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Abstract
We show an algorithm that for a given regular tree language L decides if L ∈ Π0

2, that is if
L belongs to the second level of Borel Hierarchy. Moreover, if L ∈ Π0

2, then we construct
a weak alternating automaton of index (0, 2) which recognises L. We also prove that for a given
language L, L is definable by a weak alternating (1, 3)-automaton if and only if it is definable by
a weak non-deterministic (1, 3)-automaton.
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1 Introduction

Automata on infinite trees and the corresponding Monadic Second Order Logic provide a rich
framework for expressing properties of regular languages of trees. Characterising natural
subclasses of regular tree languages can be considered one of the fundamental problems
related to automata on infinite trees. When we additionally require that the characterisation
should be of an algorithmic nature, the problem usually turns to be very difficult and so far
solved only in few instances.

I Problem 1 (The Characterisation Problem). For a given class of sets of trees C design
an algorithm which decides if a given regular tree language L belongs to C.

Let us consider the problem for the following classes of tree languages: 1) languages definable
in First Order Logic, 2) languages definable in Weak Monadic Second Order Logic, or 3) Borel
languages. Providing an effective characterisation for any of the above classes among all
regular languages of trees seems to be beyond the reach of currently available methods.
In all the above instances it would be desirable to prove a dichotomy simple versus difficult
languages; with difficult languages being characterised by existence of an embedding of
a standard difficult language. In this work we resolve the Characterisation Problem
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Figure 1 Borel and projective hierarchies.

for the case of C = Π0
2, i.e. for the set of languages that belong to the second level of the

Borel hierarchy. A posteriori, it turns out that C is the class of languages recognisable by
weak alternating automata of index (0, 2), that is the class of parity automata that involve
priorities 0, 1, and 2; such that the transitions of the automaton are monotone wrt. priorities.

I Theorem 2. If L is a regular tree language then either:
L can be recognised by a weak alternating (0, 2)-automaton and so L ∈ Π0

2,
L cannot be recognised by a weak alternating (0, 2)-automaton, L /∈ Π0

2, and L is Σ0
2-hard.

Moreover, it can be effectively decided which of the cases holds. If L ∈ Π0
2 then a weak

alternating (0, 2)-automaton can effectively be constructed for L.

All regular languages of trees are Σ1
2 sets and from Rabin’s Complementation Theorem [20]

follows that every regular language of trees is in the class ∆1
2. In the case of weak alternating

automata (see e.g. [13]) one can provide a much more precise upper bound for the complexity:

I Lemma 3 (See e.g. [6]). If L is a language recognised by a weak alternating (0, n)-automaton
then L ∈ Π0

n.

Combining [24] and [6] we obtain that this is the optimal upper bound for the languages
definable in Weak Monadic Second Order Logic.

The Characterisation Problem seems to be settled only for few families C. The follow-
ing list summarises all the cases which according to authors’ knowledge have been considered
in the literature so far, with the unrestricted input of general regular tree languages:
1. The simple case of clopen sets considered a mathematical folklore.
2. The case of open and closed sets, see [1, page 1] or [14, page 83-84]
3. The case of Boolean combinations of open sets settled in [1] using sophisticated algebraic

methods.
4. The techniques of [1] were further reused in [7] to provide an effective characterisation of

the class ∆0
2. However, as it turned out, the application of the tools of [1] presented in that

paper was not correct and the proofs contain some missing arguments1; as a corollary of
the present article we also obtain another algorithm solving Problem 1 for the case C = ∆0

2.
Additionally, this paper provides a new automata theoretic observation: regular languages
in ∆0

2 belong to the respective delta class of the weak alternating index hierarchy: for
any regular language L in ∆0

2 there exist a weak alternating (0, 2)-automaton and a weak
alternating (1, 3)-automaton that recognise L.

1 The statement of Theorem 1 in [7] is correct but a critical combinatorial Proposition 5 requires a
different and a more sophisticated argument which will be presented in a journal version of that work.
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5. From [9] we know that regular tree languages occupy the first ω–levels of Kolmogorov’s
R-hierarchy.

