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Abstract
This paper addresses the problem of determining the distance between two regular languages.
It will show how to expand Jaccard distance, which works on finite sets, to potentially-infinite
regular languages.

The entropy of a regular language plays a large role in the extension. Much of the paper
is spent investigating the entropy of a regular language. This includes addressing issues that
have required previous authors to rely on the upper limit of Shannon’s traditional formulation
of channel capacity, because its limit does not always exist. The paper also includes proposing
a new limit based formulation for the entropy of a regular language and proves that formulation
to both exist and be equivalent to Shannon’s original formulation (when it exists). Additionally,
the proposed formulation is shown to equal an analogous but formally quite different notion
of topological entropy from Symbolic Dynamics – consequently also showing Shannon’s original
formulation to be equivalent to topological entropy.

Surprisingly, the natural Jaccard-like entropy distance is trivial in most cases. Instead, the
entropy sum distance metric is suggested, and shown to be granular in certain situations.
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1 Introduction

In this paper we study distances between regular expressions. There are many motivations for
this analysis. Activities in bioinformatics, copy-detection [9], and network defense sometimes
require large numbers of regular expressions be managed. Metrics aid in indexing and
management of those regular expressions [4]. Further, understanding the distance between
regular languages requires an investigation of the structure of regular languages that we hope
eliminates the need for similar theoretical investigations in the future.

A natural definition of the distance between regular languages L1 and L2 containing
strings of symbols from Σ is: limn→∞

|(L1∆L2)∩Σn|
|(L1∪L2)∩Σn| (where L1∆L2 = (L1 ∪L2) \ (L1 ∩L2) is

the symmetric difference). However, the definition has a fundamental flaw: the limit does
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3:2 Regular Language Distance and Entropy

not always exist. Consider the distance between (aa)∗ and a∗. When n is even, the fraction
is 0, while when n is odd the fraction is 1. Thus, the limit given above is not well defined for
those two languages.

This paper addresses that flaw and examines the question of entropy and distance
between regular languages in a more general way. A fundamental contribution will be a
limit-based distance related to the above that (1) exists, (2) can be computed from the
Deterministic Finite Automaton for the associated regular languages, and (3) does not
invalidate expectations about the distance between languages.

The core idea is two-fold: (1) to rely on the number of strings up-to a given length rather
than strings of a given length and (2) to use Cesáro averages to smooth out the behavior of
the limit. These ideas led us to develop the Cesáro Jaccard distance, which is proven to be
well-defined in Theorem 7.

Tied up in this discussion will be the entropy of a regular language, which is again a
concept whose common definition needs tweaking due to limit-related considerations.

This paper is structured as follows. In Section 2 we discuss related work and define terms
that will be used in the paper. Of particular importance is Table 1, which includes all of the
distance functions defined in the paper. As the Jaccard distance is a natural entry point
into distances between sets, Section 3 will discuss the classical Jaccard distance and how
best to extend it to infinite sets. Section 4 will discuss notions of regular language entropy,
introducing a new formulation and proving it correct from both a channel capacity and a
topological entropy point of view. Section 5 will introduce some distances based on entropy,
and show that some of them behave well, while others do not. Finally, Section 6 provides a
conclusion and details some potential future work.

2 Background

2.1 Related Work
Chomsky and Miller’s seminal paper on regular languages [6] does not address distances
between regular languages. It uses Shannon’s notion of channel capacity (equation 7 from
[6]) for the entropy of a regular language: h(L) = limn→∞

log|L∩Σn|
n .

While Shannon says of that limit that “the limit in question will exist as a finite number
in most cases of interest” [27], its limit does not always exist for regular languages (consider
(Σ2)∗). This motivates much of the analysis in this paper. Chomsky and Miller also examine
the number of sentences up to a given length, foreshadowing some other results in this paper.
However, their analysis was based upon an assumption with deeper flaws than that the limit
exists. In this paper we address those issues.

Several works since Chomsky and Miller have used this same of length exactly n formula
to define the entropy of a regular language [3, 9, 17]. These works define entropy as Chomsky
and Miller, but add the caveat that they use the upper limit when the limit does not
exist. Here we provide foundation for those works by showing the upper limit to be correct
(Theorem 13). Further, this paper suggests an equivalent expression for entropy that may be
considered more elegant: it is a limit that exists as a finite number for all regular languages
which equals the traditional notion of entropy when that limit exists.

