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To re-establish regular operations in a tram traffic network after a large disturbance, e.g. resulting from vehi-

cle breakdown or station closure, the viability of several rescheduling and rerouting strategies has to be eval-

uated prior to their implementation. Here, a multi-modal traffic simulation system can help to enhance the 

decision quality. Such a system obviously faces tight time constraints, so simulation data has to be acquired 

fast. 

In this paper we propose a method for the parallel execution of discrete traffic simulation models, which 

would accelerate data generation in comparison to a sequential model. To assess this method's dynamic be-

havior in real-world applications, some experiments conducted on a software system modeling schedule 

based tram traffic are presented. 

After giving an introduction to the scope and aim, we show some background on the parallelization of dis-

crete simulation models. The main part of the paper begins with the proposal of a method to parallelize the 

execution of simulation models with problem specific properties. Some estimations of the method's efficien-

cy are shared, followed by several experiments to highlight its dynamic behavior in real-world applications. 

The paper ends with a short summary and some thoughts on further research. 

1 Introduction 

When severe disturbances occur in tram networks, 

e.g. originating from broken down trams, closed sta-

tions, or other blocked resources, traffic operators 

have to apply rescheduling and rerouting strategies 

(see [10] and [12]) to reestablish regular operations. 

To be effective, these strategies are inevitably multi-

modal: trams are rescheduled to compensate for can-

cellations, regional and local buses are rerouted to 

relieve the tram network, some transit operators even 

co-operate with taxi companies (see [26]). To evalu-

ate the applicability of a given rescheduling or rerout-

ing strategy prior to its implementation in the real-

world system, a multi-modal simulation software is 

needed. Operators obviously face tight time con-

straints for their decisions, so simulation data has to 

be acquired fast. 

In this paper we propose a method for the parallel 

execution of discrete traffic simulation models. We do 

not aim for a general approach, which would be 

equally well applicable for all discrete models, but for 

a method that utilizes some specific properties of a 

subclass of models, including traffic simulation mod-

els. The traffic planners' laptop or desktop computers 

constitute the target platform of the resulting simula-

tion tools; the method thus should utilize their capaci-

ty for small scale parallel processing. To employ the 

available resources effectively, the method applies a 

dynamic and adaptive load balancing scheme. From 

the model's point of view, the mechanics of parallel-

ization and load balancing are transparent, so that 

these internals can be changed without compromising 

the subsequent use of the model. A sequential model 

of tram traffic is already in place (see [11]); the ac-

companying representation of bus traffic is only part-

ly implemented yet (see [24]). 

This paper continues with a presentation of some 

background on general methods of parallel simulation 

and their customization in practical applications (sec-

tion 2). We then present an approach on parallel exe-

cution of simulation models that share some charac-

teristics like being spatially explicit, having mostly 

local dependencies, and having computational load 

generated by transient entities moving through a 

network (section 3), followed by some efficiency 

estimations (section 4). Based on an implementation 

of the approach, some experiments are conducted, 

focusing on the parallel computation of artificial 

loads, and the parallel simulation of tram traffic (sec-

tion 5). The paper closes with a short summary of the 

lessons learned and some thoughts on future work 

(section 6).  
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2 Background 

A discrete simulation model comprises of entities 

which communicate with each other via simulation 

events or messages, and which change their states at 

discrete points in model time. The main task when 

parallelizing a discrete simulation model is to avoid 

the occurrence of parallelization artifacts, i.e. to as-

sure that parallel execution yields the same results as 

sequential execution. This is not a trivial task because 

a model usually contains both spatial dependencies 

(which are often local, i.e. between neighboring enti-

ties) and temporal dependencies (which are also often 

local, between close points in model time). 

Several approaches to the parallelization of discrete 

simulation models are known: The simplest approach 

is the concurrent execution of several sequential ex-

periments (see [15]). Outsourcing of maintenance 

functions (e.g. random number generation or database 

access) to secondary processors is also relatively 

simple but usually does not scale very well. A special 

case of this is the parallel administration of central 

data structures, usually applied to the future event list 

(for an overview of suitable data structures, see [18]). 

Time based parallelization techniques, i.e. computing 

different simulation time intervals in parallel, are 

scaling very well in principal but are only suited for 

specific models (a few applications are known, as 

described in [6] or [7]).  

A well examined, and also well scaling technique is 

model based (also called spatial) parallelization, 

which can be found in both literature (see [5], pp. 39) 

and real-world applications (e.g. see [1], [13] or [19]). 

