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Abstract
Recently, Macdonald et. al. showed that many algorithmic problems for finitely generated nilpo-
tent groups including computation of normal forms, the subgroup membership problem, the con-
jugacy problem, and computation of subgroup presentations can be done in LOGSPACE. Here
we follow their approach and show that all these problems are complete for the uniform circuit
class TC0 – uniformly for all r-generated nilpotent groups of class at most c for fixed r and c.

Moreover, if we allow a certain binary representation of the inputs, then the word problem
and computation of normal forms is still in uniform TC0, while all the other problems we examine
are shown to be TC0-Turing reducible to the problem of computing greatest common divisors
and expressing them as linear combinations.
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1 Introduction

The word problem (given a word over the generators, does it represent the identity?) is
one of the fundamental algorithmic problems in group theory introduced by Dehn in 1911
[3]. While for general finitely presented groups all these problems are undecidable [22, 2],
for many particular classes of groups decidability results have been established – not just
for the word problem but also for a wide range of other problems. Finitely generated
nilpotent groups are a class where many algorithmic problems are (efficiently) decidable (with
some exceptions like the problem of solving equations – see e. g. [6]). In 1958, Mal’cev [17]
established decidability of the word and subgroup membership problem by investigating
finite approximations of nilpotent groups. In 1965, Blackburn [1] showed decidability of the
conjugacy problem. However, these methods did not allow any efficient (e. g. polynomial
time) algorithms. Nevertheless, in 1966 Mostowski provided “practical” algorithms for the
word problem and several other problems [18]. In terms of complexity, a major step was the
result by Lipton and Zalcstein [15] that the word problem of linear groups is in LOGSPACE.
Together with the fact that finitely generated nilpotent groups are linear (see e. g. [7, 10])
this gives a LOGSPACE solution to the word problem of nilpotent groups, which was later
improved to uniform TC0 by Robinson [23]. A typical algorithmic approach to nilpotent
groups is using so-called Mal’cev (or Hall–Mal’cev) bases (see e. g. [7, 10]), which allow
to carry out group operations by evaluating polynomials (see Lemma 2). This approach
was systematically used in [11] and [18] or – in the more general setting of polycyclic
presentations – in [24] for solving (among others) the subgroup membership and conjugacy
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problem of polycyclic groups. Recently in [19, 20] polynomial time bounds for the equalizer
and subgroup membership problems in nilpotent groups have been given. Finally, in [16] the
following problems were shown to be in LOGSPACE using the Mal’cev basis approach. Here,
Nc,r denotes the class of nilpotent groups of nilpotency class at most c generated by at most
r elements.

The word problem: given G ∈ Nc,r and g ∈ G, is g = 1 in G?
Given G ∈ Nc,r and g ∈ G, compute the (Mal’cev) normal form of g.
The subgroup membership problem: Given G ∈ Nc,r and g, h1, . . . , hn ∈ G, decide whether
g ∈ 〈h1, . . . , hn〉 and, if so, express g as a word over the subgroup generators h1, . . . , hn
(in [16] only the decision version was shown to be in LOGSPACE – for expressing g as a
word over the original subgroup generators a polynomial time bound was given).
Given G,H ∈ Nc,r andK = 〈g1, . . . , gn〉 ≤ G, together with a homomorphism ϕ : K → H

specified by ϕ(gi) = hi, and some h ∈ Im(ϕ), compute a generating set for ker(ϕ) and
find g ∈ G such that ϕ(g) = h.
Given G ∈ Nc,r and K = 〈g1, . . . , gn〉 ≤ G, compute a presentation for K.
Given G ∈ Nc,r and g ∈ G, compute a generating set for the centralizer of g.
The conjugacy problem: Given G ∈ Nc,r and g, h ∈ G, decide whether or not there exists
u ∈ G such that u−1gu = h and if so find such an element u.

Notice that these problems are not only of interest in themselves, but also might serve as
building blocks for solving the same problems in polycyclic groups – which are of particular
interest because of their possible application in non-commutative cryptography [4]. In this
work we follow [16] and extend these results in several ways:

We give a complexity bound of uniform TC0 for all the above problems.
In order to derive this bound, we show that the extended gcd problem with unary
coefficients is in TC0.
Our description of circuits is for the uniform setting where G ∈ Nc,r is part of the input
(in [16] the uniform setting is also considered; however, only in some short remarks).
Since nilpotent groups have polynomial growth, it is natural to allow compressed inputs:
we give a uniform TC0 solution for the word problem allowing words with binary exponents
as input – this contrasts with the situation with straight-line programs (i. e., context-
free grammars which produces precisely one word – another method of exponential
compression) as input: then the word problem is hard for C=L [12]. Thus, the difficulty of
the word problem with straight-line programs is not due to their compression but rather
due to the difficulty of evaluating a straight-line program.
We show that the other of the above problems are uniform-TC0-Turing-reducible to the
extended gcd problem (compute the greatest common divisor and express it as a linear
combination) when the inputs (both the ambient group and the subgroup etc.) are given
as words with binary exponents.

