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Abstract
The longest common extension (LCE) problem is to preprocess a given string w of length n so
that the length of the longest common prefix between suffixes of w that start at any two given
positions is answered quickly. In this paper, we present a data structure of O(zτ2 + n

τ ) words
of space which answers LCE queries in O(1) time and can be built in O(n log σ) time, where
1 ≤ τ ≤

√
n is a parameter, z is the size of the Lempel-Ziv 77 factorization of w and σ is

the alphabet size. The proposed LCE data structure does not access the input string w when
answering queries, and thus w can be deleted after preprocessing. On top of this main result, we
obtain further results using (variants of) our LCE data structure, which include the following:

For highly repetitive strings where the zτ2 term is dominated by n
τ , we obtain a constant-time

and sub-linear space LCE query data structure.
Even when the input string is not well compressible via Lempel-Ziv 77 factorization, we still
can obtain a constant-time and sub-linear space LCE data structure for suitable τ and for
σ ≤ 2o(logn).
The time-space trade-off lower bounds for the LCE problem by Bille et al. [J. Discrete Al-
gorithms, 25:42-50, 2014] and by Kosolobov [CoRR, abs/1611.02891, 2016] do not apply in
some cases with our LCE data structure.
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1 Introduction

1.1 The LCE problem
The longest common extension (LCE) problem is to preprocess a given string w of length n so
that the length of the longest common prefix of suffixes of w starting at two query positions is
answered quickly. The LCE problem often appears as a sub-problem of many different string
processing problems, e.g., approximate pattern matching [35, 17], string comparison [34],
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10:2 Small-Space LCE Data Structure with Constant-Time Queries

and finding string regularities such as maximal repetitions (a.k.a. runs) [30, 1], distinct
squares [22, 2], gapped repeats [11, 31, 18, 14], palindromes and gapped palindromes [21, 29,
39], and 2D palindromes [20].

A well known solution to the LCE problem is achieved by the suffix tree [47] augmented
with a constant-time linear-space longest common ancestor (LCA) data structure [23, 3], or
equivalently the inverse suffix array (ISA) and longest common prefix (LCP) array augmented
with a constant-time range minimum query (RMQ) data structure [37, 3]. Either combination
uses O(n) words of space, answer LCE queries in O(1) time, and can be constructed using
O(n) words of working space, in O(n) time for integer alphabets or in O(n log σ) time for
general ordered alphabets of size σ. The O(n) space requirements, however, can be prohibitive
for massive text, and hence the main focus of recent research has been on more space-efficient
solutions with trade-offs for query time.

1.2 Space-efficient LCE data structures

In this paper, we will call data structures that use o(n) words, or equivalently o(n logn) bits
as sub-linear space data structures. Bille et al. [9] proposed the first sub-linear space LCE
query data structure which occupies O(nτ ) words of space, answers LCE queries in O(τ2)
time, and can be built in O(n

2

τ ) time using O(nτ ) words of working space, for parameter
range 1 ≤ τ ≤

√
n. Bille et al. [8] developed an improved sub-linear space data structure

which occupies O(nτ ) words of space, answers LCE queries in O(τ) time, and can be built
in O(n 3

2 ) expected time using O(nτ ) words of working space, or in O(n2+ε) time using O(nτ )
words of working space for parameter 1 ≤ τ ≤ n, where 0 < ε < 1. Tanimura et al. [45]
proposed an LCE data structure of O(nτ ) words of space, which can be built in faster O(nτ)
time using O(nτ ) words of working space, but takes slower O(τ log min{τ, nτ }) time for LCE
queries, for parameter 1 ≤ τ ≤ n. All of these sub-linear space LCE data structures need to
access to the input string when answering queries. Therefore, these data structures require
extra ndlog σe bits of space for storing the input string. An in-place LCE data structure
based on fingerprints was recently proposed [42].

There also exist compressed LCE data structures which store a compressed form of the
input string represented as a straight-line program (a.k.a. grammar-based text compres-
sion) [41, 25, 6, 7, 24]. For compressible strings, the space usage of these data structures can
be sub-linear.

1.3 Our LCE data structure

This paper proposes the first O(1)-time LCE data structure which takes sub-linear space in
several reasonable cases, namely, when the string is compressible, and/or, when the alphabet
size is suitably small. Our data structure has both flavours of sub-linear space and compressed
LCE data structures. Namely, for parameter 1 ≤ τ ≤

√
n, we present an LCE data structure

which takes O(zτ2 + n
τ ) words of space, answers LCE queries in O(1) time, and can be

built in O(n log σ) time for general ordered alphabets of size σ using O(zτ2 + n
τ ) words of

working space, where z is the size of the Lempel-Ziv 77 factorization [48] of the input string.
It is known that z is a lower bound on the size of any grammar-based compression of the
string [44], and can be very small for highly repetitive strings. In such cases where the zτ2

term is dominated by n
τ , our LCE data structure uses sub-linear space. An interesting feature

is that we do not actually compress the input string, i.e., do not compute the Lempel-Ziv 77
factorization, but we construct a data structure whose size is bounded by O(zτ2 + n

τ ).



