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Abstract
In algorithmic randomness, the class of K-trivial sets has proved itself to be remarkable, due to its
numerous different characterizations. We pursue in this paper some work already initiated on K-
trivials in the context of higher randomness. In particular we give here another characterization
of the non hyperarithmetic higher K-trivial sets.
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1 Introduction

Algorithmic randomness defines what it is for an infinite 0-1 valued sequence to be random.
It takes its roots deeply in computability : lots of definition and techniques from pure
computability are used in algorithmic randomness, as hierarchies, reducibilites and forcing
constructions. The research in this field led to the identification of many different randomness
notions, the most known being perhaps Martin-Löf randomness: a sequence is Martin-Löf
random if it is in no Π0

2 set
⋂
n Un where the Lebesgue measure of each Un is smaller than

2−n. The reader can refer to [21] and [8] for more details on algorithmic randomness. One of
the main research area is to study how the different classes of random sequences relate. For
a given such class of randoms, another important research area is to study the sets relative
to which this class does not change. This is called lowness for randomness. For example, the
class of K-trivials are exactly the low for Martin-Löf randomness. This class is defined as
the set of infinite sequences having minimal (up to a constant) Kolmogorov complexity on
their prefixes, that is the Kolmogorov complexity of a prefix should not be bigger than its
length 1. The class of K-trivials proved itself to be remarkable, due to its numerous very
different characterizations [20], [12], [6], [1], [9].

Another field has a lot of interactions with computability theory : descriptive set theory.
This field can be studied completely independently from recursion theory as in [14]. However,
the study of descriptive set theory in close relation with computability appeared to be a
fruitful approach. The mix of these two fields is called effective descriptive set theory and
can be used to prove lots of results from the classical version of descriptive set theory. This
is done mainly in [19]. Effective descriptive set theory also gave rise to higher computability.

∗ This work was partially supported by TARMAC.
1 Here it is important that we use the so called prefix-free Kolmogorov complexity, as it is the case in

general with algorithmic randomness.
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34:2 Another Characterization of the Higher K-Trivials

The notion of computation for this field comes from a very logical point of view, far from
any implementation. Nonetheless it is possible to give an intuition of higher computation
which is closer to what computer scientists are used to: one can view a higher computation
as a regular computation (by a Turing machine, say) where the steps of computation are
carried through the computable ordinals. This new way of computing has several things in
common with the classical one, and of course some differences (as the lack of continuity in a
computation) that may cause trouble when trying to lift some computability theorems from
the classical setting to the higher setting. The reader can refer to [22], [5] and [18] for more
details on higher recursion theory. The reader can also see [11] for more information about
what could be a Turing machine which keeps running over ordinal times of computation.

Algorithmic randomness naturally arises from mixing probability theory and computabil-
ity. Following the same ideas, researchers defined notions of higher randomness, obtained
analogously, but by considering higher computability instead of computability. After the
founder paper of the field [13], a lots of advances were made by several researchers ([4], [3], [2],
[10]). The reader can also refer to [5] and [18] for more details on higher randomness. One of
the notion which has previously been studied and which is the core subject of the paper, is
the notion of higher K-triviality, the direct higher analogue of K-triviality. In particular, we
give in this paper a characterization of the non-∆1

1 higher K-trivials, by proving that they
are exactly the sets that shrink the class WΠ1

1R to the class Π1
1-ML〈O〉 when relativizing

continuously. This characterization is specific to the higher setting: the randomness notions
that are equivalent to WΠ1

1R and Π1
1-ML〈O〉 in the lower setting, coincide.

2 Preliminaries

2.1 Notations

In this paper, we work in the space of infinite sequences of 0’s and 1’s, called the Cantor
space, denoted by 2ω. We call strings finite sequences of 0’s and 1’s and sequences or sets
elements of the Cantor space. For a sequence A we write A �n to denote the string equal
to the n first bits of A. The space of strings is denoted by 2<ω and the space of strings of
length smaller than n is denoted by 2<n. For a string σ, we denote the set of sequences
extending σ by [σ].

The topology on Cantor space is generated by the basic intervals [σ] = {X ∈ 2ω | X � σ}
for any string σ. For a set of strings W ⊆ 2<ω, we let [W ] =

⋃
σ∈W [σ]. A set of string W is

said to be prefix-free if no string in W is a prefix of another string in W .
For A ⊆ 2ω Lebesgue-measurable, λ(A) denotes the Lebesgue measure of A, which is the

unique Borel measure such that λ([σ]) = 2−|σ| for all strings σ.
We assume that the reader is familiar with basic notions of computability. For A,B ∈ 2ω

we write A ≤T B if A is Turing reducible to B. We denote by ∅′ the halting problem. We
also assume that the reader is familiar with the basics of effective descriptive set theory, in
particular with the notations Σ0

1,Π0
1,Σ0

2,Π0
2, etc...