Thus, in the unary case we settle the complexity of the above problems completely. Moreover,
it also seems rather unlikely that the subgroup membership problem can be solved without
computing gcds – in this case our results on binary inputs would be also optimal. Altogether,
our results mean that many algorithmic problems are no more complicated in nilpotent
groups than in abelian groups. Notice that while in [16] explicit length bounds on the outputs
for all these problems are proven, we obtain polynomial length bounds simply by the fact
that everything can be computed in uniform TC0 (for which in the following we only write
TC0). Throughout the paper we follow the outline of [16]. For a concise presentation, we
copy many definitions from [16]. Most of our theorems involve two statements: one for unary
encoded inputs and one for binary encoded inputs. In order to have a concise presentation,
we always put them in one statement. We only consider finitely generated nilpotent groups
without mentioning that further.
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Outline. We start with basic definitions on complexity as well as on nilpotent groups. In
Section 2 we describe how subgroups of nilpotent groups can be represented and develop
a “nice” presentation for all groups in Nc,r. Section 3 deals with the word problem and
computation of normal forms. Based on this we introduce the so-called matrix reduction
and solve the subgroup membership problem. Finally, in Section 5 we present our result for
the remaining of the above problems – the proofs are essentially repeated applications of the
matrix reduction. Due to space constraints many of the proofs are omitted – they can be
found in the full version on arXiv [21].

1.1 Preliminaries on Complexity
For a finite alphabet Σ, the set of words over Σ is denoted by Σ∗. Computation or decision
problems are given by functions f : ∆∗ → Σ∗ for some finite alphabets ∆ and Σ. A decision
problem (= formal language) L is identified with its characteristic function χL : ∆∗ → {0, 1}
with χL(x) = 1 if, and only if, x ∈ L. (In particular, the word and conjugacy problems can
be seen as functions Σ∗ → {0, 1}.) We use circuit complexity as described in [25].

Circuit Classes. The class TC0 is defined as the class of functions computed by families of
circuits of constant depth and polynomial size with unbounded fan-in Boolean gates (and,
or, not) and majority gates. A majority gate (denoted by Maj) returns 1 if the number of 1s
in its input is greater or equal to the number of 0s. In the following we always assume that
the alphabets ∆ and Σ are encoded over the binary alphabet {0, 1} such that each letter
uses the same number of bits. We say a function f is TC0-computable if f ∈ TC0.

In the following, we only consider Dlogtime-uniform circuit families and we simply
write TC0 as shorthand for Dlogtime-uniform TC0. Dlogtime-uniform means that there is a
deterministic Turing machine which decides in time O(logn) on input of two gate numbers
(given in binary) and the string 1n whether there is a wire between the two gates in the
n-input circuit and also computes of which type some gates is. Note that the binary encoding
of the gate numbers requires only O(logn) bits – thus, the Turing machine is allowed to use
time linear in the length of the encodings of the gates. For more details on these definitions
we refer to [25]. We have the inclusions AC0 $ TC0 ⊆ LOGSPACE ⊆ P (note that even
TC0 ⊆ P is not known to be strict).

Reductions. A function f is TC0-Turing-reducible to a function g if there is a Dlogtime-
uniform family of TC0 circuits computing f which, in addition to the Boolean and majority
gates, also may use oracle gates for g (i. e., gates which on input x output g(x)). This is
expressed by f ∈ TC0(g). Note that if f1, . . . , fk are in TC0, then TC0(f1, . . . , fk) = TC0.

In particular, if f and g are TC0-computable functions, then also the composition g ◦ f is
TC0-computable. We will extensively make use of this observation – which will also guarantee
the polynomial size bound on the outputs of our circuits without additional calculations.

We will also use another fact frequently without giving further reference: on input of two
alphabets Σ and ∆ (coded over the binary alphabet), a list of pairs (a, va) with a ∈ Σ and
va ∈ ∆∗ such that each a ∈ Σ occurs in precisely one pair, and a word w ∈ Σ∗, the image
ϕ(w) under the homomorphism ϕ defined by ϕ(a) = va can be computed in TC0 [13].

Encoding numbers: unary vs. binary. There are essentially two ways of representing integer
numbers: the usual way as a binary number where a string a0 · · · an with ai ∈ {0, 1} represents∑
ai2n−i, and as a unary number where k ∈ N is represented by 1k = 11 · · · 1︸ ︷︷ ︸

k

(respectively
by 0n−k1k if n is the number of input bits).

MFCS 2017
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We will state most results in this paper with both representations. The unary representa-
tion corresponds to group elements given as words over the generators, whereas the binary
encoding will be used if inputs are given in a compressed form.

Arithmetic in TC0. Iterated Addition (resp. Iterated Multiplication) are the
following computation problems: On input of n binary integers a1, . . . , an each having n bits
(i. e., the input length is N = n2), compute the binary representation of the sum

∑n
i=1 ai

(resp. product
∏n
i=1 ai). For Integer Division the input are two binary n-bit integers a, b;

the binary representation of the integer c = ba/bc has to be computed. The first statement
of Theorem 1 is a standard fact, see [25]; the other statements are due to Hesse, [8, 9].

I Theorem 1 ([8, 9, 25]). The problems Iterated Addition, Iterated Multiplication,
Integer Division are all in TC0 no matter whether inputs are given in unary or binary.

Note that if the numbers a and b are encoded in unary (as strings 1a and 1b), division can
be seen to be in TC0 very easily: just try for all 0 ≤ c ≤ a whether 0 ≤ a− bc < b.

Representing groups for algorithmic problems. We consider finitely generated groups G
together with finite generating sets A. Group elements are represented as words over the
generators and their inverses (i. e., as elements of (A ∪ A−1)∗). We make no distinction
between words and the group elements they represent. Whenever it might be unclear whether
we mean equality of words or of group elements, we write “g = h in G” for equality in G.

Words over the generators ±1 of Z correspond to unary representation of integers. As
a generalization of binary encoded integers, we introduce the following notion: a word
with binary exponents is a sequence w1, . . . , wn where the wi are from a fixed generating
set of the group together with a sequence of exponents x1, . . . , xn where the xi ∈ Z are
encoded in binary. The word with binary exponents represents the word (or group element)
w = wx1

1 · · ·wxnn . Note that in a fixed nilpotent group every word of length n can be rewritten
as a word with binary exponents using O(logn) bits (this fact is well-known and also a
consequence of Theorem 5 below); thus, words with binary exponents are a natural way of
representing inputs for algorithmic problems in nilpotent groups.