Y. Tanimura et al. 10:3

Table 1 Deterministic LCE query data structures. n is the length of the input string, σ is the
alphabet size, z is the size of the Lempel-Ziv 77 factorization of w, l is the length of the LCE, ω
is the machine word size, ε > 0 is an arbitrarily small constant, and τ is a trade-off parameter
(† : 1 ≤ τ ≤ n, � : 1 ≤ τ ≤

√
n). ISA+ consists of the inverse suffix array of w, the LCP array and

the RMQ data structure. ? is valid for ω = Θ(logn) and σ ≤ 2o(logn).

Data structure Preprocessing Ref
Space (bits) Query Time Working space Construction time
O(ω) O(n) O(ω) - naïve
O(nω) O(1) O(nω) O(n) ISA+
ndlog σe+O(nω

τ
) O(τ2) O(nω

τ
) O(n2/τ) � [9]

ndlog σe+O(nω
τ

) O(τ) O(nω
τ

) O(n3/2) exp. † [8](1)
ndlog σe+O(nω

τ
) O(τ) O(nω

τ
) O(n2+ε) † [8](2)

ndlog σe+O(nω
τ

) O(τ log min{τ, n
τ
}) O(nω

τ
) O(nτ) † [45]

ndlog σe+O(ω logn) O(log l) O(ω logn) O(n logn) exp. [42]
O(zω logn log∗ n) O(logn log∗ n) O(zω logn log∗ n) O(n log σ) [41],[25]
O(zω log n

z
) O(logn) O(nω) O(n) [24]

O(zω log n
z

) O(logn) O(n log σ + zω log n
z

) O(n log log σ + z log2 n
z

) [24]+[32]
O((zτ2 + n

τ
)ω) O(1) O((zτ2 + n

τ
)ω) O(n log σ) � ours

O(z1/3n2/3ω) O(1) O(z1/3n2/3ω) O(n log σ logn) ours
o(n logn) O(1) o(n logn) o(n log2 n) ? ours
O(
√
nzω) O(

√
n
z

) O(
√
nzω) O(n log σ logn) ours

Even when the input string is not well compressible via Lempel-Ziv 77, for suitably
small alphabets, we can build a sub-linear space LCE data structure with O(1) query time
using appropriate values of τ . By choosing τ = (nz ) 1

3 , our LCE query data structure takes
O(z 1

3n
2
3 ) words of space, which translates to O(n/(logσ n) 1

3 ) using the well-known fact
that z = O(n/ logσ n) (e.g. [26]). This means that our data structure can be stored in
O(n logn/(logσ n) 1

3 ) = O(n(logn) 2
3 (log σ) 1

3 ) bits of space. This implies that for alphabets
of size σ ≤ 2o(logn) (note that these contain polylogarithmic alphabets), our data structure
takes only o(n logn) bits of space, yet answers LCE queries in O(1) time. Also, our LCE
data structure does not access the input string when answering queries, and hence the input
string does not have to be kept. To our knowledge, this is the first sub-linear space LCE
data structure for strings which are not well compressible with Lempel-Ziv 77.

The key to our efficient LCE query data structure is a hybrid use of the truncated suffix
trees [38] and block-wise LCE queries based on t-covers [43, 9]. The q-truncated suffix tree
of a string w is the compact trie (a.k.a. Patricia tree) which represents all substrings of
w of length at most q. We observe that, for any 1 ≤ q ≤ n, the q-truncated suffix tree
can be stored in O(zq) words of space, including a string to which the edges label pointers
refer. We also show that the block-wise LCE query data structure based on t-covers can be
efficiently built by the t-truncated suffix tree, leading to our result. Several variants of our
data structure are considered, as summarized in Table 1.

The rest of this paper is organized as follows. Section 2 gives some definitions and
introduces tools which will be used as building-blocks of our LCE data structure. In Section 3
we propose our new LCE data structure and analyze its time/space complexities. In Section 4
we review some lower bounds on the LCE problem and show that using our LCE data
structure, these lower bounds do not apply in some cases. We conclude in Section 5.

MFCS 2017



10:4 Small-Space LCE Data Structure with Constant-Time Queries

2 Preliminaries

2.1 Notations
Let Σ be an ordered alphabet of size σ. Each element of Σ∗ is called a string. The length
of a string w is denoted by |w|. The empty string ε is the string of length zero, namely
|ε| = 0. If w = xyz for some strings w, x, y, z, then x, y, and z are respectively called a prefix,
substring, and suffix of w. For any 1 ≤ i ≤ |w|, let w[i] denote the ith character of w. For
any 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at position i and ends
at position j, namely, w[i..j] = w[i] · · ·w[j]. A string of length q is called a q-gram. For any
1 ≤ q ≤ |w|, let Substrq(w) denote the set of all q-grams occurring in w and the q− 1 suffixes
of w of length shorter than q, namely, Substrq(w) = {w[i..min{i+ q − 1, |w|}] | 1 ≤ i ≤ |w|}.

For any string w, let LCEw(i, j) denote the length of the longest common prefix of
w[i..|w|] and w[j..|w|]. We will write LCE(i, j) when w is clear from the context. Since
LCEw(i, i) = |w| − i, we will only consider the case when i 6= j. For any integers i ≤ j, let
[i..j] denote the set of integers from i to j (including i and j).