The following problem that can be seen as a reversed version of Lemma 3 requires a
fine-grained analysis of Π0

n regular languages of trees:

I Problem 4. Given a regular tree language that belongs to Π0
n, does there exist a weak

alternating (0, n)-automaton that recognises it?

In the case of n = 1 the positive answer is considered folklore (it also follows from [1]),
however for every n > 1 the problem was open. Our article gives the positive answer for
the specific case when n = 2.

Related work

Characterising WMSO among Büchi automata. The proof presented in this paper is
inspired by a characterisation [23] of Borel languages (as well as recognisable by all weak
alternating automata) among the languages recognisable by Büchi automata. Although
the similar structure of the proof and the idea behind the characterisation game F , there
are certain differences between the two proofs. Firstly, the structure of the game F is much
simpler here than in [23]. Moreover, the construction of the automata GK from Section 6
requires certain new ideas because we deal with arbitrary parity automata (in [23] the input
is restricted to Büchi automata and the construction is just an unravelling of the respective
game G). In particular, in this work we introduce the concept of K-acceptance.

Deterministic and other special classes of languages. In absence of a method solving
Problem 1 for all regular languages, a number of attempts was made for special families
of regular languages [18, 17, 16, 8] that are recognised by automata with restricted forms
of non-determinism.

Cost-MSO and counter automata. Another take on characterising various classes of
languages via games can be found in [5, 4, 3]. The authors of this paper are not aware of
results directly applicable to weak alternating parity automata of index (1, 3). However, as
shown in this paper, weak non-deterministic parity automata of index (1, 3) are equivalent
with weak alternating parity automata of the same index. Therefore, it seems feasible
to obtain the automata-theoretic part (without the correspondence to topological classes)
of Theorem 2 using the tools presented in [5, 12, 4].

2 Basic notions

Trees. Let us fix a finite alphabet A, that is just a finite non-empty set of symbols
(e.g. A = {a, b}). We work on the space of labelled complete infinite binary trees over A.
An A-labelled tree t (shortly tree) is a function t : {L, R}∗ → A where the symbols L, R are
called directions. The set of all A-labelled trees is denoted by TrA.

Elements u ∈ {L, R}∗ are called nodes of a tree. The elements uL, uR are called children
of u. The empty sequence ε is called the root of a tree. A branch of a tree is just an infinite
sequence of directions β ∈ {L, R}ω. A node u is on a branch α if it is a prefix of α, i.e. u ≺ α.
In that case u = α�|u|. If u is a node of a tree then by t�u we indicate the tree t truncated in
u in the usual sense: t�u(w) def= t(uw).

MFCS 2017
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Topological complexity. In this work we use the standard topological notions for the space
of infinite trees, see [11, 26] . The relevant topological notions in the context of infinite trees
are described in Sections 1.6.1 and 1.6.2 of [22].

The space TrA with the standard product topology is known to be an uncountable Polish
space (homeomorphic with the Cantor set). Thus, all the standard notions of Descriptive
Set Theory naturally apply to trees.

Assume that χ is a topological space known from the context. By Σ0
1 (resp. Π0

1) we denote
the set of open (resp. closed) sets in χ. The classes Σ0

n+1 and Π0
n+1 are defined inductively:

Σ0
n+1 contains countable unions of sets in Π0

n; Π0
n+1 contains countable intersections of sets

in Σ0
n. In particular Σ0

2 are countable unions of closed sets; this class is often denoted Fσ.
Similarly, Π0

2 are countable intersections of open sets; often denoted Gδ.
For a class Γ of sets (e.g. Π0

2), we say that a set Y ⊆ χ is Γ-hard if for every set Y ′ ∈ χ′
that is in Γ there exists a continuous reduction f : χ′ → χ such that Y ′ = f−1[Y ]. A set Y
is Γ-complete if Y is Γ-hard and belongs to Γ.

Automata Theory. In this work we use both notions of non-deterministic and alternating
parity tree automata. Again, we refer the reader to [19, 25]. The notation we use comes
from Sections 1.3 and 1.4 of [22].