Chomsky and Miller’s technique was to develop a recursive formula for the number of
words accepted by a regular language. That recursive formula comes from the characteristic
polynomial of the adjacency matrix for an associated automaton. The eigenvalues of the
adjacency matrix describe the growth of the language (we use the same technique, but
apply stronger theorems from linear algebra that were discovered several decades after
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Chomsky and Miller’s work). The recursive formula can also be used to develop a generating
function to describe the growth of the language (see [25]). Bodirsky, Gärtner, Oertzen,
and Schwinghammer [2] used the generating functions to determine the growth of a regular
language over alphabet Σ relative to |Σ|n, and Kozik [16] used them to determine the growth
of a regular language relative to a second regular language. Our approaches share significant
details: they relate the growth of a regular language to the poles of its generating function –
which are the zeroes of the corresponding recurrence relation – which are the eigenvalues of
the associated adjacency matrix. Our technique establishes the “size” of a regular language
independent of a reference alphabet or language.

There is work examining distances between unary regular languages, or regular languages
on the single character alphabet (|Σ| = 1) [11]. It introduces a definition for Jaccard distance
that will appear in this paper: 1 − limn→∞

|L1∩L2∩(
⋃n

i=0
Σi)|

|(L1∪L2)∩(
⋃n

i=0
Σi)| . Further, it gives a closed

form for calculating that distance between two unary regular languages.
Besides the stronger results, our work differs from that of [2, 11, 16] in the analysis of the

distance functions presented: in particular, one can conclude (as a consequence of Theorem
17) that the above equation is mostly trivial – it returns 0 or 1 “most” of the time.

More recently, Cui et al directly address distances between regular languages using a
generalization of Jaccard distance [9]. That paper usefully expands the concept of Jaccard
distance to regular languages by (1) using entropy to handle infinite sized regular languages
(they use the upper limit notion of entropy described above), and (2) allowing operations
other than intersection to be used in the numerator. Further, Cui et al suggest and prove
properties of several specific distance functions between regular languages. The distance
functions in this paper do not generalize the Jaccard distance in the same way, but are
proven to be metrics or pseudo-metrics.

Ceccherini-Silberstein et al investigate the entropy of specific kinds of subsets of regular
languages [3]. They present a novel proof of a known fact from Symbolic Dynamics. They
use the same upper limit notion of entropy as above. Other entropy formulations include
the number of prefixes of a regular language [5], but this has only been proven equivalent to
entropy under restricted circumstances.

Symbolic dynamics [19] studies, among other things, an object called a sofic shift. Sofic
shifts are analogous to deterministic finite automata and their shift spaces are related to
regular languages. The formulation of entropy used in this field does not suffer from issues
of potential non-existence. This paper includes a proof that the topological entropy of a sofic
shift is equivalent to language-centric formulations in this paper: see Theorem 13.

Other related results from symbolic dynamics include an investigation into the comput-
ability of a sofic shift’s entropy [28] and a discussion of the lack of relationship between
entropy and complexity [18]. There is another proposal for the topological entropy of formal
languages [26] that is zero for all regular languages (and hence not helpful as a distance
function for regular languages).

A probabilistic automaton is an automaton with a probability distribution applied
to outgoing transitions from each state. The words of a regular language thus inherit a
probability. Using standard distance functions on probability distributions (such as Lp and
Kullback-Leibler divergence), several distance functions [7, 8, 21] have been created for
probabilistic languages. Note that in this model, the probability of a word exponentially
decreases with its length, and hence these distance functions can be effectively estimated by
words of bounded length. Chan [4] also describes several distance functions using only words
of bounded length. Our paper will uncover features of several distance functions, which will
fit nicely into the above frameworks.

MFCS 2017



3:4 Regular Language Distance and Entropy

Table 1 The distance functions considered in this paper are listed in this table.

J ′n(L1, L2) n Jaccard Distance |Wn(L14L2)|
|Wn(L1∪L2)|

Jn(L1, L2) n≤ Jaccard Distance |W≤n(L14L2)|
|W≤n(L1∪L2)|

JC(L1, L2) Cesàro Jaccard limn→∞
1
n

∑n

i=1 Ji(L1, L2)
H(L1, L2) Entropy Distance h(L14L2)

h(L1∪L2)

HS(L1, L2) Entropy Sum Distance h(L1 ∩ L2) + h(L1 ∩ L2)

2.2 Definitions and Notation

In this paper Σ will denote a set of symbols or the alphabet. Strings are concatenations of
these symbols. All log operations in this paper will be taken base 2. Raising a string to the
power n will represent the string resulting from n concatenations of the original string. A
similar notion applies to sets. In this notation, Σ5 represents all strings of length 5 composed
of symbols from Σ. The Kleene star, ∗, when applied to a string (or a set) will represent
the set containing strings resulting from any number of concatenations of that string (or
of strings in that set), including the empty concatenation. Thus, Σ∗ represents all possible
strings comprised of symbols in Σ, including the empty string.

