
Fine-Grained Complexity of Rainbow Coloring and
Its Variants∗

Akanksha Agrawal

University of Bergen, Norway
akanksha.agrawal@uib.no

Abstract
Consider a graph G and an edge-coloring cR : E(G)→ [k]. A rainbow path between u, v ∈ V (G)
is a path P from u to v such that for all e, e′ ∈ E(P), where e 6= e′ we have cR(e) 6= cR(e′).
In the Rainbow k-Coloring problem we are given a graph G, and the objective is to decide
if there exists cR : E(G) → [k] such that for all u, v ∈ V (G) there is a rainbow path between
u and v in G. Several variants of Rainbow k-Coloring have been studied, two of which are
defined as follows. The Subset Rainbow k-Coloring takes as an input a graph G and a set
S ⊆ V (G) × V (G), and the objective is to decide if there exists cR : E(G) → [k] such that for
all (u, v) ∈ S there is a rainbow path between u and v in G. The problem Steiner Rainbow
k-Coloring takes as an input a graph G and a set S ⊆ V (G), and the objective is to decide if
there exists cR : E(G) → [k] such that for all u, v ∈ S there is a rainbow path between u and v

in G. In an attempt to resolve open problems posed by Kowalik et al. (ESA 2016), we obtain
the following results.

For every k ≥ 3, Rainbow k-Coloring does not admit an algorithm running in time
2o(|E(G)|)nO(1), unless ETH fails.
For every k ≥ 3, Steiner Rainbow k-Coloring does not admit an algorithm running in
time 2o(|S|2)nO(1), unless ETH fails.
Subset Rainbow k-Coloring admits an algorithm running in time 2O(|S|)nO(1). This
also implies an algorithm running in time 2o(|S|2)nO(1) for Steiner Rainbow k-Coloring,
which matches the lower bound we obtain.

1998 ACM Subject Classification G.2.2 Graph Algorithms, I.1.2 Analysis of Algorithms

Keywords and phrases Rainbow Coloring, Lower bound, ETH, Fine-grained Complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.60

1 Introduction

Graph connectivity is one of the fundamental properties in graph theory. Several connectivity
measures like k-vertex connectivity, k-edge connectivity, hamiltonicity, etc. have been studied
for graphs. Chartrand et al. [8] defined an interesting connectivity measure, called rainbow
connectivity, which is defined as follows. Let G be a graph and cR : E(G) → [k] be an
edge-coloring of G. A rainbow path between u, v ∈ V (G) is a path P from u to v such that
for all e, e′ ∈ E(P), where e 6= e′ we have cR(e) 6= cR(e′). A graph with an edge-coloring is
rainbow-connected if for every pair of vertices there is a rainbow path between them. In the
Rainbow k-Coloring problem we are given a graph G, and the objective is to decide if
there exists an edge-coloring cR : E(G)→ [k] such that for all u, v ∈ V (G), there is a rainbow

∗ Due to space limitations most proofs have been omitted.
The research leading to these results received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013)/ ERC Grant Agreements no. 306992.

© Akanksha Agrawal;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 60; pp. 60:1–60:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/141727354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.60
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

60:2 Fine-Grained Complexity of Rainbow Coloring and Its Variants

path between u and v in G. The problem has received attention both from graph theoretic
and algorithmic point of view, the details of which can be found, for instance in [9, 23, 24].

Rainbow k-Coloring problem is notoriously hard. It was conjectured by Caro et al. [4]
to be NP-complete already for k = 2. Indeed, by giving a polynomial time reduction from
3-SAT, this was confirmed by Chakraborty et al. [5]. Building on their results, Ananth et
al. [3] later showed that Rainbow k-Coloring remains NP-complete for every k ≥ 2. An
alternate hardness proof was also given by Le and Tuza [21]. For the complexity of the
problem on restricted graph classes, see e.g., [5, 6, 7, 8].

Impagliazzo et al. [16] introduced the Exponential time hypothesis (ETH), which has
been used as a basis for proving qualitative lower bounds for computational problems. The
ETH states that 3-SAT does not admit an algorithm running in time 2o(n)nO(1), where n is
the number of variables in the input 3-CNF formula. It has been shown that assuming ETH,
several NP-hard problems like Independent Set, Hitting set, and Chromatic Number
do not admit subexponential time algorithms (see the survey [25]).

Kowalik et al. [20] studied the fine-grained complexity of Rainbow k-Coloring and
some of its variants. In particular, they showed that Rainbow k-Coloring admits neither
an algorithm running in time 2o(|V (G)|3/2)|V (G)|O(1), nor an algorithm running in time
2o(|E(G)|/ log |E(G)|)|V (G)|O(1), unless ETH fails. They also studied a variant of Rainbow
k-Coloring, called Subset Rainbow k-Coloring (to be defined shortly), which was
introduced by Chakraborty et al. [5]. They showed that Subset Rainbow k-Coloring
does not admit an algorithm running in time 2o(|E(G)|)|V (G)|O(1) assuming ETH. In contrast,
they designed an FPT algorithm for the problem running in time |S|O(|S|)nO(1), where S is
a part of the input. For k = 2, they obtained a faster algorithm running in time 2O(|S|)nO(1).
Finally, they proposed yet another (parametric) variant of Rainbow k-Coloring, which
they called Steiner Rainbow k-Coloring. Their lower bound result for Rainbow k-
Coloring implies that Steiner Rainbow k-Coloring does not admit an algorithm
running in time 2o|S|3/2

nO(1). Moreover, their algorithm for Subset Rainbow k-Coloring
gives an algorithm for Steiner Rainbow k-Coloring running in time 2O(|S|2 log |S|)nO(1).

Our results. We attempt to tighten the gaps in the study of fine-grained complexity of
Rainbow k-Coloring and some of its variants, initiated by Kowalik et al. [20]. We now
describe our results in detail.

The first problem that we study is Steiner Rainbow k-Coloring, which is formally
defined below.

Steiner Rainbow k-Coloring Parameter: |S|
Input: A graph G and a vertex subset S ⊆ V (G).
Question: Does there exist an edge-coloring cR : E(G)→ [k] such that for every u, v ∈ S,
there is a rainbow path between u and v in G?
In Section 3, we show that for every k ≥ 3, Steiner Rainbow k-Coloring does not

admit an algorithm running in time 2o(|S|2)nO(1), under ETH. This resolves an open problem
posed by Kowalik et al. [20]. To prove the result, we give a reduction from k-Coloring on
graphs of maximum degree 2(k − 1) which does not admit an algorithm running in time
2o(n)nO(1), assuming ETH. Our reduction starts by computing a harmonious coloring of
the (bounded degree) input instance of k-Coloring, which forms an essential step in the
construction of S for the instance of Steiner Rainbow k-Coloring that we create. The
idea of using harmonious coloring for proving lower bounds of the form 2o(`2)nO(1) was used
by Agrawal et al. [1] to prove a lower bound for Split Contraction, when parameterized
by the vertex cover number `, of the input graph. Also, the idea of partitioning vertices

A. Agrawal 60:3

of the input graph based on some coloring scheme was used by Cygan et al. [10] to prove
ETH-based lower bounds for Graph Homomorphism and Subgraph Isomorphism.

