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Abstract
Given a graph G and a pair (F1,F2) of graph families, the function GDISJG,F1,F2 takes as
input, two induced subgraphs G1 and G2 of G, such that G1 ∈ F1 and G2 ∈ F2 and returns
1 if V (G1) ∩ V (G2) = ∅ and 0 otherwise. We study the communication complexity of this
problem in the two-party model. In particular, we look at pairs of hereditary graph families.
We show that the communication complexity of this function, when the two graph families are
hereditary, is sublinear if and only if there are finitely many graphs in the intersection of these
two families. Then, using concepts from parameterized complexity, we obtain nuanced upper
bounds on the communication complexity of GDISJG,F1,F2 . A concept related to communication
protocols is that of a (F1,F2)-separating family of a graph G. A collection F of subsets of V (G)
is called a (F1,F2)-separating family for G, if for any two vertex disjoint induced subgraphs
G1 ∈ F1, G2 ∈ F2, there is a set F ∈ F with V (G1) ⊆ F and V (G2) ∩ F = ∅. Given a graph G
on n vertices, for any pair (F1,F2) of hereditary graph families with sublinear communication
complexity for GDISJG,F1,F2 , we give an enumeration algorithm that finds a subexponential sized
(F1,F2)-separating family. In fact, we give an enumeration algorithm that finds a 2o(k)nO(1) sized
(F1,F2)-separating family; where k denotes the size of a minimum sized set S of vertices such
that V (G) \ S has a bipartition (V1, V2) with G[V1] ∈ F1 and G[V2] ∈ F2. We exhibit a wide
range of applications for these separating families, to obtain combinatorial bounds, enumeration
algorithms as well as exact and FPT algorithms for several problems.
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1 Introduction

The two party communication complexity, introduced by Yao [17], is an important research
area in theoretical computer science with many applications. This notion of complexity is
particularly useful for proving lower bounds for VLSI computation, parallel computation,
data structures as well as circuit lower bounds. In this model of communication, there
are two players, Alice and Bob, holding inputs x ∈ X and y ∈ Y respectively, and they
want to compute a given function f : X × Y → {0, 1}, by communicating as few bits
as possible. It is assumed that both players have infinite computational power. However,
communicating the results to the other player could be very costly. The minimum number of
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13:2 Communication Complexity of Pairs of Graph Families with Applications

bits communicated, for any pair of inputs (x, y), to compute the function f , is called the
(deterministic) communication complexity of f , denoted by D(f). One such communication
complexity problem, which has garnered a lot of attention, is the Clique vs Independent
Set problem, introduced by Yannakakis [16]. For an n-vertex graph G, the Clique vs
Independent Set problem is defined as follows. Alice gets a clique C in G and Bob gets an
independent set I in G. Here both Alice and Bob know the graph G and their goal is to decide
whether the clique and the independent set intersect in some vertex, by exchanging as few bits
as possible. In other words, define the function CISG(C, I) as the cardinality of V (C) ∩ V (I)
(note that |V (C) ∩ V (I)| ∈ {0, 1}) and, Alice and Bob want to compute CISG(C, I). It can
be shown that D(CISG) = O(log2 n). One can also show that D(CISG) = Ω(logn), using
the fooling set technique, a method to show communication lower bounds. Closing the
gap between the upper and lower bound of CISG is a long standing open problem. Very
recently, in 2015, Göös et al. [9] showed a near optimal lower bound of Ω̃(log2 n) for the
problem, where Ω̃(m) hides divisors poly-logarithmic in m. Later, Göös et al. [8] showed
that the same lower bound holds even for randomized communication complexity of the
problem. Other versions of two party communication protocols deal with the concepts of
nondeterministic and co-nondeterministic protocols. There are many works which study
the cost of co-nondeterministic communication protocols of the Clique vs Independent
Set problem [11, 1, 15, 7]. For more details on non-deterministic, co-nondeterministic and
randomized communication complexities, [13] can be referred.

In this work, we study the communication complexity of graph properties that generalize
the function CISG. Let F1 and F2 be two hereditary graph properties. That is, F1 and F2 are
two families of graphs such that if G ∈ Fi, i ∈ {1, 2}, then all induced subgraphs of G are also
in Fi. We define a (F1,F2) communication problem as follows. For any fixed n-vertex graph
G, Alice gets an induced subgraph G1 of G and Bob gets an induced subgraph G2 of G, such
that Gi ∈ Fi, i ∈ {1, 2}, and their objective is to check whether V (G1) and V (G2) intersect,
by communicating as few bits as possible. In other words, we define a function GDISJG,F1,F2

as GDISJG,F1,F2(G1, G2) = 1 if V (G1) and V (G2) do not intersect and 0 otherwise, where
G1 and G2 are induced subgraphs of G and Gi ∈ Fi, i ∈ {1, 2}. Alice and Bob want to find
the value of the function GDISJG,F1,F2 on (G1, G2). Notice that, when F1 is the family of
cliques and F2 is the family of independent sets, then GDISJG,F1,F2(C, I) = 1 if and only if
CISG(C, I) = 0. A trivial protocol for computing GDISJG,F1,F2 is as follows: Alice sends a bit
vector of V (G1) to Bob and Bob checks whether it intersects with the vertex set V (G2); the
number of bits communicated in this protocol is n. One of our main theorems characterizes
pairs of graph families for which the trivial protocol is the best one.

I Theorem 1.1. For any two hereditary families of graphs F1 and F2, for any n ∈ N, there
is an n-vertex graph G such that D(GDISG,F1,F2) = Ω(n) if and only if F1 ∩F2 is an infinite
family.

