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Abstract
Adams’ extension of parsing expression grammars enables specifying indentation sensitivity using
two non-standard grammar constructs – indentation by a binary relation and alignment. This
paper is a theoretical study of Adams’ grammars. It proposes a step-by-step transformation
of well-formed Adams’ grammars for elimination of the alignment construct from the grammar.
The idea that alignment could be avoided was suggested by Adams but no process for achieving
this aim has been described before. This paper also establishes general conditions that binary
relations used in indentation constructs must satisfy in order to enable efficient parsing.
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1 Introduction

Parsing expression grammars (PEG) introduced by Ford [6] serve as a modern framework
for specifying the syntax of programming languages and are an alternative to the classic
context-free grammars (CFG). The core difference between CFG and PEG is that descriptions
in CFG can be ambiguous while PEGs are inherently deterministic. A syntax specification
written in PEG can in principle be interpreted as a top-down parser for that syntax; in the
case of left recursion, this treatment is not straightforward but doable (see, e.g., [8]).

Formally, a PEG is a quadruple G = (N,T, δ, s) where:
N is a finite set of non-terminals;
T is a finite set of terminals;
δ is a function mapping each non-terminal to its replacement (corresponding to the set
of productions of CFG);
s is the start expression (corresponding to the start symbol of CFG).

So δ : N → EG and s ∈ EG, where the set EG of all parsing expressions writable in G is
defined inductively as follows:
1. ε ∈ EG (the empty string);
2. a ∈ EG for every a ∈ T (the terminals);
3. X ∈ EG for every X ∈ N (the non-terminals);
4. pq ∈ EG whenever p ∈ EG, q ∈ EG (concatenation)
5. p/q ∈ EG whenever p ∈ EG, q ∈ EG (choice);
6. !p ∈ EG whenever p ∈ EG (negation, or lookahead);
7. p∗ ∈ EG whenever p ∈ EG (repetition).

All constructs of PEG except for negation are direct analogues of constructs of the EBNF
form of CFG, but their semantics is always deterministic. So p∗ repeats parsing of p until
failure, and p/q always tries to parse p first, q is parsed only if p fails. For example, the
expression ab/a consumes the input string ab entirely while a/ab only consumes its first
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45:2 Grammars for Indentation-Sensitive Parsing

character. The corresponding EBNF expressions ab | a and a | ab are equivalent, both can
match either a or ab from the input string. Negation !p tries to parse p and fails if p succeeds;
if p fails then !p succeeds with consuming no input. Other constructs of EBNF like non-null
repetition p+ and optional occurrence [p] can be introduced to PEG as syntactic sugar.

Languages like Python and Haskell allow the syntactic structure of programs to be
shown by indentation and alignment, instead of the more conventional braces and semicolons.
Handling indentation and alignment in Python has been specified in terms of extra tokens
INDENT and DEDENT that mark increasing and decreasing of indentation and must be
generated by the lexer. In Haskell, rules for handling indentation and alignment are more
sophisticated. Both these languages enable to locally use a different layout mode where
indentation does not matter, which additionally complicates the task of formal syntax
specification. Adams and Ağacan [3] proposed an extension of PEG notation for specifying
indentation sensitivity and argued that it considerably simplifies this task for Python, Haskell
and many other indentation-sensitive languages.

In this extension, expression p>, for example, denotes parsing of p while assuming a
greater indentation than that of the surrounding block. In general, parsing expressions may
be equipped with binary relations (as was > in the example) that must hold between the
baselines of the local and the current indentation block. In addition, ¦p¦ denotes parsing of
p while assuming the first token of the input being aligned, i.e., positioned on the current
indentation baseline. For example, the do expressions in Haskell can be specified by

<doexp> ::= do> (<istmts>/<stmts>)
<istmts> ::= (¦<stmt>¦+)>

<stmts> ::= {>(<stmt>(;<stmt>)∗[;]})~

Here, <istmts> and <stmts> stand for statement lists in the indentation and relaxed mode,
respectively. In the indentation mode, a statement list is indented (marked by > in the
second production) and all statements in it are aligned (marked by ¦ · ¦). In the relaxed mode,
however, relation ~ is used to indicate that the indentation baseline of the contents can be
anything. (Technically, ~ is the binary relation containing all pairs of natural numbers.)
Terminals do and { are also equipped with > to meet the Haskell requirement that subsequent
tokens of aligned blocks must be indented more than the first token.

Alignment construct provides fulcra for disambiguating the often large variety of indenta-
tion baseline candidates. Besides simplicity of this grammar extension and its use, a strength
of it lies in the fact that grammars can still serve as parsers.

The rest of the paper is organized as follows. Section 2 formally introduces additional
constructs of PEG for specifying code layout, defines their semantics and studies their
semantic properties. In Sect. 3, a semantics-preserving process of eliminating the alignment
construct from grammars is described. General criteria for deciding if parsing can handle a
relation efficiently are found in Sect. 4. Section 5 refers to related work and Sect. 6 concludes.

2 Indentation extension of PEG

Adams and Ağacan [3] extend PEGs with the indentation and alignment constructs. We
propose a slightly different extension with three rather than two extra constructs. Our
approach agrees with that implemented by Adams in his indentation package for Haskell [1],
whence calling the grammars in our approach Adams’ grammars is justified. All differences
between the definitions in this paper and in [3] are listed and discussed in Subsect. 2.4.