2.1 Model based parallelization 

Model based parallelization utilizes the model's in-

herent parallelism, i.e. that many state changes can be 

executed independently from each other. To achieve 

this, the model is decomposed into partial models, 

which are assigned to the involved processors. With 

this method, entities of different partial models com-

municate via messages sent over the network or a 

common cache memory.  

Obviously, careful synchronization of the model's 

execution is necessary. The local causality constraint 

(see [5], pp. 52) demands that each entity executes its 

concerning simulation events in a non-decreasing 

order regarding their scheduled time of occurrence. 

Non-adherence to this constraint may result in causal-

ity errors which invalidate the simulation results.  

Two categories of synchronization methods are 

known: Conservative synchronization methods pre-

vent the out-of-order execution of simulation events 

by technical measures, thus guaranteeing adherence 

to the local causality constraint. Important conserva-

tive synchronization mechanisms include synchroni-

zation via null messages (described in [2] and [3]), 

deadlock detection and recovery (described in [4]), 

and synchronized execution (see [17] and [21]). Op-

timistic synchronization methods execute the partial 

models as fast as possible, and thereby allow viola-

tions of the local causality constraint. The methods 

detect and subsequently repair these violations by 

rejecting and re-computing the invalid regions of the 

simulation run. The best known optimistic approach 

is the aptly named “time warp”, first described in [8].  

2.2 Load balancing for parallel discrete simula-

tion systems 

Resulting from the typical dependencies in simulation 

models, the simulation's execution speed is generally 

dependent on the processor which advances slowest 

in simulation time. It is therefore necessary to incor-

porate a load balancing system into the simulation 

engine. This system does not aim at high utilization 

of the processors' capacity alone, but also has to con-

sider an uniform advance in simulation time. Discrete 

simulation systems therefore often apply special load 

balancing schemes. 

Those methods can be characterized as dynamic, 

static, adaptive, non-adaptive, local, centered, or 

hierarchical (see [14], pp. 12): A dynamic load bal-

ancing method continuously considers imbalances 

which develop from shifts in the model's computa-

tional load, and re-assigns partial models to appropri-

ate processors while executing the simulation run. In 

contrast, static methods estimate the load and assign 

partial models to processors in a preprocessing step 

before the start of the simulation run, and thus don't 

consider dynamic changes in the model's activity. 

Adaptive methods consider fluctuations in the availa-

ble processor power originating from the demand of 

dynamic processes belonging to third parties. In in-

homogeneous computer networks adaptive methods 

also consider the dissimilar performance power of the 

respective processors. A non-adaptive approach ig-

nores those fluctuations. In local methods, the pro-

cessors only exchange data within limited neighbor-

hoods and act on this local information alone, while 

centered methods utilize a marked controller process 

to which the other processors report. Hierarchical 

methods usually organize communication in a tree 

topology.  

A load balancing method viable for traffic simulation 

models on a PC or laptop computer should be both 

dynamic and adaptive, and thus has to consider both 

the varying computational load of the model, and the 

changing availability of resources on a non-

exclusively used machine. Such a dynamic and adap-

tive method requires a load measure which considers 

both the available processing power and the engaged 

processors' advance in simulation time. A centered 

method is usually easier to implement and quite ade-
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quate for a PC system with only eight to sixteen pro-

cessor cores; if a method is targeted at a massively 

parallel system it should avoid a potential bottleneck 

by utilizing a hierarchical or local scheme. 

3 An approach to the parallelization of 

discrete traffic simulation models 

To be viable for the proposed method, a model has to 

comply to some prerequisites: It has to be spatially 

explicit and representable as a sparsely populated 

graph; dependencies have to be typically local, so that 

neighborhood relationships can therefore be exploit-

ed; the model's activity, and thus the computational 

load, has to be produced by transient entities which 

steadily move through the model, so the load typical-

ly shifts slowly and is caused by several simulation 

steps. Many traffic simulation models comply with 

these prerequisites (see e.g. [11], [16], and [24]). The 

proposed parallelization method is flexible regarding 

simulation paradigms: the implemented models can 

be event based, process based, agent based, or be 

based on the activity scanning approach. 