We give a sketch of the proof for this Theorem. We observe that when a pair of hereditary
graph families have finitely many graphs in their intersection, they have the following
property: In one family, all graphs have their independence number (the maximum size of
an independent set) bounded by a constant, while in the other family, all graphs have their
clique number (the maximum size of a clique) bounded by some other constant. Thus, we
consider the communication complexity for computing GDISJG,F1,F2 when F1 and F2 are
specific families. Let Cr be the family of graphs such that the independence number is at
most r, and I` be the family of graphs such that the clique number is at most `. Such pairs of
families were considered in the study made in [6]. Deriving from Theorem 5 in [10], we show
that D(GDISJG,Cr,I`

) = O(log2 n) and, therefore, conclude the hypothesis of Theorem 1.1.
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One of our main motivation, to carry out the study done in this article, was to introduce
ideas from parameterized complexity in the study of communication complexity and vice
versa. Parameterized complexity theory is a framework for a refined analysis of primarily hard
(NP-hard) problems. Here, every input instance I of a problem Π is accompanied with an
integer parameter k, and the running time is measured in terms of the associated parameter
k and the input size. The main idea of parameterized algorithms is to measure the running
time in terms of both input size as well as a parameter that captures structural properties
of the input instance. Using ideas from parameterized complexity, we obtain the following
nuanced upper bounds on the communication complexity of the function GDISJG,F1,F2 . A
pair (F1,F2) of hereditary graph families where F1 ∩ F2 is finite, will be referred to as a
good pair of graph families.

I Theorem 1.2. Let G be an n-vertex graph and (F1,F2) be a good pair of graph families.
Let optG

F1,F2
be the size of a minimum set S of vertices such that V (G) \ S has a bipartition

(V1, V2) with G[V1] ∈ F1 and G[V2] ∈ F2. Then there is a protocol for GDISJG,F1,F2 that has
O(log2(optG

F1,F2
) + logn) communication complexity.

For the special case of Clique vs Independent Set problem we get a protocol that
has O(log2(optG

C1,I1
) + logn) communication complexity. We would like to mention that the

protocol used to show that D(GDISJG,Cr,I`
) = O(log2 n) uses the full computational power of

Alice and Bob. In the protocol, both players are able to compute the communication matrix
of the function GDISJG,Cr,I`

. In contrast, we design a protocol to study communication
complexity in terms of the degeneracy of graphs in the given family, where all the computations
of both players are polynomial time operations. In particular, we consider the pair of families
(C1,D`), where D` is the set of all `-degenerate graphs and C1 is the set of all complete
graphs. Note that D0 is the family of independent sets. Hence, this is still a generalization
of the Clique vs Independent Set problem. We prove the following theorem regarding
the communication complexity of GDISJG,C1,D`

, with the help of a protocol where both the
players only execute polynomial time computations. This will be utilized later.

I Theorem 1.3. For any constant ` ∈ N and an n-vertex graph G, there is a deterministic
protocol that computes the function GDISJG,C1,D`

using O(` log2 n) bits and where both players
have polynomial computational power.

Separating Families

The main motivation for Yannakakis to introduce the Clique vs Independent Set problem
was to study the number of constraints in the linear programming of a vertex packing polytope.
As a spin-off of this study, he provided relations between the Clique vs Independent set
problem and a CI-separating family (Clique-Independent set separating family): for a graph
G, a family F , of subsets of V (G), is called a CI-separating family if for any disjoint clique C
and independent set I in G, there is a set F ∈ F such that C ⊆ F and I ∩F = ∅. He showed
that the co-nondeterministic communication complexity of CISG is log q(G), where q(G) is
the cardinality of a CI-separating family of G. Yannakakis also provided a polynomial sized
CI-separating family on comparability graphs and their complements, chordal graphs and
their complements, and asked whether there is a polynomial sized family on general graphs,
or even on perfect graphs. Lovász [14] extended the work of Yannakakis to t-perfect graphs
and gave a polynomial sized CI-separating family on t-perfect graphs. Bousquet et al. [2]
proved the existance of polynomial sized CI-separating families for the following class of
graphs: random graphs, split-free graphs (here the graph does not have a fixed split graph
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13:4 Communication Complexity of Pairs of Graph Families with Applications

as an induced subgraph), graphs with no induced path Pk on k vertices nor its complement
(here k is a constant), and graphs with no induced P5. But, a result of Göös [7], that shows
that the co-nondeterministic communication complexity of CISG is Ω(log1.128 n), implies that
the cardinality of CI-separating family on general graphs is super polynomial in the number
of vertices.

The communication complexity of CISG, D(CISG) = O(log2 n) implies that there is a
CI-separating family of cardinality nO(log n) (See [13]). We would like to remark that the
existence of a CI-separating family does not imply that such a family can be enumerated
in time polynomial in the size of the family. The best known bound on the cardinality of
a enumerable CI-separating family on general graphs is O(n

log n
2 ), by Hajnal (unpublished,

cited in [14]). Cygan et. al. [4] also enumerated a CI-separating family, of cardinality
nO(log n), in time nO(log n). In the special case of finding a CI-separating family, one can
use the communication protocol of CISG, given in [14], to enumerate such a family in time
nO(log n). To generalize from the definition of CI-separating families, for a graph G, and a
pair of families F1 and F2, a notion of (F1,F2)-separating family was introduced. A family
P of vertex subsets of V (G) is called a (F1,F2)-separating family if for any two disjoint
vertex subsets V1 and V2 with G[V1] ∈ F1 and G[V2] ∈ F2, there is a set A ∈ P such that
V1 ⊆ A and V2 ∩A = ∅.