Let N denote the set of all natural numbers, and let B = {tt,ff } (the Boolean domain).
Denote by ℘(X) the set of all subsets of set X, and let <(X) denote the set of all binary
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relations on set X, i.e., <(X) = ℘(X ×X). Standard examples are >∈ <(N) (consisting
of all pairs (n,m) of natural numbers such that n > m) and 4 ∈ <(N) (the identity
relation consisting of all pairs of equal natural numbers); the indentation extension also
makes use of ~ ∈ <(N) (the relation containing all pairs of natural numbers). Whenever
ρ ∈ <(X) and Y ⊆ X, denote ρ(Y ) = {x ∈ X : ∃y ∈ Y.(y, x) ∈ ρ} (the image of Y under
relation ρ). The inverse relation of ρ is defined by ρ−1 = {(x, y) : (y, x) ∈ ρ}, and the
composition of relations σ and ρ by σ ◦ ρ = {(x, z) : ∃y.(x, y) ∈ σ ∧ (y, z) ∈ ρ}. Finally,
denote <+(X) =

{
ρ ∈ <(X) : ∀x ∈ X.ρ−1({x}) 6= ∅

}
= {ρ ∈ <(X) : ρ(X) = X}.

2.1 Adams’ grammars
Extend the definition of EG given in Sect. 1 with the following three additional clauses:

8. pρ ∈ EG for every p ∈ EG and ρ ∈ <(N) (indentation);
9. p

σ
∈ EG for every p ∈ EG and σ ∈ <(N) (token position);

10. ¦p¦ ∈ EG for every p ∈ EG (alignment).

Parsing of an expression pρ means parsing of p while assuming that the part of the input
string corresponding to p forms a new indentation block whose baseline is in relation ρ to
the baseline of the surrounding block. (Baselines are identified with column numbers.) The
position construct p

σ
, missing in [3], determines how tokens of the input can be situated w.r.t.

the current indentation baseline. Finally, parsing an expression ¦p¦ means parsing of p while
assuming the first token of the input being positioned on the current indentation baseline
(unlike the position operator, this construct does not affect processing the subsequent tokens).

Inspired by the indentation package [1], we call the relations that determine token
positioning w.r.t. the indentation baseline token modes. In the token mode > for example,
tokens may appear only to the right of the indentation baseline. Applying the position
operator with relation > to parts of Haskell grammar to be parsed in the indentation mode
avoids indenting every single terminal in the example in Sect. 1. Also, indenting terminals
with > is inadequate for do expressions occurring inside a block of relaxed mode but the
position construct can be easily used to change the token mode for such blocks (e.g., to ≥).

We call a PEG extended with these three constructs a PEG>. Recall from Sect. 1 that N
and T denote the set of non-terminal and terminal symbols of the grammar, respectively, and
δ : N → EG is the production function. Concerning the semantics of PEG>, each expression
parses an input string of terminals (w ∈ T ∗) in the context of a current set of indentation
baseline candidates (I ∈ ℘(N)) and a current alignment flag indicating whether the next
terminal should be aligned or not (b ∈ B), assuming a certain token mode (τ ∈ <(N)).
Parsing may succeed, fail, or diverge. If parsing succeeds, it returns as a result a new triple
containing the rest of the input w′, a new set I ′ of baseline candidates updated according to
the information gathered during parsing, and a new alignment flag b′. This result is denoted
by >(w′, I ′, b′). If parsing fails, there is no result in a triple form; failure is denoted by ⊥.

Triples of the form (w, I, b) ∈ T ∗×℘(N)×B are behaving as operation states of parsing, as
each parsing step may use these data and update them. We will write State = T ∗×℘(N)×B
(as we never deal with different terminal sets, dependence on T is not explicitly marked),
and denote by State + 1 the set of possible results of parsing, i.e., {>(s) : s ∈ State} ∪ {⊥}.

The assertion that parsing expression e in grammar G with input string w in the context
of I and b assuming token mode τ results in o ∈ State + 1 is denoted by e, τ `G (w, I, b)→ o.
The formal definition below must be interpreted inductively, i.e., an assertion of the form
G, τ `e s→ o is valid iff it has a finite derivation by the following ten rules:

MFCS 2017



45:4 Grammars for Indentation-Sensitive Parsing

1. ε, τ `G s→ >(s).
2. For every a ∈ T , a, τ `G (w, I, b)→ o holds in two cases:

If o = >(w′, I ′,ff ) for w′, I ′, i such that w = aiw′ (ai denotes a occurring at column i)
and either b = ff and i ∈ τ−1(I), I ′ = I ∩ τ({i}), or b = tt and i ∈ I, I ′ = {i};
If o = ⊥, and there are no w′ and i such that w = aiw′ with either b = ff and
i ∈ τ−1(I) or b = tt and i ∈ I.

3. For every X ∈ N , X, τ `G s→ o holds if δ(X), τ `G s→ o holds.
4. For every p, q ∈ EG, pq, τ `G s→ o holds in two cases:

If there exists a triple s′ such that p, τ `G s→ >(s′) and q, τ `G s′ → o;
If p, τ `G s→ ⊥ and o = ⊥.

5. For every p, q ∈ EG, p/q, τ `G s→ o holds in two cases:
If there exists a triple s′ such that p, τ `G s→ >(s′) and o = >(s′);
If p, τ `G s→ ⊥ and q, τ `G s→ o.

6. For every p ∈ EG, !p, τ `G s→ o holds in two cases:
If p, τ `G s→ ⊥ and o = >(s);
If there exists a triple s′ such that p, τ `G s→ >(s′) and o = ⊥.

7. For every p ∈ EG, p∗, τ `G s→ o holds in two cases:
If p, τ `G s→ ⊥ and o = >(s);
If there exists a triple s′ such that p, τ `G s→ >(s′) and p∗, τ `G s′ → o.