1.2 Preliminaries on Nilpotent groups and Mal’cev coordinates
Let G be a group. For x, y ∈ G we write [x, y] = x−1y−1xy for the commutator of x and y.
For subgroups H1, H2 ≤ G, we have [H1, H2] = 〈{[h1, h2] | h1 ∈ H1, h2 ∈ H2}〉. A group G
is called nilpotent if it has a finite central series, i.e.

G = G1 ≥ G2 ≥ · · · ≥ Gc ≥ Gc+1 = 1 (1)

such that [G,Gi] ≤ Gi+1 for all i = 1, . . . , c. If G is finitely generated, so are the abelian quo-
tients Gi/Gi+1, 1 ≤ i ≤ c. Let ai1, . . . , aimi be a basis of Gi/Gi+1, i.e. a generating set such
that Gi/Gi+1 has a presentation

〈
ai1, . . . , aimi

∣∣aeijij , [aik, ai`], for j ∈ Ti, k, ` ∈ {1, . . . ,mi}
〉

, where Ti ⊆ {1, . . . ,mi} (here T stands for torsion) and eij ∈ Z>0 (be aware that we ex-
plicitly allow eij = 1, which is necessary for our definition of quotient presentations in
Section 2). Formally, we put eij =∞ for j /∈ Ti. We call A = (a11, a12, . . . , acmc) a Mal’cev
basis associated to the central series (1). Sometimes we use A interchangeably also for the
set A = {a11, a12, . . . , acmc}.

For convenience, we will also use a simplified notation, in which the generators aij and
exponents eij are renumbered by replacing each subscript ij with j+

∑̀
<j

m`, so the generating
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sequence A can be written as A = (a1, . . . , am). We allow the expression ij to stand for
j +

∑̀
<j

m` in other notations as well. We also denote T = {i | ei < ∞}. By the choice of

{a1, . . . , am}, every element g ∈ G may be written uniquely in the form g = aα1
1 · · · aαmm ,

where αi ∈ Z and 0 ≤ αi < ei whenever i ∈ T . The m-tuple (α1, . . . , αm) is called the
coordinate vector or Mal’cev coordinates of g and is denoted Coord(g), and the expression
aα1

1 · · · aαmm is called the (Mal’cev) normal form of g. We also denote αi = Coordi(g).
To a Mal’cev basis A we associate a presentation of G as follows. For each 1 ≤ i ≤ m, let

ni be such that ai ∈ Gni Gni+1. If i ∈ T , then aeii ∈ Gni+1, hence a relation

aeii = aµi`` · · · a
µim
m (2)

holds in G for µij ∈ Z and ` > i such that a`, . . . , am ∈ Gni+1. We call this the power
relation for ai. Let 1 ≤ i < j ≤ m. Since the series (1) is central, relations of the form

ajai = aiaja
αij`
` · · · aαijmm a−1

j ai = aia
−1
j a

βij`
` · · · aβijmm (3)

hold in G for αijk, βijk ∈ Z and l > j such that a`, . . . , am ∈ Gnj+1. Now, G is the group
with generators {a1, . . . , am} subject to the relation of the the form (2)–(3).

A presentation with relations of the form (2)–(3) for all i resp. i and j is called a nilpotent
presentation. Indeed, any presentation of this form will define a nilpotent group. It is called
consistent if the order of ai modulo 〈ai+1, . . . , am〉 is precisely ei for all i. While presentations
of this form need not, in general, be consistent, those derived from a central series of a group
G as above are consistent. Given a consistent nilpotent presentation, there is an easy way to
solve the word problem: simply apply the rules of the form (3) to move all occurrences of
a±1

1 in the input word to the left, then apply the power relations (2) to reduce their number
modulo e1; finally, continue with a2 and so on.

Multiplication functions. An crucial feature of the coordinate vectors for nilpotent groups
is that the coordinates of a product (aα1

1 · · · aαmm )(aβ1
1 · · · aβmm ) may be computed as a “nice”

function (polynomial if T = ∅) of the integers α1, . . . , αm, β1, . . . , βm.

I Lemma 2 ([7, 10]). Let G be a nilpotent group with Mal’cev basis a1, . . . , am and T = ∅.
There exist p1, . . . , pm ∈ Z[x1, . . . , xm, y1, . . . , ym] and q1, . . . , qm ∈ Z[x1, . . . , xm, z] such
that for g, h ∈ G with Coord(g) = (γ1, . . . , γm) and Coord(h) = (δ1, . . . , δm) and l ∈ Z we
have
(i) Coordi(gh) = pi(γ1, . . . , γm, δ1, . . . , δm),
(ii) Coordi(gl) = qi(γ1, . . . , γm, l),
(iii) Coord1(gh) = γ1 + δ1 and Coord1(gl) = lγ1.

Notice that an explicit algorithm to construct the polynomials pi, qi is given in [14]. For
further background on nilpotent groups we refer to [7, 10].

2 Presentation of subgroups

Before we start with algorithmic problems, we introduce a canonical way how to represent
subgroups of nilpotent groups. This is important for two reasons: first, of course we need it
to solve the subgroup membership problem, and, second, for the uniform setting it allows us
to represent nilpotent groups as free nilpotent group modulo a kernel which is represented as
a subgroup. Let h1, . . . , hn be elements of G given in normal form by hi = aαi11 · · · aαimm , for

MFCS 2017
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i = 1, . . . , n, and let H = 〈h1, . . . , hn〉. We associate the matrix of coordinates

A =

 α11 · · · α1m
...