From an observation made in [13], it is implied that a non-deterministic protocol for
GDISJG,F1,F2 corresponds to a (F1,F2)-separating family. This implies that if
D(GDISJG,F1,F2) = c, then there is a (F1,F2)-separating family of size 2c. Similar to
the case of CI-separating families, describing an enumeration algorithm to find the best sep-
arating family is a problem of wide interest. In this paper, we show that a (Cr, I`)-separating
family of size 2O(logr+` n) can be enumerated in time 2O(logr+` n). This, in turn, implies the
following theorem.

I Theorem 1.4. For any two hereditary families of graphs F1 and F2, for each integer
n > 0, there is an n-vertex graph G such that any (F1,F2)-separating family must be of size
2Ω(n) if and only if F1 ∩ F2 is an infinite family.

Note that although D(GDISJG,Cr,I`
) = O(log2 n), we are not able to find a (Cr, I`)-

separating family of size 2O(log2 n) that can be enumerated in time 2O(logr+` n). We also get
the following theorem as a “separating family” analogue of Theorem 1.2. This theorem is
extremely useful in designing parameterized algorithms.

I Theorem 1.5. Let (F1,F2) be a good pair of graph families and G be an n-vertex graph.
Let S be a minimum sized vertex set of G such that V (G) \ S has a bipartition (V1, V2) with
G[V1] ∈ F1 and G[V2] ∈ F2. Let |S| = optG

F1,F2
. Then a (F1,F2)-separating family, for G,

of cardinality 2O(logc optG
F1,F2 )nO(1) can be enumerated in time 2O(logc optG

F1,F2 )nO(1), where c
is a constant.

Another pair of graph properties (families of graphs) we consider is the family of complete
graphs, C1 and that of `-degenerate graphs, D`. By Theorem 1.3, we already know that
D(GDISG,C1,D`

) is O(` log2 n). We also give an algorithm to enumerate a (C1,D`)-separating
family for an n-vertex graph, of cardinality nO(` log n), in time nO(` log n). In other words, we
succeed in efficiently enumerating a (C1,D`)-separating family of size nO(` log n), the existence
of which results from D(GDISG,C1,D`

) = O(` log2 n).
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Applications

In 2013, Cygan et al. [4] drew a very interesting relation between the field of enumerating
separating families and designing algorithms. As mentioned earlier, a CI-separating family
of cardinality nO(log n) is enumerated in time nO(log n), and this family is used to design fast
exact and parameterized algorithms. They showed that Split Vertex Deletion, where
we want to delete at most k vertices from a given n-vertex graph to get a split graph, can be
solved in time O(1.2738kkO(log k) +n3). They also showed that all induced split subgraphs of
a given n-vertex graph can be listed in time O(3n/3nO(log n)) time. This work motivated the
last part of our study: designing exact and FPT algorithms. Not only are the enumeration
algorithms for separating families interesting combinatorial questions in their own right,
but they also help to design fast FPT and exact exponential time algorithms for a class of
problems. A generic class of problems for which a separating family based approach works is
as follows. Let G be a family of graphs. Then G + kv contains all graphs G such that there is
a vertex set S ⊆ V (G), of size at most k, with the property that the graph G \ S ∈ G. Given
two graph families F1,F2, we consider the following problem in this paper.

(F1,F2)-p-Partition Parameter: k

Input: A graph G and a non-negative integer k
Question: Is there a vertex set S ⊆ V (G), of size at most k, such that there is a partition
V1 ] V2 of V (G) \ S and G[Vi] ∈ Fi, i ∈ {1, 2}?

The optimization version of (F1,F2)-p-Partition is denoted by (F1,F2)-Partition.
Here, the aim is to find the minimum size of a vertex set S such that V (G) \ S has a
bipartition (V1, V2) with G[V1] ∈ F1 and G[V2] ∈ F2. Let F1 and F2 be a good pair of
graph families. For any positive integer k, let the families F1 + kv and F2 + kv have FPT
recognition algorithms. That is, there are algorithms which take as input a graph G and
an integer k, decide whether G ∈ Fi + kv, i ∈ {1, 2} and run in time f(k)|V (G)|O(1). For
ease of notation, if F1 and F2 be a good pair of graph families, and the families F1 + kv

and F2 + kv have FPT recognition algorithms, then we call (F1,F2) an FPT-good pair of
families.

I Theorem 1.6. Let (F1,F2) be an FPT-good pair of families. Also, let A1 and A2 be the
best recognition algorithms for F1 + kv and F2 + kv respectively. For an n-vertex input graph
and non-negative integer k, let the running time of Ai, i ∈ {1, 2}, be Ti(n, k). Then (F1,F2)-p-
Partition on an instance (G, k) can be solved in time 2O(logc k)nO(1)·max{T1(n, k), T2(n, k)}.

One could obtain a result analogous to Theorem 1.6 for (F1,F2)-Partition. Some of
the problems for which we get faster FPT and exact algorithms are (Clique,Planar)-p-
Partition, (Clique,Triangle-free)-p-Partition, (Clique,Forest)-p-Partition and
(Clique, Treewidth-t)-p-Partition.