8. For every p ∈ EG and ρ ∈ <(N), pρ, τ `G (w, I, b)→ o holds in two cases:
If there exists a triple (w′, I ′, b′) such that p, τ `G (w, ρ−1(I), b)→ >(w′, I ′, b′) and
o = >(w′, I ∩ ρ(I ′), b′);
If p, τ `G (w, ρ−1(I), b)→ ⊥ and o = ⊥.

9. For every p ∈ EG and σ ∈ <(N), p
σ
, τ `G s→ o holds if p,σ `G s→ o holds.

10. For every p ∈ EG, ¦p¦, τ `G (w, I, b)→ o holds in two cases:
If there exists a triple (w′, I ′, b′) such that p, τ `G (w, I, tt) → >(w′, I ′, b′) and
o = >(w′, I ′, b ∧ b′);
If p, τ `G (w, I, tt)→ ⊥ and o = ⊥.

The idea behind the conditions i ∈ τ−1(I) and i ∈ I occurring in clause 2 is that any column i
where a token may appear is in relation τ with the current indentation baseline (known to
be in I) if the alignment flag is false, and coincides with the indentation baseline otherwise.
For the same reason, consuming a token in column i restricts the set of allowed indentations
to τ({i}) or {i} depending on the alignment flag. In both cases, the alignment flag is set to
ff . Similar principles lie behind the changes of the operation states in clauses 8 and 10.

For a toy example, consider parsing of ¦ab¦> with the operation state (a2b3,N,ff ) assuming
the token mode ≥. For that, we must parse ¦ab¦ with (a2b3,N \ {0} ,ff ) by clause 8 since
>−1 (N) = N \ {0}. For that in turn, we must parse ab with (a2b3,N \ {0} , tt) by clause
10. By clause 2, we have a,≥`G (a2b3,N \ {0} , tt) → >(b3, {2} ,ff ) (as 2 ∈ N \ {0}) and
b,≥`G (b3, {2} ,ff ) → >(ε, {2} ,ff ) (as (2, 3) ∈≥−1). Therefore, by clause 4, ab,≥`G

(a2b3,N \ {0} , tt)→ >(ε, {2} ,ff ). Finally, ¦ab¦,≥`G (a2b3,N \ {0} ,ff )→ >(ε, {2} ,ff ) and
¦ab¦>,≥`G (a2b3,N,ff ) → >(ε, {0, 1} ,ff ) by clauses 10 and 8. The set {0, 1} in the final
state shows that only 0 and 1 are still candidates for the indentation baseline outside the
parsed part of the input (before parsing, the candidate set was the whole N).

Note that this definition involves circular dependencies. For instance, if δ(X) = X for
some X ∈ N then X, τ `G s→ o if X, τ `G s→ o by clause 3. There is no result of parsing
in such cases (not even ⊥). We call this behaviour divergence.
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2.2 Properties of the semantics
Ford [6] proves that parsing in PEG is unambiguous, whereby the consumed part of an input
string always is its prefix. Theorem 2.1 below is an analogous result for PEG>. Besides the
uniqueness of the result of parsing, it states that if we only consider relations in <+(N) then
the whole operation state in our setting is in a certain sense decreasing during parsing.

Denote by ≥ the suffix order of strings (i.e., w ≥ w′ iff w = uw′ for some u ∈ T ∗) and by
w the implication order of truth values (i.e., tt A ff ). Denote by > the pointwise order on
operation states, i.e., (w, I, b) > (w′, I ′, b′) iff w ≥ w′, I ⊇ I ′ and b w b′.

I Theorem 2.1. Let G = (N,T, δ, s) be a PEG>, e ∈ EG, τ ∈ <+(N) and s ∈ State. Then
e, τ `G s→ o for at most one o, whereby o = >(s′) implies s > s′. Also if s = (w, I, b) and
s′ = (w′, I ′, b′) then s 6= s′ implies both w > w′ and b′ = ff , and I 6= ∅ implies I ′ 6= ∅.

Proof. By induction on the shape of the derivation tree of the assertion e, τ `G s→ o. J

Theorem 2.1 enables to observe a common pattern in the semantics of indentation and
alignment. Denoting by κ(p) either pρ or ¦p¦, both clauses 8 and 10 have the following form,
parametrized on two mappings α, γ : State → State:

For p ∈ EG, κ(p), τ `G s→ o holds in two cases:
If there exists a state s′ such that p, τ `G α(s)→ >(s′) and o = >(s ∧ γ(s′));
If p, τ `G α(s)→ ⊥ and o = ⊥.

The meanings of indentation and alignment constructs are distinguished solely by α

and γ. For many properties, proofs that rely on this abstract common definition can be
carried out, assuming that γ is monotone, preserves the largest element and follows together
with α the axiom x ∧ γ(y) ≤ γ(α(x) ∧ y). The class of all meet semilattices L with top
element, equipped with mappings α, γ satisfying these three conditions, contains identities
(i.e., semilattices L with α = γ = idL) and is closed under compositions (of different α,
γ defined on the same semilattice L) and under direct products. If ρ ∈ <+(N) then the
conditions hold for α1, γ1 : ℘(N)→ ℘(N) with α1(I) = ρ−1(I), γ1(I) = ρ(I), similarly in the
case if α2, γ2 : B→ B with α2(b) = tt, γ2(b) = b. Now the direct product of the identities of
T ∗ and B with (α1, γ1) on ℘(N) gives the indentation case, and the direct product of the
identities of T ∗ and ℘(N) and the Boolean lattice B with (α2, γ2) gives the alignment case.