A parity tree automaton A is a tuple A = 〈AA, QA, qAI ,∆A,ΩA〉, where: AA is the alpha-
bet we are working on; QA is the set of states of the automaton A; qAI is a particular element
of QA and it is called the initial state; ∆A will be defined in a moment; and ΩA is a function
ΩA : QA → ω that assigns a priority to every state of the automaton. If the automaton is
known from the context then we omit the superscript A.

An automaton A is non-deterministic if ∆ ⊆ Q × A × Q × Q contains transitions of
the form (q, a, qL, qR). A non-deterministic automaton A accepts a tree t ∈ TrA if there exists
an accepting run ρ, i.e. a QA-labelled tree that is consistent with the transitions of A and
the parity condition is satisfied on every branch β of t: lim supn→∞ Ω

(
ρ(β�n)

)
is even.

An automaton A is alternating if ∆ is a function that assigns to each pair q ∈ Q, a ∈ A
a finite positive Boolean combination of pairs (d, q′) where d ∈ {L, R} is a direction and q′ ∈ Q
is the consecutive state. For instance ∆(q, a) can be of the form

(
(L, q′L) ∧ (L, q′′L )

)
∨ (R, q′′R ).

An alternating automaton A induces, for every tree t ∈ TrA, a parity game A(t) called
the acceptance game of A on t. A accepts t if ∃∃∃ has a winning strategy in the game A(t).

We require our automata to be complete, meaning that for every state q ∈ Q and letter
a ∈ A there needs to be some transition.

For both non-deterministic and alternating tree automata A we define the language of A
(denoted L(A)) as the set of all trees accepted by A. It is known that the expressive power
of non-deterministic and alternating automata is the same:

I Theorem 5 ([10]). Let L ⊆ TrA. There exists an alternating parity tree automaton A
such that L(A) = L if and only if there exists a non-deterministic parity tree automaton B
such that L(B) = L. Moreover, both translations are effective.

If for L ⊆ TrA there exists a non-deterministic (equivalently alternating) automaton A
such that L = L(A) then we say that L is regular. A parity automaton is weak if the values
of Ω are non-decreasing along transitions. The index of an automaton is the pair (i, j) where
i is the minimal and j is the maximal value of Ω on Q.
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3 Overview of the proof of Theorem 2

Let L be a regular language and let us fix once and for all two non-deterministic parity
tree automata A and B that recognise respectively: L(B) = L is the given language and
L(A) = Lc is its complement. The proof will consist of the following steps:

First we define a game F of infinite duration and perfect information. The game F is
played by two players: Eve (∃∃∃) and Adam (∀∀∀). Player ∃∃∃ constructs a tree t together with
three runs: one of the automaton A and two of the automaton B. The second of them is
influenced by ∀∀∀ who can ask ∃∃∃ to restart whenever he wants. The crucial property of the
game F is that it is played over a finite arena and the winning condition is ω-regular.
If ∃∃∃ wins F then her winning strategy can be used to prove that the language L(B) is
actually Σ0

2-hard. In particular it cannot be recognised by a weak alternating automaton
of index (0, 2). To prove this topological hardness we test the winning strategy of ∃∃∃
against a well-designed family of strategies of ∀∀∀. In terms of Descriptive Set Theory it can
be seen as finding an embedding of the Cantor set 2ω that intersects L(B) on rationals.
If ∀∀∀ wins F then we use his finite-memory winning strategy to construct a finite approx-
imation of the automaton B that is denoted GK0 . The construction ensures that GK0 is
a weak alternating automaton of index (0, 2) that recognises L(B).

4 The game F

We start by defining a game F of infinite duration that is based on the non-deterministic
parity tree automata A = 〈A,QA, qAI ,∆A,ΩA〉 and B = 〈A,QB, qBI ,∆B,ΩB〉 for Lc and L
respectively. The purpose of F is to satisfy the following two propositions.

I Proposition 6. If ∃∃∃ wins F then L(B) is Σ0
2-hard.

I Proposition 7. If ∀∀∀ wins F then L(B) is recognised by a weak alternating (0, 2)-automaton.

The above propositions together with Lemma 3 give a complete characterisation of
the topological complexity and the weak index of L(B).

Positions of F . The positions of F are of the form (p, q, s) ∈ QA×QB×QB where: p ∈ QA
is called an A-state, q ∈ QB is called a B-state, s ∈ QB is called an active state. The initial
position of F is (qAI , qBI , qBI ).