2 Preliminaries

We use N to denote the set of natural numbers. For n ∈ N, we use [n] to denote {1, . . . , n}.
Through out the paper we use n to denote the number of vertices in the graph used in the
context. In this paper, the function log is used to denote the logarithm function with base 2.
We use standard notations from graph theory [5]. The vertex set and edge set of a graph
are denoted as V (G) and E(G) respectively. The complement of the graph G is denoted by
G. The neighbourhood of a vertex v is represented as NG(v), or, when the context of the
graph is clear, simply as N(v). The closed neighbourhood of a vertex v, denoted by N [v], is
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13:6 Communication Complexity of Pairs of Graph Families with Applications

subset N(v) ∪ {v}.The non-neighbourhood of a vertex v is denoted by NG(v). The degree of
a vertex v, or the number of neighbours of v, is denoted by dG(v). Similarly, the non-degree
of v, or the number of non-neighbours of v, is denoted by dG(v). An induced subgraph of
G on the vertex set V ′ ⊆ V is written as G[V ′]. For a vertex subset V ′ ⊆ V , G[V \ V ′] is
also denoted as G− V ′. We denote by ω(G) the size of a maximum clique in G. Similarly,
α(G) denotes the size of a maximum independent set in G. A subgraph G′ of G is denoted
as G′ ≤s G. A complete graph on n vertices is denoted by Kn. A stable graph on n vertices
is a graph G with edge set ∅, and is denoted by Kn. An empty graph is a graph which does
not have any vertices, and therefore no edges as well. Given two subgraphs G1, G2 ≤s G,
G1 ∩G2 is the induced subgraph G[V (G1)∩ V (G2)]. Similarly, G1 ∪G2 denoted the induced
subgraph G[V (G1) ∪ V (G2)]. For any positive integers r, `, we use R(r, `) to denote the
Ramsey number. That is, any graph on at least R(r, `) vertices will have either a clique of
size r or an independent set of size `. A family F of graphs is said to be hereditary if for
any graph G ∈ F , every induced subgraph of G is also contained in F . Let G be a family of
graphs. Then G + kv contains all graphs G such that there is a vertex set S ⊆ V (G), of size
at most k, with the property that the graph G− S ∈ G.

Informally, a protocol can be thought of as a communication between two players, Alice
and Bob. They have decided on some function f and wish to evaluate f(x, y), for some input
x ∈ X and y ∈ Y . The catch is that x is only known to Alice and y is only known to Bob.
Now we give a formal definition of a communication protocol.

I Definition 2.1 ([12]). A protocol Π over a domain X × Y with range Z is a binary tree
where each internal node v is labelled either by a function av : X → {0, 1} or by a function
bv : Y → {0, 1}, and each leaf is labelled with an element z ∈ Z. The value of the protocol Π
on an input (x, y) is the label of the leaf reached by starting at the root, and walking along a
path in the tree. At each internal node v labelled by av, the walk takes left if av(x) = 0 and
right if av(x) = 1, and at each internal node labelled by bv, the walk takes left if bv(y) = 0
and right if bv(y) = 1. The cost of the protocol Π on an input (x, y) is the length of the path
taken on the input (x, y). The cost of the protocol Π is the height of the binary tree.

I Definition 2.2 ([12]). For a function f : X × Y → Z, the deterministic communication
complexity of f is the minimum cost of Π, over all protocols Π that compute f . We denote
the deterministic communication complexity of f by D(f).

For further reading on Communication Complexity, including the concepts of non-
deterministic and co-nondeterministic communication complexity of a function, we refer the
reader to [12, 13]. One of the first functions, whose communication complexity was studied,
is the Disjointness function. For any x, y ∈ {0, 1}n, the function is defined as,

DISJn(x, y) =
{

0 if there exists i ∈ [n], x[i] = y[i] = 1
1 otherwise

I Proposition 2.3 ([12]). D(DISJn) ≥ n

We study a variant of the DISJn function, called the Graphic Disjointness function.
Let G be a graph on n vertices and m edges. Let F1 and F2 be two hereditary graph families.
The following function is defined for the graph G, and the families F1,F2 as follows. For any
two vertex subsets V1 and V2 such that G[V1] ∈ F1 and G[V2] ∈ F2,

GDISJG,F1,F2(V1, V2) =
{

1 if V1 ∩ V2 = ∅
0 otherwise

A problem, related to that of computing GDISJG,F1,F2 , is the problem of enumerating
separating families for two graph families.
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I Definition 2.4. Let G be a graph on n vertices, F1 and F2 be two graph families. Suppose
F is a family of subsets of V (G) with the following property: If we take any two vertex
disjoint induced subgraphs G1, G2 ≤s G, such that G1 ∈ F1 and G2 ∈ F2, there is a set
F ∈ F such that V (G1) ⊆ F and V (G2) ∩ F = ∅. Then F is called an (F1,F2)-separating
family in G. Such a set F is called a separating set for G1 and G2.

I Observation 2.5. Let G be an n-vertex graph. Let G1, G2 be induced subgraphs of G.
Suppose for each v ∈ V (G1), dG(v) < n/2 and for each w ∈ V (G2), dG(w) < n/2. Then,
V (G1) ∩ V (G2) = ∅ and {v | v ∈ V (G), dG(v) < n/2} is a separating set for G1 and G2.

3 Communication protocols for pairs of Hereditary graph families

To prove Theorem 1.1, we first need to prove a sublinear communication complexity bound for
a specific pair of graph families. More formally, in this section we consider a pair of hereditary
families of graphs, Cr = {H | α(H) ≤ r} and I` = {H | ω(H) ≤ `}. Here, r and ` are two
positive integers. In this section, we consider the communication complexity of GDISJG,Cr,I`

.
Using this, we complete the proof of Theorem 1.1. In the later half of this Section, we give
upper bounds on the communication complexity of the function GDISJG,F1,F2 , in terms of a
structural parameter of the graph G. We consider one such structural parameter and design
a protocol with the help of this additional parameter.