. . .
...

αn1 · · · αnm

 , (4)

to the tuple (h1, . . . , hn) and conversely, to any n×m integer matrix, we associate an n-tuple
of elements of G, whose Mal’cev coordinates are given as the rows of the matrix, and the
subgroup H generated by the tuple. For each i = 1, . . . , n where row i is non-zero, let πi be
the column of the first non-zero entry (‘pivot’) in row i. The sequence (h1, . . . , hn) is said
to be in standard form if the matrix of coordinates A is in row-echelon form and its pivot
columns are maximally reduced, more specifically, if A satisfies the following properties:
(i) all rows of A are non-zero (i.e. no hi is trivial),
(ii) π1 < π2 < · · · < πs (where s is the number of pivots),
(iii) αiπi > 0, for all i = 1, . . . , n,
(iv) 0 ≤ αkπi < αiπi , for all 1 ≤ k < i ≤ s
(v) if πi ∈ T , then αiπi divides eπi , for i = 1, . . . , s.
The sequence (resp. matrix) is called full if in addition
(vi) H ∩ 〈ai, ai+1, . . . , am〉 is generated by {hj | πj ≥ i}, for all 1 ≤ i ≤ m.
Note that {hj | πj ≥ i} consists of those elements having 0 in their first i− 1 coordinates. It
is an easy exercise (see also [16]) to show that 6 holds for a given i if and only if

for all 1 ≤ k < j ≤ s with πk < i, h−1
k hjhk and hkhjh−1

k are elements of 〈hl | l > k 〉, and
for all 1 ≤ k ≤ s with πk < i and πk ∈ T , h

eπk/αkπk
k ∈ 〈hl | l > k 〉.

We will use full sequences and the associated matrices in full form interchangeably without
mentioning it explicitly. For simplicity we assume that the inputs of algorithms are given as
matrices. The importance of full sequences is described in the following lemma – a proof can
be found in [24] Propositions 9.5.2 and 9.5.3.

I Lemma 3 ([16, Lem. 3.1]). Let H ≤ G. There is a unique full sequence U = (h1, . . . , hs)
that generates H. We have s ≤ m and H = {hβ1

1 · · ·hβss |βi ∈ Z and 0 ≤ βi < eπi if πi ∈ T }.

Thus, computing a full sequence will be the essential tool for solving the subgroup membership
problem. Before we focus on subgroup membership, we will first solve the word problem and
introduce how the nilpotent group can be part of the input.

Quotient Mal’cev presentations. Let c, r ∈ N be fixed. The free nilpotent group Fc,r of
class c and rank r is defined as Fc,r = 〈 a1, . . . , ar | [x1, . . . , xc+1] = 1 for x1, . . . , xc+1 ∈ Fc,r 〉
where [x1, . . . , xc+1] = [[x1, . . . , xc], xc+1], i. e., Fc,r is the r-generated group only subject to
the relations that weight c+ 1 commutators are trivial. Throughout, we fix a Mal’cev basis
A = (a1, . . . , am) (which we call the standard Mal’cev basis) associated to the lower central
series of Fc,r such that the associated nilpotent presentation consists only of relations of
the form (3) (i. e., T = ∅ – such a presentation exists since Fc,r is torsion-free), a1, . . . , ar
generates Fc,r, and all other Mal’cev generators are iterated commutators of a1, . . . , ar.

Denote by Nc,r the set of r-generated nilpotent groups of class at most c. Every group
G ∈ Nc,r is a quotient of the free nilpotent group Fc,r, i. e., G = Fc,r/N for some normal
subgroup N ≤ Fc,r. Assume that T = (h1, . . . , hs) is a full sequence generating N . Adding
T to the set of relators of the free nilpotent group yields a new nilpotent presentation.
This presentation will be called quotient presentation of G. For inputs of algorithms, we
assume that a quotient presentation is always given as its matrix of coordinates in full form.
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Depending whether the entries of the matrix are encoded in unary or binary, we call the
quotient presentation be given in unary or binary.

I Lemma 4 ([16, Prop. 5.1]). Let c and r be fixed integers and let A = (a1, . . . , am) be the
standard Mal’cev basis of Fc,r. Moreover, denote by S the set of relators of Fc,r with respect
to A. Let G ∈ Nc,r with G = Fc,r/N and let T be the full-form sequence for the subgroup N
of Fc,r. Then, 〈A | S ∪ T 〉 is a consistent nilpotent presentation of G.

For a proof of Lemma 4 see [21]. For the following we always assume that a quotient
presentation is part of the input, but c and r are fixed. Later, we will show how to compute
quotient presentations from an arbitrary presentation.

I Remark. Lemma 4 ensures that each group element has a unique normal form with respect
to the quotient presentation; thus, it guarantees that all our manipulations of Mal’cev
coordinates are well-defined.

3 Word problem and computation of Mal’cev coordinates

In this section we deal with the word problem of nilpotent groups, which is well-known to be
in TC0 [23]. Here, we generalize this result by allowing words with binary exponents (recall
that word with binary exponents is a sequence w = wx1

1 · · ·wxnn where wi ∈ {a1, . . . , am}
and the xi ∈ Z). By using words with binary exponents the input can be compressed
exponentially – making the word problem, a priori, harder to solve. Nevertheless, it turns
out that the word problem still can be solved in TC0 when allowing the input to be given as
a word with binary exponents. Note that this contrasts with the situation where the input is
given as straight-line program (which like words with binary exponents allow an exponential
compression) – then the word problem is complete for the counting class C=L [12].

