

Model-based parallelization of discrete traffic simulation models

Oliver Ullrich1, Daniel Lückerath2, Ewald Speckenmeyerz

1National Science Foundation's Industry-University Cooperative Research Center,

School of Computing and Information Sciences, Florida International University,

ECS 243C, 11200 SW 8th St, Miami FL-33199

2Institut für Informatik, Universität zu Köln, Albertus-Magnus-Platz, 50923 Köln, Germany

oullrich@fiu.edu

To re-establish regular operations in a tram traffic network after a large disturbance, e.g. resulting from vehi-

cle breakdown or station closure, the viability of several rescheduling and rerouting strategies has to be eval-

uated prior to their implementation. Here, a multi-modal traffic simulation system can help to enhance the

decision quality. Such a system obviously faces tight time constraints, so simulation data has to be acquired

fast.

In this paper we propose a method for the parallel execution of discrete traffic simulation models, which

would accelerate data generation in comparison to a sequential model. To assess this method's dynamic be-

havior in real-world applications, some experiments conducted on a software system modeling schedule

based tram traffic are presented.

After giving an introduction to the scope and aim, we show some background on the parallelization of dis-

crete simulation models. The main part of the paper begins with the proposal of a method to parallelize the

execution of simulation models with problem specific properties. Some estimations of the method's efficien-

cy are shared, followed by several experiments to highlight its dynamic behavior in real-world applications.

The paper ends with a short summary and some thoughts on further research.

1 Introduction

When severe disturbances occur in tram networks,

e.g. originating from broken down trams, closed sta-

tions, or other blocked resources, traffic operators

have to apply rescheduling and rerouting strategies

(see [10] and [12]) to reestablish regular operations.

To be effective, these strategies are inevitably multi-

modal: trams are rescheduled to compensate for can-

cellations, regional and local buses are rerouted to

relieve the tram network, some transit operators even

co-operate with taxi companies (see [26]). To evalu-

ate the applicability of a given rescheduling or rerout-

ing strategy prior to its implementation in the real-

world system, a multi-modal simulation software is

needed. Operators obviously face tight time con-

straints for their decisions, so simulation data has to

be acquired fast.

In this paper we propose a method for the parallel

execution of discrete traffic simulation models. We do

not aim for a general approach, which would be

equally well applicable for all discrete models, but for

a method that utilizes some specific properties of a

subclass of models, including traffic simulation mod-

els. The traffic planners' laptop or desktop computers

constitute the target platform of the resulting simula-

tion tools; the method thus should utilize their capaci-

ty for small scale parallel processing. To employ the

available resources effectively, the method applies a

dynamic and adaptive load balancing scheme. From

the model's point of view, the mechanics of parallel-

ization and load balancing are transparent, so that

these internals can be changed without compromising

the subsequent use of the model. A sequential model

of tram traffic is already in place (see [11]); the ac-

companying representation of bus traffic is only part-

ly implemented yet (see [24]).

This paper continues with a presentation of some

background on general methods of parallel simulation

and their customization in practical applications (sec-

tion 2). We then present an approach on parallel exe-

cution of simulation models that share some charac-

teristics like being spatially explicit, having mostly

local dependencies, and having computational load

generated by transient entities moving through a

network (section 3), followed by some efficiency

estimations (section 4). Based on an implementation

of the approach, some experiments are conducted,

focusing on the parallel computation of artificial

loads, and the parallel simulation of tram traffic (sec-

tion 5). The paper closes with a short summary of the

lessons learned and some thoughts on future work

(section 6).

365

Model-based parallelization of discrete traffic simulation models

2 Background

A discrete simulation model comprises of entities

which communicate with each other via simulation

events or messages, and which change their states at

discrete points in model time. The main task when

parallelizing a discrete simulation model is to avoid

the occurrence of parallelization artifacts, i.e. to as-

sure that parallel execution yields the same results as

sequential execution. This is not a trivial task because

a model usually contains both spatial dependencies

(which are often local, i.e. between neighboring enti-

ties) and temporal dependencies (which are also often

local, between close points in model time).

Several approaches to the parallelization of discrete

simulation models are known: The simplest approach

is the concurrent execution of several sequential ex-

periments (see [15]). Outsourcing of maintenance

functions (e.g. random number generation or database

access) to secondary processors is also relatively

simple but usually does not scale very well. A special

case of this is the parallel administration of central

data structures, usually applied to the future event list

(for an overview of suitable data structures, see [18]).

Time based parallelization techniques, i.e. computing

different simulation time intervals in parallel, are

scaling very well in principal but are only suited for

specific models (a few applications are known, as

described in [6] or [7]).