3.1 Communication Protocol for Families of Sparse and Dense graphs
As a corollary to Theorem 5 of [10], we obtain the following Lemma:

I Lemma 3.1. For any r, ` ∈ N, D(GDISJG,Cr,I`
) = O(R(r + 1, `+ 1) log2 n).

The protocol designed to show that D(GDISJG,Cr,I`
) = O(R(r + 1, `+ 1) log2 n) heavily

relies on the infinite computational power of both the players (See full version). In this
section, we describe a protocol, with much worse communication complexity, but where both
players resort to polynomial time computations only. The communication complexity of
this protocol is still sublinear in |V (G)|. This protocol will be very useful when we design
enumeration algorithms for (Cr, I`)-separating families in Section 4.

We will describe a communication protocol for GDISJG,Cr,I`
, with complexity O(logr+` n),

for any r, ` ∈ N. Here, Alice receives an induced subgraph G1 of G such that G1 ∈ Cr, and
Bob receives an induced subgraph G2 of G such that G2 ∈ I`. They have to determine
whether V (G1) ∩ V (G2) = ∅ or not. Note that both Alice and Bob receive the graph G.

First, we give a protocol Π1,2 for GDISJG,C1,I2 , with a cost of O(log3 n). This protocol
uses a protocol Π1,1, for GDISJG,C1,I1 , as a sub-protocol. As mentioned earlier, for any pair
of induced subgraphs C, I ∈ G, with C ∈ C1, I ∈ I1, GDISJG,C1,I1(C, I) = 1 if and only
if CISG(C, I) = 0. The function CISG has a deterministic protocol of cost O(log2 n) [16].
Therefore, there is a protocol Π1,1 of cost O(log2 n) for GDISJG,C1,I1 . The protocol for
the general case GDISJG,Cr,I`

can be designed in a recursive manner that uses protocols of
GDISJG,Cr,I`−1 and GDISJG,Cr−1,I`

as subprotocols.

I Lemma 3.2. For a graph G, there is a deterministic protocol for computing GDISJG,C1,I2

using O(log3 n) bits and where both players have polynomial computational power.

Proof sketch. Let Alice get the induced subgraph G1 and Bob get the induced subgraph G2.
The following is a protocol Π1,2 that Alice and Bob will execute. Alice and Bob continue
with the protocol till either they detect a vertex in the intersection of V (G1) and V (G2),
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or one of G, G1 and G2 becomes an empty graph. The protocol is executed in top down
fashion, i.e., the two players resort to a step only if the previous steps are not applicable.
1. If either G1 or G2 is an empty graph, then the players declare that the graphs are disjoint.
2. Alice looks for a vertex v ∈ V (G1) with dG(v) ≥ n/2. She sends the vertex v to Bob.

If v ∈ V (G2), then Bob lets Alice know and they terminate the protocol. Otherwise,
both players delete the vertices of NG(v) ∪ {v} from the graph G to obtain graph
G′ = G−(NG(v)∪{v}). Alice defines G′1 = G1−{v} while Bob defines G′2 = G2−NG(v).
Then, they continue the protocol for determining whether V (G′1) ∩ V (G′2) = ∅ in G′.

3. Bob looks for a vertex v ∈ V (G2) with dG(v) ≥ n/2. Bob sends the vertex v to Alice. If
v ∈ V (G1), then Alice lets Bob know and they terminate the protocol. Otherwise, both
players use the protocol Π1,1 to compute GDISJG[NG(v)],C1,I1(G[NG(v)∩V (G1)], G[NG(v)∩
V (G2)]). If the output is 0, then they declare that V (G1) ∩ V (G2) 6= ∅ and stop.
Otherwise, they delete the vertices of NG[v] from G to get G′ = G−NG[v]. Alice defines
G′1 = G1 −NG[v] while Bob defines G′2 = G2 −NG[v]. Then, they continue the protocol
for determining whether V (G′1) ∩ V (G′2) = ∅ in G′.

4. Suppose all the above steps fails, then, both players declare that V (G1) ∩ V (G2) = ∅.
The full proof is given in the full version of this paper. J

I Corollary 3.3. For any graph G, there is a deterministic protocol for GDISJG,C2,I1 using
O(log3 n) bits, where both players have polynomial computational power.

We can give a protocol Πr,`, for the problem GDISJG,Cr,I`
, of cost O(logr+` n), using a

protocol for Πr,`−1 or Πr−1,`. We use similar arguments as in the protocol Π1,2, to design
the protocol Πr,`. Thus, we can prove the following theorem using induction on r + `.

I Lemma 3.4. For r, ` ∈ N and graph G, there is a deterministic protocol for GDISJG,Cr,I`

using O(logr+` n) bits and where both players have polynomial computational power.