A regular language is a set L ⊂ Σ∗ which can be represented by a Deterministic Finite
Automaton, DFA for short. A DFA is a 5-tuple (Q,Σ, δ, q0, F ), where Q is a set of states,
Σ is the set of symbols, δ is a partial function from Q × Σ to Q, q0 ∈ Q is the initial
state and F ⊂ Q is a set of final states. A regular language can also be constructed by
recursive applications of concatenation (denoted by placing regular expressions adjacent to
one another), disjunction (denoted |), and Kleene star (denoted ∗), to strings and the empty
string. That this construction and the DFA are equivalent is well known [14].

The DFA (Q,Σ, δ, q0, F ) can be thought of as a directed graph whose vertices are Q with
edges from q to q′ iff there is an s ∈ Σ such that q′ = δ(q, s). The transition function δ

provides a labeling of the graph, where each edge (q, q′) is labeled by the symbol s such that
δ(q, s) = q′. Note that there may be multiple edges between nodes, each with a different
label. The adjacency matrix A for a DFA is the adjacency matrix for the corresponding
graph. Thus, entries in A are given by aq,q′ , where aq,q′ is the number of edges from vertex
q to vertex q′.

For a regular language L, let Wn(L) denote the set of words in L of length exactly n,
i.e. Wn(L) = L ∩ Σn, and let W≤n(L) denote the set of words in L of length at most n, i.e.
W≤n(L) = L ∩ (

⋃n
i=0 Σi).

Finally, we will discuss when certain distance functions are metrics. A metric on the
space X is a function d : X ×X → R that satisfies

1. d(x, y) ≥ 0 with equality if and only if x = y for all x, y ∈ X

2. d(x, y) = d(y, x) for all x, y ∈ X

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
An ultra-metric is a stronger version of a metric, with the triangle inequality (the third
condition above) replaced with the ultra-metric inequality: d(x, z) ≤ max{d(x, y), d(y, z)}
for all x, y, z ∈ X. Also, there exists a weaker version, called a pseudo-metric, which allows
d(x, y) = 0 when x 6= y.
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3 Jaccard Distances

The Jaccard distance is a well-known distance function between finite sets. For finite sets
A and B, the Jaccard distance between them is given by |A4B||A∪B| = 1 − |A∩B||A∪B| where A4B
represents the symmetric difference between the two sets (if A ∪ B = ∅ then the Jaccard
distance is 0). This classical Jaccard distance is not defined for infinite sets and as such, is
not a suitable distance function for infinite regular languages and will need to be modified.

3.1 Jaccard Distances using Wn and W≤n

A natural method for applying Jaccard distance to regular languages is to fix n, defined as
follows:

I Definition 1 (n Jaccard Distance). Suppose L1 and L2 are regular languages. Define the n
Jaccard distance by J ′n(L1, L2) = |Wn(L14L2)|

|Wn(L1∪L2)| if |Wn(L1∪L2)| > 0, otherwise J ′n(L1, L2) = 0.

For fixed n, the above is a pseudo-metric since it is simply the Jaccard distance among sets
containing only length n strings. The following proposition points out one deficiency of J ′n.

I Proposition 2. There exists a set S = {L1, L2, L3} of infinite unary regular languages
with L2, L3 ⊂ L1 such that for all n there exists an i 6= j such that J ′n(Li, Lj) = 0.

One may also use W≤n in the definition of a Jaccard-based distance function.

I Definition 3 (n≤ Jaccard Distance). For regular languages L1 and L2, define the n≤ Jaccard
distance by Jn(L1, L2) = |W≤n(L14L2)|

|W≤n(L1∪L2)| if |W≤n(L1 ∪ L2)| > 0, otherwise Jn(L1, L2) = 0.

The issue with J ′n pointed out by Proposition 2 can be proven to not be a problem for
Jn: see the first point of Theorem 4. On the other hand, the second point of Theorem 4
shows that no universal n exists.

I Theorem 4. The function Jn defined above is a pseudo-metric and satisfies the follow-
ing:
1. Let S = {L1, . . . , Lk} be a set of regular languages. There exists an n such that Jn is a

metric over S. Moreover, we may choose n such that n ≤ maxi,j(s(Li) + 1)(s(Lj) + 1)− 1
where s(Li) represents the number of states in the minimal DFA corresponding to Li.