If α, γ satisfy the conditions then γ(α(x)) ≥ x since x = x∧> = x∧γ(>) ≤ γ(α(x)∧>) =
γ(α(x)). Adding dual conditions (α monotone, α(⊥) = ⊥ and α(x)∨ y ≥ α(x∨ γ(y))) would
make (α, γ) a Galois’ connection. In our cases, the dual axioms do not hold.

2.3 Semantic equivalence
I Definition 2.2. Let G = (N,T, δ, s) be a PEG> and p, q ∈ EG. We say that p and q are
semantically equivalent in G and denote p ∼G q iff p, τ `G s → o ⇐⇒ q, τ `G s → o for
every τ ∈ <+(N), s ∈ State and o ∈ State + 1.

For example, one can easily prove that pε ∼G p ∼G εp, p(qr) ∼G (pq)r , p/(q/r) ∼G

(p/q)/r , p(q/r) ∼G pq/pr , p/q ∼G p/!pq for all p, q, r ∈ EG [6]. We are particularly
interested in equivalences involving the additional operators of PEG>. In Sect. 3, they will
be useful in eliminating alignment and position operators. The following Theorem 2.3 states
distributivity laws of the three new operators of PEG> w.r.t. other constructs:

MFCS 2017



45:6 Grammars for Indentation-Sensitive Parsing

I Theorem 2.3. Let G = (N,T, δ, s) be a PEG>. Then:
1. εσ ∼G ε, (pq)σ ∼G p

σ
q
σ
, (p/q)σ ∼G p

σ
/q
σ
, (!p)σ ∼G!p

σ
, (p∗)σ ∼G (p

σ
)∗, (pρ)σ ∼G

(p
σ
)ρ, ¦p¦

σ
∼G ¦p

σ
¦ for all σ ∈ <+(N);

2. ερ ∼G ε, (p/q)ρ ∼G pρ/qρ, (!p)ρ ∼G!pρ, (p
σ
)ρ ∼G (pρ)σ for all ρ ∈ <+(N);

3. ¦ε¦ ∼G ε, ¦p/q¦ ∼G ¦p¦/¦q¦, ¦!p¦ ∼G!¦p¦, ¦p
σ
¦ ∼G ¦p¦

σ
.

Proof. The equivalences in claim 1 hold as the token mode steadily distributes to each case
of the semantics definition. Those in claims 2 and 3 have straightforward proofs using the
joint form of the semantics of indentation and alignment and the axioms of α, γ. J

Note that indentation does not distribute with concatenation, i.e., (pq)ρ �G pρqρ.
This is because (pq)ρ assumes one indentation block with a baseline common to p and
q while pρqρ tolerates different baselines for p and q. For example, take p = a ∈ T ,
q = b ∈ T , let the token mode be 4 and the input state be (a1b2,N,ff ) (recall that ai means
terminal a occurring in column i). We have a,4 `G (a1b2,N \ {0} ,ff ) → >(b2, {1} ,ff )
and b,4 `G (b2, {1} ,ff )→ ⊥ (since (2, 1) /∈ 4), therefore ab,4 `G (a1b2,N \ {0} ,ff )→ ⊥
and (ab)>,4 `G (a1b2,N,ff ) → ⊥. On the other hand, a,4 `G (a1b2,N \ {0} ,ff ) →
>(b2, {1} ,ff ) implies a>,4 `G (a1b2,N,ff ) → >(b2, {0} ,ff ) (since N ∩ (> ({1})) = {0})
and, analogously, b>,4 `G (b2, {0} ,ff )→ >(ε, {0} ,ff ) (since >−1 ({0}) = N \ {0} 3 2 and
{0} ∩ (> ({2})) = {0}). Consequently, a>b>,4 `G (a1b2,N,ff )→ >(ε, {0} ,ff ).

We can however prove the following facts:

I Theorem 2.4. Let G = (N,T, δ, s) be a PEG>.
1. Identity indentation law: For all p ∈ EG, p4 ∼G p.
2. Composition law of indentations: For all p ∈ EG and ρ,σ ∈ <+(N), (pρ)σ ∼G pσ◦ρ.
3. Distributivity of indentation and alignment: For all p ∈ EG and ρ ∈ <+(N), ¦p¦ρ ∼G ¦pρ¦.
4. Idempotence of alignment: For all p ∈ EG, ¦¦p¦¦ ∼G ¦p¦.
5. Cancellation of outer token modes: For all p ∈ EG and σ, τ ∈ <(N), (p

σ
)τ ∼G p

σ
.

6. Terminal alignment property: For all a ∈ T , ¦a¦ ∼G a4.

Proof. Claim 1 follows easily from the semantics of indentation. By the conditions imposed
on α and γ, it follows that the composition of the effects of indentations or alignments
with respective mapping pairs (α1, γ1) and (α2, γ2) coincides with the effect of a prospective
construct of similar kind with mapping pair (α2 ◦α1, γ1 ◦γ2). Claims 2–4 follow directly from
this observation, as the composition of structures (α, γ) used for indentation and alignment
is commutative and the structure (α, γ) used for alignment is idempotent. Claim 5 is trivial.
Claim 6 follows from a straightforward case study. J

Theorems 2.3 and 2.4 enact bringing alignments through all syntactic constructs except
concatenation. Alignment does not distribute with concatenation, because in parsing of
an expression of the form ¦pq¦, the terminal to be aligned can be in the part of the input
consumed by p or (if parsing of p succeeds with consuming no input) by q. Alignment can
nevertheless be moved through concatenation if any successful parsing of the first expression
in the concatenation either never consumes any input or always consumes some input:

I Theorem 2.5. Let G = (N,T, δ, s) be a PEG> and p, q ∈ EG.
1. If p, τ `G s→ >(s′) implies s′ = s for all τ ∈ <+(N), s, s′ ∈ State, then ¦pq¦ ∼G ¦p¦¦q¦.
2. If p, τ `G s→ >(s′) implies s′ 6= s for all τ ∈ <+(N), s, s′ ∈ State, then ¦pq¦ ∼G ¦p¦q.