The Lempel-Ziv 77 factorization with self-references [48] of a string w is a sequence
LZ(w) = f1, . . . , fz of z non-empty substrings of w such that w = f1 · · · fz and for 1 ≤ i ≤ z,

fi = w[|f1 · · · fi−1|+ 1] ∈ Σ if s[|f1 · · · fi−1|+ 1] is a character not occurring in f0 · · · fi−1,
fi is the longest prefix of fi · · · fz such that fi is a substring of w beginning at a position
in range [1..|f1 · · · fi−1|],

where f0 = ε. The size of LZ(w) is the number z of factors f1, . . . , fz, and is denoted
as |LZ(w)| = z. For instance, for string w = abababcabababcabababcd of length 22,
LZ(w) = a, b, abab, c, abababcabababc, d and |LZ(w)| = 6.

Our model of computation is a standard word RAM with machine word size ω ≥ logn.
The space requirements will be evaluated by the number of words unless otherwise stated.

2.2 Tools
We will use the following tools as building blocks of our LCE data structure.

t-covers. For any positive integer t, a set D ⊆ [0..t − 1] is called a t-difference-cover if
[0..t− 1] = {(x− y) mod t | x, y ∈ D}, namely, every element in [0..t− 1] can be expressed by
a difference between two elements in D modulo t. For any positive integer n, a set S ⊆ [1..n]
is called a t-cover of [1..n] if S = {i ∈ [1..n] | (i mod t) ∈ D} with some t-difference-cover
D, and there is a constant-time computable function h(i, j) that for any 1 ≤ i, j ≤ n − t,
0 ≤ h(i, j) ≤ t and i+ h(i, j), j + h(i, j) ∈ S.

I Lemma 1 ([36]). For any integer t, there exists a t-difference-cover D(t) of size O(
√
t)

which can be computed in O(
√
t) time.

I Lemma 2 ([12]). For any integer t (≤ n), there exists a t-cover of size O( n√
t
) which can

be computed in O( n√
t
) time.

In what follows, we will denote by S(t) an arbitrary t-cover of [1..n] which satisfies the
conditions of Lemma 2. See Figure 1 for an example of a t-cover S(t).

Truncated suffix trees. For convenience, we assume that any string w ends with a special
end-marker $ that appears nowhere else in w. Let n = |w|. For any 1 ≤ q ≤ n, the q-truncated
suffix tree of w, denoted q-TST(w), is a Patricia tree which represents Substrq(w). Namely,
q-TST(w) is an edge-labeled rooted tree such that: (1) Each edge is labeled with a non-empty
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h(3,12) = 4 h(3,12) = 4 

5 

Figure 1 Let t = 5 and D = {1, 2, 4}. This figure shows an example of a 5-cover S(5) =
{1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 17, 19}. The black dots represent the elements in S(5). For instance, we
have h(3, 12) = 4, namely, 3 + 4, 12 + 4 ∈ S(5).

a $ 

a 

b 

$ a 

$ 

b 

a 

a 
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a 

b b a b 
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$ 

a 

Figure 2 5-TST(w) with string w = baabbaabbaaabbaabba$.

substring of w; (2) Each internal node v has at least two children, and the labels of the out
edges of v begin with distinct characters; (3) For any leaf u, there is at least one position
1 ≤ i ≤ n such that w[i..min{i+ q − 1, n}] is the string obtained by concatenating the edge
labels from the root to u; (4) For any position 1 ≤ i ≤ n in w, there is a unique leaf u such
that w[i..min{i+ q − 1, n}] is the string obtained by concatenating the edge labels from the
root to u.

Informally speaking, q-TST(w) can be obtained by trimming the full suffix tree of w so
that any path from the root represents a substring of length at most q. Clearly, the number
of leaves in q-TST(w) is equal to |Substrq(w)|. We assume that the leaves of q-TST(w) are
sorted in lexicographical order. Figure 2 shows an example of a q-TST(w). For any node u
of q-TST(w), str(u) denotes the string spelled out by the path from the root to u.

In the case of the full suffix tree (n-TST(w)) of string w of length n, each edge label x is
represented by a pair (i, j) of positions in w such that x = w[i..j]. We call w as the reference
string for the full suffix tree, and this way the full suffix tree can be stored in O(n) space.
For q-TST(w), Vitale et al. [46] showed how to represent q-TST(w) in O(|Substrq(w)|) space,
including the reference string, and how to construct them efficiently, both in time and space.

I Lemma 3 ([46]). Let w be any string of length n over an ordered alphabet of size σ. For
any 1 ≤ q ≤ n, let y = |Substrq(w)|. Then, there exists a reference string w′ of length O(y)
for q-TST(w). Moreover, q-TST(w) with the leaves sorted in lexicographical order, and a
reference string w′ can be constructed in O(n log σ) time with O(y) working space.

We also show the following lemma.

I Lemma 4. q-TST(w) can be represented in O(zq) space, where z = |LZ(w)|.