I Theorem 5. Let c, r ≥ 1 be fixed and let (a1, . . . , am) be the standard Mal’cev basis of Fc,r.
The following problem is TC0-complete: on input of G ∈ Nc,r given as a binary encoded
quotient presentation and a word with binary exponents w = wx1

1 · · ·wxnn , compute integers
y1, . . . , ym (in binary) such that w = ay1

1 · · · aymm in G and 0 ≤ yi < ei for i ∈ T . Moreover,
if the input is given in unary (both G and w), then the output is in unary.

Note that the statement for unary inputs is essentially the one of [23]. Be aware that in
the formulation of the theorem, T and ei for i ∈ T depend on the input group G. These
parameters can be read from the full matrix of coordinates representing G (recall that πi
denotes the column index of the i-th pivot): T = {πi | i ∈ {1, . . . , n}} (all columns which
have a pivot) and ei = αji if πj = i . As an immediate consequence of Theorem 5, we obtain:

I Corollary 6. Let c, r ≥ 1 be fixed. The uniform, binary version of the word problem for
groups in Nc,r is TC0-complete (where the input is given as in Theorem 5).

The proof of Theorem 5 follows the outline given in Section 1.2; however, we cannot apply
the rules (2)–(3) one by one. Instead we do only two steps for each generator: first apply all
possible rules (3) in one step and then apply the rules (2) in one step.

Proof of Theorem 5. The hardness part is clear since already the word problem of Z is
TC0-complete. For describing a TC0 circuit, we proceed by induction along the standard
Mal’cev basis (a1, . . . , am) of the free nilpotent group Fc,r. If w does not contain any letter
a1, we have y1 = 0 and we can compute yi for i > 1 by induction.

MFCS 2017
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Otherwise, we rewrite w as ay1
1 uv (with 0 ≤ y1 < e1 if 1 ∈ T ) such that u and v are

words with binary exponents not containing any a1s. Once this is completed, uv can be
rewritten as ay2

2 · · · aymm by induction. For computing y1, u and v, we proceed in two steps:
First, we rewrite w as aỹ1

1 v with ỹ1 =
∑
wi=a1

xi (this is possible by Lemma 2 (iii)).
The exponent ỹ1 can be computed by iterated addition, which by Theorem 1 is in TC0 (in
the unary case ỹ1 can be written down in unary). Now, v consists of what remains from
w after a1 has been “eliminated”: for every position i in w with wi 6= a1, we compute
zi =

∑
j>i

wj=a1
xj using iterated addition. Let wi = ak. By Lemma 2 (i) there are fixed

polynomials pk,k+1, . . . , pk,m ∈ Z[x, y] such that in the free nilpotent group holds axka
y
1 =

ay1a
x
k a

pk,k+1(x,y)
k+1 · · · apk,m(x,y)

m for all x, y ∈ Z. Hence, in order to obtain w̃, it remains to
replace every wxii with wi = a1 by the empty word and every wxii with wi = ak 6= a1 by
axik a

pk,k+1(xi,zi)
k+1 · · · apk,m(xi,zi)

m , which is a word with binary exponents (resp. as a word of
polynomial length in the unary case), for k = 2, . . . ,m. The exponents can be computed
in TC0 by Theorem 1. Since the pk,i are bounded by polynomials, in the unary case,
axik a

pk,k+1(xi,zi)
k+1 · · · apk,m(xi,zi)

m can be written as a word without exponents.
The second step is only applied if 1 ∈ T (as explained above, this can be decided and

ei can be read directly from the quotient presentation by checking whether there is a pivot
in the first column) – otherwise y1 = ỹ1 and u is the empty word. We rewrite aỹ1

1 to ay1
1 u

with y1 = ỹ1 mod e1 and a word with binary exponents u not containing any a1. Again y1
can be computed in TC0 by Theorem 1. Let ae1

1 = aµ12
2 · · · aµ1m

m be the power relation for a1
(which can be read from the quotient presentation – it is just the row where the pivot is in
the first column) and write ỹ1 = s · e1 + y1. Now, u should be equal to (aµ12

2 · · · aµ1m
m )s in

Fc,r. We use the fixed polynomials qi ∈ Z[x1, . . . , xm, z] from Lemma 2 (ii) for Fc,r yielding
u = a

q2(0,µ12,...,µ1m,s)
2 · · · aqm(0,µ12,...,µ1m,s)

m (which, in the binary setting, is a word with binary
exponents, and in the unary setting a word without exponents of polynomial length). Now,
we have w = ay1

1 uv in G as desired. J

4 Matrix reduction and subgroup membership problem

Before we solve the subgroup membership problem, let us take a look at one essential step,
namely the problem of computing greatest common divisors. Indeed, consider the nilpotent
group Z and let a, b, c ∈ Z. Then c ∈ 〈a, b〉 if, and only if, gcd(a, b) | c.

Binary gcds. The extended gcd problem (ExtGCD) is the following problem: on input of
binary encoded numbers a1, . . . , an ∈ Z, compute x1, . . . , xn ∈ Z such that x1a1+· · ·+xnan =
gcd(a1, . . . , an). Clearly this can be done in P using the Euclidean algorithm, but it is not
known whether it is actually in NC. Since we need to compute greatest common divisors, we
will reduce the subgroup membership problem to the computation of gcds.