Proof. Straightforward case study. J
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Theorem 2.5 (1) holds also for indentation (instead of alignment), the same proof in
terms of α, γ is valid. Finally, the following theorem states that position and indentation of
terminals are equivalent if the alignment flag is false and the token mode is the identity:

I Theorem 2.6. Let G = (N,T, δ, s) be a PEG>. Let a ∈ T , σ ∈ <+(N) and w ∈ T ∗,
I ∈ ℘(N), o ∈ State + 1. Then aσ,4 `G (w, I,ff )→ o ⇐⇒ aσ,4 `G (w, I,ff )→ o.

Proof. Straightforward case study. J

2.4 Differences of our approach from previous work
Our specification of PEG>differs from the definition used by Adams and Ağacan [3] by three
essential aspects listed below. The last two discrepancies can be understood as bugs in the
original description that have been corrected in the Haskell indentation package by Adams
[1]. This package also provides means for locally changing the token mode. All in all, our
modifications fully agree with the indentation package.

1. The position operator p
σ
is missing in [3]. The treatment there assumes just one default

token mode applying to the whole grammar, whence token positions deviating from the
default must be specified using the indentation operator. The benefits of the position
operator were shortly discussed in Subsect. 2.1.

2. According to the grammar semantics provided in [3], the alignment flag is never changed
at the end of parsing of an expression of the form ¦p¦. This is not appropriate if p
succeeds without consuming any token, as the alignment flag would unexpectedly remain
true during parsing of the next token that is out of scope of the alignment operator. The
value the alignment flag had before starting parsing ¦p¦ should be restored in this case.
This is the purpose of conjunction in the alignment semantics described in this paper.

3. In [3], an alignment is interpreted w.r.t. the indentation baseline of the block that
corresponds to the parsing expression to which the alignment operator is applied.
Indentation operators occurring inside this expression and processed while the alignment
flag is true are neglected. In the semantics described in our paper, raising the alignment
flag does not suppress new indentations. Alignments are interpreted w.r.t. the indentation
baseline in force at the aligned token site. This seems more appropriate than the former
approach where the indentations cancelled because of an alignment do not apply even to
the subsequent non-aligned tokens. Distributivity of indentation and alignment fails in
the semantics of [3]. Note that alignment of a block nevertheless suppresses the influence
of position operators whose scope extend over the first token of the block.

Our grammar semantics has also two purely formal deviations from the semantics used
by Adams and Ağacan [3] and Ford [6].

1. We keep track of the rest of the input in the operation state while both [3, 6] expose the
consumed part of the input instead. This difference was introduced for simplicity and
to achieve uniform decreasing of operation states in Theorem 2.1.

2. We do not have explicit step counts. They were used in [6] to compose proofs by
induction. We provide analogous proofs by induction on the shape of derivation trees.

3 Elimination of alignment and position operators

Adams [2] describes alignment elimination in the context of CFGs. In [3], Adams and
Ağacan claim that alignment elimination process for PEGs is more difficult due to the
lookahead construct. To our knowledge, no concrete process of semantics-preserving alignment

MFCS 2017



45:8 Grammars for Indentation-Sensitive Parsing

elimination is described for PEGs before. We provide one below for well-formed grammars.
We rely on the existence of position operators in the grammar; this is not an issue since we
also show that position operators can be eliminated from alignment-free grammars.

We describe our process informally on an example; a general description together with
correctness theorems can be found in our online paper [9].

As the repetition operator can always be eliminated (by adding a new non-terminal Ap

with δ(Ap) = pAp/ε for each subexpression p that occurs under the star operator), we may
assume that the input grammar G is repetition-free. The process also assumes that G is
well-formed, all negations are applied to atomic expressions, and all choices are disjoint. A
choice expression p/q is called disjoint if parsing of p and q cannot succeed in the same
input state and token mode. Well-formedness is a decidable conservative approximation of
the predicate that is true iff parsing in G never diverges (it definitely excludes grammars
with left recursion but can exclude also some safe grammars). Well-formedness of PEGs was
introduced by Ford [6]. Extending the notion to expressions containing the extra operators of
PEG> is straightforward, details are provided in [9]. Achieving the other two preconditions
can be considered as a preparatory and previously studied (e.g. in [6] as stage 1 of negation
elimination) step of the process.

We will work on the example grammar G = (N,T, δ, s) where N = {A,B}, T = {a, b, c},
δ =

{
A 7→!!c/a/B,B 7→ b¦AA¦>

}
and s = A≥. This grammar is well-formed and choices in

the rule for A are disjoint (!!c, a and B can succeed only if the input string starts with c, a
or b, respectively). Not all negations are in front of atoms; this can be fixed by introducing
a new non-terminal C with rule C 7→!c and replacing the rule for A with A 7→!C/a/B.
Elimination of alignment and position operators from the grammar is done in 3 stages.