A well examined, and also well scaling technique is

model based (also called spatial) parallelization,

which can be found in both literature (see [5], pp. 39)

and real-world applications (e.g. see [1], [13] or [19]).

2.1 Model based parallelization

Model based parallelization utilizes the model's in-

herent parallelism, i.e. that many state changes can be

executed independently from each other. To achieve

this, the model is decomposed into partial models,

which are assigned to the involved processors. With

this method, entities of different partial models com-

municate via messages sent over the network or a

common cache memory.

Obviously, careful synchronization of the model's

execution is necessary. The local causality constraint

(see [5], pp. 52) demands that each entity executes its

concerning simulation events in a non-decreasing

order regarding their scheduled time of occurrence.

Non-adherence to this constraint may result in causal-

ity errors which invalidate the simulation results.

Two categories of synchronization methods are

known: Conservative synchronization methods pre-

vent the out-of-order execution of simulation events

by technical measures, thus guaranteeing adherence

to the local causality constraint. Important conserva-

tive synchronization mechanisms include synchroni-

zation via null messages (described in [2] and [3]),

deadlock detection and recovery (described in [4]),

and synchronized execution (see [17] and [21]). Op-

timistic synchronization methods execute the partial

models as fast as possible, and thereby allow viola-

tions of the local causality constraint. The methods

detect and subsequently repair these violations by

rejecting and re-computing the invalid regions of the

simulation run. The best known optimistic approach

is the aptly named “time warp”, first described in [8].

2.2 Load balancing for parallel discrete simula-

tion systems

Resulting from the typical dependencies in simulation

models, the simulation's execution speed is generally

dependent on the processor which advances slowest

in simulation time. It is therefore necessary to incor-

porate a load balancing system into the simulation

engine. This system does not aim at high utilization

of the processors' capacity alone, but also has to con-

sider an uniform advance in simulation time. Discrete

simulation systems therefore often apply special load

balancing schemes.

Those methods can be characterized as dynamic,

static, adaptive, non-adaptive, local, centered, or

hierarchical (see [14], pp. 12): A dynamic load bal-

ancing method continuously considers imbalances

which develop from shifts in the model's computa-

tional load, and re-assigns partial models to appropri-

ate processors while executing the simulation run. In

contrast, static methods estimate the load and assign

partial models to processors in a preprocessing step

before the start of the simulation run, and thus don't

consider dynamic changes in the model's activity.

Adaptive methods consider fluctuations in the availa-

ble processor power originating from the demand of

dynamic processes belonging to third parties. In in-

homogeneous computer networks adaptive methods

also consider the dissimilar performance power of the

respective processors. A non-adaptive approach ig-

nores those fluctuations. In local methods, the pro-

cessors only exchange data within limited neighbor-

hoods and act on this local information alone, while

centered methods utilize a marked controller process

to which the other processors report. Hierarchical

methods usually organize communication in a tree

topology.

A load balancing method viable for traffic simulation

models on a PC or laptop computer should be both

dynamic and adaptive, and thus has to consider both

the varying computational load of the model, and the

changing availability of resources on a non-

exclusively used machine. Such a dynamic and adap-

tive method requires a load measure which considers

both the available processing power and the engaged

processors' advance in simulation time. A centered

method is usually easier to implement and quite ade-

366

Model-based parallelization of discrete traffic simulation models

quate for a PC system with only eight to sixteen pro-

cessor cores; if a method is targeted at a massively

parallel system it should avoid a potential bottleneck

by utilizing a hierarchical or local scheme.

3 An approach to the parallelization of

discrete traffic simulation models

To be viable for the proposed method, a model has to

comply to some prerequisites: It has to be spatially

explicit and representable as a sparsely populated

graph; dependencies have to be typically local, so that

neighborhood relationships can therefore be exploit-

ed; the model's activity, and thus the computational

load, has to be produced by transient entities which

steadily move through the model, so the load typical-

ly shifts slowly and is caused by several simulation

steps. Many traffic simulation models comply with

these prerequisites (see e.g. [11], [16], and [24]). The

proposed parallelization method is flexible regarding

simulation paradigms: the implemented models can

be event based, process based, agent based, or be

based on the activity scanning approach.

The method builds upon three layers of abstraction

(see figure 1): On the computer network layer proces-

sors and processor cores form a star-shaped graph,

connected by a local area network or a shared cache

memory; the partial models are assigned to these

processors, and connected by the communication

occurring during the simulation run; the model graph

builds up on that and consists of model nodes, which

represent entities, and their connecting edges. Transi-

ent entities (here represented by tokens) map the

dynamically changing model activity; they move

through the model graph along its edges.