2. For any fixed n there exist regular languages L,L′ with L 6= L′ such that Jn(L,L′) = 0.

For any pseudo-metric, the relation d(x, y) = 0 is an equivalence relation. Thus, if we
mod out by this equivalence relation, the pseudo-metric becomes a metric.

Due to the fact that one must choose a fixed n, Jn and J ′n cannot account for the
infinite nature of regular languages. Limits based on Jn and J ′n are a natural next step.
However, the natural limits involving J ′n and Jn do not always exist. An example showing
this was given for J ′n in the beginning of the introduction (Section 1). A similar example
applies to Jn. Consider the languages given by L1 = (a|b)∗ and L2 = ((a|b)2)∗ (Σ = {a, b}).
For these languages, limn→∞ J2n(L1, L2) = 2/3 and limn→∞ J2n+1(L1, L2) = 1/3. Hence,
limn→∞ Jn(L1, L2) does not exist.

The next theorem gives conditions for when the limit of J ′n exists as n goes to infinity.
Before the theorem is stated we will need some more terminology. Suppose L is a regular
language and M is the corresponding DFA. This DFA is a labeled directed graph. An
irreducible component of M is a strongly connected component of the graph. That is, an

MFCS 2017
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Class 1

Class 2

Class 3
a,b

a,b a,b

a,b

Ai =




0 2i 0 0
0 0 2i 0
0 0 0 2i
0 2i 0 0

 if i ≡ 1 mod 3


0 0 2i 0
0 0 0 2i
0 2i 0 0
0 0 2i 0

 if i ≡ 2 mod 3


0 0 2i 0
0 2i 0 0
0 0 2i 0
0 0 0 2i

 if i ≡ 0 mod 3

Figure 1 The DFA for a period 3 language and the associated adjacency matrix raised to the ith

power.

irreducible component is composed of a maximal set of vertices such that for any pair, there
is a directed path between them.

The period of an irreducible graph (or associated adjacency matrix) is the largest integer
p such that the vertices can be grouped into classes Q0, Q1, . . . , Qp−1 such that if x ∈ Qi,
then all of the out neighbors of x are in Qj , where j = i + 1(mod p). The period of a
reducible graph is the least common multiple of the periods of its irreducible components.
See Figure 1 for an example of a regular language whose DFA has period 3. For a more
formal definition of periodicity see [19]. If the graph (or matrix) has period 1 it will be called
aperiodic. Matrices that are irreducible and aperiodic are called primitive. The definition of
primitive presented here is equivalent to the condition that there is an n such that all entries
of the adjacency matrix A raised to the n-th power (An) are positive [20]. This is illustrated
in Figure 1, where the graph is periodic and reducible and all powers of that matrix contain
multiple zeroes.

I Theorem 5. Suppose L1 and L2 are regular languages. If each irreducible component of
the DFA associated to L14L2 and L1 ∪ L2 are aperiodic, then limn→∞ J ′n(L1, L2) converges.

Let us build intuition prior to proving Theorem 5, which will also frame the question
of convergence in the next subsection. We will first discuss Theorem 5 in the case where
the DFA associated to regular languages L14L2 and L1 ∪ L2 are primitive. Suppose A4
and A∪ are the adjacency matrices for L14L2 and L1 ∪ L2 respectively. Perron-Frobenius
theory tells us that the eigenvalue of largest modulus of a primitive matrix is real and unique.
Let (v4, λ4) and (v∪, λ∪) be eigenpairs composed of the top eigenvalues for A4 and A∪
respectively. Notice that i4An4f4, where i4 is the row vector whose jth entry is 1 if j is
an initial state in A4 and 0 otherwise (a similar definition for final states defining column
vector f4 holds), represents words in L14L2 of length n. If we write f4 = c1v4 + c2w and
f∪ = d1v∪+d2y, then i4An4f4 converges to λn4c1i4v4, and i∪An∪f∪ converges to λn∪d1i∪v∪
as n goes to infinity. This convergence is guaranteed because λ∪ and λ4 are unique top
eigenvalues. Thus,