We finally also assume that the reader is familiar with the notion of Kolmogorov complexity.
In this paper, we will only consider a prefix-free version of the Kolmogorov complexity (used
in the definition of K-triviality): using compressors M : 2<ω → 2<ω such that the domain of
M is prefix-free. It is an easy exercise to show that an optimal prefix-free compressor exists
(optimal up to a constant of course).
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2.2 Background on algorithmic randomness
In 1966, Martin-Löf gave in [16] a definition capturing elements of the Cantor space that can
be considered ‘random’. Many nice properties of the Martin-Löf random sequences make this
notion of randomness one of the most interesting and one of the most studied.

Intuitively a random sequence should not have any atypical property. A property is here
considered atypical if the set of sequences sharing this property is of measure 0. It also makes
sense to consider only properties which can be described in some effective way (because any
X has the property of being in the set {X} and thus nothing would be random).

I Definition 1. An intersection of measurable sets
⋂
nAn is said to be effectively of measure

0 if the function which to n associates the measure of An is bounded by 2−n. A Martin-Löf
test, or an ML-test is a Π0

2 set
⋂
n Un effectively of measure 0. We say that X ∈ 2ω is

Martin-Löf random if it is in no Martin-Löf test. The class of Martin-Löf randoms is also
referred to as the class MLR.

The requirement for a Martin-Löf test to be effectively of measure 0 is important and
leads to very nice properties. In particular there exists a universal Martin-Löf test, i.e. a test
containing all the others (see [16]). This is not the case anymore if we drop the ‘effectively of
measure 0’ condition. Instead we get a notion known as weak-2-randomness.

I Definition 2. A Π0
2 nullset is called a weak-2 test or a W2 test. We say that X ∈ 2ω is

weakly-2-random if it is in no weak-2 test. The class of weakly-2-randoms is also referred to
as the class W2R.

As a randomness notion, weak-2-randomness is a strictly stronger than 1-randomness:
tests can capture more elements and thus there are fewer randoms. For any given randomness
notion, it makes sense to relativize it to any oracle:

I Definition 3. Let A ∈ 2ω. An MLA test is a Π0
2(A) set

⋂
nOn effectively of measure 0. We

say that X ∈ 2ω is MLRA if it is in no MLA test. Similarly a W2A test is a Π0
2(A) nullset,

and we say that X is W2RA if it is in no W2A test.

A nice characterization of W2R has been given from restricting the relativization MLR∅
′
:

we can only use ∅′ to find the indices of the open sets in a test.

I Definition 4. Let (We)e∈ω be an effective enumeration of the c.e. sets of strings. A ML〈∅′〉
test is a set

⋂
n[Wf(n)] with λ([Wf(n)]) ≤ 2−n were f : ω → ω is computable from ∅′. A set

is MLR〈∅′〉 if it is in no ML〈∅′〉 test.

Note that with the full relativization of an ML test to A, the oracle A itself is not needed
to find the index of the n-th Σ0

1(A) open set of the test: the use of A for that can be swallowed
in the process of enumerating each Σ0

1(A) component of the test.
Going back to the previous definition, we have the following easy theorem:

I Theorem 5 ([2], section 7). W2R = ML〈∅′〉.

Proof. Let’s start with W2R ⊆ ML〈∅′〉, given a ML〈∅′〉 test
⋂
n Uf(n), we will show that it

is included in a W2R test. We define V〈m,t〉 =
⋃
s≥t Ufs(m). As

⋂
n Vn =

⋂
n Uf(n), we have

that λ(
⋂
n Vn) = 0, so this is a W2R test.

Now, let
⋂
n Un be a Π0

2 nullset, one can use ∅′ to find uniformly in n the first m = f(n)
such that λ(Um) ≤ 2−n. J

The sets relative to which MLRA = MLR have been extensively studied, and have been
identified as the class of K-trivial sets.

MFCS 2017
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I Definition 6. A set A ∈ 2ω is K-trivial if for any n, the prefix-free Kolmogorov complexity
of A�n is smaller than the prefix-free Kolmogorov complexity of n (up to a constant).

The reader can refer to [21] for more details on the K-trivials. They are also the sets
relative to which W2RA = W2R:

I Theorem 7 ([20], [15], [7]). The following are equivalent for a set A:
1. A is K-trivial
2. W2RA = W2R
3. MLRA = MLR

As we will see, this characterization fails in the higher setting, but it fails in a way that
will help us provide another characterization of the higher K-trivials.