The next problem we study is Rainbow k-Coloring, which is formally defined below.

Rainbow k-Coloring
Input: A graph G.
Question: Does there exist an edge-coloring cR : E(G) → [k] such that for every
u, v ∈ V (G), there is a rainbow path between u and v in G?

Kowalik et al. [20] conjectured that for every k ≥ 2, Rainbow k-Coloring does not
admit an algorithm running in time 2o(|E(G)|)nO(1), unless ETH fails. In Section 4, we resolve
this conjecture for every k ≥ 3. Again, we proceed with a reduction from k-Coloring on
bounded degree graphs. Although, the general scheme of reduction is the same as the one
we five for Steiner Rainbow k-Coloring, in this case the reduction is more involved.
Furthermore, we require to distinguish between the cases for k being odd and even in the
gadget construction. Also, to keep our gadgets simpler, we separate the case for k = 3 and
k > 3.

Finally, we study the complexity of Subset Rainbow k-Coloring, which is formally
defined below.

Subset Rainbow k-Coloring Parameter: |S|
Input: A graph G and a subset S ⊆ V (G)× V (G).
Output: An edge-coloring cR : E(G) → [k] such that for every (u, v) ∈ S, there is a
rainbow path between u and v in G, if it exists. Otherwise, return no.

In Section 5 we design an FPT algorithm running in time 2O(|S|)nO(1) for Subset
Rainbow k-Coloring, for every fixed k. This resolves the conjecture of Kowalik et al. [20]
regarding the existence of an algorithm running in time 2O(|S|)nO(1) for Subset Rainbow
k-Coloring, and is an improvement over their algorithm, which runs in time |S|O(|S|)nO(1),
for k ≥ 3. Our algorithm is based on the technique of color coding, which was introduced by
Alon et al. [2]. Observe that Steiner Rainbow k-Coloring is a special case of Subset
Rainbow k-Coloring. Hence, as a corollary we obtain an algorithm running in time
2O(|S|2)nO(1) for Steiner Rainbow k-Coloring, which matches the lower bound we prove
in Section 3.

2 Preliminaries

In this section, we state some basic definitions and introduce terminology from graph theory
and algorithms. We also establish some of the notation that will be used throughout.

We denote the set of natural numbers by N. For k ∈ N, by [k] we denote the set
{1, 2, . . . , k}. We use standard terminology from the book of Diestel [13] for the graph related
terminologies which are not explicitly defined here. We consider finite simple graphs. For a
graph G, by V (G) and E(G) we denote the vertex and edge sets of the graph G, respectively.
For v ∈ V (G), by NG(v) we denote the set {u ∈ V (G) | (v, u) ∈ E(G)}. We drop the
subscript G from NG(v) when the context is clear. For C, C ′ ⊆ V (G), we say that there is
an edge between C and C ′ in G if there exists u ∈ C and v ∈ C ′ such that (u, v) ∈ E(G).
A path P = (v1, v2, . . . , v`) is a graph with vertex and edge sets as {v1, v2, . . . , v`} and
{(vi, vi+1) | i ∈ [l − 1]}, respectively.

A harmonious coloring of a graph G is a vertex coloring ϕ : V (G)→ [k], with color classes
C1, C2, . . . , Ck such that for each i ∈ [k], Ci is an independent set in G and for all i, j ∈ [k],
where i 6= j there is at most one edge between Ci and Cj in G. We use the following result

MFCS 2017

60:4 Fine-Grained Complexity of Rainbow Coloring and Its Variants

for computing a harmonious coloring on bounded degree graphs.

I Proposition 1 ([11, 14, 22, 26]). Given a G with the degree of each vertex bounded by d,
where d is a fixed constant. A harmonious coloring of G can be computed in time O(nO(1))
using O(

√
n) colors with each color class having at most O(

√
n) vertices.

3 Lower bound for Steiner Rainbow k-Coloring

In this section, we show that for every k ≥ 3, Steiner Rainbow k-Coloring does not
admit an algorithm running in time 2o(|S|2)nO(1), unless ETH fails. Towards this we give
an appropriate reduction from k-Coloring on graphs of maximum degree 2(k − 1). We
note that k-Coloring does not admit an algorithm running in time 2o(n)nO(1) unless ETH
fails [17]. Moreover, assuming ETH, 3-Coloring does not admit an algorithm running
in time 2o(n)nO(1) on graphs of maximum degree 4 [18, 11]. This follows from the fact
that 3-Coloring does not admit such an algorithm, and a reduction from an instance G

of 3-Coloring to an equivalent instance G′ of 3-Coloring, where G′ is a graph with
maximum degree 4 with |V (G′)| ∈ O(|V (G)|) (see [15, Theorem 4.1]). In fact, we can show
that k-Coloring does not admit an algorithm running in time 2o(n)nO(1) on graphs of
maximum degree 2(k − 1) (folklore). This result can be obtained (inductively) by giving a
reduction from an instance G of (k − 1)-Coloring on graphs of degree at most 2(k − 2)
to an instance of k-Coloring on a graphs of bounded average degree (by adding global
vertex), and then using an approach similar to that in Theorem 4.1 in [15] we can obtain an
(equivalent) instance of k-Coloring where the degree of the graph is bounded by 2(k − 1).

Given an instance G of k-Coloring on n vertices and degree bounded by 2(k − 1), we
start by computing a harmonious coloring ϕ of G with t ∈ O(

√
n) color classes such that each

color class contains at most O(
√

n) vertices using Proposition 1. Let C1, C2, . . . , Ct be the
color classes of ϕ. Recall that for i, j ∈ [t] with i 6= j there is at most one edge between Ci

and Cj in G. Moreover, Ci is an independent set in G, where i ∈ [t]. We create an instance
G′ of k-Coloring which has a harmonious coloring ϕ′ with color classes C ′1, C ′2, . . . , C ′t
such that for all i, j ∈ [t], i 6= j we have exactly one edge between Ci and Cj . Initially,
we have G = G′ and C ′i = Ci, for all i ∈ [t]. For each i, j ∈ [t], i 6= j such that there is
no edge between Ci and Cj in G we add two new vertices aij and aji to V (G′) and add
the edge (aij , aji) to E(G′). Furthermore, we add aij to C ′i and aji to C ′ji. Observe that
|V (G′)| ∈ O(n), |E(G′)| ∈ O(n), and for each i ∈ [t], |C ′i| ∈ O(

√
n). Also, for each i, j ∈ [t],

i 6= j there is exactly one edge between C ′i and C ′j in G′. It is easy to see that G is a yes
instance of k-Coloring if and only if G′ is a yes instance of k-Coloring.