Figure 1. Three layers of abstraction

Before the start of a simulation run, the model is

partitioned, and the resulting partial models are as-

signed to the participating processors (see figure 2). A

heuristic method (see [9]) is applied in this static load

balancing step to reduce the number of edges between

partitions, and thus to reduce the communication

load.

During the simulation run, tokens move from node to

node and thus generate load imbalances, which have

to be handled dynamically (see figure 3).

Figure 2. Static load balancing

To accomplish this, a processor pi which is over-

charged, but has a neighbor pj which is not fully load-

ed, selects a number of model nodes and shifts them

over to pj (see figure 4). This adjustment is done

iteratively in the course of several simulation steps,

until a stable state is reached.

The method uses a dynamically calculated load

measure, considering both the changes in the model's

activity and the time elapsing while computing, and

therefore is dynamic and adaptive. It also exploits

knowledge of regional dependencies to keep down

communication load; existing neighborhood relations

are not affected by the mechanism. Load balancing is

carried out when all processors have entered the syn-

chronization barrier (see [5], pp. 65-96), and are thus

done with processing step t, but did not yet start with

processing step t+1. The method prefers to shift mod-

el nodes from a slow processor �� to a fast processor

��		in a way that iteratively further reduces the com-

munication load during the simulation run. To ac-

complish this, it classifies each model node � in the

set ��� 	of all nodes hosted by processor �� in one of

four priority classes:

4. All �	 ∈ ���	;
3. each node �	 	in 4 which has an edge to a

node �� ∈ ��́, with any �́ ≠ �� ;
2. each node �	 	in 3 which has an edge to a

node �� ∈ ��� ,		which is hosted by a proces-

sor �� 	which is not operating at full capacity;

and

1. each node �		in 2 with a greater number of

edges to nodes hosted by processor �� 	than

to nodes administrated by ��.
The method prefers to shift nodes from class 1, fol-

lowed by class 2 and 3. Nodes which are only mem-

bers of class 4 are not shifted.

Figure 3. Dynamic load shifting

367

Model-based parallelization of discrete traffic simulation models

Each simulation step consists of three phases: The

computation of the model, the duration of which is

dependent on the partial model's activity, and which

the load balancing method tries to distribute equally

over all processors; the synchronization phase, in

which processors already finished with computing

wait for the others to finish their tasks; and the com-

munication and load balancing phase, in which the

method shifts model nodes from fully loaded proces-

sors to underloaded ones. The load balancing step

itself consists of three phases (see figure 5): load

measurement, load assessment, and load shifting.

For a more detailed description of the method see

[22], pp. 61-76.

Figure 4. Dynamic load balancing

Figure 5. Phases of the load balancing process

4 Scalability and efficiency

As described, each simulation step i consists of three

phases: computation of the model, synchronization,

and communication, whose computational complexi-

ty for each processor p is denoted by tm(p, i), ts(p, i),

and tc(p, i) (see figure 6). These values can be esti-

mated, which in turn yields estimations for the scala-

bility and efficiency of the proposed method.

Figure 6. Phases of the simulation step

The combined complexity tg(i) of each simulation

step i in a system with k processors for a bad case

(load balancing mechanism is switched off and com-

putational loads for each processor p in each step i are

drawn randomly, for a detailed description see [22],

pp. 76-84) is shown in equation 1:

����� = �� ∗ �1 −
�
���
����� ���!

"#��,	��"���,	�

+ 6 ∗ �& − 1� + �' ∗
���
�(������� ������!

")��,	�

 (1)

Here, cm denotes the computational load generated by

the model, and cn denotes the number of transient

entities to be moved between model nodes.

The average time complexity tg(i) of a single step i

(load balancing mechanism is switched on, computa-

tional loads are shifting smoothly through the model)

is shown in equation 2:

����� =
*#
�+

"#��,	�

+ 6 ∗ �& − 1� + �' ∗
���
�(
+ 2 ∗ �- ∗ �& − 1�������������� ������������!

")��,	�

 (2)

Here, cl denotes the number of resident entities which

have to be transferred in the context of load balanc-

ing.

The scalability of the method is thus mainly depend-

ent on the values cm and cn, and in the average case

also on cl. These values are all properties of the mod-

el, and are thus not influenced by the method itself. In

the average case, with the partial model's loads shift-

ing in a benign way, the method shows linear scaling.

The manifesting scaling factor for an individual mod-

el is directly dependent on the ratio of its computation

load tm(p, i) to its communication load tc(p, i). Or, to

put it simple: Bigger models scale better.