lim
n→∞

J ′n(L1, L2) = lim
n→∞

(
λ4
λ∪

)n
c1i4v4
d1i∪v∪

and the limit converges (λ4 ≤ λ∪ because L14L2 ⊆ L1 ∪ L2).
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The general case of Theorem 5, which does not assume L14L2 and L1∪L2 have irreducible
matrices, is more complicated. However, the outline of the argument is the same, and we
will sketch it here. The key difference is the use of newer results. An understanding of the
asymptotic behavior of An for large n was finally beginning to be developed several decades
after Chomsky and Miller investigated regular languages. In 1981 Rothblum [23] proved
that for each non-negative matrix A with largest eigenvalue λ, there exists q ≥ 1 (which
happens to be the period of A) and polynomials S0(x), S1(x), . . . , Sq−1(x) (whose domain is
the set of real numbers and whose coefficients are matrices) such that for all whole numbers
0 ≤ k ≤ q − 1 we have that limn→∞ (A/λ)qn+k − Sk(n) = 0. We will refer to this result
later in the paper, where we will simply call it Rothblum’s Theorem (a slow treatment of
this theory with examples can be found in [24]). So the rest of the proof to Theorem 5 is
observing that q = 1 in the case we are interested in, and so limn→∞ J ′n(L1, L2) converges.

3.2 Cesàro Jaccard
For a sequence of numbers a1, a2, . . ., a Cesàro summation is limn→∞

1
n

∑n
i=1 ai when the

limit exists. The intuition behind a Cesàro summation is that it may give the “average value”
of the limit of the sequence, even when the sequence does not converge. For example, the
sequence aj = eαij (where i2 = −1) has Cesàro summation 0 for all real numbers α 6= 0. This
follows from the fact that rotations of the circle are uniquely ergodic [13]. Not all sequences
have a Cesàro summation, even when we restrict our attention to sequences whose values lie
in [0, 1]. For example, the sequence bi, where bi = 1 when 22n < i < 22n+1 for some n ∈ N
and bi = 0 otherwise has no Cesàro summation. However, we will be able to show that the
Cesàro average of Jaccard distances does exist.

To that end, another limit based distance is the Cesàro average of the Jn or J ′n.

I Definition 6 (Cesàro Jaccard Distance). Suppose L1 and L2 are regular languages. Define
the Cesàro Jaccard distance by JC(L1, L2) = limn→∞

1
n

∑n
i=1 Ji(L1, L2).

The Cesàro Jaccard distance is theoretically better than the above suggestions in Section
3.1 since it can be shown to exist for all regular languages.

I Theorem 7. Let L1 and L2 be two regular languages. Then, JC(L1, L2) is well-defined.
That is, limn→∞

1
n

∑n
i=1 Ji(L1, L2) exists.

We will breifly sketch the proof to Theorem 7. Recall that |Wn(L14L2)| and |Wn(L1∪L2)|
can be calculated using powers of specific matrices. If we take Q to be the least common
multiple of the period from each of the matrices associated with |Wn(L14L2)| and |Wn(L1 ∪
L2)|, we can immediately see that limn→∞ J ′Qn+k(L1, L2) exists, via Rothblum’s Theorem.
Moreover, it will equal zero if they have different values for the largest eigenvalue or the degree
of Sk(x). But if they have the same value for the largest eigenvalue and degree of Sk(x), then
limn→∞ J ′Qn+k(L1, L2) will be the ratio of the leading coefficients of the polynomials Sk(x)
for the two matrices. The proof finishes by observing that J ′C(L1, L2) = 1

n

∑n
i=1 J

′
i(L1, L2)

will be the average of these values.
We will require a new result to show that the more interesting value JC(L1, L2) is

well-defined (part (2) of the theorem is similar to a result in [23]).

I Theorem 8. Let A be the adjacency matrix for a DFA representing a regular language
L, and let λ be the largest eigenvalue of A. Let q and S0(x), S1(x), . . . , Sq−1(x) be as in
Rothblum’s theorem; let d be the largest degree of the polynomials S0(x), S1(x), . . . , Sq−1(x).
Let s` = limn→∞ n−(d+1)∑n

i=1 S`(i) and t` = limn→∞ n−dS`(n).

MFCS 2017



3:8 Regular Language Distance and Entropy

1. If λ < 1, then L is finite.
2. If λ = 1, then limn→∞

1
nd+1

∑n
i=1A

i =
∑q−1
i=0 s`.

3. If λ > 1, then limn→∞
1

(qn+k)dλ
−(qn+k)∑qn+k

i=1 Ai = 1
1−λ−q

∑k
`=k−q+1 λ

`−kt` where the
indices of the ti are taken modulo q.