The method builds upon three layers of abstraction 

(see figure 1): On the computer network layer proces-

sors and processor cores form a star-shaped graph, 

connected by a local area network or a shared cache 

memory; the partial models are assigned to these 

processors, and connected by the communication 

occurring during the simulation run; the model graph 

builds up on that and consists of model nodes, which 

represent entities, and their connecting edges. Transi-

ent entities (here represented by tokens) map the 

dynamically changing model activity; they move 

through the model graph along its edges. 

 

Figure 1. Three layers of abstraction 

Before the start of a simulation run, the model is 

partitioned, and the resulting partial models are as-

signed to the participating processors (see figure 2). A 

heuristic method (see [9]) is applied in this static load 

balancing step to reduce the number of edges between 

partitions, and thus to reduce the communication 

load.  

During the simulation run, tokens move from node to 

node and thus generate load imbalances, which have 

to be handled dynamically (see figure 3).  

Figure 2. Static load balancing 

To accomplish this, a processor pi which is over-

charged, but has a neighbor pj which is not fully load-

ed, selects a number of model nodes and shifts them 

over to pj (see figure 4). This adjustment is done 

iteratively in the course of several simulation steps, 

until a stable state is reached. 

The method uses a dynamically calculated load 

measure, considering both the changes in the model's 

activity and the time elapsing while computing, and 

therefore is dynamic and adaptive. It also exploits 

knowledge of regional dependencies to keep down 

communication load; existing neighborhood relations 

are not affected by the mechanism. Load balancing is 

carried out when all processors have entered the syn-

chronization barrier (see [5], pp. 65-96), and are thus 

done with processing step t, but did not yet start with 

processing step t+1. The method prefers to shift mod-

el nodes from a slow processor  �� to a fast processor 

��		in a way that iteratively further reduces the com-

munication load during the simulation run. To ac-

complish this, it classifies each model node � in the 

set ��� 	of all nodes hosted by processor �� in one of 

four priority classes: 

4. All �	 ∈ ���	; 
3.  each node �	 	in 4 which has an edge to a 

node �� ∈ ��́, with any �́ ≠ �� ; 
2. each node �	 	in 3 which has an edge to a 

node �� ∈ ��� ,		which is hosted by a proces-

sor �� 	which is not operating at full capacity; 

and 

1. each node �		in 2 with a greater number of 

edges to nodes hosted by processor  �� 	than 

to nodes administrated by  ��. 
The method prefers to shift nodes from class 1, fol-

lowed by class 2 and 3. Nodes which are only mem-

bers of class 4 are not shifted. 

 

 

Figure 3. Dynamic load shifting 
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Each simulation step consists of three phases: The 

computation of the model, the duration of which is 

dependent on the partial model's activity, and which 

the load balancing method tries to distribute equally 

over all processors; the synchronization phase, in 

which processors already finished with computing 

wait for the others to finish their tasks; and the com-

munication and load balancing phase, in which the 

method shifts model nodes from fully loaded proces-

sors to underloaded ones. The load balancing step 

itself consists of three phases (see figure 5): load 

measurement, load assessment, and load shifting. 

For a more detailed description of the method see 

[22], pp. 61-76. 

 

Figure 4. Dynamic load balancing 

 

Figure 5. Phases of the load balancing process 

4 Scalability and efficiency 

As described, each simulation step i consists of three 

phases: computation of the model, synchronization, 

and communication, whose computational complexi-

ty for each processor p is denoted by tm(p, i), ts(p, i), 

and tc(p, i) (see figure 6). These values can be esti-

mated, which in turn yields estimations for the scala-

bility and efficiency of the proposed method. 

 

 

Figure 6. Phases of the simulation step 

The combined complexity tg(i) of each simulation 

step i in a system with k processors for a bad case 

(load balancing mechanism is switched off and com-

putational loads for each processor p in each step i are 

drawn randomly, for a detailed description see [22], 

pp. 76-84) is shown in equation 1: 

 

����� = �� ∗ �1 −
�
���
����� ���!

"#��,	��"���,	�

+ 6 ∗ �& − 1� + �' ∗
���
�(������� ������!

")��,	�

 (1) 

 

Here, cm denotes the computational load generated by 

the model, and cn denotes the number of transient 

entities to be moved between model nodes. 

The average time complexity tg(i) of a single step i 

(load balancing mechanism is switched on, computa-

tional loads are shifting smoothly through the model) 

is shown in equation 2: 

 

����� =
*#
�+

"#��,	�

+ 6 ∗ �& − 1� + �' ∗
���
�(
+ 2 ∗ �- ∗ �& − 1�������������� ������������!