2.3 Background on higher computability
We assume that the reader is familiar with the concepts of ∆1

1,Π1
1 and Σ1

1 subsets of ω and of
2ω. A known result is that an open set U is Π1

1 if and only if there exists a Π1
1 set of strings

W such that U = [W ]≺.
There is a strong analogy between classical concepts in computability (referred to as the

lower setting) and their analogue in higher computability (referred to as the higher setting).
For instance, ∆1

1 can be seen as a higher analogue of computable, and Π1
1 can be seen as

a higher analogue of computably enumerable, with the difference that the times at which
elements are enumerated are now computable ordinals.

We refer to the set of codes for computable ordinals (using whichever equivalent coding)
as Kleene’s O. As usual, the smallest non-computable ordinal is denoted by ωCK1 .

We recall here a few definitions about continuous higher Turing reductions. In [2]
(Definition 1.1) higher Turing reductions are defined to compute elements of 2ω. In [10]
(section 3.2) this definition is extended in a straightforward way, to compute elements of
(ωCK1 )ω. We also extend this definition here in a straightforward way, to compute elements
of (ωCK1 )ωCK

1 .
An absolutely formal definition of computations of functions from ωCK1 to ωCK1 should

either use the language of set theory and deals with actual ordinals, or use a unique notation
system for computable ordinals. There exists such a Π1

1 notation system O1 ⊆ ω (see [22] or
[18], 3.6.1) and up to this notation system, one can view a function from ωCK1 to ωCK1 as a
function from O1 to O1, and thus simply defined on integers.

I Definition 8 ([10] [2]). We say that A higher Turing computes (or higher computes)
f : ωCK1 7→ ωCK1 (respectively g : ω 7→ ωCK1 ) if there exists a Π1

1 set C ⊆ 2<ω × ωCK1 × ωCK1
(respectively C ⊆ 2<ω×ω×ωCK1 ) such that f(o1) = o2 iff ∃σ ≺ A (σ, o1, o2) ∈ C (respectively
g(n) = o iff ∃σ ≺ A (σ, n, o) ∈ C). We say that A higher Turing computes B ∈ 2ω if A
higher Turing computes the characteristic function of B.

In [2] it is shown that Kleene’s O higher Turing computes a set A ∈ 2ω iff O Turing
computes A.

2.4 Background on higher randomness
Higher randomness goes back to Martin-Löf who promoted the notion of ∆1

1-randomness
(already defined by Sacks [22]), defending the idea that it was the appropriate mathematical
concept of randomness [17]. Even if his first definition undoubtedly became the most
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successful over the years, this other definition recently got a second wind on the initiative of
Hjorth and Nies who started to study the analogy between the usual notions of randomness
and their higher counterparts. In order to do so they created in [13] a higher analogue of
Martin-Löf randomness.

I Definition 9 (Hjorth, Nies). A Π1
1-Martin-Löf test, or a Π1

1-ML test, is given by an
effectively null intersection of open sets

⋂
n Un, each Un being Π1

1 uniformly in n. A sequence
X is Π1

1-Martin-Löf random if it is in no Π1
1-Martin-Löf test. The class of Π1

1-Martin-Löf
randoms is also referred to as the class Π1

1-MLR.

The higher analogue of weak-2-randomness has also been studied (see [4] [2]):

I Definition 10. We say that X is weakly-Π1
1-random if it belongs to no

⋂
n Un with each

Un open set Π1
1 uniformly in n and with λ(

⋂
n Un) = 0. The class of weakly-Π1

1-randoms is
also referred to as the class WΠ1

1R.

It is also possible to define an analogue of MLR〈∅′〉 in the higher setting, using Kleene’s
O in place of ∅′.

I Definition 11. Let (We)e∈ω be an enumeration of the Π1
1 sets of strings. A Π1

1-ML〈O〉
test is a set

⋂
n[Wf(n)] with λ([Wf(n)]) ≤ 2−n were f : ω → ω is Turing computable from

Kleene’s O. A set is Π1
1-MLR〈O〉 if it is in no Π1

1-ML〈O〉 test.

Theorem 5 does not lift to the higher setting. The proof in the lower setting uses what
has been defined in [2] to be a ‘time trick’: we use the fact that time and space are the
same objects: the natural numbers. In the higher setting, this is not anymore true as the
time goes along the ordinals. It is in fact possible to show that the class Π1

1-MLR〈O〉 is
strictly contained in the class WΠ1

1R. To be more specific, let us introduce maybe the
most important notion of higher randomness, first given by Sacks, and made possible by a
theorem of Lusin saying that even though Π1

1 sets are not necessarily Borel, they remain all
measurable.