1. Transform G to an equivalent grammar G1 where for each expression of the form pq

occurring in δ or s, parsing of p either never succeeds without consuming some input or
can succeed only if consuming no input.
This “splitting” step enables to later bring alignments through concatenations (by
Theorem 2.5). It only modifies rules and the start expression. The new set of rules and
start expression could be

δ1 =
{
A 7→ a/B B 7→ b¦AA/A!!c/!!cA/!!c!!c¦>

}
, s1 = (A/!!c)≥

(in the version of the grammar with non-terminal C, there would be an additional rule
for C that never succeeds). The formal process described in [9] would give a somewhat
more complicated result but this simplified variant works fine and perfectly explains the
ideas. The alternative with negation is removed from the rule of A to allow parsing of
A succeed only if consuming some input (the same transformation would be performed
on other non-terminals if it was necessary). The removed alternative (which happens to
succeed only if consuming no input) is inserted into each concatenation of A, as well as
into the start expression. Basically the same transformation was used by Ford [6] on
stage 2 of his negation elimination process.

2. Using the semantic equivalences of Subsect. 2.3, move all alignments down to atoms.
Rewrite alignment of terminals in terms of the position operator and the identity relation.
For each existing non-terminal X, introduce a new non-terminal with a rule whose
right-hand side is obtained from ¦δ1(X)¦ by moving all alignments down to non-terminals,
and replace all aligned non-terminals with the corresponding new non-terminals.
In our example, we have to introduce two new non-terminals A′ and B′ with right-
hand sides obtained from ¦a/B¦ and ¦b¦AA/A!!c/!!cA/!!c!!c¦>¦, respectively. Using that
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¦AA¦ ∼ ¦A¦A, ¦A!!c¦ ∼ ¦A¦!!c, ¦!!cA¦ ∼ ¦!!c¦¦A¦ and ¦!!c!!c¦ ∼ ¦!!c¦¦!!c¦, we end up with

δ2 =
{
A 7→ a/B

A′ 7→ a4/B
′
B 7→ b(A′A/A′!!c/!!c4A′/!!c4!!c4)>

B′ 7→ b4(A′A/A′!!c/!!c4A′/!!c4!!c4)>

}
, s2 = (A/!!c)≥.

3. Using the semantic equivalences of Subsect. 2.3, move all position operators down to
atoms. For each non-terminal X and relation τ used by position operators, introduce
a new non-terminal with a rule whose right-hand side is obtained from (δ2(X))τ by
moving position operators down to atoms, and replace all non-terminals under position
operators with the corresponding new non-terminals. Replace position operators applied
to terminals with indentation, omit identity indentations.
In our example, ≥ is the only relation used by position operators. Hence we must
introduce one new non-terminal for each existing non-terminal. Denote them Â, B̂, Â′,
B̂′. As the old non-terminals will never be used when parsing the new start expression,
we can omit their rules. The rules of the new non-terminals and the start expression are

δ3 =
{
Â 7→ a≥/B̂

Â′ 7→ a/B̂′
B̂ 7→ b≥(Â′Â/Â′!!c≥/!!cÂ′/!!c!!c)>

B̂′ 7→ b(Â′Â/Â′!!c≥/!!cÂ′/!!c!!c)>

}
, s3 = Â/!!c≥.

Note how terminals that do not have to be aligned have indentation ≥ while terminals
to be aligned have no indentation. Parsings in the resulting grammar must run with the
alignment flag unset and assume the identity token mode.

At step 1, the sizes of the right-hand sides of the rules can grow exponentially though
the number of rules stays unchanged. Preprocessing the grammar via introducing new
non-terminals in such a way that all concatenations were applied to atoms (similarly to
Ford [6]) would hinder the growth, but the size in the worst case remains exponential. Steps
2 and 3 cause at most a linear growth of right-hand sides.

4 Which relations are good?

Speed of grammar-driven parsing of expressions that involve relations depends on the nature
of the relations. The representation of the baseline candidate sets in operation states plays a
particular role. Adams and Ağacan [3] prove that, during parsing of expressions that involve
only relations 4, >, ≥ and ~, all intermediate sets I occurring in operation states have
the form of a connected interval of natural numbers (possibly extending to infinity). This
enables to represent any set I by its minimum min I and supremum sup I (supremum means
maximum for finite sets and ∞ for infinite ones).

In practice, languages may require other indentation relations. Adams [2] mentions
{(i+ 2, i) : i ∈ N} needed for occam, the indentation package [1] implements constant
relations {(c, i) : i ∈ N}. Here we generalize the result of [3] by finding a criterion for deciding
which indentation relations preserve the interval form of the set of baseline candidates. The
result also applies to the relations used by position operators since they matter only during
parsing of terminals and the way they are used there is the same as in the case of indentation.

In this section, we denote lρ(i) = min(ρ({i})) and hρ(i) = sup(ρ({i})) for any ρ ∈ <(N)
and i ∈ N. Functions l and h are undefined on i if ρ({i}) = ∅. Intervals are sets of the form
{j ∈ N : n ≤ j ≤ o} for any n ∈ N, o ∈ N∪{∞}. For uniform treatment, ∅ is also considered
an interval (the case n > o in the definition). This has no bad consequences as the set of
baseline candidates is guaranteed to stay non-empty by Theorem 2.1.
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4.1 Relations that keep indentation sets as intervals
When parsing of an expression of the form eρ starts, it must create a new set ρ−1(I) where I
is the current set of indentation baseline candidates. There are two obvious conditions that
must hold for ρ−1(I) being an interval whenever I is:
1. For each i ∈ N, ρ−1({i}) must be an interval, as I can be a one-element set.
2. For any i ∈ N, ρ−1({i}) ∪ ρ−1({i+ 1}) must be an interval, as I can be {i, i+ 1}.
One can easily prove by induction on the size of I that if a relation ρ satisfies conditions 1
and 2 then ρ−1(I) is an interval for any interval I. Note that condition 2 holds iff for any
two consecutive natural numbers i and j in any order, lρ−1(i) ≤ hρ−1(j) + 1.

