we delete at most 2d(k − 1) color classes.
Following this we are left with an an empty graph. Thus, we have shown that in this case,
we can have at most 2d(k − 1) color classes. J

Lemmas 15 and 16 together prove second part of Theorem 3.

5 Conclusion, Discussion and Open Problems

In this paper, we considered Rainbow Matching from the viewpoint of parameterized com-
plexity, and designed faster parameterized algorithms as well as kernels for this problem. Rain-
bow Matching is easily seen as a generalization of another well studied problem in paramet-
erized algorithms, namely 3-Dimensional Matching, when we allow the input graph to be
a multigraph. In this problem, we are given a set family (U,F), together with a partition U =
]3

i=1Ui and a positive integer k. Here, every set F ∈ F has the property that for all i ∈ [3], |F∩
Ui| = 1. The question is whether there exists a subfamily F′ ⊆ F containing k pairwise-disjoint
sets. We first show that Rainbow Matching is indeed a generalization of 3-Dimensional
Matching. Towards proving this, we give a polynomial time parameter-preserving reduction
from 3−Dimensional Matching to Rainbow Matching. That is, we give the following
ppt reduction, 3−Dimensional Matching ≤ppt Rainbow Matching. Here, let us only
present a rough sketch of the proof. The idea of the construction is as follows. In the bipartite
graph of the constructed instance of Rainbow Matching, one side represents the elements
of U1, and the other side represents the elements of U2. Then, for every set {u1, u2, u3} in
F, where ui ∈ Ui for all i ∈ [3], we add an edge between u1 and u2 whose color is u3. It is
easy to see that a solution for the original problem instance can be directly translated to a
solution for the new problem instance, and vice versa. Moreover, the parameter k in both
instances is set to be the same.

We also saw that there is a ppt reduction from Rainbow Matching to 3-Set Packing
and thus we have the following chain of reductions.

3−Dimensional Matching ≤ppt Rainbow Matching ≤ppt 3−Set Packing.
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It is known that 3-Dimensional Matching admits a randomized algorithm with run-
ning time O?(2k) [2] and a deterministic algorithm with running time O?(2.59612k) =
O?(6.7398k) [19]. We gave in the introduction a deterministic algorithm for Rainbow
Matching that is the same as the one for 3-Set Packing. However, we remark that the
algorithm for 3-Dimensional Matching given in [19] can actually be used to solve Rain-
bow Matching in O?(6.7398k) time. Can we design a faster randomized or deterministic
algorithm for Rainbow Matching or even 3-Dimensional Matching?

We gave an O(k2) kernel on paths. Does there exist a linear kernel on paths? Could
we get improved kernel for Rainbow Matching on simple family of graphs such as trees,
graphs of constant treewidth or planar graphs. Could we show that O(k3) size bound on the
kernel for Rainbow Matching is optimal?

Finally, by a direct application of our randomized parameterized algorithm for Rainbow
Matching running in time O?(2k), we have that there exists a randomized algorithm for
Rainbow Matching running in time O?(2n/2) = O?(1.4143n). Here, n is the number of
vertices in the input graph and the n/2 is an upper bound on the maximum size of a colorful
matching in a graph. Using a simple dynamic programming algorithm, it is possible to
design a O?(2n) algorithm for Rainbow Matching. Designing a deterministic algorithm
for Rainbow Matching running in time (2− ε)n for some fixed ε > 0 is another interesting
open problem.
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