I Definition 12 (Sacks). We say that X ∈ 2ω is Π1
1-Random if it is in no Π1

1 nullset.

We have the following:

I Theorem 13 ([2]). Π1
1-MLR〈O〉 ( Π1

1-Randoms ( WΠ1
1R ( Π1

1-MLR

We finally give another characterization of Π1
1-ML〈O〉, that has no counterpart in the

lower setting (with ML〈∅′〉 in place of Π1
1-ML〈O〉), and which will be useful in the paper.

I Property 14 ([2]). The following are equivalent for a sequence X ∈ 2ω :
1. X is Π1

1-ML〈O〉 random
2. X does not belong to any test (Us)s<ωCK

1
not necessarily nested where each Us is a Π1

1
open set uniformly in s, and such that λ(

⋂
s<ωCK

1
Us) = 0

2.5 Continuous relativization of higher randomness

It is also possible to define an analogue of K-triviality in the higher setting. The higher
K-trivials are defined analogously, but using a version of Kolmogorov complexity with
Π1

1-prefix-free compression machines.

MFCS 2017
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I Definition 15 ([13]). We define:
The higher prefix-free Kolmogorov complexity is given by K(y) = min{|σ| : U(σ) = y}
for U the universal prefix-free Π1

1-machine given by U(0e1τ) = Me(τ) and (Me)e∈ω a
uniform enumeration of the Π1

1 prefix-free machines.
A is higher K-trivial if ∃b ∀n K(A � n) ≤ K(n) + b.

However, for the higher K-trivials to also be low for Π1
1-MLR, one has to be careful about

the way things are relativized to oracles. In higher computability we don’t have anymore
the continuity aspect of the lower setting : if B is ∆1

1(A), it does not mean that a finite
quantity of A suffices to know a finite quantity of B. However, we can force this state of
things, as done previously with the notion of higher Turing computations. We next define
what it means to relativize the notion of Π1

1 set, continuously to an oracle.

I Definition 16 ([2]). An oracle-continuous Π1
1 set of integers is given by a set W ⊆ 2<N×N.

For a string σ we write Wσ to denote the set {n : ∃τ ≺ σ, (τ, n) ∈ W}. For a sequence X
we write WX to denote the set {n : ∃τ ≺ X, (τ, n) ∈ W}. The set WX is then called an
X-continuous Π1

1 set of integers.
An open set U is X-continuously Π1

1 if there is an X-continuously Π1
1 set of strings W

such that U = [WX ].

We are now ready to define continuous relativization of randomness notions :

I Definition 17. If A is a set, we say that X is WΠ1
1RA if it is in no U =

⋂
n Un where

(Un)n∈ω is a uniform family of A-continuous Π1
1 open sets, such that λ(U) = 0. We say that

X is Π1
1-MLRA if it is in no

⋂
n Un where (Un)n∈ω is a uniform family of A-continuous Π1

1
open sets, such that λ(Un) ≤ 2−n.

We now have the following:

I Theorem 18 ([2]). The higher K-trivials are exactly the low for Π1
1-MLR, using continuous

relativization.

Unlike in the lower setting, the higher K-trivials are not anymore the low for WΠ1
1R. For

A ∆1
1 (a special case of being higher K-trivial), it is still obviously the case that WΠ1

1RA =
WΠ1

1R. But if A is K-trivial and not ∆1
1, we will actually see that WΠ1

1RA = Π1
1-ML〈O〉.

3 Another characterization of the higher K-trivials

3.1 Collapsing approximations
When trying to lift the ∆0

2 definitions from the lower to the higher setting, some new
possibilities appear. In the lower setting, for an approximation of A the set {At : t < s}
is always finite as s ranges over the natural numbers. So in particular it is closed. At the
contrary, when s is an ordinal, the set {At : t < s} may not have this property, which leads
us to define a different type of approximation, which depends on the topological properties
of {At : t < s}.

I Property/Definition 19 ([2]). .
1. A sequence A is higher ∆0

2 if it satisfies the following equivalent properties :
(a) A ≤T O
(b) There is a higher computable sequence (As)s<ωCK

1
with lims→ωCK

1
As = A

2. A computable approximation (As)s<ωCK
1

converging to A is said to be collapsing if for
every stage s, the set A is not in the closure of {At : t < s}.
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Such approximations are called collapsing, because they can be used to “collapse” ωCK1
to a computable ordinal in a strong way: such approximations can be used to compute an
ω-sequence of computable ordinals, with ωCK1 as a supremum:

I Property 20 ([2]). Every sequence A with a collapsing approximation, higher Turing
computes a function f : ω → ωCK1 which is cofinal in ωCK1 .