3.2 Characterization for Hereditary graph families
We are ready to prove Theorem 1.1. That is, we try to determine D(GDISJG,F1,F2) for any
given pair of hereditary families F1,F2. If one of F1 or F2 is finite, then the number of
vertices of each graph in one of the families is bounded by a constant. Thus, a trivial protocol
would be for the player, who receives the bounded-sized subgraph, to send the full subgraph
over to the other player, using O(logn) bits. This implies, D(GDISJG,F1,F2) = O(logn). So,
the interesting case is when both F1 and F2 are infinite. Now we prove Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality we can assume that both F1 and F2 are
infinite. Suppose the intersection family is finite. This means that there is a constant r such
that a complete graph Kr, on r vertices, does not belong to the intersection family, because
of finiteness. Since Kr does not belong to F1 ∩ F2, it must not belong to at least one of
the families. Let this be F1. Since F1 is hereditary, no graph in F1 has Kr as an induced
subgraph. This implies that for any graph G in F1, ω(G) ≤ r − 1. Now we show that for
any graph G in F2, α(G) ≤ `− 1 for some constant `. Towards that, we first claim that F1
contains all stable graphs. Otherwise, since F1 is a hereditary family, if F1 does not contain
a stable graph on `′ vertices, all graphs in F1 neither have a r-sized clique as an induced
subgraph nor an `′-sized independent set as an induced subgraph. However, by Ramsey’s
theorem, each graph in F1 has at most R(r, `′) vertices, thus contradicting the infiniteness of
F1. So far we know that, F1 ∩ F2 is finite and F1 contains all stable graphs. This implies
that F2 does not contain all stable graphs. Let ` be an integer such that K` /∈ F2. By the
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hereditary property of F2, no graph in F2 contains K` as an induced subgraph. That is,
for all graph G in F2, α(G) ≤ `− 1. Thus, Lemma 3.1 gives us a deterministic protocol for
GDISJG,F1,F2 , with o(n) communication complexity.

For the reverse direction, suppose F1∩F2 is an infinite family. To proveD(GDISJG,F1,F2) =
Ω(n) we give a simple reduction from DISJn. In DISJn, Alice is given x ∈ {0, 1}n and Bob is
given y ∈ {0, 1}n and they want to check whether there is an i ∈ [n] such that x[i] = y[i] = 1.
Now we create an instance of GDISJG,F1,F2 as follows. We fix an n-vertex graph G ∈ F1 ∩F2
(such a graph exists because of hereditary property), with V (G) = {v1, . . . , vn}. Let
Vx = {vi ∈ V (G) | i ∈ [n], x[i] = 1} and Vy = {vi ∈ V (G) | i ∈ [n], y[i] = 1}. Since
G ∈ F1∩F2, G[Vx] ∈ F1 and G[Vy] ∈ F2. In the GDISJG,F1,F2 problem, Alice gets G[Vx] and
Bob gets G[Vy]. Clearly Vx ∩Vy 6= ∅ if and only if there is an i ∈ [n] such that x[i] = y[i] = 1.
Hence, by Proposition 2.3, D(GDISJG,F1,F2) = Ω(n). J

For the rest of this paper, a pair (F1,F2) of hereditary graph families where F1 ∩ F2
is a finite graph family, will be referred to as a good pair of graph families. The proof of
Theorem 1.1 also gives us the following folklore corollary.

I Corollary 3.5. Let F1 and F2 be a good pair of graph families. Then, there are constants
r and `, such that for any graph G1 ∈ F1 and G2 ∈ F2, ω(G1) ≤ r and α(G2) ≤ `.

Corollary 3.5 and Ramsey theorem leads us to another useful corollary.

I Corollary 3.6. Let G be a graph. Let F1 and F2 be a good pair of graph families. Then there
are constant r and ` (same as the constants mentioned in Corollary 3.5) such that, for any
pair (G1, G2) of induced subgraphs of G, if G1 ∈ F1 and G2 ∈ F2, then |V (G1) ∩ V (G2)| <
R(r + 1, `+ 1).

3.3 A Parameterized approach to designing protocols
In Section 3.1, for each pair of constants r, `, we saw a protocol for GDISJG,Cr,I`

with sublinear
communication complexity. We also showed that any good pair (F1,F2) of graph families
must be such that there are constants r, ` with F1 ⊆ Cr,F2 ⊆ I`. In this section, we give an
alternate protocol that uses the structure of the input graph G, to obtain a more refined
upper bound on the communication complexity of GDISJG,F1,F2 . For a graph, let optG

F1,F2

denote the size of a minimum set S of vertices such that V (G) \ S has a bipartition (V1, V2)
with G[V1] ∈ F1 and G[V2] ∈ F2. In this section, for a graph G and a good pair of graph
families (F1,F2), we give a protocol for GDISJG,F1,F2 that has O(log2(optG

F1,F2
) + logn)

communication complexity.

Proof of Theorem 1.2. We can assume that Alice and Bob both have a minimum vertex
set S such that V (G) \ S has a bipartition (V1, V2) with G[V1] ∈ F1 and G[V2] ∈ F2. Thus
|S| = optG

F1,F2
. The players also have a bipartition (V1, V2) of V (G)\S, such that G[V1] ∈ F1

and G[V2] ∈ F2.
Now let Alice receive the induced subgraph G1 ∈ F1 and Bob receive the induced subgraph

G2 ∈ F2. The following is a protocol Π that Alice and Bob will execute. The protocol is
executed in top down fashion, i.e., the two players resort to a step only if the previous steps
are not applicable.
1. If either G1 or G2 is an empty graph, then they declare that the graphs are disjoint.
2. Alice and Bob run the protocol Πr,` to compute GDISJG[S],Cr,I`

(G1[S], G2[S]). If there is
a vertex intersection between G1[S] and G2[S], then they declare that the graphs G1 and
G2 intersect and stop the protocol.
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3. Suppose there is no vertex intersection between G1[S] and G2[S]. Alice sends the vertices
of the subgraph G1 ∩G[V2] to Bob. If Bob finds that V (G2) ∩ V (G1 ∩G[V2]) 6= ∅, then
Bob lets Alice know and they terminate the protocol.

4. Suppose Bob does not find any vertex common to both V (G1 ∩ G[V2]) and V (G2).
Then Bob sends the vertices of the subgraph G2 ∩ G[V1] to Alice. If Alice finds that
V (G1) ∩ V (G2 ∩G[V2]) 6= ∅, then Alice lets Bob know and they terminate the protocol.
Otherwise, they declare that the two graphs G1 and G2 do not intersect on any vertex.