Unary gcds. Computing the gcd of numbers encoded in unary is straightforward in TC0 by
an exhaustive search. Also, for just two numbers a, b ∈ Z the gcd easily can be expressed as a
linear combination in TC0: there are x, y ≤ max {|a| , |b|} such that ax+ by = gcd(a, b). Now,
x, y can be computed in TC0 by simply checking all values with |x| , |y| ≤ max {|a| , |b|}. Sim-
ilarly, there are x1, . . . , xn ≤ |max{|a1|, . . . , |an|}| with x1a1 + · · ·+ xnan = gcd(a1, . . . , an).
However, for computing these xi, we cannot check all possible combinations of values in TC0

because there are |max{|a1|, . . . , |an|}|n (i. e., exponentially) many. Expressing the gcd as a
linear combination can be viewed as a linear equation with integral coefficients. Recently,
in [5, Thm. 3.14] it has been shown that, if all the coefficients are given in unary, it can be
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decided in TC0 whether such an equation or a system of a fixed number of equations has
a solution. Since from the proof of [5, Thm. 3.14] it is not obvious how to find an actual
solution, we prove the following result in our full version on arXiv [21]:

I Proposition 7. The following problem is in TC0: Given integers a1, . . . , an in unary, com-
pute x1, . . . , xn ∈ Z (either in unary or binary) such that x1a1 + · · ·+xnan = gcd(a1, . . . , an)
and |xi| ≤ (n+ 1) (max{|a1|, . . . , |an|})2.

Matrix reduction. The matrix reduction procedure converts an arbitrary matrix of coordi-
nates into its full form and, thus, is an essential step for solving the subgroup membership
problem and several other problems. It was first described in [24] – however, without a
precise complexity estimate. In this section, we repeat the presentation from [16] and show
that for fixed c and r, it can be actually computed uniformly for groups in Nc,r in TC0 – in
the case that the inputs are given in unary (as words). If the inputs are represented as words
with binary exponents, then we still can show that it is TC0-Turing-reducible to ExtGCD.
In Section 2, we defined the matrix representation of subgroups of nilpotent groups. We
adopt all notation from Section 2.

As before, let c, r ∈ N be fixed and let (a1, . . . , am) be the standard Mal’cev basis of Fc,r.
Let G ∈ Nc,r be given as quotient presentation, i. e., as a matrix in full form (either with
unary or binary coefficients). We define the following operations on tuples (h1, . . . , hn) (our
subgroup generators) of elements of G and the corresponding operations on the associated
matrix, with the goal of converting (h1, . . . , hn) to a sequence in full form generating the
same subgroup H = 〈h1, . . . , hn〉:
1. Swap hi with hj . This corresponds to swapping row i with row j.
2. Replace hi by hihlj (i 6= j, l ∈ Z). This corresponds to replacing row i by Coord(hihlj).
3. Add or remove a trivial element from the tuple. This corresponds to adding or removing

a row of zeros; or (3’) a row of the form (0 . . . 0 ei αi+1 . . . αm), where i ∈ T and
a−eii = a

αi+1
i+1 · · · aαmm .

4. Replace hi with h−1
i . This corresponds to replacing row i by Coord(h−1

i ).
5. Append an arbitrary product hl1i1 · · ·h

lk
ik

with i1, . . . , ik ∈ {1, . . . , n} and l1, . . . , lk ∈ Z to
the tuple: add a new row with Coord(hl1i1 · · ·h

lk
ik

).
Clearly, all these operations preserve H.

I Lemma 8. On input of a quotient presentation of G ∈ Nc,r in unary (resp. binary) and
a matrix of coordinates A given in unary (resp. binary), operations (1)–(5) can be done in
TC0. The output matrix will be also encoded in unary (resp. binary). For operations (2) and
(5), we require that the exponents l, l1, . . . , lk are given in unary (resp. binary).

Moreover, as long as the rows in the matrix which are changed are pairwise distinct, a
polynomial number of such steps can be done in parallel in TC0.

Proof. Operations (1) and (3), clearly can be done in TC0. Notice that operation (3’) means
simply that a row of the quotient presentation of G is appended to the matrix.

In the unary case, it follows directly from Theorem 5 that operations (2), (4), and (5) are
in TC0 because, since l, l1, . . . , lk are given in unary, the respective group elements can be
written down as words.

In the case of binary inputs, (5) works as follows ((2) and (4) analogously): by Lemma 2
(ii), there are functions q1, . . . , qm ∈ Z[x1, . . . , xm, z] such that for every h ∈ Fc,r with
Coord(h) = (γ1, . . . , γm) anda l ∈ Z, we have Coordi(hl) = qi(γ1, . . . , γm, l) in Fc,r. These
functions can be used to compute Coord(hljij ) for j = 1, . . . , k. After that, hl1i1 · · ·h

lk
ik

can be
written down as word with binary exponents and Theorem 5 can be applied. J
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Using the row operations defined above, in [16] it is shown how to reduce any coordinate
matrix to its unique full form. Let us repeat these steps:

Let A0 be a matrix of coordinates, as in (4) in Section 2. Recall that πk denotes the
column index of the k-th pivot (of the full form of A0). We produce matrices A1, . . . , As,
where s is the number of pivots in the full form of A0, such that for every k = 1, . . . , s
the first πk columns of Ak form a matrix satisfying conditions 2-5 of being a full sequence,
condition 6 is satisfied for all i < πk+1, and As is the full form of A0. Here we formally
denote πs+1 = m + 1. Set π0 = 0 and assume that Ak−1 has been constructed for some
k ≥ 1. In the steps below we construct Ak. We let n and m denote the number of rows
and columns, respectively, of Ak−1. At all times during the computation, hi denotes the
group element corresponding to row i of Ak and αij denotes the (i, j)-entry of Ak, which is
Coordj(hi). These may change after every operation.
Step 1. Locate the column πk of the next pivot, which is the minimum integer πk−1 < πk ≤ m

such that αiπk 6= 0 for at least one k ≤ i ≤ n. If no such integer exists, then k−1 = s and
As is already constructed. Otherwise, set Ak to be a copy of Ak−1 and denote π = πk.
Compute a linear expression of d = gcd(αkπ , . . . , αnπ) = lkαkπ + · · ·+ lnαnπ . Let hn+1 =
hlkk · · ·hlnn and note that hn+1 has coordinates of the form Coord(hn+1) = (0, . . . , 0, d, . . .)
with d occurring in position π. Perform operation 5 to append hn+1 as row n+ 1 of Ak.