Using our new result in place of Rothblum’s theorem, we now see that JC(L1, L2) is
well-defined. Note that in J ′C(L1, L2) each congruence class k is handled independently
and the final answer is the average of such results. On the other hand, in JC(L1, L2) each
congruence class k has a limit that is a combination of results from all of the congruence
classes. Thus the total answer is dominated by the overall asymptotic behavior and not just
small periodic undercurrents. We illustrate this point via the next example.

I Example 9. Let L1 = ((a|b)2)∗|c∗ and L2 = ((a|b)2)∗|d∗. The languages L1 and L2 have
((a|b)2)∗ in common and so mutually shared words up to length n grow exponentially. The
languages disagree on c∗ and d∗, whose words only grow polynomially. Hence, L1 and L2 are
very similar and should have a small distance. However, J ′C gives equal weight to words of
even length and odd length, even though the languages are mostly made up of even-length
words.

Rigorously, we have that limn→∞ J2n(L1, L2) = 0 and limn→∞ J ′2n(L1, L2) = 0. Further-
more, limn→∞ J2n+1(L1, L2) = 0 and limn→∞ J ′2n+1(L1, L2) = 1. Thus, JC(L1, L2) = 0,
while J ′C(L1, L2) = 1

2 .

We conclude this section with a fact about the Cesáro Jaccard distance.

I Fact 10. The Cesàro Jaccard distance inherits the pseudo-metric property from Jn.

4 Entropy

In this section we develop the idea of topological entropy for a certain type of dynamical
system and show how it relates to a quantity that we have identified as the language entropy.
Then, we will show how Cesáro Jaccard is related to entropy.

4.1 Topological Entropy
Topological entropy is a concept from dynamical systems where the space is a compact metric
space and the map defined there is continuous [19]. In dynamics, successive applications of
the map are applied and the long term behavior of the system is studied. An orbit of a point
x for the map T is the set {Tn(x) : n ∈ Z}. Topological entropy is an abstract concept
meant to determine the exponential growth of distinguishable orbits of the dynamical system
up to arbitrary scale. A positive quantity for topological entropy reflects chaos in the system
[1]. This concept was motivated by Kolmogorov and Sinai’s theory of measure-theoretic
entropy in ergodic theory [15, 29], which in turn is related to Shannon entropy [27]. An
example of a topological dynamical system is a sofic shift, which is a symbolic system that
is intricately related to DFA. Instead of defining the topological entropy of a sofic shift
symbolically, which is classical, we will use the graph theoretic description.

A sofic shift can be thought of as the space of biinfinite walks (i.e. walks with no beginning
and no end) on a right-solving labeled directed graph (a right-solving labeled graph has a
unique label for each edge leaving a given node). Suppose G is a directed graph where V is
the set of vertices and E is the set of edges of G. Furthermore, suppose that every edge in
E is labeled with a symbol from Σ, and that there is at most one outgoing edge from each
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a

b

a

aaa, aaba, ba, aaaaaaa, aaabaabaa, ...

a

b

a

... aabaabaabaaaabaaaaaabaaaaab ...

Figure 2 A DFA with some accepted strings and a sofic shift with a portion of a derived biinfinite
string.

vertex with a given label (i.e. right-solving). Note that this construction is similar to a DFA,
however there are no initial and final states. A biinfinite walk on G with a specified base
vertex is an infinite walk in both directions (forward and backward) from the base vertex
on the graph. This biinfinite walk corresponds to a biinfinite string of symbols from Σ. See
Figure 2.

We will call a finite block of symbols admissible if there is a biinfinite string of symbols
corresponding to a biinfinite walk on G and this finite block appears somewhere within the
biinfinite string. Note that all sufficiently long words in the DFA’s language will contain a
substring of almost the same length that is an admissible block, while not all admissible
blocks will be in the associated DFA’s language. Denote the set of admissible blocks of length
n corresponding to G by Bn(G). The topological entropy of the sofic shift represented by the
right-solving labeled graph G is denoted by ht(G) and is defined by

ht(G) = lim
n→∞

log |Bn(G)|
n

.

Using Perron-Frobenius theory it has been proven that the topological entropy of a sofic
shift represented by a right-solving labeled graph G is equal to the log base 2 of the spectral
radius of the adjacency matrix of G [19]. That is, the topological entropy is given by the log
of the adjacency matrix’s largest modulus eigenvalue. Algorithms for computing eigenvalues
are well known and run in time polynomial in the width of the matrix [12].