Hereafter, we will be working with the instance G′ of k-Coloring, together with its
harmonious coloring ϕ′ with color classes C ′1, C ′2, . . . , C ′t. Moreover, for i, j ∈ [t], i 6= j there
is exactly one edge between C ′i and C ′j in G′.

We now move to the description of creating an equivalent instance (G̃, S) of Steiner
Rainbow k-Coloring, where k ≥ 3. Initially, we have V (G̃) = V (G′). For (u, v) ∈ E(G′)
we add k − 3 new vertices xuv

1 , xuv
2 , . . . , xuv

k−3 to G̃ and add all the edges in the path
(u, xuv

1 , . . . , xuv
k−3, v) to E(G̃). Note that for k = 3 we do not any new vertex and directly

add the edge (u, v) to G̃. For each i ∈ [t] we add a vertex ci to G̃ and add all the edges in
{(ci, v) | v ∈ C ′i} to E(G̃). Finally, we set S = {ci | i ∈ [t]}. Notice that |S| ∈ O(

√
n). In the

following lemma we establish that G′ is a yes instance of k-Coloring if and only if (G̃, S)
is a yes instance of Steiner Rainbow k-Coloring.

I Lemma 2. G′ is a yes instance of k-Coloring if and only if (G̃, S) is a yes instance of
Steiner Rainbow k-Coloring.

A. Agrawal 60:5

Proof. In the forward direction, let G′ be a yes instance of k-Coloring, and c : V (G′)→ [k]
be one of its solution. We create a coloring cR : E(G̃) → [k] as follows. For i ∈ [t] and
v ∈ C ′i we set cR(ci, v) = c(v). For i, j ∈ [t], i 6= j let u, v be the (unique) vertices in C ′i
and C ′j such that (u, v) ∈ E(G′). We now describe the value of cR for edges in the path
P = (u, xuv

1 , . . . , xuv
k−3, v). Notice that |E(P)| = k − 2, and we arbitrarily assign distinct

integers in [k] \ {cR(ci, u), cR(cj , v)} to cR(e), where e ∈ E(P). Since c is a proper coloring
of G′, cR(ci, u) = c(u) 6= c(v) = cR(cj , v). This together with the definition of cR for edges
in P implies that there is a rainbow path, namely (ci, u, xuv

1 , . . . , xuv
k−3, v, cj) in G̃ between ci

and cj . This concludes the proof in the forward direction.
In the reverse direction, let (G̃, S) be a yes instance of Steiner Rainbow k-Coloring,

and cR : E(G̃)→ [k] be one of its solution. We create a coloring c : V (G′)→ [k] as follows.
For i ∈ [t] and v ∈ C ′i, we let c(v) = cR(ci, v). We show that c is a solution to k-Coloring in
G′. Consider (u, v) ∈ E(G′), and let u ∈ C ′i and v ∈ C ′j . Note that we have i 6= j. Let P be a
rainbow path between ci and cj in G̃. By the construction of G̃, we have NG̃[ci]∩NG̃[cj] = ∅.
Moreover, since P is a rainbow path, it can contain at most k edges. Recall that NG̃(ci) = C ′i,
NG̃(cj) = C ′j , and there is exactly one path with at most k − 2 edges between a vertex in C ′i
and a vertex in C ′j , namely (ci, u, xuv

1 , . . . , xuv
k−3, v, cj). This together with the construction

of c implies that c(u) 6= c(v). This concludes the proof. J

I Theorem 3. Steiner Rainbow k-Coloring does not admit an algorithm running in
time 2o(|S|2)nO(1), unless ETH fails. Here, n is the number of vertices in the input graph.

4 Lower bound for Rainbow k-Coloring

In this section, we show that for every k ≥ 3, Rainbow k-Coloring does not admit an
algorithm running in time 2o(|E(G)|)nO(1), unless ETH fails. We give different reductions for
the case when k = 3 (Section 4.1), k is an even number greater than 3 (Section 4.2), and k is
an odd number greater than 4 (Section 4.3). We note that although the approach used for
the proving lower bound for Rainbow 3-Coloring is extensible to Rainbow k-Coloring
when k is odd, it unnecessarily adds to complexity of the reduction. Moreover, the approach
we follow for showing the lower bound result for k > 3, where k is an odd number, introduces
some technical issues when we try to extend it for k = 3.

Towards proving our lower bound result, we give an appropriate reduction from k-
Coloring on graphs of maximum degree 2(k − 1), which does not admit an algorithm
running in time 2o(n)nO(1) unless ETH fails. The key idea behind the reduction is the same
as that presented in Section 3, but for this case it is more involved. Before moving on to the
description of the reductions we define a graph that will be useful in our reductions.

A clique sequence Zn,t = (Z1, Z2, . . . Zt) of order (n, t) is a graph defined as follows. We
have V (Zk,t) =]i∈[t]Zi, where |Zi| = n for all i ∈ [t]. For each i ∈ [t], all the edges in
{(z, z′) | z, z′ ∈ Zi} are present in E(Zn,t), i.e. Zi is a clique. Furthermore, for all i ∈ [t− 1]
all the edges in {(z, z′) | z,∈ Zi, x′ ∈ Zi+1} are present in E(Zn,t).

4.1 Lower bound for Rainbow 3-Coloring
In this section, we show that Rainbow 3-Coloring does not admit an algorithm running
in time 2o(|E(G)|)nO(1), where n is the number of vertices in the input graph G.

Let G be an instance of 3-Coloring on n vertices with maximum degree bounded by 4.
We start by computing (in polynomial time) a harmonious coloring ϕ of G with t ∈ O(

√
n)

color classes such that each color class contains at most O(
√

n) vertices using Proposition 1.

MFCS 2017

60:6 Fine-Grained Complexity of Rainbow Coloring and Its Variants

Let C1, C2, . . . , Ct be the color classes of ϕ. From the discussion in Section 3, we assume
that for i, j ∈ [t], i 6= j there is exactly one edge between Ci and Cj in G. We construct an
instance G′ of Rainbow 3-Coloring as follows.

Color class gadget. Consider i ∈ [t]. The color class gadget Ci comprises of the set Ci,
two vertices ci, bi, and a clique Ui on 3 vertices with vertex set {ui

1, ui
2, ui

3}. We add all
the edges in {(v, ci), (v, bi), (v, ui

1), (v, ui
2), (v, ui

3) | v ∈ Ci} to E(Ci). Also, we add the
edge (bi, ci) to E(Ci).
Connection between color class gadgets. Consider i, j ∈ [t] such that i 6= j. We add all
the edges in {(bi, uj

`) | ` ∈ [3]} to E(G′). Furthermore, we add all the edges {(ui
`, uj

`′) |
`, `′ ∈ [3]} to E(G′). Note that {ui′

` | i′ ∈ [t], ` ∈ [3]} induces a clique in G′.
Encoding edges. For i, j ∈ [t], i 6= j we add the unique edge (u, v) between Ci and Cj

with u ∈ Ci and v ∈ Cj to G′. Note that this is same as adding all the edges in E(G) to
E(G′).