Step 2. For each i = k, . . . , n, perform operation 2 to replace row i by Coord(hi · h
−αiπ/d
n+1 ).

and for each i = 1, . . . , k − 1, use 2 to replace row i by Coord(hi · h
−bαiπ/dc
n+1 ). After that,

swap row k with row n + 1 using 1. At this point, properties 2-4 hold on the first k
columns of Ak.

Step 3. If π ∈ T , we additionally ensure condition 5 as follows. Perform row operation (3’),
with respect to π, to append a trivial element hn+2 with Coord(hn+2) = (0, . . . , 0, eπ , . . .)
to Ak. Let δ = gcd(d, eπ) and compute the linear expression δ = n1d + n2eπ , with
|n1|, |n2| ≤ max{d, eπ}. Let hn+3 = hn1

k h
n2
n+2 and append this row to Ak, as row n+ 3.

Note that Coord(hn+3) = (0, . . . , 0, δ, . . .), with δ in position π. Replace row k by
Coord(hk · h−d/δn+3 ) and row n + 2 by Coord(hn+2 · h

−eπ/δ
n+3 ), producing zeros in column

π in these rows. Swap row k with row n + 3. At this point, 2, 3, and 5 hold (for the
first πk columns) but 4 need not, since the pivot entry is now δ instead of d. For each
j = 1, . . . , k − 1, replace row j by Coord(hj · h

−bαjπ/δc
k ), ensuring 4.

Step 4. Identify the next pivot πk+1 (like in Step 1). If πk is the last pivot, we set πk+1 =
m + 1. We now ensure condition 6 for i < πk+1. Observe that Steps 1-3 preserve
〈hj | πj ≥ i 〉 for all i < πk. Hence 6 holds in Ak for i < πk since it holds in Ak−1 for the
same range. Now consider i in the range πk ≤ i < πk+1. It suffices to establish (vi.i) for all
j > k and (vi.ii) for πk only. To obtain (vi.i), notice that h−1

k hjhk, hkhjh
−1
k ∈ 〈h` | ` > k 〉

if, and only if, [hj , h±1
k ] ∈ 〈h` | ` > k 〉. Further, note that the subgroup generated by

Sj = {1, hj , [hj , hk], . . . , [hj , hk, . . . , hk]}, where hk appears m − πk times in the last
commutator, is closed under commutation with hk since if hk appears more than m− πk
times then the commutator is trivial. An inductive argument shows that the subgroup
〈Sj〉 coincides with 〈h−`k hjh

`
k | 0 ≤ ` ≤ m− πk〉. Similar observations can be made for

conjugation by h−1
k . Therefore, appending via operation 5 rows Coord(h−`k hjh

`
k) for all

1 ≤ |`| ≤ m − πk and all k < j ≤ n + 3 delivers (vi.i) for all j > k. Note that (vi.i)
remains true for i < πk.
To obtain (vi.ii), in the case πk ∈ T , we add row Coord(hek/αkπkk ). Note that this element
commutes with hk and therefore (vi.i) is preserved.

Step 5. Using operation 3, eliminate all zero rows. The matrix Ak is now constructed.
We have to show that each step can be performed in TC0 given that all Mal’cev coordinates
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are encoded in unary (resp. in TC0(ExtGCD) if Mal’cev coordinates are encoded in binary).
Since the total number of steps is constant (only depending on the nilpotency class and
number of generators), this gives a TC0 (resp. TC0(ExtGCD)) circuit for computing the
full form of a given subgroup.
Step 1. The next pivot can be found in TC0 since it is simply the next column in the matrix

with a non-zero entry, which can be found as a simple Boolean combination of test
whether the entries are zero. In the unary case, by Proposition 7, d = gcd(αkπ , . . . , αnπ)
can computed in TC0 together with lk, . . . , ln encoded in unary such that d = lkαkπ +
· · ·+ lnαnπ . Now, by Lemma 8, Step 1 can be done in TC0.
In the binary case, d and lk, . . . , ln can be computed using ExtGCD. Hence, by Lemma 8,
Step 1 can be done in TC0(ExtGCD).

Step 2. The numbers bαiπ/dc (either in unary or binary) can be computed in TC0 for all
i in parallel by Theorem 1. After that one operation (2) is applied to each row of the
matrix. By Lemma 8, this can be done in parallel for all rows in TC0. Finally, swapping
rows k and n+ 1 can be done in TC0.

Step 3. As explained in Section 3, T and ei for i ∈ T can be read directly from the
quotient presentation. Thus, it can be decided in TC0 whether Step 3 has to be executed.
Appending a new row is in TC0. Computing gcd(d, eπ) = d = n1dn2eπ is in TC0 by
Proposition 7 (in the unary case) and in TC0(ExtGCD) in the binary case. After that
one operation (5) is followed by two operations (2), one operation (1), and, finally, k − 1
times operation (2), which all can be done in TC0 again by Lemma 8.

Step 4. The next pivot can be found in TC0 as outlined in Step 1. After that, Step 4 consists
of an application of a constant number (only depending on the nilpotency class and
number of generators) of operations (5) and thus, by Lemma 8, is in TC0.