Rounds of F . Assume that a round of F starts in a position (p, q, s). The choices done by
the players are as follows:
1. ∀∀∀ can choose to restart by letting s′ = q or to stay by keeping s′ = s.
2. ∃∃∃ declares: (i) a letter a ∈ A; (ii) a transition (p, a, pL, pR) ∈ ∆A of A; (iii) a transition

(q, a, qL, qR) ∈ ∆B of B; (iv) another transition (s′, a, s′L, s′R) ∈ ∆B of B.
3. ∀∀∀ responds by selecting a direction d ∈ {L, R}.
After such a round the game proceeds to the position (pd, qd, s′d). Four example rounds of F
are presented in Figure 2.

If π is a finite or infinite play of F , a trace is a finite or infinite sequence of active states s
in consecutive rounds in which ∀∀∀ has not restarted. Thus, those active states come from
successive transitions of the automaton B.

MFCS 2017
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A-states p B-states q active states s

∀∀∀: stay

∃∃∃: b, . . .

∀∀∀: R

b b bRound 0

∀∀∀: restart

∃∃∃: a, . . .

∀∀∀: L

a a aRound 1

∀∀∀: stay

∃∃∃: a, . . .

∀∀∀: R

a a aRound 2

∀∀∀: restart

∃∃∃: b, . . .

∀∀∀: R

b b bRound 3

Figure 2 Four consecutive rounds of the game F . The black dots are the states of the automata
A and B. Each round consists of three choices: first ∀∀∀ either restarts or stays, then ∃∃∃ provides
a letter and three transitions (depicted by those Λ-shaped gadgets), finally ∀∀∀ chooses a direction.
The three boldfaced paths are three traces formed by the active states: the first one lasts in Round 0;
the second one in Rounds 1 and 2; the third one starts in Round 3.

Winning condition of F . Now we will define the winning condition for ∃∃∃ in F . It will depend
on a Boolean combination of the following three properties, speaking about the sequence
of rounds that were played:

(WR) ∀∀∀ has restarted infinitely many times.

(WA) The sequence of A-states p is accepting in A.

(WB) The sequence of active states s is accepting in B (i.e. it satisfies the parity condition).
A play of F is winning for ∃∃∃ if it satisfies

(
(WR) ∧ (WA)

)
∨
(
¬(WR) ∧ (WB)

)
. (1)
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In other words, there are two cases: If ∀∀∀ has restarted infinitely many times then ∃∃∃ wins iff
the sequence of visited A-states satisfies the parity condition. If ∀∀∀ has restarted only finitely
many times then ∃∃∃ wins iff the sequence of visited active states satisfies the parity condition.
Notice that a priori both (WA) and (WB) can happen simultaneously, because for example
there may exist two runs ρA and ρB of the automata A and B that both satisfy the parity
condition on some particular branch.

By the definition, the winning condition of F is an ω-regular property of sequences of
rounds. Additionally, there are only finitely many positions of F and each round allows
finitely many possible choices by the players. Therefore, we obtain the following fact.

I Fact 8 ([2]). The winner of F can be effectively found and he/she can win using a finite
memory winning strategy.

5 Proof of Proposition 6

In this section we prove that if ∃∃∃ wins F then L(B) is Σ0
2-hard. Let σ∃∃∃ be her winning

strategy. Let C ⊆ {0, 1}ω be the set of sequences containing only finitely many 1s.
It is known that C is Σ0

2-complete [26]. We will construct a continuous reduction from C

to L(B) and so we obtain that L(B) is Σ0
2-hard.

We will say that σ is a quasi-strategy of ∀∀∀ in F if σ specifies when to restart and leaves
undecided the choice of directions d. Notice that if σ is a quasi-strategy of ∀∀∀ then we
can construct a tree t consisting of the letters a played by σ∃∃∃ against σ: the letter t(u) is
the (|u|+1)th letter played by σ∃∃∃ against ∀∀∀ playing accordingly to σ and choosing successive
directions of u.