Proof. By Lemma 3, it suffices to show that |Substrq(w)| = O(zq). For each q-gram
p ∈ Substrq(w), let loccw(p) be the beginning position of the leftmost occurrence of p in w.
If q = 1, then clearly |Substr1(w)| ≤ z and hence the lemma holds. If q ≥ 2 then the interval
[loccw(p)..loccw(p) + q − 1] must cross the boundary of two adjacent factors of LZ(w), since
otherwise the interval is completely contained in a single factor of LZ(w) but this contradicts
that [loccw(p)..loccw(p) + q − 1] is the leftmost occurrence of p in w. Clearly, the maximum

MFCS 2017



10:6 Small-Space LCE Data Structure with Constant-Time Queries

number of q-grams that can cross a boundary of LZ(w) is q − 1. Hence, the total number of
distinct q-grams in w is O(zq). Also, Substrq(w) contains q substrings w[n− q + 1], . . . , w[n]
of w which are shorter than q. Overall, we obtain |Substrq(w)| = O(zq). J

The next theorem follows from Lemmas 3 and 4 and an obvious fact that |Substrq(w)| ≤ n.

I Theorem 5. Given a string w of length n over an ordered alphabet of size σ and integer
1 ≤ q ≤ n, we can construct an O(min{zq, n})-space representation of q-TST(w) in O(n log σ)
time with O(min{zq, n}) working space.

In what follows, we will only consider interesting cases where zq < n for a given 1 ≤ q ≤ n,
and will simply use O(zq) to denote the size of q-TST(w).

3 Our LCE data structure

3.1 Overview of our algorithm
The general framework of our space-efficient LCE algorithm follows the approach of Gawry-
chowski et al.’s LCE algorithm for strings over a general ordered alphabet [19]. Namely, we
compute LCE(i, j) using the two following types of queries:

ShortLCEt(i, j) = min(LCE(i, j), t),

LongLCEt(i, j) =
{
bLCE(i, j)/tc if i, j ∈ S(t),
⊥ otherwise.

LCE(i, j) is computed in the following manner. Let δ = h(i, j). Recall that δ ≤ t can be
computed in constant time and that i+ δ, j + δ ∈ S(t). First, we compare up to the first δ
characters of w[i..|w|] and w[j..|w|] using ShortLCEt(i, j). If l1 = ShortLCEt(i, j) is shorter
than t, then LCE(i, j) = l1. If l1 = t, then LCE(i, j) is at least t long. To check if it further
extends, we compute l2 = LongLCEt(i+ δ, j + δ), and l3 = ShortLCEt(i+ δ + l2, j + δ + l2).
Finally, we get LCE(i, j) = δ + t · l2 + l3. See also Figure 3.

The main difference between Gawrychowski et al.’s method and ours is in how to compute
ShortLCEt(i, j). While they use a Union-Find structure that takes O(n) working space
(for O(n) queries) as a main tool, we use an augmented 2t-TST(w) for Substr2t(w) which
occupies O(zt+ n√

t
) total space, answers ShortLCEt(i, j) queries in O(1) time, and can be

constructed in O(n log σ) time with O(zt) working space. How to answer LongLCEt(i, j)
queries is equivalent to Gawrychowski et al.’s, namely, we sample the positions from S(t) so
that LCE queries for these sampled positions can be answered in O(1) time. We show how
to build the data structure for LongLCEt(i, j) queries by using t-TST(w) for Substr t(w) in
O(n log σ) time with O(zt) working space.

3.2 ShortLCEt queries
For ShortLCEt(i, j) queries, we use 2t-TST(w) which represents the set Substr2t(w) of all
substrings of w of length at most 2t. For any position 1 ≤ i ≤ n, let pi denote the substring
of w that begins at position i and is of length at most 2t, namely, pi = w[i..min{i+2t−1, n}].
Notice that Substr2t(w) =

⋃n
i=1{pi}. For any position 1 ≤ i ≤ n in w, let `(i) = u iff u is

the leaf of 2t-TST(w) such that str(u) = pi. Basically, we will compute ShortLCEt(i, j) by
efficiently finding the LCA of the corresponding leaves `(i) and `(j) on 2t-TST(w). The
reason that we use 2t-TST(w) rather than t-TST(w) will become clear later.
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S(t) δ 

l1 

l2 

l3 

j 

t 

S(t) 
○ ● ● ○ ○ ● ● ○ 

Figure 3 Illustration of an overview of our LCE(i, j) algorithm. We are given two positions i
and j in string w. First, we compute l1 = ShortLCEt(i, j). If l1 < t, then LCE(i, j) = l1. Otherwise,
we compute LongLCEt(i + δ, j + δ) where i + δ, j + δ ∈ S(t) and 0 ≤ δ ≤ t. We finally compute
l3 = ShortLCE(i+ δ+ l2, j + δ+ l2) where l2 = tLongLCEt(i+ δ, j + δ). Then LCE(i, j) = δ+ l2 + l3.

Now the key is how to access `(i) for a given position i in w. As our goal is to build a
sub-linear space data structure for ShortLCEt queries, we cannot afford to store a pointer
to `(i) from every position 1 ≤ i ≤ n. Thus, we store such a pointer only from every t-th
positions in w. We call these positions as sampled positions. Formally, for every sampled
position j ∈ Qt,n = {1 + kt | 0 ≤ k ≤ dnt e − 1} we explicitly store a pointer from j to
its corresponding leaf `(j) on 2t-TST(w). Also, for each position 1 ≤ i ≤ n in w, let
α(i) = max{j ∈ Qt,n | j ≤ i}. Namely, α(i) is the closest sampled position in Qt,n to the
left of i (or it is i itself if i ∈ Qt,n).