This finishes the description of the instance G′ of Rainbow 3-Coloring. We note that
some of the edges in G′ are not necessary for the correctness of the reduction. However, they
are added to reduce the number of pairs for which we need to argue about the existence
of a rainbow path. Before moving on to the proof of equivalence between these instances,
we create an edge-coloring cR : E(G′) → [3]. Here, we create cR based on a solution c

to 3-Coloring in G, assuming that G is a yes instance of 3-Coloring. We will follow
computation modulo k, and therefore color 0 is same as color k.

I Definition 4. Given a solution c to 3-Coloring in G, we construct cR : E(G′)→ [3] as
follows.
1. For i ∈ [t], and v ∈ Ci set cR(v, ci) = c(v), cR(v, bi) = c(v), and for ` ∈ [3], cR(v, ui

`) = `.
2. For i, j ∈ [t], i 6= j let (u, v) be the unique edge between Ci and Cj . We set cR(u, v) to

be the unique integer in [3] \ {c(u), c(v)}. Here, the uniqueness is guaranteed by the fact
that c is a proper 3-coloring of G, promising that c(u) 6= c(v).

3. For i ∈ [t] set cR(bi, ci) = 3, cR(ui
1, ui

2) = 3, cR(ui
2, ui

3) = 2, and cR(ui
3, ui

1) = 1.
4. For i, j ∈ [t], i 6= j and ` ∈ [3] set cR(bi, uj

`) = `− 1.
5. For i, j ∈ [t], i 6= j and ` ∈ [3] set cR(ui

`, uj
`) = `. Furthermore, for `′ ∈ [3] \ {`} we set

cR(ui
`, uj

`′) = ˆ̀, where ˆ̀ is the unique integer in [3] \ {`, `′}.

Next, we prove some lemmata that will be useful in establishing the equivalence between
the instance G of 3-Coloring and the instance G′ of Rainbow 3-Coloring.

I Lemma 5. For i, j ∈ [t], where i 6= j, let (u∗, v∗) be the unique edge between Ci and Cj

with u∗ ∈ Ci and v∗ ∈ Cj . There is exactly one path, namely (ci, u∗, v∗, cj) in G′, between ci

and cj that has at most 3 edges.

I Lemma 6. Let G be a yes instance of 3-Coloring, and c be one of its solution. Fur-
thermore, let cR : E(G′)→ [3] be the coloring given by Definition 4 for the coloring c of G.
Then for all i ∈ [t], and u, v ∈ Ci there is a rainbow path between u and v in G′.

I Lemma 7. Let G be a yes instance of 3-Coloring, and c be one of its solution. Fur-
thermore, let cR : E(G′)→ [3] be the coloring given by Definition 4 for the coloring c of G.
Then for all i, j ∈ [t], i 6= j for all u ∈ Ci and v ∈ Cj there is a rainbow path between u and v

in G′.

We now establish equivalence between the instance G of 3-Coloring and the instance
G′ of Rainbow 3-Coloring.

A. Agrawal 60:7

I Lemma 8. G is a yes instance of 3-Coloring if and only if G′ is a yes instance of
Rainbow 3-Coloring.

Proof. In the forward direction, let G be a yes instance of 3-Coloring, and c : V (G)→ [3]
be one of its solution. Let cR : E(G′) → [3] be the coloring given by Definition 4 for the
given coloring c of G. From Lemma 6 and 7 it follows that cR is a solution to Rainbow
3-Coloring in G′.

In the reverse direction, let G′ be a yes instance of Rainbow 3-Coloring, and cR :
E(G′) → [3] be one of its solution. We create a coloring c : V (G) → [3] as follows. For
i ∈ [t] and v ∈ Ci, we let c(v) = cR(ci, v). We show that c is a valid solution to 3-Coloring
in G. Consider (u, v) ∈ E(G), and let u ∈ Ci and v ∈ Cj . Note that we have i 6= j.
Let P be a rainbow path between ci and cj in G′. Note that P can have at most 3
edges. By Lemma 5 we know that P = (ci, u, v, cj), therefore by construction of c, we have
cR(ci, u) = c(u) 6= c(v) = cR(ci, v). This concludes the proof. J

I Theorem 9. Rainbow 3-Coloring does not admit an algorithm running in time
2o(|E(G)|)nO(1), unless ETH fails. Here, n is the number of vertices in the input graph.

4.2 Lower Bound for Rainbow k-Coloring, k > 3 and even
In this section, we show that Rainbow k-Coloring does not admit an algorithm running
in time 2o(|E(G)|)nO(1), for every even k where k > 3. Here, n is the number of vertices in
the input graph.

Let G be an instance of k-Coloring on n vertices with maximum degree bounded by
2(k − 1). Here, k > 3 and k is an even number. We start by computing (in polynomial
time) a harmonious coloring ϕ of G with t ∈ O(

√
n) color classes such that each color class

contains at most O(
√

n) vertices using Proposition 1. Let C1, C2, . . . , Ct be the color classes
of ϕ with exactly one edge between Ci and Cj in G, where i, j ∈ [t]. We modify the graph G

and its harmonious coloring ϕ, to obtain a more structured instance, which will be useful
later. For each i ∈ [t], we add k new vertices v∗i1, v∗i2, . . . , v∗ik to V (G), and add them to
Ci. We continue to call the modified graph as G and its harmonious coloring as ϕ with
color classes C1, C2, . . . , Ct. We note that {v∗ij | i ∈ [t], j ∈ [k]} induce an independent set in
G. The purpose of adding these k new vertices is to ensure that if G is a yes instance of
k-Coloring then there is a k-coloring c of G, such that for each i ∈ [t] and j ∈ [k], we have
c−1(j)∩Ci 6= ∅. This will be helpful in simplifying some of the arguments later. Observe that
the original instance is a yes instance of a k-Coloring is and only if the modified instance
is a yes instance of k-Coloring. Moreover, given a k-coloring of G (modified graph), in
polynomial time we can obtain another k-coloring c′ of G such that for all i ∈ [t], j ∈ [k]
we have c(v∗ij) = j. Also, we have |V (G)| ∈ O(n), and |E(G)| ∈ O(n), where n is the
number of vertices in the original instance. Hereafter, whenever we talk about a solution c

to k-Coloring in G (if it exists) we will assume (without explicitly mentioning) that for all
i ∈ [t] and p ∈ [k] we have Ci ∩ c−1(p) 6= ∅. We now move to the description of the reduction.