")��,	�

 (2) 

 

Here, cl denotes the number of resident entities which 

have to be transferred in the context of load balanc-

ing.  

The scalability of the method is thus mainly depend-

ent on the values cm and cn, and in the average case 

also on cl. These values are all properties of the mod-

el, and are thus not influenced by the method itself. In 

the average case, with the partial model's loads shift-

ing in a benign way, the method shows linear scaling. 

The manifesting scaling factor for an individual mod-

el is directly dependent on the ratio of its computation 

load tm(p, i) to its communication load tc(p, i). Or, to 

put it simple: Bigger models scale better. 

The expected efficiency of the method for a model 

with unfavorable arbitrary load imbalances can be 

shown to be always greater than 0.5 (see equation 3). 

 

.��/0�1�&�� > .3�	4-5�&�6					∀& > 1 (3) 

For a detailed analysis of computational complexity, 

scalability and efficiency, see [22], pp. 76-86. 

5 Experiments 

The proposed method was implemented as a C++ 

framework (described in [22], chapter 4), and is uti-

lized in two different scenarios. To keep influences of 

a complex real-world model with often irregular 

properties at a minimum, the framework is first ap-

plied to the computation of artificial loads moving 

through a randomly generated graph. This is followed 

by a real-world application in the simulation of time-

table based tram traffic. 

...

Step i

...

i++

p
1

p
2

p
3

p
n

t
m
(p,i): Model computation

time

t
s
(p,i): Synchronization time

t
s
(p,i) = max(t

m
(i))- t

m
(p,i)

t
c
(p,i): Communication time
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Experiments are run using notebook computers with 

6 gigabytes memory and an Intel Core i7-740QM 

processor with four cores running at 1.73 gigahertz. 

The turbo boost technology for accelerating single 

thread applications is turned off for the experiments. 

For experiments with more than four processor cores, 

several notebooks are connected by a 100 megabit 

ethernet switch. 

5.1 Computation of artificial loads 

The first set of experiments is conducted on the paral-

lel computation of artificial load generated by token 

movements on a randomly generated graph. Tokens 

stay at a node for a certain number of simulation 

steps, and then move over an edge to a randomly 

picked neighboring node. During each simulation 

step, these tokens generate computational load. This 

is generated by executing the Sieve of Eratosthenes 

algorithm (see [20], pg. 85) to identify prime numbers 

up to an upper bound. This upper bound qmax is set to 

the sum of the base load of the node vi and the token's 

weights: qmax=lbase+ltoken*|Ti|. 

To generate the graph, n nodes with a base load of 

lbase=10.000 are generated. For each node v, two 

nodes 8� ≠ � and 89 ≠ 8� ≠ � not yet connected to v 

are chosen randomly. Then, two edges �	 ↔ 	8� and 

�	 ↔ 	89 are added to connect v to those nodes. A 

token is generated for every fifth node vi with  

i mod 5 = 0. Each of those tokens has a weight of 

ltoken=10.000, a maximum retention period of 

tmax=100 simulation steps, and a current retention 

time tt drawn from a uniform distribution between 0 

and tmax. This value tt is decreased by one during each 

simulation step. When it reaches zero, an edge out-

going from its current host node is selected randomly; 

the token is then moved over this edge and is re-

initialized by its new host with tt=tmax. In the conduct-

ed experiments, each simulation run consists of 500 

steps, the load balancing scheme is active. 

We begin by running a mid size instance of ; =
400	nodes on up to eight processor cores. Average 

runtime, speedup values, and marginal utility are 

shown in table 1 and figure 7. A second series of 

asymptotic experiments begins with a graph consist-

ing of n=100 nodes and 200 edges on a single proces-

sor core, going up to n=800 nodes on eight proces-

sors. Average runtime, scaling factor and marginal 

utility are shown in table 2 and figure 8. 

5.2 Simulation of time-table based tram traffic 

The proposed method was then utilized to parallelize 

a sequential simulation engine of time-table based 

tram traffic (described in [11]). The resulting software 

tools were applied to the KVB network of Cologne, 

Germany (see [23]), and the TAM Tramway network 

of Montpellier, France (see [25]). 