Given a position 1 ≤ i ≤ n, α(i) can be computed in O(1) time with a simple arithmetic
operation. Hence, we can access the leaf `(α(i)) for the closest sampled position α(i) in
O(1) time. The next task is to locate `(i). To describe our constant-time algorithm, let
us consider a conceptual graph G = (V,E) such that V = Substr2t(w) and E = {(u, c, v) |
u[1..2t − 1] = v[2..2t], c = v[1]}, where (u, c, v) represents a directed edge labeled c from
u to v. This graph G is equivalent to the edge-reversed de Bruijn graph of order 2t, with
extra nodes for the 2t− 1 suffixes of w which are shorter than 2t. It is clear that there is a
one-to-one correspondence between the leaves of 2t-TST(w) and the nodes of the graph G.
Thus, we will identify each leaf of 2t-TST(w) with the nodes of graph G.

I Lemma 6. Given 2t-TST(w) for a string w of length n and for any 1 ≤ 2t ≤ n, we can
construct the graph G in O(n) time using O(zt) working space.

Proof. The de Bruijn graph of order q for a string of length n can be constructed in O(n)
time using space linear in the size of the output de Bruijn graph, provided that q-TST(w) is
already constructed [13]. By setting q = 2t, adding extra 2t− 1 nodes for the suffixes that
are shorter than 2t, and reversing all the edges, we obtain our graph G = (V,E).

The number of nodes in V is clearly equal to |Substr2t(w)|. Also, since each edge
in E corresponds to a distinct substring in Substr2t+1(w), the number of edges in E is
equal to |Substr2t+1(w)|. By a similar argument to the proof of Lemma 4, we obtain
|V | = |Substr2t(w)| = O(zt) and |E| = |Substr2t+1(w)| = O(zt). J

Let d = i− α(i). A key observation here is that there is a path of length d from node pi
to node pα(i) in this graph G. Since G is a graph, however, it is not easy to quickly move
from pα(i) to pi. To overcome this difficulty, we consider a spanning tree of G of which the
root is pn = w[n] = $. Let T denote any spanning tree of G. See Figure 4 for examples of
the graph G and its spanning tree T . Although some edges are lost in spanning tree T , it is
enough for our purpose. Namely, the following lemma holds.

MFCS 2017
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I Lemma 7. Any spanning tree T of G satisfies the following properties: (1) There is a non-
branching path of length 2t from the root pn to the node pn−2t. (2) For any 1 ≤ i ≤ n− 2t− 1
and 0 ≤ d < t, let g be the d-th ancestor of pα(i). Then, g[1..t] = pi[1..t].

Proof. The first property is immediate from the fact that the last character w[n] = $ occurs
nowhere else in w and the root represents pn = $.

Since d < t and |pα(i)| = 2t, we have pα(i)[d..d+ t− 1] = pi[1..t]. By the first property
and α(i) ≤ i ≤ n − 2t − 1, the depth of node pα(i) is at least 2t. Also, by following the
in-coming edge of each node in the reversed direction, we delete the first character of the
corresponding string. Hence, pi[1..t] is a prefix of the d-th ancestor g of pα(i). J

We are ready to show the main result of this section.

I Theorem 8. For any string w of length n and integer 1 ≤ t ≤ n, a data structure of
size O(zt + n

t ) can be constructed in O(n log σ) time using O(zt) working space such that
subsequent ShortLCEt(i, j) queries for any 1 ≤ i, j ≤ n can be answered in O(1) time, where
z = |LZ(w)|.

Proof. We use a spanning tree T enhanced with a level ancestor data structure [5, 4] which
can be constructed in time and space linear in the size of the input tree T .

Given two positions i, j in w, we answer ShortLCEt(i, j) query as follows:
1. Compute the closest sampled positions α(i) and α(j) by simple arithmetics.
2. Access the nodes pα(i) and pα(j) in the spanning tree T using pointers from the sampled

positions α(i) and α(j), respectively.
3. Let d = i − α(i) and d′ = j − α(j). Access the d-th ancestor u of pα(i) and the d′-th

ancestor of pα(j) using level ancestor queries on T .
4. Compute the LCA x of the two leaves u and v on 2t-TST(w), and return min{|str(x)|, t}.

The correctness follows from Lemma 7. Since each step of the above algorithm takes O(1)
time, we can answer ShortLCEt(i, j) in O(1) time. By Lemma 4, the size of 2t-TST(w) with
an LCA data structure is O(zt), and also the size of the spanning tree T with a level ancestor
data structure is O(|Substr2t(w)|) = O(zt). In addition, we store pointers from the Θ(nt )
sampled positions to their corresponding nodes in T . Overall, the total space requirement of
our data structures is O(zt+ n

t ). We can build these data structures in a total of O(n log σ)
time using O(zt) working space by Theorem 5 and Lemma 6. J

3.3 LongLCEt queries
At a high level, our LongLCEt(i, j) query algorithm is an adaptation of the t-cover based
algorithm by Puglisi and Turpin [43], which was later re-discovered by Bille et al. [9]. Gawry-
chowski et al. [19] showed that an O( n√

t
)-space data structure, which answers LongLCEt(i, j)

query in O(1) time, can be constructed in O(n log t) time with t = Ω(log2 n) for a string of
length n over a general ordered alphabet. In this section, we show the same data structure
as Gawrychowski et al. can be constructed in O(n log σ) time with O(zt+ n

t ) working space
for a general ordered alphabet of size σ and any 1 ≤ t ≤ n.