To each sequence α ∈ {0, 1}ω we will assign a quasi-strategy σα of ∀∀∀ in F . Consider
α ∈ {0, 1}ω and an Mth round of F for M = 0, 1, . . .

If α(M) = 0 then σα stays by keeping s′ = s.
If α(M) = 1 then σα restarts by putting s′ = q.

Let the tree tα be the effect of confronting the strategy σ∃∃∃ against the quasi-strategy σα.
Since the behaviour of the strategy σα in an Mth round of F depends only on the first M
bits of α, the function α 7→ tα is continuous. A routine verification (see below) shows that

α ∈ C ⇐⇒ tα ∈ L(B). (2)

When α ∈ C. First assume that α ∈ C, i.e. that there are only finitely many 1s in α. Let
M be the maximal number such that α(M − 1) = 1 (or M = 0 if there is no such M). Let
ρB be the run of B defined as follows:

For |u| ≤M let ρB(u) be the B-state q from the beginning of the |u|th round of the play
consistent with σ∃∃∃ and σα in which the sequence of directions chosen by ∀∀∀ was u.
For |u| > M let ρB(u) be the active state s from the beginning of the |u|th round of
the play consistent with σ∃∃∃ and σα in which the sequence of directions chosen by ∀∀∀ was u.

It is easy to see that ρB is in fact a run of B over tα. It remains to see that it is accepting.
Consider an infinite branch of tα. This branch corresponds to an infinite play of F consistent
with σ∃∃∃ and the quasi-strategy σα. Since in all the rounds after the Mth one, ∀∀∀ has stayed
by putting s′ = s, the states of ρB form an infinite trace in that play. Therefore, the condition
¬(WR) holds. As the play is won by ∃∃∃, also (WB) must hold. It means that the trace must
be accepting in B, thus the run ρB is accepting on our branch. This way we have proved
that ρB is accepting and tα ∈ L(B).

MFCS 2017
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position x:

state u(x):

priority Ω(u(x)):

witness:

0

q0

7

1

q1

6

2

q2

5

3

q3

1

4

q4

0

5

q5

3

6

q6

4

7

q7

5

8

q8

6

9

q9

1

10

q10

3

11

q11

2

x1=1 x2=3 x3=6 x4=10

max = 6 max = 4 max = 6

word u

Figure 3 A word u that is 4-accepting. The sequence x1, x2, x3, x4 witnesses that. If we loop u
between the positions 1 and 6, we get the sequence q0, q1, . . . , q6, q1, q2, . . . , q6, q1 . . . that satisfies
the parity condition.

When α /∈ C. Now assume that α /∈ C, i.e. that there are infinitely many 1s in α. Our aim
is to prove that the run ρA formed by the A-states p played by ∃∃∃ in all the plays consistent
with σ∃∃∃ and σα is accepting. Consider an infinite branch of tα and the corresponding play π
of F . Since infinitely many times ∀∀∀ has restarted, this play satisfies (WR). As the play is won
by ∃∃∃, also (WA) must hold. It means that the sequence of A-states p must be accepting in A.
Thus, we have proved that tα ∈ L(A) and therefore tα /∈ L(B). This concludes the proof
of Σ0

2-hardness of L(B).

6 Proof of Proposition 7

In this section we prove that if ∀∀∀ wins F then L(B) can be recognised by a weak alternating
parity automaton of index (0, 2). Since the winning condition of F is ω-regular, we can
assume that ∀∀∀ wins using a strategy σ∀∀∀ based on a finite-memory structure M . Our aim is
to construct an automaton recognising L(B).

K-accepting runs. We start by defining a notion of K-accepting sequences — sequences
of states of B that are similar to accepting ones. We will show that the strategy σ∀∀∀ must
avoid such sequences.

Let u be a finite or infinite sequence of states of B. Consider a number K ∈ ω. We say
that u is K-accepting if there exists a sequence of positions 0 ≤ x1 < x2 < . . . < xK < |u|
such that for every n = 1, 2, . . . ,K − 1 we have:

max
{

ΩB
(
u(x)

) ∣∣∣ xn ≤ x ≤ xn+1

}
is even. (3)

In other words, for n = 1, . . . ,K − 1, the maximal priority of states between positions xn
and xn+1 of u must be even. We call such a sequence of positions (x1, . . . , xK) a witness
of K-acceptance, see Figure 3.