We proceed by describing color class gadget Ci, corresponding to the color class Ci, where
i ∈ [t], and gadgets to encode edges in G. Then we state the connection between various
color class gadgets and edge gadgets. We let k = 2`, where ` ∈ N and ` > 1. We create an
instance G′ of Rainbow k-Coloring as described below.

Color class gadget. Consider i ∈ [t]. The color class gadget Ci comprises of the set Ci, a
vertex ci, and a clique sequence Zi = (U i

1∪Di
1, . . . , U i

`−1∪Di
`−1) of order (2k, `−1). Here,

for each i ∈ [`− 1] we have |Ui| = |Di| = k. For r ∈ [`− 1] we let U i
r = {ui

rp | p ∈ [k]},

MFCS 2017

60:8 Fine-Grained Complexity of Rainbow Coloring and Its Variants

and Di
r = {di

rp | p ∈ [k]}. We add all the edges in {(ci, v) | v ∈ Ci} to E(Ci). Also, we
add all the edges in {(v, w) | v ∈ Ci, w ∈ U i

1 ∪Di
1} to E(Ci).

Connection between color class gadgets. For each i, j ∈ [t] where i 6= j, we add all the
edges in {(w, w′) | w ∈ U i

`−1 ∪Di
`−1, w′ ∈ U j

`−1 ∪Dj
`−1} to E(G′).

Edge gadget. Consider i, j ∈ [t] with i < j. Recall that there is exactly one edge between Ci

and Cj . Corresponding to this edge we create a path P = (xij
1 , . . . , xij

`−2, zij , xji
`−2, . . . , xji

1)
on k − 3 vertices, and add it to G′. We note that whenever we say vertex zji it refers to
the vertex zij i.e. zij and zji denotes the same vertex.
Connection between color class gadgets and edge gadgets. Consider i, j ∈ [t], where i < j.
Let (u∗i , v∗j) be the unique edge between Ci and Cj with u∗i ∈ Ci and v∗j ∈ Ci. We add
the edges (u∗i , xij

1), (xji
1 , v∗j) to E(G′). Notice that when ` = 2 xij

1 does not exists. In this
case, we add the edges (u∗i , z), (z, v∗j) to E(G′). For each r ∈ [`− 2] we add all the edges
in {(xij

r , w) | w ∈ U i
r ∪Di

r} to E(G′). Similarly, we add all the edges in {(xji
r , w) | w ∈

U j
r ∪Dj

r} to E(G′). Also, we add all the edges in {(zij , u) | u ∈ U i
`−1∪Di

`−1∪U j
`−1∪Dj

`−1}
to E(G′).

This finishes the construction of instance G′ of Rainbow k-Coloring for the given
instance G of k-Coloring. Before moving on to proving the equivalence between these
instances, we create an edge-coloring cR : E(G′) → [k]. Here, we create cR based on a
solution c to k-Coloring in G, assuming that is G a yes instance of k-Coloring. We will
follow computation modulo k (color 0 is same as color k).

I Definition 10. Given a solution c to k-Coloring in G, we construct cR : E(G′)→ [k] as
follows.
1. For i ∈ [t], and v ∈ Ci we set cR(v, ci) = c(v).
2. For i, j ∈ [t], i < j let (u∗i , v∗j) be the unique edge between Ci and Cj . Consider the

path P = (u∗i , xij
1 , . . . xij

`−2, zij , xji
`−2, . . . xji

1 , v∗j). We arbitrarily assign unique integers in
[k] \ {c(u∗i), c(v∗j)} to cR(e), for each e ∈ E(P).

3. For i ∈ [t], a vertex v ∈ Ci, and p ∈ [k] we set cR(v, ui
1p) = p− 1, and cR(v, di

1p) = p.
4. For i ∈ [t], r ∈ [`− 1], and p, q ∈ [k] we set cR(di

rp, ui
rq) = p.

5. For i, j ∈ [t], where i 6= j, r ∈ [` − 1], and p ∈ [k] we set cR(xij
r , ui

rp) = p, and
cR(xij

r , di
rp) = p + 1.

6. For i ∈ [t], r ∈ [`− 2], p, q ∈ [k] we set cR(di
(r+1)p, di

rq) = p, and cR(ui
rp, ui

(r+1)q) = p.
7. For i, j ∈ [t] where i 6= j, p, q ∈ [k] we set cR(ui

(`−1)p, dj
(`−1)q) = p, cR(ui

(`−1)p, zij) = p,
and cR(di

(`−1)p, zij) = p + 1.
8. For i ∈ [t], r ∈ [`− 2], p, q ∈ [k] we set cR(ui

rp, di
(r+1)q) = q and cR(ui

(r+1)p, di
rq) = p.

9. For all i ∈ [t], r ∈ [`− 1], p, q ∈ [k], where p 6= q we set cR(ui
rp, ui

rq) = k.
10. For all the remaining edges in E(G′), cR assigns it an integer in [k] arbitrarily.

Next, we prove some lemmata that will be useful in establishing equivalence between the
instance G of k-Coloring and the instance G′ of Rainbow k-Coloring.

I Lemma 11. For i, j ∈ [t], where i 6= j, let P be a path between ci and cj with at most k

edges in G′. If ` > 2 then P contains the edge (xij
`−2, zij). Otherwise, P contains the edge

(u, zij), where u is the unique vertex in Ci that in adjacent to a vertex in Cj.

I Lemma 12. For i, j ∈ [t], where i 6= j let (u∗, v∗) be the unique edge between Ci and Cj with
u∗ ∈ Ci and v∗ ∈ Cj . There is exactly one path, namely (ci, u∗, xij

1 , . . . , xij
`−2, zij , xji

`−2, . . . , xji
1

, v∗, cj) in G′ between ci and cj that has at most k edges.

A. Agrawal 60:9

I Lemma 13. Let G be a yes instance of k-Coloring, and c be one of its solution.
Furthermore, let cR : E(G′)→ [k] be the coloring given by Definition 10 for the coloring c

of G. For all i ∈ [t], and u, v ∈ V (Ci) ∪ {zij | j ∈ [k] \ {i}} ∪ {xij
r | j ∈ [t] \ {i}, r ∈ [`− 2]}

there is a rainbow path between u and v in G′.

I Lemma 14. Let G be a yes instance of k-Coloring, and c be one of its solution.
Furthermore, let cR : E(G′)→ [k] be the coloring given by Definition 10 for the coloring c of G.
For all i, j ∈ [t] where i 6= j, u ∈ V (Ci)∪{zij′ | j′ ∈ [k]\{i}}∪{xij′

r | j′ ∈ [t]\{i}, r ∈ [`−2]}
and v ∈ V (Cj)∪{zji′ | i′ ∈ [k] \ {j}}∪ {xji′

r | i′ ∈ [t] \ {j}, r ∈ [`− 2]} there is a rainbow path
between u and v in G′.