Step 5. Clearly that is in TC0.
Thus, we have completed the proof of our main result:

I Theorem 9. Let c, r ∈ N be fixed. The following problem is in TC0: given a unary encoded
quotient presentation of G ∈ Nc,r and h1, . . . , hn ∈ G, compute the full form of the associated
matrix of coordinates encoded in unary and hence the unique full-form sequence (g1, . . . , gs)
generating 〈h1, . . . , hn〉. Moreover, if the G and h1, . . . , hn are given in binary, then the
full-form sequence with binary coefficients can be computed in TC0(ExtGCD).

Subgroup membership problem. As an easy application of the matrix reduction we can
solve the subgroup membership problem in TC0 – for a proof details see [21].

I Corollary 10. Let c, r ∈ N be fixed. The following problem is in TC0 (resp. TC0(ExtGCD)
for binary inputs): given a quotient presentation of G ∈ Nc,r, elements h1, . . . , hn ∈ G and
h ∈ G, decide whether or not h is an element of the subgroup H = 〈h1, . . . , hn〉.

Moreover, if h ∈ H, the circuit computes the unique expression h = gγ1
1 · · · gγss where

(g1, . . . , gs) is the full-form sequence for H with the γi encoded in unary (resp. binary).
Alternatively, for unary inputs, the output can be given as word h = hε1

i1
· · ·hεtit where

ij ∈ {1, . . . , n} and εj = ±1.

Note that we do not know whether there is an analog of the second type of output for binary
inputs. A possible way of expressing the output would be as a word with binary exponents
over h1, . . . , hn. However, simply applying the same procedure as for unary inputs will not
lead to a word with binary exponents.
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Subgroup presentations. The full-form sequence associated to a subgroup H forms a
Mal’cev basis for H. This allows us to compute a consistent nilpotent presentation for H.
Note, however, that the resulting presentation is not a quotient presentation (although it can
be transformed into one, see Proposition 14) – partly this is due to the fact that, in general,
H /∈ Nc,r. The following is the TC0 version of [16, Thm. 3.11]:

I Corollary 11. Let c, r ∈ N be fixed. The following is in TC0 for unary inputs and in
TC0(ExtGCD) for binary inputs:

Input: a quotient presentation for G ∈ Nc,r and elements h1, . . . , hn ∈ G.
Output: a consistent nilpotent presentation for H = 〈h1, . . . , hn〉 given by a list of

generators (g1, . . . , gs) and numbers µij , αijk, βijk ∈ Z encoded in unary (resp. binary) for
1 ≤ i < j < k ≤ s representing the relations (2)-(3).

5 More algorithmic problems

The next two theorems are applications of Theorem 9. Their proofs (in [21]) follow essentially
the proofs of their counterparts Theorems 4.1 and 4.6 in [16].

I Theorem 12 (Kernels and preimages). Let c, r ∈ N be fixed. The following is in TC0 for
unary inputs and in TC0(ExtGCD) for binary inputs: On input of

G,H ∈ Nc,r given as quotient presentations,
a subgroup K = 〈g1, . . . , gn〉 ≤ G,
a list of elements h1, . . . , hn defining a homomorphism ϕ : K → H via ϕ(gi) = hi, and
optionally, an element h ∈ H guaranteed to be in the image of ϕ,

compute a generating set X for the kernel of ϕ, and an element g ∈ G such that ϕ(g) = h.
In case of unary inputs, X and g will be returned as words, and for binary inputs, as

words with binary exponents.

I Theorem 13 (Conjugacy Problem). Let c, r ∈ N be fixed. The following is in TC0 for
unary inputs and in TC0(ExtGCD) for binary inputs: On input of some G ∈ Nc,r given as
quotient presentation and elements g, h ∈ G, either produce some u ∈ G such that g = u−1hu,
or determine that no such element u exists. In case of unary inputs, u will be returned as a
word, for binary inputs, as a word with binary exponents.

Computing quotient presentations. The results in the previous sections always required
that the group is given as a quotient presentation. However, we can use Theorem 9 to
transform an arbitrary presentation with at most r generators of a group in Nc,r into a
quotient presentation. For a proof see [21].

I Proposition 14. Let c and r be fixed integers. The following is in TC0: given an arbitrary
finite presentation with generators a1, . . . , ar of a group G ∈ Nc,r (as a list of relators given
as words over {a1, . . . , ar}±1), compute a quotient presentation of G (encoded in unary) and
an explicit isomorphism. Moreover, if the relators are given as words with binary exponents,
then the binary encoded quotient presentation can be computed in TC0(ExtGCD).

I Remark. Because of Proposition 14, in all theorems above where the input is a quotient
presentation, we can also take an arbitrary r-generated presentation of a group in Nc,r as
input. However, be aware that for the word problem (Theorem 5 and Corollary 6) the
complexity changes from TC0 to TC0(ExtGCD) in the binary case.
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Conclusion and Open Problems. We have seen that most problems which in [16] were
shown to be in LOGSPACE indeed are in TC0 even in the uniform setting where the number of
generators and nilpotency class is fixed. Moreover, their binary versions are in TC0(ExtGCD)
meaning that nilpotent groups are no more complicated than abelian groups in many
algorithmic aspects. This contrasts with the slightly larger class of polycyclic groups: there
the word problem is still in TC0 [23, 12], but the conjugacy problem is not even known to be
in NP. We conclude with some possible generalizations of our results:

Does a uniform version of Theorem 5 hold (i. e., is the uniform word problem still in TC0)
for fixed nilpotency class but an arbitrary number of generators? What happens to the
complexity if also the nilpotency class is part of the input? Note that in that case it is
even not clear whether the word problem is still in polynomial time.
Is there a way to solve the conjugacy problem for nilpotent groups with binary exponents
in TC0? Notice that we needed to compute gcds to solve the subgroup membership
problem. However, the conjugacy problem might be solved using another method.
What is the complexity of the uniform conjugacy problem with arbitrary nilpotency class?
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