The expected efficiency of the method for a model

with unfavorable arbitrary load imbalances can be

shown to be always greater than 0.5 (see equation 3).

.��/0�1�&�� > .3�	4-5�&�6					∀& > 1 (3)

For a detailed analysis of computational complexity,

scalability and efficiency, see [22], pp. 76-86.

5 Experiments

The proposed method was implemented as a C++

framework (described in [22], chapter 4), and is uti-

lized in two different scenarios. To keep influences of

a complex real-world model with often irregular

properties at a minimum, the framework is first ap-

plied to the computation of artificial loads moving

through a randomly generated graph. This is followed

by a real-world application in the simulation of time-

table based tram traffic.

...

Step i

...

i++

p
1

p
2

p
3

p
n

t
m
(p,i): Model computation

time

t
s
(p,i): Synchronization time

t
s
(p,i) = max(t

m
(i))- t

m
(p,i)

t
c
(p,i): Communication time

368

Model-based parallelization of discrete traffic simulation models

Experiments are run using notebook computers with

6 gigabytes memory and an Intel Core i7-740QM

processor with four cores running at 1.73 gigahertz.

The turbo boost technology for accelerating single

thread applications is turned off for the experiments.

For experiments with more than four processor cores,

several notebooks are connected by a 100 megabit

ethernet switch.

5.1 Computation of artificial loads

The first set of experiments is conducted on the paral-

lel computation of artificial load generated by token

movements on a randomly generated graph. Tokens

stay at a node for a certain number of simulation

steps, and then move over an edge to a randomly

picked neighboring node. During each simulation

step, these tokens generate computational load. This

is generated by executing the Sieve of Eratosthenes

algorithm (see [20], pg. 85) to identify prime numbers

up to an upper bound. This upper bound qmax is set to

the sum of the base load of the node vi and the token's

weights: qmax=lbase+ltoken*|Ti|.

To generate the graph, n nodes with a base load of

lbase=10.000 are generated. For each node v, two

nodes 8� ≠ � and 89 ≠ 8� ≠ � not yet connected to v

are chosen randomly. Then, two edges �	 ↔ 	8� and

�	 ↔ 	89 are added to connect v to those nodes. A

token is generated for every fifth node vi with

i mod 5 = 0. Each of those tokens has a weight of

ltoken=10.000, a maximum retention period of

tmax=100 simulation steps, and a current retention

time tt drawn from a uniform distribution between 0

and tmax. This value tt is decreased by one during each

simulation step. When it reaches zero, an edge out-

going from its current host node is selected randomly;

the token is then moved over this edge and is re-

initialized by its new host with tt=tmax. In the conduct-

ed experiments, each simulation run consists of 500

steps, the load balancing scheme is active.

We begin by running a mid size instance of ; =
400	nodes on up to eight processor cores. Average

runtime, speedup values, and marginal utility are

shown in table 1 and figure 7. A second series of

asymptotic experiments begins with a graph consist-

ing of n=100 nodes and 200 edges on a single proces-

sor core, going up to n=800 nodes on eight proces-

sors. Average runtime, scaling factor and marginal

utility are shown in table 2 and figure 8.

5.2 Simulation of time-table based tram traffic

The proposed method was then utilized to parallelize

a sequential simulation engine of time-table based

tram traffic (described in [11]). The resulting software

tools were applied to the KVB network of Cologne,

Germany (see [23]), and the TAM Tramway network

of Montpellier, France (see [25]).

#Proc. Runtime (sec) Speedup Marg. utility

1 2,010.0 1.00 1.00

2 1,010.3 1.99 0.99

3 682.9 2.95 0.96

4 516.5 3.89 0.94

5 421.0 4.77 0.88

6 372.1 5.40 0.63

7 340.9 5.90 0.49

8 325.8 6.17 0.27

Table 1. Runtime and speedup for the computation of

artificial loads

Figure 7. Runtime and speedup for the computation of

artificial loads

#Proc. Graph Scalability

|V| |E| Runtime

(sec)

Scaling

factor

Marg.

utility

1 100 200 495.8 1.00 1.00

2 200 400 499.1 1.99 0.99

3 300 600 523.4 2.84 0.86

4 400 800 521.4 3.80 0.96

5 500 1,000 521.7 4.75 0.95

6 600 1,200 550.5 5.40 0.65

7 700 1,400 551.8 6.29 0.89

8 800 1,600 568.4 6.98 0.69

Table 2. Runtime and scaling factor for the computa-

tion of artificial loads

369

Model-based parallelization of discrete traffic simulation models

The described experiments are conducted on a model

of Cologne's network. It consists of 528 platforms

and 58 track switches connected via 584 tracks.