As you can see, sofic shifts are very similar to DFA. Given a DFA, M , one can construct
a sofic shift by thinking of M as a labeled directed graph and creating the trim graph by
removing all states that are not part of an accepting path. Information regarding initial and
final states is no longer needed. Note that the graph M is naturally right-solving because of
the determinism of DFA. It is also easiest to remove from M all vertices that do not have
both an outgoing and incoming edge (since we are now interested in biinfinite walks). The
resulting graph is called the essential graph. At this point one is free to apply the above
definition and compute the topological entropy of the sofic shift corresponding to the DFA.
This quantity can be computed by analyzing the irreducible components.

I Theorem 11 ([19]). Suppose that G is the labeled directed graph associated to a sofic shift.
If G1, . . . , Gk are the irreducible components of G, then ht(G) = max1≤i≤k ht(Gi).

In the next subsection we will introduce the language entropy and show that it is the
same as the topological entropy of the sofic shift corresponding to a DFA.

MFCS 2017
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4.2 Language Entropy
Traditionally, the entropy of a regular language L (also called the channel capacity [6] or
information rate [10]) is defined as lim supn→∞

log|Wn(L)|
n . This limit may not exist and so

an upper limit is necessary. We will show that this upper limit is realized by the topological
entropy of the corresponding sofic shift and define another notion of language entropy, which
is preferable since an upper limit is not necessary.

I Definition 12 (Language Entropy). Given a regular language L define the language entropy
by h(L) = limn→∞

log|W≤n(L)|
n .

I Theorem 13. Let L be a non-empty regular language over the set of symbols Σ, and let G
be the labeled directed graph of the associated sofic shift. We have that

lim sup
n→∞

log |Wn(L)|
n

= ht(G).

Moreover, for a fixed language L there exists a constant c such that there is an increasing
sequence of integers ni satisfying 0 < ni+1 − ni ≤ c and

lim
i→∞

log |Wni
(L)|

ni
= ht(G).

As a corollary to this theorem we obtain an important statement regarding the connection
between topological entropy (from dynamical systems) and language entropy (similar to
Shannon’s channel capacity). The following statement is consistent with remarks made by
Chomsky and Miller [6] that involved undefined assumptions; we show rigorously that this
formula is correct for all DFA.

I Corollary 14. Let L be a non-empty regular language over the set of symbols Σ, and let G
be the labeled directed graph of the associated sofic shift. Then,

h(L) = lim
n→∞

log |W≤n(L)|
n

= ht(G).

There are some simple properties of language entropy which will be useful later. The
first is a simple re-phrasing of Corollary 14.

I Lemma 15. For any regular language L, we have that |W≤n(L)| = 2n(h(L)+o(1)).

I Lemma 16. Suppose L1 and L2 are regular languages over Σ. The following hold:
1. If L1 ⊆ L2, then h(L1) ≤ h(L2).
2. h(L1 ∪ L2) = max(h(L1), h(L2))
3. max(h(L1), h(L1)) = log |Σ|
4. If h(L1) < h(L2), then h(L2 \ L1) = h(L2).
5. If L1 is finite, then h(L1) = 0.

4.3 Relationship between Entropy and Cesáro Jaccard
In Section 3.2 we proved that the Cesàro Jaccard distance is well-defined. As you will see,
Cesáro Jaccard and entropy are mostly disjoint in what they measure.

I Theorem 17. Let L1, L2 be two regular languages.
1. If h(L14L2) 6= h(L1 ∪ L2), then JC(L1, L2) = 0.
2. If h(L1 ∩ L2) 6= h(L1 ∪ L2), then JC(L1, L2) = 1.
3. If 0 < JC(L1, L2) < 1, then the following equal each other:

h(L1), h(L2), h(L1 ∩ L2), h(L14L2), h(L1 ∪ L2).
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To better understand this theorem, consider the following examples corresponding to the
three cases of the theorem: (1) let L1 = ((a|b)2)∗|c∗ and L2 = ((a|b)2)∗|d∗ as in Example
9, (2) let L1 = (a|b)∗|c∗ and L2 = (d|e)∗|c∗, and (3) let L1 = (aa)∗ and L2 = a∗ as in the
Introduction.

5 Entropy Distances

Entropy provides a natural method for dealing with the infinite nature of regular languages.
Because it is related to the eigenvalues of the regular language’s DFA, it is computable in
polynomial time given a DFA for the language. Note that the DFA does not have to be
minimal. We can therefore compute the entropy of set-theoretic combinations of regular
languages (intersection, disjoint union, etc) and use those values to determine a distance
between the languages.