In classical computability, given an effectively open set U , it is uniformly possible to
obtain a c.e. and prefix-free set W such that [W ] = U . However, in the setting of higher
computability, it can be proved that this is no more possible: there is a Π1

1 open set U such
that for every prefix-free Π1

1 set of strings W , U 6= [W ]. But working relative to some sets
that have a collapsing approximation allows us to use time tricks, and in a way brings us
“closer” to classical computability.

I Property 21 ([2],end of page 20). If A has a collapsing approximation (As)s<ωCK
1

, and U is
an oracle-continuous Π1

1 open set, then there exists an oracle-continuous Π1
1 setW ⊆ 2<ω×2<ω

such that UA = [WA] and for all B, the set WB is prefix-free.

Proof. We define an enumeration of a Π1
1 oracle-continuous set W . The enumeration of W

will compute throughout its stages a collapsing approximation (As)s<ωCK
1

of A. At stage s,
if As is not in the closure of {At}t<s, then let τ ≺ As be the smallest such that τ has never
been a prefix of some At for t < s. Then enumerate into W τ

s+1 all strings σ of length smaller
than or equal to |τ | such that [σ] ⊆ Uτs but [σ] is disjoint from [W τ

s ].
It is clear that [WA] ⊆ UA. Let us argue that UA ⊆ [WA]. Suppose σ ∈ UA. There are

sequences {τn}n∈ω and {sn}n∈ω such that for every n, the ordinal sn is the first for which
we have Asn �|τn|= A�|τn|= τn, and such that supn sn = ωCK1 .

Let n be the smallest such that |τn| > |τn−1| ≥ |σ| and such that σ ∈ Uτn
sn
. Then we

have by construction that σ ⊆ [W τn
sn+1]. Therefore [WA] = UA. Also by construction WB is

prefix-free for every B. J

3.2 Properties of higher K-Trivials
One key property of the higher K-trivial sequences is that they have a collapsing approximation
as long as they are not ∆1

1.

I Property 22 ([2]). Every higher K-trivial, but not ∆1
1, sequence has a collapsing approx-

imation.

I Corollary 23. If A is higher K-trivial but not ∆1
1, then:

A higher Turing computes a function f : ω → ωCK1 whose range is unbounded in ωCK1 ;
if U is an oracle-continuous Π1

1 open set, one can uniformly find a Π1
1 oracle-continuous

set of strings W such that UA = [WA] and ∀B ∈ 2ω, WB is prefix-free.

Proof of the corollary. By property 22, together with property 20 and 21. J

The proof that the low for Martin-Löf randoms are exactly the K-trivials requires a
big machinery. Using the fact that higher K-trivials have a collapsing approximation, it
is possible to transpose this proof and to show that the continuously low for Π1

1-MLR are
the higher K-trivials. The machinery developed in this proof can also be used to show a
slightly more general statement, known in the lower setting as the “Main Lemma”. One can
find a detailed proof and explanation of this result for the higher setting in [2]. We give
here a version of the Main Lemma which is closer to our need than the one in [2] (using
oracle-continuous open sets in place of oracle-continuous discrete semi-measures) :

MFCS 2017



34:8 Another Characterization of the Higher K-Trivials

I Theorem 24 (Main Lemma). If A is higher K-trivial, (As)s<ωCK
1

is any collapsing approx-
imation of A, and W is an oracle-continuous Π1

1 set of strings such that there exists c ∈ ω
such that for all X we have

∑
σ∈WX 2−|σ| ≤ c, then there exists a higher computable function

q : ωCK1 → ωCK1 such that:

S =
∑

r<ωCK
1

∑
σ∈Er

2−|σ| is finite

where

Er =
{
σ : σ ∈WA[q(r)] with use u, and

A[q(r)] � u 6= A[q(r + 1)] � u

}
.

Intuitively, if A is higher K-trivial, we can slow down its approximations in such a way
that not too much measure is added in the open set, with pieces of oracle that were believed
at some point to be prefixes of A but in fact are not: the total sum of ‘wrong’ measure added
this way over the times of computation can be made finite.

3.3 A higher K-trivial and not ∆1
1 implies Π1

1-ML〈O〉 = WΠ1
1RA

I Theorem 25. If A is higher K-Trivial and not ∆1
1, then WΠ1

1RA ⊆ Π1
1-MLR〈O〉.