If V (G1[S]) ∩ V (G2[S]) 6= ∅, then the subprotocol Πr,` correctly detects the intersection in
step 2. Otherwise, V (G1) and V (G2) can intersect either in V1 or in V2 and they detect in
step 3 or step 4. If neither of the above cases happen, then V (G1) ∩ V (G2) = ∅.

Next, we show the bound on the communication complexity. Following from Lemma 3.1,
GDISJG[S],Cr,I`

(G1[S], G2[S]) can be computed with the communication of O(log2 optG
F1,F2

)
bits. By definition, G1 ∈ F1 and G[V2] ∈ F2. Then, by Corollary 3.6, |V (G1) ∩ V (G[V2])| <
R(r + 1, `+ 1). Thus, in step 3, Alice sends at most R(r + 1, `+ 1) logn bits to Bob. By a
similar argument, in step 4, Bob sends at most R(r + 1, `+ 1) logn bits to Alice. Therefore,
the communication complexity of Π is O(logr+`(optG

F1,F2
) + logn). J

Suppose (F1,F2) is a pair of hereditary graph families that are not good. By Theorem 1.1,
for an n-vertex graph G, any protocol for GDISJG,F1,F2 must have communication complexity
Ω(n). This gives us the following corollary.

I Corollary 3.7. Let (F1,F2) be a pair of hereditary graph families that have infinitely many
graphs in their intersection. Then, for each integer n > 0, there is a graph G such that for any
computable function f , there cannot be a protocol for GDISJG,F1,F2 , that has communication
complexity f(optG

F1,F2
) + o(n).

4 Separating families

In this section, we design enumeration algorithms for separating families for a good pair of
graph families. It was stated in [13] that a non-deterministic protocol for GDISJG,F1,F2 cor-
responds to a (F1,F2)-separating family. This means that if GDISJG,F1,F2 has deterministic,
and hence non-deterministic, complexity c, then there exists a (F1,F2)-separating family of
size 2c. From Corollary 3.5 and Lemma 3.1, this means that, for an n-vertex graph, there
exists a (F1,F2)-separating family of size 2O(log2 n), for any constants r, `. However, since
the protocols use players with unlimited power of computation, this does not mean that
there is an enumeration algorithm that finds such a separating family in time 2O(log2 n)nO(1).
First, for an n-vertex graph G, we design an algorithm to enumerate a (Cr, I`)-separating
family of size 2O(logr+` n), in time 2O(logr+` n)nO(1). This uses ideas from the protocol given
in Lemma 3.4. Then, for a good pair (F1,F2) of graph families, we utilize the structure of G,
for a different approach to design enumeration algorithms for (F1,F2)-separating families.

I Lemma 4.1. For any r, ` ∈ N, every graph with n vertices has a (Cr, I`)-separating family
of cardinality 2O(logr+` n). Moreover, such a family can be enumerated in time 2O(logr+` n).

Lemma 4.1 and Corollary 3.5 gives us the following Corollary.

I Corollary 4.2. Let F1 and F2 be a good pair of graph families. Then, there are constants
r and `, such that every n-vertex graph has a (F1,F2)-separating family of cardinality
2O(logr+` n) and it can be enumerated in time 2O(logr+` n).

In fact, we obtain Theorem 1.4 from Lemma 4.1 and Corollary 3.5.
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Separating families and parameterization

We give the proof of Theorem 1.5. We show that the upper bound obtained due to Corollary 4.2
can be improved if we use ideas from Parameterized Complexity, as we did for Theorem 1.2.
This is extremely useful for designing FPT algorithms. Again, the ideas from the protocol of
Lemma 3.4 comes to more use than the protocol of Lemma 3.1. To show this, we first prove
the following lemma.

I Lemma 4.3. Let (F1,F2) be a good pair of graph families. Given, as input, G,S ⊆ V (G)
and partition V1 ]V2 of V (G) \S such that G[V1] ∈ F1 and G[V2] ∈ F2, there is an algorithm
to enumerate (F1,F2)-separating family S for G of cardinality 2O(logc(|S|))nO(1) in time
2O(logc(|S|))nO(1), where c is a constant.

Proof. We know that G[V1] ∈ F1 and G[V2] ∈ F2. Since (F1,F2) is a good pair of graph
families, by Corollary 3.5, we know that there are constants r, `, such that for any G1 ∈ F1
and G2 ∈ F2, ω(G1) ≤ r and α(G2) ≤ `. Let us define c = r + `. By Lemma 4.1, the graph
G[S] has a (F1,F2)-separating family S ′ of cardinality 2O(logr+` |S|). Moreover, such a family
can be enumerated in time 2O(logr+`(|S|)). Now consider the family.