5.1 Entropy Distance
A natural Jaccard-esque distance function based on entropy is the entropy distance.

I Definition 18 (Entropy Distance). Suppose L1 and L2 are regular languages. Define the
entropy distance to be H(L1, L2) = h(L14L2)

h(L1∪L2) if h(L1 ∪ L2) > 0, otherwise H(L1, L2) = 0.

This turns out to be equivalent to a Jaccard limit with added log operations:

I Corollary 19. Suppose L1 and L2 are regular languages. The following relation holds:

lim
n→∞

log |W≤n(L14L2)|
log |W≤n(L1 ∪ L2)| = H(L1, L2).

Note that H is not always a good candidate for a distance function as it only produces
non-trivial results for languages that have the same entropy.

I Proposition 20. Suppose L1 and L2 are regular languages. If h(L1) 6= h(L2), then
H(L1, L2) = 1.

As further evidence that H is not a good candidate for a distance function, we show it is
an ultra-pseudo-metric. The ultra-metric condition, i.e. d(x, z) ≤ max(d(x, y), d(y, z)), is so
strong that it can make it difficult for the differences encoded in the metric to be meaningful
for practical applications.

I Theorem 21. The function H is an ultra-pseudo-metric.

5.2 Entropy Sum
In this subsection we will define a new (and natural) distance function for infinite regular
languages. We call this distance function the entropy sum distance. We will prove that not
only is this distance function a pseudo-metric, it is also sometimes granular. Granularity
lends insight into the quality of a metric. Intuitively, granularity means that for any two
points in the space, you can find a point between them. A metric d on the space X is
granular if for every two points x, z ∈ X, there exists y ∈ X such that d(x, y) < d(x, z) and
d(y, z) < d(x, z), i.e. d(x, z) > max(d(x, y), d(y, z)).

I Definition 22 (Entropy Sum Distance). Suppose L1 and L2 are regular languages. Define
the entropy sum distance to be HS(L1, L2) = h(L1 ∩ L2) + h(L1 ∩ L2).

MFCS 2017



3:12 Regular Language Distance and Entropy

The entropy sum distance was inspired by first considering the entropy of the symmetric
difference directly, i.e. h(L14L2). However, since entropy measures the entropy of the most
complex component (Theorem 11), more information is gathered by using a sum as above in
the definition of entropy sum.

I Theorem 23. The function HS is a pseudo-metric.

The next two propositions display when granularity is achieved and when it is not.

I Proposition 24. Let L1 and L2 be regular languages such that h(L1 ∩ L2), h(L1 ∩
L2) > 0. Then, there exists two regular languages R1 6= R2 such that HS(L1, L2) >

max(HS(L1, Ri), HS(Ri, L2)) for each i.

I Proposition 25. Let L1 and L2 be regular languages such that h(L1 ∩ L2) = 0. For all
regular languages L we have that HS(L1, L2) ≤ max(HS(L1, L), HS(L,L2)).

6 Conclusion and Future Work

This paper has covered some issues related to the entropy of regular languages and the
distance between regular languages. It has proven correct the common upper limit formulation
of language entropy and has provided a limit based entropy formula that can be shown to
exist. Jaccard distance was shown to be related to language entropy, and various limit based
extensions of the Jaccard distance were shown to exist or not exist. The natural entropy
based distance function was shown to be an ultra-pseudo-metric, and some facts were proven
about the function that show it likely to be impractical. Finally, the paper introduces an
entropy-based distance function and proves that function to be a pseudo-metric, as well as
granular under certain conditions.

In this paper several formulations of entropy are developed, and it is natural to consider
which would be the best to use. In a practical sense it does not matter since all formulations are
equivalent (Theorem 13) and can be computed using Shannon’s determinant-based method
[27]. However, conceptually, it can be argued that limn→∞

log|W≤n(L)|
n is the preferable

formulation. First, there is a notational argument that prefers using limits that exist. This
is a limit that exists (Corollary 14), whereas many other limit formulations do not. Second,
this limit captures more readily the concept of “number of bits per symbol” that Shannon
intended. Because regular languages can have strings with staggered lengths, using Wn forces
the consideration of possibly empty sets of strings of a given length. This creates dissonance
when the language has non-zero entropy. Instead, the monotonically growing W≤n more
clearly encodes the intuition that the formulation is expressing the number of bits needed to
express the next symbol among all words in the language.

Apart from expanding to consider context-free languages and other languages ([10]),
one investigation that is absent from this paper is the determination of similarity between
languages that are disjoint but obviously similar (i.e. aa∗ and ba∗). A framework for
addressing such problems is provided in [9], but finding metrics capturing such similarities
can be fodder for future efforts.
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