We now establish equivalence between the instance G of k-Coloring and the instance
G′ of Rainbow k-Coloring.

I Lemma 15. G′ is a yes instance of k-Coloring if and only if G′ is a yes instance of
Rainbow k-Coloring.

I Theorem 16. Rainbow k-Coloring does not admit an algorithm running in time
2o(|E(G)|)nO(1), unless ETH fails. Here, n is the number of vertices in the input graph, and k

is an even number greater than 3.

4.3 Lower Bound for Rainbow k-Coloring, k > 3 and odd
In this section, we show that Rainbow k-Coloring does not admit an algorithm running
in time 2o(|E(G)|)nO(1), for every odd k where k > 3. Here, n is the number of vertices in the
input graph.

Let G be an instance of k-Coloring on n vertices with maximum degree bounded by
2(k − 1). Here, k > 3 and k is an odd number. We start by computing (in polynomial
time) a harmonious coloring ϕ of G with t ∈ O(

√
n) color classes such that each color class

contains at most O(
√

n) vertices using Proposition refprop:compute-harmonious-coloring.
Let C1, C2, . . . , Ct be the color classes of ϕ. From the discussion in Section 3, we assume
that for i, j ∈ [t], i 6= j there is exactly one edge between Ci and Cj in G. As discussed
in Section 4.2, we modify the graph G and its harmonious coloring ϕ, to obtain a more
structured (equivalent) instance of k-Coloring. This is achieved by adding k new vertices
v∗i1, v∗i2, . . . , v∗ik to Ci (and G) for each i ∈ [t]. The purpose of adding these k new vertices is
to ensure that if G is a yes instance of k-Coloring then there is a k-coloring c of G, such
that for each i ∈ [t] and j ∈ [k], we have c−1(j) ∩Ci 6= ∅. Hereafter, whenever we talk about
a solution c to k-Coloring in G (if it exists) we will assume (without explicitly mentioning)
that for all i ∈ [t] and p ∈ [k] we have Ci ∩ c−1(p) 6= ∅.

We move to the description of the reduction. We first describe the color class gadget Ci,
corresponding to each color class Ci, where i ∈ [t], and gadgets to encode edges in G. We also
have a link vertex which is connected to all color class gadgets (but not all vertices). After
this, we state connections between color class gadgets and edge gadgets. We let k = 2` + 1,
where ` ∈ N and ` ≥ 2. We create an instance G′ of Rainbow k-Coloring as follows.

Color class gadget. Consider i ∈ [t]. The color class gadget Ci comprises of the set Ci, a
vertex ci, and a clique sequence Zi = (U i

1∪Di
1, . . . , U i

`−1∪Di
`−1) of order (2k, `−1). Here,

for each i ∈ [`− 1] we have |Ui| = |Di| = k. For r ∈ [` − 1] we let U i
r = {ui

rp | p ∈ [k]}
and Di

r = {di
rp | p ∈ [k]}. We add all the edges in {(ci, v) | v ∈ Ci} to E(Ci). Also, we

add all the edges in {(v, w) | v ∈ Ci, w ∈ U i
1 ∪Di

1} to E(Ci).
Link vertex and its connection to color class gadgets. We add a vertex z to G′. For each
i ∈ [t], we add all the edges in {(z, w) | w ∈ U i

`−1 ∪Di
`−1} to E(G′).

MFCS 2017

60:10 Fine-Grained Complexity of Rainbow Coloring and Its Variants

Edge gadget. Consider i, j ∈ [t] with i 6= j. Recall that there is exactly one edge between
Ci and Cj . Corresponding to this edge we create a path P = (xij

1 , . . . , xij
`−1, xji

`−1, . . . , xji
1)

on k − 3 vertices, and add it to G′.
Connection between color class gadgets and edge gadgets. Consider i, j ∈ [t], where i 6= j.
Let (u∗i , v∗j) be the unique edge between Ci and Cj with u∗i ∈ Ci and v∗j ∈ Ci. We add the
edges (u∗i , xij

1), (xji
1 , v∗j) to E(G′). For each r ∈ [`− 1] we add all the edges in {(xij

r , w) |
w ∈ U i

r ∪Di
r} to E(G′). Similarly, we add all the edges in {(xji

r , w) | w ∈ U j
r ∪Dj

r} to
E(G′).

This finishes the construction of the instance G′ of Rainbow k-Coloring for the given
instance G of k-Coloring. Before moving on to proving the equivalence between these
instances, we create an edge-coloring cR : E(G′) → [k]. Here, we create cR based on a
solution c to k-Coloring in G, assuming that is G a yes instance of k-Coloring. We will
follow computation modulo k (color 0 is same as color k).

I Definition 17. Given a solution c to k-Coloring in G, we construct cR : E(G′)→ [k] as
follows.
1. For i ∈ [t], and v ∈ Ci we set cR(v, ci) = c(v).
2. For i, j ∈ [t], i 6= j let (u∗i , v∗j) be the unique edge between Ci and Cj . Consider the

path P = (u∗i , xij
1 , . . . xij

`−1, xji
`−1, . . . xji

1 , v∗j). We arbitrarily assign unique integers in
[k] \ {c(u∗i), c(v∗j)} to cR(e), for each e ∈ E(P).

3. For i ∈ [t], a vertex v ∈ Ci ∪ {xij
1 | j ∈ [t] \ {i}}, and p ∈ [k] we set cR(v, ui

1p) = p − 1,
and cR(v, di

1p) = p.
4. For i ∈ [t], r ∈ [`− 1], and p, q ∈ [k] we set cR(di

rp, ui
rq) = p.

5. For i, j ∈ [t], where i 6= j, r ∈ [` − 1], and p ∈ [k] we set cR(xij
r , ui

rp) = p, and
cR(xij

r , di
rp) = p + 1.

6. For i ∈ [t], r ∈ [`− 2], p, q ∈ [k] we set cR(di
(r+1)p, di

rq) = p, and cR(ui
rp, ui

(r+1)q) = p.
7. For i ∈ [t], p ∈ [k] we set cR(ui

(`−1)p, z) = p, and cR(di
(`−1)p, z) = p− 1.

8. For i ∈ [t], r ∈ [`− 2], p, q ∈ [k] we set cR(ui
rp, di

(r+1)q) = q and cR(ui
(r+1)p, di

rq) = p.
9. For all i ∈ [t], r ∈ [`], p, q ∈ [k], where p 6= q we set cR(ui

rp, ui
rq) = k.

10. For all the remaining edges in E(G′), cR assigns it an integer in [k] arbitrarily.

Next, we prove some lemmata that will be useful in establishing the equivalence between
the instance G of k-Coloring and the instance G′ of Rainbow k-Coloring.