At the end of parsing of an expression of the form eρ, a new set I ∩ ρ(I ′) must be created
to combine the information provided by the set I of baseline candidates for the surrounding
indentation and the set I ′ of baseline candidates for the local indentation. Hence I ∩ ρ(I ′)
must be an interval whenever I and I ′ are. Taking I = N and I ′ = {i} or I ′ = {i, i+ 1}, we
see as before that ρ({i}) and ρ({i, i+ 1}) must be intervals for every i ∈ N. Conversely, an
easy induction on the number of elements in I ′ shows that if all sets ρ({i}) and ρ({i, i+ 1})
are intervals then ρ(I ′) is an interval for any interval I ′. As the intersection of two intervals
is an interval, this condition is also sufficient for I ∩ ρ(I ′) being an interval.

To conclude, if for each used relation ρ, all sets of the form ρ−1({i}), ρ−1({i, i+ 1}),
ρ({i}) and ρ({i, i+ 1}) are intervals whereby ρ ∈ <+(N), then all sets of baseline candidates
occurring in the operation state are intervals during any parsing that starts with an interval
as the baseline set. By Theorem 4.2 below, the set ρ({i, i+ 1}) can be omitted from this
list, so three out of four conditions remain. For every relation ρ ∈ <+(N) that fails to meet
these three conditions, one can find a parsing expression e and an initial state such that
a non-interval set appears during parsing. Indeed, the set ρ−1(I) for an arbitrarily chosen
finite interval I = {i, i+ 1, . . . , i+ k} is evaluated during parsing of e = ¦a(bcρ)≥¦≥ on an
input string of the shape aibi+kw, and for any i ∈ N, if ρ({i}) is not an interval and hence
contains some n ∈ N then ρ({i}) is evaluated during parsing of e = (abρ)4 on the input anbi.

4.2 Implementation issues
By condition 1 at the beginning of Subsect. 4.1, any feasible relation ρ is uniquely determined
by the pair of functions (lρ−1 , hρ−1). Similarly, ρ is determined by (lρ, hρ) because of the
analogous condition for ρ({i}). Functions lρ−1 and hρ−1 are total as we assume ρ ∈ <+(N),
while lρ and hρ can be partial. For the four relations considered in [3] for instance,

(l4−1(i), h4−1(i)) = (i, i);
(l>−1(i), h>−1(i)) = (i+ 1,∞);
(l≥−1(i), h≥−1(i)) = (i,∞);
(l~−1(i), h~−1(i)) = (0,∞);

(l4(i), h4(i)) = (i, i);
(l>(i), h>(i)) = (0, i− 1) (provided i > 0);
(l≥(i), h≥(i)) = (0, i);
(l~(i), h~(i)) = (0,∞).

We recall two well-known notions.

I Definition 4.1. 1. Call a function f : N→ Z∪{∞} non-decreasing iff, for every i, j ∈ N,
i ≤ j implies f(i) ≤ f(j).

2. Call a function f : N→ Z∪ {∞} weakly unimodal iff there exists some m ∈ N such that,
for every i, j ∈ N, i ≤ j ≤ m implies f(i) ≤ f(j) and m ≤ i ≤ j implies f(i) ≥ f(j).

Unimodality of f means that the values of f are increasing until some argument m called
mode and decreasing after that. Weakness specifies that increasing and decreasing can be
non-strict (letting values at consecutive arguments equal). We will use also the corresponding
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Figure 1 Functions h with the weak unimodality and l with the reverse unimodality property

reverse properties that hold for f : N → Z iff −f has the original property. Thereby f is
called non-increasing iff −f is non-decreasing. Figure 1 depicts two functions l, h defined on
N such that l < h and both h and −l are weakly unimodal (blue filled and red empty bars
depict l and h, respectively).

I Theorem 4.2. Let ρ ∈ <+(N) satisfy conditions 1 and 2 at the beginning of Subsect. 4.1.
Then the following conditions are equivalent:

(*) For every i ∈ N, ρ({i}) is an interval;
(**) Each of hρ−1 and −lρ−1 is either non-decreasing or weakly unimodal;

(***) For every i ∈ N, both ρ({i}) and ρ({i, i+ 1}) are intervals.

Proof. Assume (*) and suppose that (**) does not hold. If hρ−1 is neither non-decreasing nor
weakly unimodal then there exist i, j, j′ ∈ N, j + 1 < j′ such that i ≤ min(hρ−1(j), hρ−1(j′))
and, for every j′′, if j < j′′ < j′ then hρ−1(j′′) < i. By condition 2 assumed by the
theorem, lρ−1(j) ≤ hρ−1(j + 1) + 1 ≤ i ≤ min(hρ−1(j), hρ−1(j′)) ≤ hρ−1(j) and similarly
lρ−1(j′) ≤ hρ−1(j′ − 1) + 1 ≤ i ≤ min(hρ−1(j), hρ−1(j′)) ≤ hρ−1(j′). Hence ρ({i}) contains
both j and j′ but none of the numbers between j and j′, which contradicts the fact that
ρ({i}) is an interval. The case with −lρ−1 being neither non-decreasing nor weakly unimodal
is handled analogously. Thus (*) implies (**).