S =
{

A ∪ (V1 \ S1) ∪ S2 | A ∈ S ′, S1 ⊆ V1, S2 ⊆ V2, |S1| < R(r + 1, ` + 1), |S2| < R(r + 1, ` + 1)
}

The cardinality of S is bounded by 2O(logc(|S|))nO(2R(r+1,`+1)) and it can be enumerated
in time 2O(logc(|S|))nO(2R(r+1,`+1)). We show that S is indeed a (F1,F2)-separating family
for G. Consider any disjoint vertex subsets U1 and U2 of V (G) such that G[U1] ∈ F1 and
G[U2] ∈ F2. We need to show that there is a set T ∈ S such that U1 ⊆ T and T ∩ U2 = ∅.
Since the two families F1 and F2 are hereditary, G[U1 ∩ S] ∈ F1 and G[U2 ∩ S] ∈ F2. Since
S ′ is a (F1,F2)-separating family for G[S] there is a set A ∈ S ′ such that S ∩ U1 ⊆ A and
(S ∩ U2) ∩ A = ∅. Since G[U1], G[V1] ∈ F1 and G[U2], G[V2] ∈ F2, by Corollary 3.6, we
know that |U1 ∩ V2| < R(r + 1, `+ 1) and |U2 ∩ V1| < R(r + 1, `+ 1). Now consider the set
T = A∪(V1\(U2∩V1))∪(U1∩V2). Since |U1∩V2| < R(r+1, `+1) and |U2∩V1| < R(r+1, `+1),
by the definition of S, T ∈ S. Notice that U1 ⊆ T and U2 ∩ T = ∅. Hence, we are done. J

Lemma 4.3 gives us Theorem 1.5. Suppose there was an approximation algorithm A for
(F1,F2)-Partition, where the approximation factor is defined by a computable function
f depending only on the size of an optimal solution, and let the running time of A be
T (n) on an n-vertex input graph. Then, a (F1,F2)-seperating family, for G, of cardinality
2O(logc f(optG

F1,F2 ))nO(1) can be enumerated in time 2O(logc f(opt))nO(1), where c is the same
constant as in Theorem 1.5, which is at most r + `.

5 Applications in Parameterized and Exact Algorithms

In this section we relate the results obtained in previous sections to exact and FPT algorithms.
The main result of this section is to show that the (F1,F2)-p-Partition problem is FPT. In
fact, we propose an algorithm strategy that might result in faster running times than that of
the best known algorithms for certain pairs (F1,F2). We also provide combinatorial bounds
on the number of maximal induced subgraphs that have a vertex bipartition (A,B), where
G[A] ∈ F1 and G[B] ∈ F2. We also give a strategy to design an enumeration algorithm for
all such maximal induced subgraphs. Similarly, we can find the maximum(minimum) size
of such an induced subgraph. These results and their corollaries can be found in the full
version of the paper.
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Parameterized Algorithms

The question of what is the maximum size of an induced subgraph, that has a vertex
bipartition (A,B) with G[A] ∈ F1 and G[B] ∈ F2, brings us to the question of how ‘far’ a
graph is from becoming a graph with the desired bipartition. The (F1,F2)-p-Partition
problem addresses this question. In this part, we look at this problem and a technique to
solve this problem, when the pair of families are a good pair of families. The technique we
use is an adaptation of the popular iterative compression technique.

I Observation 5.1. If an instance (G, k) is a YES instance of (F1,F2)-p-Partition, then
for any induced subgraph G′ ≤s G, (G′, k) is also a YES instance of (F1,F2)-p-Partition.

Let F1 and F2 be a good pair of graph families, and for any positive integer k, the families
F1 + kv and F2 + kv have FPT recognition algorithms, that is, there are algorithms which
take as input a graph G and an integer k, decides whether G ∈ Fi + kv, i ∈ {1, 2} and runs
in time f(k)|V (G)|O(1). For ease of notation, if F1 and F2 be a good pair of graph families,
and the families F1 + kv and F2 + kv have FPT recognition algorithms, then we call (F1,F2)
an FPT-good pair of families.

We obtain a fast FPT algorithm for (F1,F2)-p-Partition, as claimed in Theorem 1.6 by
incorporating the iterative compression technique. For more details about the algorithmic
technique of iterative compression we refer to the book (chapter 4 [3]).

Proof Sketch for Theorem 1.6. Let (G, k) be an input instance. The algorithm is based on
the iterative compression technique. Due to Observation 5.1, the iterative compression tech-
nique is meaningful for this problem. The iteration step is exactly as described in [3](chapter
4). The description of the compression problem and an algorithm to solve the same is given
below.

The input of the compression problem is a graph G′ and a vertex set S ⊆ V (G′), of size
at most k + 1. The set S satisfies the property that there is a partition V1 ] V2 of V (G) \ S
such that G[V1] ∈ F1 and G[V2] ∈ F2. The compression problem outputs YES if there is
a vertex set S′ of size at most k such that there is a partition V ′1 ] V ′2 of V (G) \ S′ with
G[V ′1 ] ∈ F1 and G[V ′2 ] ∈ F2. Otherwise, the output is NO. Lemma 4.3 can be used to solve
the compression problem in time 2O(logc k)nO(1) · 2kmax{T1(n, k), T2(n, k)}.

By Lemma 4.3, we know that there is an enumeration algorithm which outputs a (F1,F2)-
separating family S of cardinality 2O(logc |S|)nO(1) in time 2O(logc |S|)nO(1). Now for each
S ∈ S and each pair of non-negative integers k1, k2 such that k1 + k2 ≤ k, we run A1 on
(G[S], k1) and A2 on (G−S, k2). We output YES if both A1 and A2 outputs YES. Otherwise
our algorithm will output NO. The full proof is in the full version of the paper. J

There are several corollaries of Theorem 1.6, to be found in the full version.

6 Conclusion

In this paper, we studied the parameterized communication complexity of the function
GDISJG,F1,F2 . We also obtained separating families for good pairs of families, and used them
to give combinatorial bounds, exact algorithms and FPT algorithms. An important question
here is to see if the lower bounds for CISG can be used to obtain non-trivial lower bounds for
GDISJG,F1,F2 , when (F1,F2) is a good pair of graph families. Also, it would be interesting to
study the communication complexity of these functions in terms of other parameters of the
input. We would like to thank Pranabendu Misra and an anonymous reviewer for insightful
comments.
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