I Lemma 18. For i, j ∈ [t], where i 6= j, let P be a path between ci and cj with at most k

edges in G′. Then (xij
`−1, xij

`−1) ∈ E(P).

I Lemma 19. For i, j ∈ [t], where i 6= j let (u∗i , v∗j) be the unique edge between Ci and Cj with
u∗i ∈ Ci and v∗j ∈ Cj . There is exactly one path, namely (ci, u∗i , xij

1 , . . . , xij
`−1, xji

`−1, . . . , xji
1 , v∗j

, cj) in G′ between ci and cj that has at most k edges.

I Lemma 20. Let G be a yes instance of k-Coloring, and c be one of its solution.
Furthermore, let cR : E(G′)→ [k] be the coloring given by Definition 17 for the coloring c of
G. For all i ∈ [t], and u, v ∈ V (Ci) ∪ {xij

r | j ∈ [t] \ {i}, r ∈ [`− 1]} ∪ {z} there is a rainbow
path between u and v in G′.

I Lemma 21. Let G be a yes instance of k-Coloring, and c be one of its solution.
Furthermore, let cR : E(G′) → [k] be the coloring given by Definition 17 for the coloring
c of G. For all i, j ∈ [t] where i 6= j, u ∈ V (Ci) ∪ {xij′

r | j′ ∈ [t] \ {i}, r ∈ [` − 1]} and
v ∈ Cj ∪ {xji′

r | i′ ∈ [t] \ {j}, r ∈ [`− 1]} there is a rainbow path between u and v in G′.

A. Agrawal 60:11

I Lemma 22. G′ is a yes instance of k-Coloring if and only if G′ is a yes instance of
Rainbow k-Coloring.

I Theorem 23. Rainbow k-Coloring does not admit an algorithm running in time
2o(|E(G)|)nO(1), unless ETH fails. Here, n is the number of vertices in the input graph, and k

is an odd number greater than 3.

5 FPT Algorithm for Subset Rainbow k-Coloring

In this section, we design an FPT algorithm running in time O(2|S|nO(1)) for Subset
Rainbow k-Coloring, when parameterized by |S|. Our algorithm is based on the technique
of color coding, which was first introduced by Alon et al. [2]. We first describe a randomized
algorithm for Subset Rainbow k-Coloring, which we derandomize using splitters.

The intuition behind the algorithm is as follows. Let (G, S) be an instance of Subset
Rainbow k-Coloring on n vertices and m edges. For a solution cR : E(G) → [k], to
Subset Rainbow k-Coloring in (G, S) the following holds. For each (u, v) ∈ S, there
exist a path P from u to v in G with at most k edges such that for all e, e′ ∈ E(P), where
e 6= e′ we have cR(e) 6= cR(e′). Therefore, at most k|S| edges in G seems to be “important”
for us, i.e. if we color at most k|S| edges “nicely” then we would obtain the desired soultion.
To capture this, we start by randomly coloring edges in G, hoping that with sufficiently
high probability we obtain a coloring that colors the desired set of edges “nicely”. Once we
have obtained such a “nice” coloring, we employ the algorithm of Kowalik and Lauri [19] to
check if there is a rainbow path for each (u, v) ∈ S. We note that we use the algorithm given
by [19] instead of the one in [28] because the latter requires exponential space.

Algorithm Rand-SRC. Let c : E(G)→ [k] be a coloring of E(G), where each edge is colored
with one of the colors in [k] uniformly and independently at random. If for each (u, v) ∈ S,
there is rainbow path between u and v in G′ with edge-coloring c then the algorithm return
c as a solution to Subset Rainbow k-Coloring in (G, S). Otherwise, it returns no. We
note that for a given graph G with edge-coloring c, and vertices u and v, in time 2knO(1)

time we can check if there is a rainbow path between u and v in G′ by using the algorithm
given by Corollary 5 in [19]. This completes the description of the algorithm.

We now proceed to show how we can obtain an algorithm with constant success probability.

I Theorem 24. There is an algorithm that, given an instance (G, S) of Subset Rainbow
k-Coloring, in time 2O(|S|k log k)nO(1) either returns no or outputs a solution to Subset
Rainbow k-Coloring in (G, S). Moreover, if the input is a yes instance of Subset
Rainbow k-Coloring, then it returns a solution with positive constant probability.

We start by defining some terminologies which will be useful in derandomization of our
algorithm (see [12, 27]). An (n, p, `)-splitter F , is a family of functions from [n] to ` such
that for every S ⊆ [n] of size at most p there is a function f ∈ F such that f splits S evenly.
That is, for all i, j ∈ [`], |f−1(i)| and |f−1(j)| differs by at most 1. Observe that when
` ≥ p then for any S ⊆ [n] of size at most p and a function f ∈ F that splits S, we have
|f−1(i) ∩ S| ≤ 1, for all i ∈ [`]. An (n, `, `)-splitter is called as an (n, `)-perfect hash family.
Moreover, for any ` ≥ 1, we can construct an (n, `)-perfect hash family of size e``O(log `) log n

in time e``O(log `)n log n [27].
We next move to the description of derandomization of the algorithm presented in The-

orem 24. For the sake of simplicity in explanation, we associate each e ∈ E(G) with a unique
integer, say ie in [m], and whenever we refer to e as an integer, we actually refer to the integer

MFCS 2017

60:12 Fine-Grained Complexity of Rainbow Coloring and Its Variants

ie. We start by computing an (m, k|S|)-perfect hash family F of size ek|S|(k|S|)O(log k|S|) log m

in time ek|S|(k|S|)O(log k|S|)
m log m using the algorithm of Naor et al. [27]. We will create

a family of function F ′ from [m] to [k] of size ek|S|(k|S|)O(log k|S|)
kk|S| log m. Towards

this, consider an f ∈ F and a partition P = {P1, P2, . . . , Pk′} of [k|S|] into k′ sets, where
k′ ≤ k. We let fP to be the function obtained from f as follows. For each i ∈ [k′] we have
f−1
P (i) = ∪x∈Pi

f−1(x). For every such pair f and P, we add the function fP to the set F ′.
We will call such an F ′ as (m, k|S|, k)-unified perfect hash family. Observe that F ′ has size
at most ek|S|(k|S|)O(log k|S|)

kk|S| log m. We now describe the derandomized algorithm SRC,
which is a result of derandomization of Rand-SRC.