Consider a t-cover S(t) of [1..n] for some t-difference-cover D. For each position i ∈ S(t)
such that i + t − 1 ≤ n, the substring bi = w[i..i + t − 1] is said to be a t-block. The goal
here is to answer the block-wise LCE value LongLCEt(i, j) for two given positions in the
t-cover S(t). Since we query LongLCEt(i, j) only for positions i, j ∈ S(t) and the answer to
LongLCEt(i, j) is a multiple of t, we can regard each t-block as a single character. Thus,
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Figure 4 The left graph G is the edge-reversed de Bruijn graph of order 2t, with extra nodes
for the 2t− 1 suffixes of w which are shorter than 2t, where t = 2 and w is the same string as in
Figure 2. An edge from u to v labeled character c represents c · u[1..2t− 1] = v. The right tree is a
spanning tree of the left graph. Let i = 4 and α(i) = 3. Then pi = bbaa, pα(i) = abba. Let g be the
d-th ancestor of pα(i) in the right tree, where 0 ≤ d < t. Then g[1..t] = pi[1..t] holds by Lemma 7.

we sort all t-blocks in lexicographical order, and encode each t-block by its lexicographical
rank. Since each t-block is of length t, we can sort the t-blocks in O( n√

t
log n√

t
) time with

O(zt+ n√
t
) working space by using any suitable comparison-based sorting algorithm and our

O(1)-time ShortLCEt query data structure of Section 3.2. The next lemma shows that we
can actually compute the lexicographical ranks of all t-blocks more efficiently.

I Lemma 9. Let w be an input string of length n and 1 ≤ t ≤ n be an integer. Given the
data structure for ShortLCEt queries of Theorem 8 for w, we can sort all t-blocks of w in
lexicographic order in O(zt+ n√

t
) time using O(zt+ n

t ) working space, where z = |LZ(w)|.

Proof. We insert new (non-branching) nodes to 2t-TST(w) such that every t-gram in w is
represented by an explicit node. This increases the size of the tree by a constant factor.
We also associate each node u such that |str(u)| = t with the lexicographical rank of the
t-gram str(u) among all t-grams in w. Then, we associate each leaf ` of the tree such that
|str(`)| ≥ t with its ancestor v which represents a t-gram. All these can be preformed in
O(zt) total time by standard depth-first traversals on the tree.

Then, for each t-block bi = w[i..i+ t− 1], we can access a leaf ` of 2t-TST(w) such that
str(`)[1..t] = w[i..i+ t− 1] in O(1) time using the algorithm of Theorem 8, and we return the
rank of the ancestor v of ` that represents bi = w[i..i+ t− 1]. Since there are O( n√

t
) t-blocks

in w, it takes a total of O(zt+ n√
t
) time. The working space is O(zt+ n

t ) by Theorem 8. J

There is an alternative algorithm to sort the t-blocks, as follows:

I Lemma 10. For any string w of length n over an alphabet of size σ, any integer 1 ≤ t ≤ n,
we can sort all t-blocks in lexicographic order in O(n log σ) time using O(zt) working space,
where z = |LZ(w)|.

Proof. We use t-TST(w) and the reversed de Bruijn graph of order t. We associate each leaf
of the tree representing a t-gram with its lexicographical rank among all leaves in the tree.

Let r be the graph node which represents w[n] = $. We simply traverse the graph while
scanning the input string w from right to left. For each 1 ≤ i ≤ n, this gives us the graph
node representing bi = w[i..i+ t− 1] and hence the corresponding leaf of t-TST(w).

MFCS 2017
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t-TST(w) and the reversed de Bruijn graph can be constructed in O(n log σ) time with
O(zt) working space. The ranks of the leaves in t-TST(w) can be easily computed in O(zt)
time by a standard tree traversal. Traversing the reversed de Bruijn graph takes O(n log σ)
time. Hence the lemma holds. J

For each i ∈ S(t), let ri be the rank of the t-block bi = w[i..i+ t− 1] computed by any of
the algorithms above. Clearly ri ∈ [1..n]. For simplicity, assume

√
t is an integer. For each

position i ∈ D (where D is the underlying t-difference cover), let #i = riri+t · · · ri+mit, where
mi = n−i+1√

t
−1. We create a string code(w) = #1$1 · · ·#k$k of length |S(t)| = O( n√

t
). Since

each #i is a string over the integer alphabet [1..S(t)] ⊂ [1..n] and |D| = O(
√
t), we can regard

code(w) as a string over an integer alphabet of size O(n). Then, we build the suffix array, the
inverse suffix array, the LCP array [37] of code(w) and an range minimum query (RMQ) data
structure [3] for the LCP array. For any position i ∈ S(t) on the original string w, we can
compute its corresponding position i′ on code(w) as i′ = |#1$1#2$2 · · ·#x−1$x−1|+ i−x

t + 1
where x = i mod t. Now, LongLCEt(i, j) query for two positions i, j ∈ S(t) on the original
string w reduces to an LCE query for the corresponding positions on code(w), which can
be answered in O(1) time using an RMQ on the LCP array. All these arrays and the RMQ
data structure can be built in O( n√

t
) time [27, 28, 3].