Now assume (**). For every natural number i, denote Hi =
{
j ∈ N : hρ−1(j) ≥ i

}
and

Li =
{
j ∈ N : lρ−1(j) ≤ i

}
; then ρ({i}) = Hi ∩ Li. By (**), Hi and Li are intervals, hence

ρ({i}) is an interval for each i. Note that i < i′ implies Hi ⊇ Hi′ and Li ⊆ Li′ . Moreover,
Hi+1 ∪ Li = N: Indeed, j /∈ Li implies lρ−1(j) > i, meaning that hρ−1(j) ≥ lρ−1(j) ≥ i+ 1
whence j ∈ Hi+1. Clearly ρ({i, i+ 1}) = ρ({i}) ∪ ρ({i+ 1}) = (Hi ∩ Li) ∪ (Hi+1 ∩ Li+1).
To prove that ρ({i, i+ 1}) is an interval, suppose that j ∈ Hi ∩ Li, j′ ∈ Hi+1 ∩ Li+1 and
j < j′′ < j′ (the case j′ < j′′ < j is similar). As Hi+1 ⊆ Hi, both j and j′ belong to Hi.
Similarly as Li ⊆ Li+1, both j and j′ belong to Li+1. Consequently, also j′′ ∈ Hi ∩ Li+1
since both Hi and Li+1 are intervals. Now if j′′ ∈ Hi+1 then j′′ ∈ Hi+1∩Li+1 ⊆ ρ({i, i+ 1}),
and if j′′ ∈ Li then j′′ ∈ Hi ∩ Li ⊆ ρ({i, i+ 1}). Hence (**) implies (***).

Finally, (***) trivially implies (*). J

Knowing the modes of both hρ−1 and −lρ−1 (in the non-decreasing case with no upper
bound, ∞ can be used as the mode), ρ−1(I) can be computed by O(1) evaluations of lρ−1

and hρ−1 and O(1) comparisons of natural numbers for any interval I. Indeed, sup(ρ−1(I))
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equals the value of hρ−1 at one of the endpoints of I or at the mode (if the mode belongs
to I), or is ∞ (if hρ−1 is non-decreasing and unbounded); min(ρ−1(I)) can be found similarly.

The set of natural numbers where hρ and lρ are defined is an interval. An argument
similar to the proof of part (*)⇒ (**) of Theorem 4.2 shows that each of hρ and −lρ is either
non-decreasing or weakly unimodal within its domain of definition. Hence by symmetry, it
is possible to compute ρ(I ′) for any interval I ′ by O(1) evaluations of lρ and hρ and O(1)
comparisons if the modes of both hρ and −lρ are known. Partiality of hρ and lρ is not an
issue since Theorem 2.1 guarantees that the set of indentation baseline candidates becomes
never empty. Obviously the intersection of known intervals I and ρ(I ′) is computable by
O(1) comparisons.

Consequently, by representing relations ρ with records that consist of functions lρ, hρ,
lρ−1 and hρ−1 together with the modes of −lρ, hρ, −lρ−1 and hρ−1 , every indentation causes
only an O(1) time overhead (if the values of the functions are computable in O(1) time). It
is reasonable to expect that the parser implementer provides the right representations for all
the relations in use as the number of these relations is normally quite small.

For the four relations in [3], the modes can be defined as follows (they are not unique as
the functions can increase or decrease non-strictly):

(m(−l4−1),m(h4−1)) = (0,∞);
(m(−l>−1),m(h>−1)) = (0, 0);
(m(−l≥−1),m(h≥−1)) = (0, 0);
(m(−l~−1),m(h~−1)) = (0, 0);

(m(−l4),m(h4)) = (0,∞);
(m(−l>),m(h>)) = (1,∞);
(m(−l≥),m(h≥)) = (0,∞);
(m(−l~),m(h~)) = (0, 0).

5 Related work

PEGs were first introduced and studied by Ford [6] who also showed them to be closely
related with the TS system [5] and TDPL [4], as well as to their generalized forms [5, 4].

Adams [2] and Adams and Ağacan [3] provide an excellent overview of previous approaches
to describing indentation-sensitive languages and attempts of building indentation features
into parser libraries. Our work is a theoretical study of the approach proposed in [3] while
some details of the semantics used in our paper were “corrected” in the lines of Adams’
indentation package for Haskell [1]. This package enables specifying indentation sensitivity
within the Parsec and Trifecta parser combinator libraries. A process of alignment operator
elimination is previously described for CFGs by Adams [2].

Matsumura and Kuramitsu [7] develop a very general extension of PEG that also enables
to specify indentation. Their framework is powerful but complicated. The approach proposed
in [3] and followed by us is in contrast with [7] by focusing on indentation and aiming to
maximal simplicity and convenience of usage.

6 Conclusion

We studied the extension of PEG proposed by Adams and Ağacan [3] for indentation-
sensitive parsing. This extension uses operators for marking indentation and alignment
besides the classic ones. Having added one more operator (position) for convenience, we
found a lot of useful semantic equivalences that are valid on expressions written in the
extended grammars. We applied these equivalences subsequently for defining a process that
algorithmically eliminates all alignment and position operators from well-formed grammars.

We analyzed practical limitations of the indentation extension of PEG from the aspect
of efficient expressibility and computability of the relations and sets needed during parsing.
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We found a wide class of relations that, provided the minimum and supremum of the set of
numbers related to any given number is computable in O(1) time, cause only O(1) overhead
at each parsing step.

Acknowledgements. I thank the anonymous reviewers whose comments helped to improve
the paper considerably.
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