Algorithm SRC. Given an instance (G, S) of Subset Rainbow k-Coloring, the algorithm
start by computing an (m, k|S|, k)-unified perfect hash family F ′. If there exists c : E(G)→
[k], where c ∈ F ′ such that for each (u, v) ∈ S, there is rainbow path between u and v in G′

with the edge-coloring c then we return c as a solution to Subset Rainbow k-Coloring in
(G, S). Otherwise, we return that (G, S) is a no instance of Subset Rainbow k-Coloring.
We note that for a given graph G with edge-coloring c, and vertices u and v, in time 2knO(1)

time we can check if there is a rainbow path between u and v in G′ by using the algorithm
given by Corollary 5 in [19]. This completes the description of the algorithm.

I Theorem 25. Given an instance (G, k) of Subset Rainbow k-Coloring, the algorithm
SRC either correctly reports that (G, k) is a no instance of Subset Rainbow k-Coloring
or returns a solution to Subset Rainbow k-Coloring in (G, S). Moreover, SRC runs in
time 2O(|S|)nO(1), for every fixed k. Here, n = |V (G)|.

I Corollary 26. Steiner Rainbow k-Coloring admits an algorithm running in time
2O(|S|2)nO(1).

6 Conclusion

In this paper, we proved that for all k ≥ 3, Rainbow k-Coloring does not admit an
algorithm running in time 2o(|E(G)|)nO(1), unless ETH fails. This (partially) resolves the
conjecture of Kowalik et al. [20], which states that for every k ≥ 2, Rainbow k-Coloring
does not admit an algorithm running in time 2o(|E(G)|)nO(1). It would be an interesting
direction to study whether or not Rainbow k-Coloring admits an algorithm running
in time 2o(|E(G)|)nO(1), for k = 2. We also studied the problem Steiner Rainbow k-
Coloring, and proved that for every k ≥ 3 the problem does not admit an algorithm
running in time 2o(|S|2)nO(1), unless ETH fails. We complemented this by designing an
algorithm for Subset Rainbow k-Coloring running in time 2O(|S|)nO(1), which implies
an algorithm running in time 2O(|S|2)nO(1) for Steiner Rainbow k-Coloring. It would
be interesting to study whether or not Steiner Rainbow k-Coloring admits an algorithm
running in time 2o(|S|2)nO(1), for k = 2. Kowalik et al. [20] also conjectured that for every
k ≥ 2, Rainbow k-Coloring does not admit an algorithm running in time 2o(n2)nO(1),
which is another interesting direction of research.

Acknowledgements. The author is thankful to Saket Saurabh for helpful discussions.

A. Agrawal 60:13

References
1 Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split contrac-

tion: The untold story. In 34th Symposium on Theoretical Aspects of Computer Science,
(STACS), pages 5:1–5:14, 2017.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM),
42(4):844–856, 1995.

3 Prabhanjan Ananth, Meghana Nasre, and Kanthi K. Sarpatwar. Rainbow Connectivity:
Hardness and Tractability. In Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), volume 13, pages 241–251, 2011.

4 Yair Caro, Arie Lev, Yehuda Roditty, Zsolt Tuza, and Raphael Yuster. On rainbow con-
nection. Electronic Journal of Combinatorics, 15(1):R57, 2008.

5 Sourav Chakraborty, Eldar Fischer, Arie Matsliah, and Raphael Yuster. Hardness and
algorithms for rainbow connection. Journal of Combinatorial Optimization, 21(3):330–347,
2011.

6 L. Sunil Chandran and Deepak Rajendraprasad. Rainbow colouring of split and threshold
graphs. In 18th Annual International Conference: Computing and Combinatorics, (CO-
COON), pages 181–192, 2012.

7 L. Sunil Chandran and Deepak Rajendraprasad. Inapproximability of rainbow colouring.
In IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), pages 153–162, 2013.

8 Gary Chartrand, Garry L Johns, Kathleen A McKeon, and Ping Zhang. Rainbow connec-
tion in graphs. Mathematica Bohemica, 133(1):85–98, 2008.

9 Gary Chartrand and Ping Zhang. Chromatic graph theory. CRC press, 2008.
10 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,

Jakub Pachocki, and Arkadiusz Socala. Tight bounds for graph homomorphism and sub-
graph isomorphism. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms, (SODA), pages 1643–1649, 2016.

11 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub Pachocki, and Arkadiusz Socala. Tight bounds for graph homomorphism and sub-
graph isomorphism. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1643–1649, 2016.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

13 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

14 Keith Edwards. The harmonious chromatic number and the achromatic number. Surveys
in Combinatorics, pages 13–48, 1997.

15 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

16 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

17 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

18 Christian Komusiewicz. Tight running time lower bounds for vertex deletion problems.
arXiv preprint arXiv:1511.05449, 2015.

19 Lukasz Kowalik and Juho Lauri. On finding rainbow and colorful paths. Theoretical
Computer Science, 628(C):110–114, 2016.

20 Lukasz Kowalik, Juho Lauri, and Arkadiusz Socala. On the fine-grained complexity of
rainbow coloring. In 24th Annual European Symposium on Algorithms, (ESA), pages 58:1–
58:16, 2016.

MFCS 2017

60:14 Fine-Grained Complexity of Rainbow Coloring and Its Variants

21 V.B. Le and Z. Tuza. Finding Optimal Rainbow Connection is Hard. Preprints aus dem
Institut für Informatik / CS. Inst. für Informatik, 2009. URL: https://books.google.no/
books?id=0ErVPgAACAAJ.

22 Sin-Min Lee and John Mitchem. An upper bound for the harmonious chromatic number.
Journal of Graph Theory, 11(4):565–567, 1987.

23 Xueliang Li, Yongtang Shi, and Yuefang Sun. Rainbow connections of graphs: A survey.
Graphs and Combinatorics, 29(1):1–38, 2013.

24 Xueliang Li and Yuefang Sun. Rainbow connections of graphs. Springer Science & Business
Media, 2012.

25 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the expo-
nential time hypothesis. Bulletin of the EATCS, pages 41–71, 2011.

26 Colin McDiarmid and Luo Xinhua. Upper bounds for harmonious coloring. Journal of
Graph Theory, 15(6):629–636, 1991.

27 M. Naor, L. J. Schulman, and A. Srinivasan. Splitters and near-optimal derandomization.
In Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS),
pages 182–191, 1995.

28 Kei Uchizawa, Takanori Aoki, Takehiro Ito, Akira Suzuki, and Xiao Zhou. On the rainbow
connectivity of graphs: Complexity and fpt algorithms. Algorithmica, 67(2):161–179, 2013.

https://books.google.no/books?id=0ErVPgAACAAJ
https://books.google.no/books?id=0ErVPgAACAAJ

	Introduction
	Preliminaries
	Lower bound for Steiner Rainbow k-Coloring
	Lower bound for Rainbow k-Coloring
	Lower bound for Rainbow 3-Coloring
	Lower Bound for Rainbow k-Coloring, k>3 and even
	Lower Bound for Rainbow k-Coloring, k>3 and odd

	FPT Algorithm for Subset Rainbow k-Coloring
	Conclusion