#Proc. Runtime (sec) Speedup Marg. utility 

1 2,010.0 1.00 1.00 

2 1,010.3 1.99 0.99 

3 682.9 2.95 0.96 

4 516.5 3.89 0.94 

5 421.0 4.77 0.88 

6 372.1 5.40 0.63 

7 340.9 5.90 0.49 

8 325.8 6.17 0.27 

Table 1. Runtime and speedup for the computation of 

artificial loads 

 

Figure 7. Runtime and speedup for the computation of 

artificial loads 

#Proc. Graph Scalability 

|V| |E| Runtime 

(sec) 

Scaling 

factor 

Marg. 

utility 

1 100 200 495.8 1.00 1.00 

2 200 400 499.1 1.99 0.99 

3 300 600 523.4 2.84 0.86 

4 400 800 521.4 3.80 0.96 

5 500 1,000 521.7 4.75 0.95 

6 600 1,200 550.5 5.40 0.65 

7 700 1,400 551.8 6.29 0.89 

8 800 1,600 568.4 6.98 0.69 

Table 2. Runtime and scaling factor for the computa-

tion of artificial loads 
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The described experiments are conducted on a model 

of Cologne's network. It consists of 528 platforms 

and 58 track switches connected via 584 tracks. 

These tracks cover a total length of 407.4 kilometers, 

resulting in an average track length of 697.6 meters. 

15 lines with 182 line routes are served by 178 vehi-

cles which execute 2,814 trips per operational day. 

The simulation engine was run on up to eight proces-

sors of the described type, under the parameter set 

described in section 5.1. Average runtime, speedup 

and marginal utility are shown in table 3 and figure 9. 

5.3 Results and discussion 

The simulation models are executed 10 times per 

measuring point. 

For the computation of artificial loads (see figure 7 

and table 1), the method yields a high gain in speedup 

for up to five processors (speedup 4.72), which flat-

tens when more processors are added. With partial 

models getting smaller, the ratio of synchronization 

and communication time to model computation time 

rises, so efficiency is declining. For the asymptotic 

experiments (see figure 8 and table 2) a linear regres-

sion yields a function s(k)=0.86*k+0.27 for scaling, 

and T(k)=10.16* k+483.3 for run time. Under the 

described conditions the method thus shows a linear 

scalability with a scaling factor of around 0.86*k. 

The simulation of time-table based tram traffic shows 

mixed results (see figure 9 and table 3): For up to 

four processor cores - based on a single parallel com-

puter - the speedup rises to 2.83, and then caves in to 

1.89 when the fifth processor - connected via LAN - 

is added. The reason for this behavior is the signifi-

cantly higher communication cost between LAN 

connected computers in relation to communication 

between parallel processor cores. The ratio of high 

communication cost to a relatively low computation 

cost for the distributed partial models forbids an ef-

fective execution on LAN connected computers. A 

linear regression for the first four measuring points 

yield a function of z(k)=0.62*k+0.5 for speedup, and  

T(k)=-55.03*k+289.5 for run time. The last four 

points yield functions of z(k)=0.12*k+1.3 and  

T(k)=-7.71* k+177.3. The model instance is therefore 

large enough to be efficiently run on a parallel com-

puter, but too small to be executed expediently on 

LAN connected computers. 

For a more in-depth discussion of the experiments see 

[22], chapters 5 and 6. 

 

 

 

Figure 8. Runtime and scaling factor for the computa-

tion of artificial loads 

 

 

#Proc. Runtime (sec) Speedup Marg. utility 

1 263.8 1.00 1.00 

2 144.5 1.82 0.82 

3 106.4 2.44 0.62 

4 93.1 2.83 0.39 

5 139.8 1.89 -0.94 

6 130.6 2.02 0.13 

7 121.0 2.12 0.10 

8 117.3 2.25 0.13 

Table 3. Runtime and speedup for the simulation 

of time-table based tram traffic 

 

 

Figure 9. Runtime and speedup for the simulation of 

time-table based tram traffic 
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6 Summary and further research 

We presented an approach to the parallel execution of 

traffic simulation models, which includes a dynamic 

and adaptive load balancing scheme. Some thoughts 

on scalability and efficiency were shared: even under 

adverse circumstances the efficiency does not get 

lower than 0.5. Experiments conducted on the com-

putation of artificial loads yield a speedup of 3.89 on 

four processors and 6.17 on eight processors. Parallel 

execution of a tram traffic model shows a speedup of 

2.83 on four processor cores. A higher speedup might 

be reached when executing a larger model. 

In a next step, the multi-modal model will be extend-

ed by a representation of bus transit. 
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