I Theorem 11. For any string of length n and integer 1 ≤ t ≤ n, a data structure of
size O( n√

t
) can be constructed in O(n log σ) time using O(zt+ n

t ) working space such that
subsequent LongLCEt(i, j) queries for any 1 ≤ i, j ≤ n can be answered in O(1) time, where
z = |LZ(w)|.

Proof. We need O( n√
t
) working space for the encoded string code(w) and its suffix array

plus LCP array enhanced with an RMQ data structure. Then the theorem follows from
Theorem 8, and Lemma 9 or Lemma 10. J

3.4 Main result and variants
In what follows, let w be an input string of length n and z = |LZ(w)|. By Theorem 8 and
Theorem 11 shown in the previous subsections, we obtain the main theorem of this paper:

I Theorem 12. For any integer 1 ≤ t ≤ n, an LCE data structure of size O(zt+ n√
t
) can be

constructed in O(n log σ) time with O(zt+ n√
t
) working space such that subsequent LCE(i, j)

query for any 1 ≤ i, j ≤ n can be answered in O(1) time.

We can also obtain the following variants of our LCE data structure.

I Corollary 13. For any integer 1 ≤ t ≤ n, an LCE data structure of size O(z 1
3n

2
3 ) can

be constructed in O(n log σ logn) time with O(z 1
3n

2
3 ) working space such that subsequent

LCE(i, j) query for any 1 ≤ i, j ≤ n can be answered in O(1) time.

Proof. The LCE data structure of Theorem 12 for t = (nz ) 2
3 < n takes O(z 1

3n
2
3 ) space. Since

we do not compute z, we are not able to compute the exact value of (nz ) 2
3 . However, we

can find the value of t for which the difference between the actual size of t-TST(w) and
d n√

t
e is smallest, by doubling-then-binary searches for t. Since the size of the resulting LCE

data structure can be by a constant factor larger than the smallest variant of our LCE data
structure, it is clearly bounded by O(z 1

3n
2
3 ). The above method takes O(n log σ logn) total

time and uses O(z 1
3n

2
3 ) total working space. J
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I Corollary 14. For alphabets of size σ ≤ 2o(logn), an LCE data structure of size o(n logn)
bits can be constructed in o(n log2 n) time with o(n logn) bits of working space such that
subsequent LCE(i, j) query for any 1 ≤ i, j ≤ n can be answered in O(1) time.

Proof. By plugging the well-known fact that z = O(n/ logσ n) into the result of Corollary 13,
we get O(n/(logσ n) 1

3 ) for the space bound. Thus our data structure can be stored in
S(n) = O(n(logn) 2

3 (log σ) 1
3 ) bits of space in the transdichotomous word RAM [16] with

machine word size ω = Θ(logn). Hence, for alphabets of size σ ≤ 2o(logn), we obtain an LCE
data structure with the claimed bounds. J

We can also obtain a new time-space trade-off LCE data structure. Observe that using
the data structure of Theorem 8 for 1 ≤ d ≤ n, we can answer ShortLCEt queries for any
1 ≤ t ≤ n in O(max{1, td}) time. Hence the following theorem holds.

I Theorem 15. For any integers 1 ≤ t′ ≤ t ≤ n, a data structure of size O(zt′ + n√
t

+ n
t′ )

can be constructed in O(n log σ) time with O(zt+ n√
t

+ n
t′ ) working space such that subsequent

LCE(i, j) query for any 1 ≤ i, j ≤ n can be answered in O( tt′ ) time.

Theorem 15 implies the following: (1) By setting t′ = t, we obtain Theorem 12. Moreover,
by choosing also t ← (nz )2/3, we obtain a data structure of size O(z1/3n2/3) answering
LCE queries in constant time, which coincides with Corollary 13. This is the smallest data
structure among the fastest data structures with two parameters t and t′. (2) By setting
t′ =
√
t and for t = n/z, we get a data structure of size O(

√
nz) answering LCE queries in

O(
√

n
z ) time. This is the fastest data structure among the smallest data structures with two

parameters t and t′. Note that when we do not know z, this data structure of at most O(
√
nz)

space can be constructed in O(n log σ logn) preprocessing time and O(
√
nz) working space

as in Corollary 13. Although the parameters cannot be arbitrarily chosen, the space-query
time product obtained here is optimal with fastest construction to date.

Moreover, we can reduce the zt term in the working space of Theorem 15 to zt′ by
increasing the preprocessing time. The bottleneck of the working space is in sorting t-blocks,
i.e., Lemma 9 or Lemma 10. Since any two t-blocks can be compared in O( tt′ ) time using O( tt′ )
ShortLCEt′ queries, we can get the following theorem using any suitable comparison-based
sorting algorithm instead of Lemma 9 or Lemma 10.

I Theorem 16. We can construct the data structure of Theorem 15 in O( nt′ log n
t + n log σ)

time and O(zt′ + n√
t

+ n
t′ ) working space.

4 Lower bounds vs upper bounds for the LCE problem

Let T (n) and S(n) respectively denote the query time and data structure size (in bits) of an
arbitrary LCE data structure for an input string of length n.