The above definition is constructed in such a way to guarantee the following properties:
(P1) If u is K-accepting then it contains K positions such that each cycle built using

an interval between two of them gives us a sequence of states satisfying the parity
condition.

(P2) For every K, the set of all finite words that are K-accepting is regular. It is not obvious
how a regular expression for this language should look like, however, the definition of the
property of being K-accepting is clearly mso-definable, thus by the results of Rabin,
Scott [21], and Trakhtenbrot [27] (cf. e.g. [19]), we know that this language is regular.
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(P3) If u is K-accepting then every word of the form uw is also K-accepting.
(P4) If α ∈

(
QB
)ω satisfies the parity condition then for every K ∈ ω there exists a finite

prefix of α that is K-accepting.

I Lemma 9. There exists a value K0 ∈ ω such that if π is an infinite play of F consistent
with σ∀∀∀ then no trace of π is K0-accepting.

Proof. Let K0
def=
(∣∣QA∣∣× ∣∣QB∣∣× ∣∣QB∣∣)× ∣∣M ∣∣+ 1 where inside the brackets is the number

of positions of F and M is the memory structure of σ∀∀∀.
Assume for the sake of contradiction that there exists a play π that is consistent with

σ∀∀∀ and contains a K0-accepting trace. For a round number x ∈ ω during π let (vx,mx) be
the configuration of the game at the moment when x rounds were played: vx = (px, qx, sx)
for an A-state px, B-state qx, and active state sx; and mx is the current memory value of σ∀∀∀.

By the assumption we know that for some x < y < ω the sequence of active states
sx, sx+1, . . . , sy is a trace (i.e. there is no restart during these rounds) and it is K0-
accepting. Let x ≤ x1, . . . , xK0 ≤ y be a sequence of numbers of rounds that is a witness for
the K0-acceptance of this trace, see Equation (3).

Figure 4 provides an illustration for this construction. The upper picture presents a play π
seen in the product of the game F and the memory structure M used by σ∀∀∀. Small dots
mark positions before successive rounds of this play. The lower picture presents the play π
in a chronological way. The boldfaced vertical snake-like shape is a trace that is 5-accepting;
the rounded shapes indicate a witness of this fact: x1 = 2, x2 = 3, x3 = 6, x4 = 8, and
x5 = 10. Since 5 is bigger than the number of available pairs (v,m) we have a repetition:
(v3,m3) = (v8,m8). This allows us to construct a new play π′, by staying forever on the loop
between the rounds 3 and 8. The play π′ obtained this way contains an infinite trace that
satisfies the parity condition.

By the choice of K0 we know that for some 1 ≤ n < n′ ≤ K0 we have: vxn = vxn′ and
mxn

= mxn′ ; i.e. there must be a repetition of the position of F and the memory of σ∀∀∀
among the positions witnessing K0-acceptance of the trace.

Consider a play π′ of F which starts as π for the first xn rounds. Then π′ follows the loop
between the rounds xn + 1 and xn′ . Notice that π′ is in fact a play because vxn

= vxn′ .
Since we have chosen the positions xn, xn′ from a trace, this loop does not contain a restart.
Clearly π′ is consistent with σ∀∀∀ because the memory values mxn

and mxn′ are equal.
Because xn and xn′ are chosen from a witness of K0-acceptance of the trace, Property (P1)

implies that π′ contains an infinite accepting trace. Therefore, the play π′ satisfies
(
¬(WR)∧

(WB)
)
and thus is winning for ∃∃∃ in F , what contradicts the assumption that σ∀∀∀ was a winning

strategy of ∀∀∀. J

Construction of automata GK . Take a number K ∈ ω. We will now define a weak
alternating parity automaton GK of index (0, 2). The language L(GK) will be an over-
approximation of L(B). Later on we will prove that the strategy σ∀∀∀ witnesses the fact that
L(B) actually equals L(GK) for some K ∈ ω (in fact for K = K0 from Lemma 9).