Proof. Fix an A. By contrapositive, we prove that if X is captured by a Π1
1-ML〈O〉 test,

then it is also captured by a WΠ1
1RA test. We use the characterization 14 of Π1

1-ML〈O〉
tests, so let U =

⋂
s<ωCK

1
Us be such a test.

We make use of the corollary 23 that A higher computes a function f with cofinality
ωCK1 . Let g(〈m,n〉) be the m-th element of O≤f(n) ⊆ N (where O≤α is the set of codes for
computable ordinals smaller than α). Then g is also higher computable from A, and its
range is all the computable ordinals. Now, we consider

⋂
n Ug(n). As the range of g is ωCK1 ,

the intersection is equal to U , so its measure is 0 and as g is higher computable from A, this
set is a WΠ1

1RA test. J

The other inclusion will be a corollary of a more general theorem, whose proof follows
the same spirit than the proof in the lower setting that K-trivials are low for W2R.

I Theorem 26. Let A be higher K-trivial. Let G =
⋂
n Un where (Un)n∈ω is a uniform

family of Π1
1 open sets, continuously in A. Then there exists a set S =

⋂
s<ωCK

1
Vs where

(Vs)s<ωCK
1

is a uniformly Π1
1 family of open sets, such that λ(S) = λ(G) and S ⊇ G.

We will first prove the result for the simplest G, that is when the family is reduced to a
single open set U , and then extend this result to a uniform countable intersection of such
open sets.

I Lemma 27. Let A be higher K-trivial. Let G be a A-continuously Π1
1 open set. Then there

exists a set S =
⋂
s<ωCK

1
Vs where (Vs)s<ωCK

1
is a uniformly Π1

1 family of open sets, such
that λ(S) = λ(G) and S ⊇ G.

Proof. Using the property 21, there exists an oracle-continuous Π1
1 set of strings W such

that G = [WA], and such that WB is prefix-free for all B.
If A is ∆1

1 we are done. Otherwise, as it is higher K-trivial, it has a collapsing approxima-
tion, so we can try to use it to approximate G with Π1

1 open sets Vs. A first candidate for Vs
could be

⋃
s≤r<ωCK

1
WA[r], because every such Vs would contain G, but this approximation
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is “too large”, because W and approximations of A can be such that WA[s] enumerates the
empty word for a family of s cofinal in ωCK1 .

The trick to prevent the measure to increase is to restrain the computation of WA[s]
only to some special stages and parts of the oracle, so that the weight of all errors is finite.
These stages are given by the Main Lemma : let q : ωCK1 → ωCK1 be the function given by
the Main Lemma, applied to W . We then have:∑

r<ωCK
1

∑
σ∈Er

2−|σ| is finite

where

Er =
{
σ : σ ∈WA[q(r)] with use u, and

A[q(r)] � u 6= A[q(r + 1)] � u

}
.

Now we define Vs by computing only over the special stages and prefixes, that is

σ ∈ Vs ⇔ ∃r ≥ s such that σ ∈WA[q(r)].

Every Vs contains G as any string σ enumerated in WA, with use u, will be in every
WA[q(r)] for r ≥ t such that A[q(t+ 1)] has settled on A � u.

Now consider the errors of the Vs, that is the strings σ enumerated in Vs but such that
[σ] 6⊆ G. There must exists an r ≥ s such that σ ∈ WA[q(r)] with use u, and such that
A[q(r)] � u 6= A[q(r + 1)] � u. Then σ ∈ Er for some r ≥ s. It follows that:

λ(Vs \G) ≤
∑

s≤r<ωCK
1

∑
σ∈Er

2−|σ|.

But as the total sum is finite, the partial sum goes to zero as s increases:

lim
s→ωCK

1

λ(Vs \G) = 0.

Finally with S =
⋂
s<ωCK

1
Vs, we have λ(S \ G) = 0 and S ⊇ G, which concludes the

proof of the lemma. J

proof of Theorem 26. It remains to prove using this lemma the more general case when
G =

⋂
n∈ω Un. We can apply what we just proved to R =

⋃
e∈ω 0e1[We] where (We)e∈ω is

an effective listing of the A-continuous Π1
1 sets. We then find T =

⋂
s<ωCK

1
Ts with T ⊇ R

and λ(T ) = λ(R).
Let f be a computable function such that Un = [Wf(n)]. Writing A|w = {X : wX ∈ A},

we let S =
⋂
n∈ω(T | 0f(n)1). Let us show that S works for our purpose. First S is a

Π1
1-ML〈O〉 test, by the characterization 14 of these tests, as

S =
⋂
n∈ω

 ⋂
s<ωCK

1

Ts

 | 0f(n)1

 =
⋂

ωs+n<ωCK
1

Ts | 0f(n)1.