Brodal et al. [10] showed that in the non-uniform cell probe model, any RMQ data
structure for a string of length n which uses n

t bits of additional space for any 1 ≤ t ≤ n must
take Ω(t) query time (i.e., Ω(t) character accesses or cell probes). Their proof assumes that
each character in the string is stored in a separate cell, and counted the minimum number of
character accesses required to answer an RMQ. Although their proof uses a binary string
of length n where each character takes only a single bit, the above assumption is valid in a
commonly accepted case that the underlying alphabet size is 2ω, where ω denotes the size
of each cell (i.e. machine word). Then, Bille et al. [9] showed that RMQ queries on any
binary string of length n can be reduced to LCE queries on the same binary string, with
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Θ(logn) additional bits of space. This implies that, again assuming that each character
is stored in a separate cell, any LCE data structure for a binary string of length n which
uses S(n) = n

t + Θ(logn) additional bits of space must take T (n) = Ω(t) query time, for
parameter 1 ≤ t ≤ n

logn . Recently, Kosolobov [33] showed another result on time-space
product trade-off lower bound in the non-uniform cell probe model, which can be formalized
as follows:

I Theorem 17 ([33]). In the non-uniform cell probe model where each character is stored
in a separate cell, for any S(n), there exists σ = 2Ω(S(n)/n) such that for any LCE data
structure for a string over the alphabet Σ = {1, . . . , σ}, which takes S(n) bits of space
and answers LCE queries in T (n) time (i.e., with T (n) character accesses or cell probes),
T (n)S(n) = Ω(n logn) holds.

The lower bound by Kosolobov is optimal for the considered range of the alphabet size
σ = 2Ω(S(n)/n), since the data structure of Bille et al. [8] achieves T (n)S(n) = O(n logn).

Interestingly, our LCE data structure proposed in Section 3 reveals that there are some
cases where the above lower bounds do not apply. For highly compressible strings where zt
is dominated by n√

t
, our LCE data structure of Theorem 12 takes O(n logn

t ) bits of space
for 1 ≤ t ≤ n with machine word of size ω = Θ(logn). Hence, for parameter 1 ≤ t′ ≤

√
n

logn
we get S(n) = O( nt′ ). Since our data structure of Theorem 12 always achieves T (n) = O(1)
for any parameter setting, we observe that Bille et al.’s lower bound do not apply for
highly repetitive strings. Notice also that our LCE data structure of Corollary 14 achieves
T (n)S(n) = o(n logn) for alphabet size σ ≤ 2o(logn). This shows that the alphabet size
σ = 2Ω(S(n)/n) is important for Kosolobov’s lower bound to hold.

Kosolobov [33] did suggest a possibility to overcome his lower bound when σ is small,
and the input string can be packed, where logσ n characters can occupy a memory cell,
allowing the algorithm to read logσ n characters with one memory access. We show below
that this is also possible. An input string of length n can be considered as a bit string of
length n log σ. Let t = logn, and first consider the ShortLCElogn queries on the bit string.
When the original string is available in a packed representation, the longest common prefix
of two substrings strings of length logn bits can be computed in constant time using no
extra space using bit operations, namely, by taking the bitwise exclusive or (XOR) and
computing the position of the most significant set bit (msb), or without msb, by multiple
lookups on a table of total size o(n) bits. Next, consider the LongLCElogn queries on the
bit string. By simply using the same data structure as described in Section 3.3 for the bit
string of length n log σ, we can answer LongLCElogn queries in constant time using a data
structure of size O( n logσ√

logn
log(n log σ)) = O(n

√
logn log σ) bits. Using the two queries, we can

answer an LCE query for arbitrary positions i, j of the original string in constant time with
b(LCE(i·log σ, j ·log σ))/ log σc. Since the size of the data structure is S(n) = O(n

√
logn log σ)

bits, we obtain T (n)S(n) = o(n logn) for σ ≤ 2o(
√

logn). Our LCE data structure based
on truncated suffix trees is superior for larger σ, and also when the input string is highly
repetitive and compressible since it does not require the original string.

5 Conclusions and open questions

In this paper, we presented an LCE data structure which uses O(zt+ n√
t
) words of space

and answers in LCE queries in O(1) time, for parameter 1 ≤ t ≤
√
n. This data structure

can be constructed in O(n log σ) time with O(zt+ n√
t
) working space. Using the fact that
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z = O(n/ logσ n) and suitably choosing t, our method achieves the first O(1)-time sub-linear
space LCE data structure for alphabets of size σ ≤ 2o(logn).

An interesting open question is whether we can improve the total space requirement to
O(zt+ n

t ). The bottleneck is the LongLCEt data structure that uses O(zt+ n√
t
) space. Another

open question is whether we can compute the size z of the Lempel-Ziv 77 factorization in
O(n log σ) time with sub-linear working space. This is motivated for computing the value
of t which optimizes our space bound O(zt + n

t ). A little has been done in this line of
research: Nishimoto et al. [40] showed how to compute the Lempel-Ziv 77 factorization
in O(npolylog(n)) time with O(z logn log∗ n) working space. Fischer et al. [15] showed an
algorithm which computes an approximation of the Lempel-Ziv 77 factorization of size (1+ε)z
in O( 1

εn logn) time with O(z) working space, for any 0 < ε ≤ 1.
Another direction of further research is to give a tighter upper bound for the size of the

t-truncated suffix trees than zt. We observed that there exists a string of length n for which
zt is greater by a factor of

√
n than the actual size of the t-truncated suffix tree for some t.
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