The idea behind the automaton GK is the following: GK accepts a tree t if there exists
a run ρB0 of B over t such that for every node u of the tree, it is possible to find another run
of B over the subtree t�u starting from the state ρB0 (u) that is K-accepting on every branch
of this subtree.

Assume that D(K) = 〈QB, QD, qDI ,∆D, FD〉 is a deterministic automaton over finite
words (DFA) with the alphabet QB that recognises the language of K-accepting sequences
of states of B, see Property (P2).
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Figure 4 An illustration to the proof of Lemma 9.

The states of GK are of the form (q, τ) where q ∈ QB is a state of B and τ ∈ {?} tQD is
either ? or a state of D(K).

The initial state of GK is (qBI , ?). The transitions of GK are built by the following
rules. Given a state (q, τ) and a letter a, the successive state and direction are constructed
in the following way (formally the following choices should be encoded as a finite positive
Boolean combination of the consecutive directions and states).
1. If τ = ? then ∀∀∀ can choose to start by letting τ ′ = qDI or to skip by keeping τ ′ = ?. If

τ ∈ QD then ∀∀∀ has no choice and in that case τ ′ = τ .
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2. If τ ′ ∈ QD then we let2 τ ′′ = ∆D(τ, q), otherwise τ ′′ = τ ′ = ? is unchanged.
3. ∃∃∃ proposes a transition of B of the form

(
q, a, qL, qR

)
.

4. ∀∀∀ chooses a direction d ∈ {L, R}.
After these choices are done, the automaton moves in the direction d to the state (qd, τ ′′). Let
the priority of a state (q, τ) of GK be: (i) If τ = ? then the priority is 0. (ii) If τ ∈ QD \ FD
then the priority is 1. (iii) If τ ∈ FD then the priority is 2.

Notice that because of the structure of the transitions of GK , the above defined condition
is a weak parity condition of index (0, 2). It is important to notice that Property (P3) implies
that once a state of priority 2 is reached then we never move to a state of priority 1.

I Lemma 10. For every K ∈ ω we have L(B) ⊆ L(GK).

Proof. Take a tree t ∈ L(B) and let ρB be an accepting run of B on t. Then clearly ∃∃∃
can win the acceptance game GK(t) by just playing consecutive transitions of ρB. When ∀∀∀
chooses at some point to start, ultimately a state with τ ∈ FD will be reached because of
Property (P4). Therefore, every play will be won by ∃∃∃. J

Equivalence. We will now conclude the proof of Proposition 7 using the following lemma.

I Lemma 11. For K0 from Lemma 9 we have L(GK0) = L(B).

Proof. Assume contrarily that L(GK0) 6= L(B). Lemma 10 says that L(B) ⊆ L(GK0), so
there must exists a tree t ∈ L(GK0) \ L(B). From that assumption we know that:

there exists an accepting run ρA of A over t,
∃∃∃ has a winning strategy δ∃∃∃ in the acceptance game GK0(t).

Our aim is to prove that ∃∃∃ can win in F against σ∀∀∀ by using a strategy σ∃∃∃ that is based
on ρA and δ∃∃∃. Let us define the strategy σ∃∃∃.

First, σ∃∃∃ plays the letters a and the transitions of A from the A-states p according to
the tree t and the run ρA. This way we guarantee that every play of this strategy will
satisfy (WA). Additionally σ∃∃∃ chooses the transitions of B from the B-states q according to
the strategy δ∃∃∃ simulating the situation that ∀∀∀ has never started. Thus, at every moment of
a play consistent with σ∃∃∃, there is a unique play of δ∃∃∃ ending in a node u and a state of GK0

of the form (q, ?) with u being the sequence of directions played so-far by ∀∀∀ in F and q being
the current B-state. What remains is the choice of transitions of B from the active states s.
For that, ∃∃∃ will keep track of a play of the acceptance game GK0(t) with τ ∈ QD. At the
initial position of F the play is the one which begins by ∀∀∀ starting (i.e. τ = qDI ). Whenever
∀∀∀ restarts in F , ∃∃∃ forgets about the previously tracked play of GK0(t) and begins to track
the play that comes with the current B-state q by simulating the situation in which ∀∀∀ has
just started in GK0(t).