Then S ⊇ G as for every n, we have T | 0f(n)1 ⊇ R | 0f(n)1 = [Wf(n)] = Un ⊇ G. Finally,
we show that λ(S \G) = 0. We have:

S −G =
⋂
n∈ω

S − [Wf(n)] ⊆
⋂
n∈ω

T | 0f(n)1− [Wf(n)].

But λ(T | 0f(n)1− [Wf(n)]) ≤ 2f(n)+1λ(T −R) = 0, so finally λ(S −G) = 0. J
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I Corollary 28. If A is higher K-Trivial and not ∆1
1, then WΠ1

1RA ⊇ Π1
1-ML〈O〉.

Proof. We proceed by contrapositive, and show that every WΠ1
1RA test G is included in

a Π1
1-ML〈O〉 test. Given a WΠ1

1RA test, we just apply the theorem to this test and get
S =

⋂
s<ωCK

1
Vs such that S ⊇ G and λ(S) = λ(G) = 0, that is S is a Π1

1-ML〈O〉 test
containing G. J

3.4 Π1
1-ML〈O〉 = WΠ1

1RA implies A higher K-trivial and not ∆1
1

In this section, we will suppose that A is not higher K-trivial, and we will prove that under
this assumption there exists a WΠ1

1RA sequence that is not Π1
1-ML〈O〉 random. To do this

we need the existence of a particular set, that will allow us to build a specific sequence by
forcing.

This proof follows the lines of the proof of lowness for Π1
1-randomness [10]: if A is not

∆1
1 and not higher K-trivial, then there exists a Π1

1-ML test relative to A, which captures
a Π1

1-random. In [10] the proof has been done using full relativization and not continuous
relativization. Full relativization helps in particular to work with tests whose captured
sequences are closed under suppression of prefixes. It is not necessarily obvious using
continuous relativization that we can work with such tests. In particular, for some oracles
A it might be the case that there is no universal Π1

1-ML test continuously relativized to A.
Thus we first need to show the following lemma:

I Lemma 29. Let A be any set, and U a Π1
1-MLA test. Then there exists an Π1

1-MLA test
V such that if σX ∈ U then X ∈ V.

Proof. First we establish some notation. For A ⊆ 2ω, we write A−n for {X : ∃σ ∈ 2n, σX ∈
A} that is the set of strings of A, for which we remove the first n bits. We remark that
λ(A−n) ≤ 2nλ(A). Now say U =

⋂
n Un with λ(Um) ≤ 2−m and (Um) is uniformly Π1

1-open,
continuously in A. We define V =

⋂
n Vn by :

Vn = {X : ∃m > n,∃σ ∈ 2<m, σX ∈ U2m} =
⋃
m>n

⋃
i<m

(U2m)−i.

We now only need to verify that this proves the theorem. We need this set to be a
Π1

1-MLA test. It is easily a uniform intersection of Π1
1 open sets continuously in A, but we

need to check that it is effectively of measure 0. We have

λ(Vn) ≤
∑
m>n

∑
i<m

λ(U−i2m) ≤
∑
m>n

∑
i<m

2iλ(U2m)

by the remark after the definition of A−n, and then

λ(Vn) ≤
∑
m>n

∑
i<m

2i2−2m ≤
∑
m>n

2m2−2m ≤
∑
m>n

2−m ≤ 2−n.

So V is a test. J

I Remark. We did not proved that the test
⋂
Vn is closed under deletion of prefixes. It’s

own closure under deletion of prefixes may need to be bigger, but this state of things will be
enough for our needs.

Recall we will suppose in this part that A is not higher K-trivial. The next lemma makes
use of this fact to define a set that will be useful in our next construction.
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I Lemma 30. If A is not higher K-trivial, then there exists a Π1
1-MLA test

⋂
n Un such that

for every n and every Π1
1 open set V with λ(V) < 1, we have Un ∩ Vc 6= ∅ (that is Un 6⊆ V).

Proof. By contrapositive, we will show that if the conclusion of the theorem does not
hold, then every Π1

1-MLA test is contained in a Π1
1-ML test. As the sequences which are

continuously low for Π1
1-MLR are exactly the higher K-trivials (Theorem 18), we can conclude

that A is higher K-trivial. Following this plan, our hypothesis becomes: “For every Π1
1-MLA

test ∩nUn there exists n and a Π1
1 open set V with λ(V) < 1 and such that Un ⊆ V.”

Our goal is to show that A is low for Π1
1-MLR. Let U =

⋂
Un be a Π1

1-MLA test. By the
previous lemma, we find a test Ũ =

⋂
Ũn containing all the suffixes of elements in U . Then

by the hypothesis, we find V ⊇
⋂
Ũn(⊇

⋂
Un) where V is Π1

1 open and λ(V) < 1. Let W
be such that V = [W ] and wg(W ) =

∑
σ∈W 2−|σ| < 1 − ε for some ε (we make W almost

prefix-free , that is wg(W ) ≤ λ(V) + ε′ for ε′ sufficiently small, as allowed by [18], Lemma
3.7.1). We define:

Vn = [Wn] = [{σ1σ2 · · ·σn : σi ∈W}].

We show that
⋂
Vn ⊇

⋂
Un and that it is a valid test. Let X ∈

⋂
Un −

⋂
Vn toward a

contradiction. There exists a n such that X ∈ Vn and X 6∈ Vn+1 (we must have X ∈ V1 by
definition of V1). As X ∈ Vn, there exists σ ∈ Wn such that X = σY . But as X ∈

⋂
Un,

Y ∈
⋂
Ũn ⊆ V, and there exists τ ∈ W such that Y = τZ. But then, στ ∈ Wn+1 and

X ∈ Vn+1, a contradiction.
It remains to prove that

⋂
Vn is a test which is the case if it is effectively of measure

0. To do so we can easily prove by induction that λ(Vn) ≤ wg(W )n. Indeed, λ(Vn+1) ≤∑
σ∈Wn

∑
τ∈W 2−|στ | ≤ (

∑
σ∈Wn 2−|σ|)(

∑
τ∈W 2−|τ |) = wg(W )n. Then λ(Vn+1) ≤ (1 −

ε)n+1.
We covered every Π1

1-MLA test with a test without oracle, so A is low for Π1
1-MLR, that

is, higher K-trivial. J

I Theorem 31. Suppose A is not higher K-trivial. Then, there is a Π1
1-ML〈O〉-random

which is not WΠ1
1RA.

Proof. Let us denote by RO (respectively RW) the set of Π1
1-ML〈O〉 (respectively WΠ1

1RA)
randoms. We are trying to prove that the set RO ∩ RW is not empty. We will build an
element inside this intersection by forcing. The main thing needed for the construction is to
clarify how we will layer these two sets.

First we have RO =
⋂
m

⋃
n Fm,n where the Fm,n are Σ1

1 closed sets, increasing over n.
Neither the intersection or the union need to be effective. Each union is in fact effective in
Kleene’s O (by definition of a Π1

1-ML〈O〉 test) and each intersection is effective in the double
jump of Kleene’s O (to select the functions Turing computable from Kleene’s O which are
totals and which pick the right indices for a Π1

1-ML〈O〉 test). Note that we can also require
without loss of generality that each Fm,n contains only Π1

1-ML randoms: to do so we simply
replace each Fm,n by the uniform union of its intersection with each Σ1

1 closed component in
the complement of a universal Π1

1-ML test.
Then RW is the union of all the WΠ1

1RA tests. In particular, it contains the test
⋂
n Un

given by the lemma 30: as A is not higher K-trivial, every Un intersects every Σ1
1 closed

set of positive measure. Furthermore if this closed set contains only Π1
1-ML randoms, this

intersection must be of positive measure (it is a fact that no Π1
1-ML random can be in a Σ1

1
closed set of measure 0).

In conclusion, it is sufficient to construct a Z such that Z ∈ Un for every n and
Z ∈

⋃
n Fm,n for every m. It is now clear how to do so by forcing with a decreasing
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sequence of Σ1
1 closed sets of positive measure: We start with F0,0 which intersects with

positive measure some [σ0] ⊆ U0.
Suppose now by induction, that for some m we have closed sets Fi,ni

for i ≤ m and strings
σ1 ≺ · · · ≺ σm, such that λ(

⋂
i≤m Fi,ni

∩ [σm]) > 0 and such that [σm] ⊆
⋂
i≤m Ui. Let us

find nm+1 and σm+1 � σm with [σm+1] ⊆
⋂
i≤m+1 Ui such that λ(

⋂
i≤m+1 Fi,ni

∩ [σm]) > 0.
As
⋂
i≤m Fi,ni

∩ [σm] is a Σ1
1 closed set of positive measure, it intersects with positive

measure the set Um+1. Thus there exists σm+1 � σm with σm+1 ⊆
⋂
i≤m+1 Ui such that

λ(
⋂
i≤m Fi,ni

∩ [σm+1]) > 0. Now as λ(
⋃
n Fm+1,n) = 1, there is some nm+1 such that

λ(
⋂
i≤m+1 Fi,ni

∩ [σm+1]) > 0.
By construction, the unique sequence Z ∈

⋂
i[σi] is such that Z ∈

⋂
m

⋃
n Fm,n and

Z ∈
⋂
n Un which concludes the proof. J
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