Consider the play π that is consistent with both σ∃∃∃ and σ∀∀∀. We need to prove that π is
winning for ∃∃∃. As we have already observed, such a play satisfies (WA). We will prove that
it also satisfies (WR) by proving the following claim. This concludes the proof of Lemma 11
by giving a contradiction: σ∀∀∀ is a winning strategy of ∀∀∀ but π is a play consistent with σ∀∀∀
that is winning for ∃∃∃.

I Claim 12. In the play π Player ∀∀∀ must have restarted infinitely many times.

2 We follow the transition of D from τ over q: τ ∈ QD is a state of D and q ∈ QB is a letter read by D.
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Assume contrarily that from some point on ∀∀∀ has not restarted. Thus, π contains an infinite
trace on which ∃∃∃ has played successive transitions of B in the active states s according to
her strategy δ∃∃∃ in GK0(t). Since the strategy δ∃∃∃ is winning, some prefix of the considered
trace must be K0-accepting. This gives a contradiction with Lemma 9. J

7 Weak non-deterministic (1, 3)-automata

In this section we prove the following additional result that may be considered folklore,
although we have not found it in the literature. The construction is based on the standard
de-alternation techniques together with the idea from [15].

I Theorem 13. If L is a language that can be recognised by a weak alternating parity
automaton A of index (1, 3) then L can be recognised by a weak non-deterministic parity
automaton B of index (1, 3).

This observation was important to properly define the game F . However, somehow
surprisingly, it does not play any role in the final proof of Theorem 2.

The idea of the proof is as follows. Given a tree t ∈ TrA the automaton B will guess
a positional strategy of ∃∃∃ in the acceptance game A(t). Then it will verify that the guessed
strategy is in fact winning. Therefore, it will track all the possible choices performed by ∀∀∀
along all the branches of the tree t. Thus, the set of states of B is the power set P(QA). Notice
that the guessed strategy of ∃∃∃ is winning if for every branch of t the following conditions are
satisfied: (i) no state of A of priority 3 is ever reached, (ii) every play ultimately reaches a
state of priority 2.

An easy application of König’s lemma shows that the second condition above actually
implies that at some point no state of priority 1 can belong to the set of reachable states
of A. This way, the automaton B can be seen as a naïve power set construction over A. Such
a construction can be performed for any alternating automaton (even not weak), however,
in most of the cases the assignment of priorities to the states of the power set automaton is
not correct. The crucial ingredient of this construction relies on the fact that the weak parity
condition of index (1, 3) admits a correct priority assignment for the power set automaton.

8 Conclusions and further work

This work provides a relatively simple effective characterisation of the class of regular
languages in Π0

2. Additionally, it proves that the considered class of languages coincides with
the respective level of the alternating index hierarchy (i.e. weak alternating (0, 2)-automata).

The simplicity of involved techniques comes from certain specific properties of the
considered classes. Firstly, there are ω-regular languages that are complete for the class Π0

2.
In our case the examples are: the language C of infinite binary sequences containing infinitely
many 1s; and the property (WR) used in the winning condition of the game F . Secondly,
similarly to the case of Büchi languages, the class of weak alternating (1, 3)-automata admits
a dealternation technique, see Theorem 13. Although this dealternation result does not play
any role in the proof of Theorem 2, it was used in the design of the game F and stays behind
the fact that the game actually characterises the class of languages recognisable by weak
alternating (0, 2)-automata.

We plan to investigate generalisations of Theorem 2 to Π0
n for n ≥ 3. Since decidability

results related to the Characterisation Problem are not that easy to obtain, we propose
for further investigation the topological problems related to the Characterisation Problem
and Problem 4 formulated in Introduction.
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Moreover, our work gives a quite clear situation up to the second level of Borel Hierarchy
in terms of decidability and correspondence between the Borel index and the weak index,
but there are still some “holes” that have to be filled regarding e.g. Wadge Hierarchy:

I Problem 14. Find all Wadge degrees inhabited by regular ∆0
2 languages of trees.

From [6] it follows that every Wadge degree less than ωω is inhabited by a regular language.
We believe that this is the maximum regular languages can get:

I Conjecture 15. There is no regular tree language in ∆0
2 with Wadge degree above ωω.
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