These tracks cover a total length of 407.4 kilometers,

resulting in an average track length of 697.6 meters.

15 lines with 182 line routes are served by 178 vehi-

cles which execute 2,814 trips per operational day.

The simulation engine was run on up to eight proces-

sors of the described type, under the parameter set

described in section 5.1. Average runtime, speedup

and marginal utility are shown in table 3 and figure 9.

5.3 Results and discussion

The simulation models are executed 10 times per

measuring point.

For the computation of artificial loads (see figure 7

and table 1), the method yields a high gain in speedup

for up to five processors (speedup 4.72), which flat-

tens when more processors are added. With partial

models getting smaller, the ratio of synchronization

and communication time to model computation time

rises, so efficiency is declining. For the asymptotic

experiments (see figure 8 and table 2) a linear regres-

sion yields a function s(k)=0.86*k+0.27 for scaling,

and T(k)=10.16* k+483.3 for run time. Under the

described conditions the method thus shows a linear

scalability with a scaling factor of around 0.86*k.

The simulation of time-table based tram traffic shows

mixed results (see figure 9 and table 3): For up to

four processor cores - based on a single parallel com-

puter - the speedup rises to 2.83, and then caves in to

1.89 when the fifth processor - connected via LAN -

is added. The reason for this behavior is the signifi-

cantly higher communication cost between LAN

connected computers in relation to communication

between parallel processor cores. The ratio of high

communication cost to a relatively low computation

cost for the distributed partial models forbids an ef-

fective execution on LAN connected computers. A

linear regression for the first four measuring points

yield a function of z(k)=0.62*k+0.5 for speedup, and

T(k)=-55.03*k+289.5 for run time. The last four

points yield functions of z(k)=0.12*k+1.3 and

T(k)=-7.71* k+177.3. The model instance is therefore

large enough to be efficiently run on a parallel com-

puter, but too small to be executed expediently on

LAN connected computers.

For a more in-depth discussion of the experiments see

[22], chapters 5 and 6.

Figure 8. Runtime and scaling factor for the computa-

tion of artificial loads

#Proc. Runtime (sec) Speedup Marg. utility

1 263.8 1.00 1.00

2 144.5 1.82 0.82

3 106.4 2.44 0.62

4 93.1 2.83 0.39

5 139.8 1.89 -0.94

6 130.6 2.02 0.13

7 121.0 2.12 0.10

8 117.3 2.25 0.13

Table 3. Runtime and speedup for the simulation

of time-table based tram traffic

Figure 9. Runtime and speedup for the simulation of

time-table based tram traffic

370

Model-based parallelization of discrete traffic simulation models

6 Summary and further research

We presented an approach to the parallel execution of

traffic simulation models, which includes a dynamic

and adaptive load balancing scheme. Some thoughts

on scalability and efficiency were shared: even under

adverse circumstances the efficiency does not get

lower than 0.5. Experiments conducted on the com-

putation of artificial loads yield a speedup of 3.89 on

four processors and 6.17 on eight processors. Parallel

execution of a tram traffic model shows a speedup of

2.83 on four processor cores. A higher speedup might

be reached when executing a larger model.

In a next step, the multi-modal model will be extend-

ed by a representation of bus transit.

7 Acknowledgements

This material is partially based upon work supported

by the National Science Foundation under grants

I/UCRC IIP-1338922, AIR IIP-1237818, SBIR IIP-

1330943, III-Large IIS-1213026, MRI CNS-0821345,

MRI CNS-1126619, CREST HRD-0833093, I/UCRC

IIP-0829576, MRI CNS-0959985, FRP IIP-1230661,

and U.S Department of Transportation under a 2013

TIGER grant.

8 References

[1] Avril, H., Tropper, C.: The Dynamic Load

Balancing of Clustered Time Warp for Logic

Simulation. In: Proceedings of the tenth work-

shop on Parallel and distributed simulation,

pp. 20-27, 1996.

[2] Bryant, R.E.: Simulation of Packet Communi-

cation Architecture Computer Systems. Com-

puter Science Laboratory. Technical Report,

Cambridge, Massachusetts, Massachusetts In-

stitute of Technology, 1977.

[3] Chandy, K.M., Misra, J.: Distributed Simula-

tion: A Case Study in Design and Verification

of Distributed Programs. In: IEEE

Transactions on Software Engineering, SE-

5(5), pp. 440-452. 8, pp. 250–255, 1965.

[4] Chandy, K. M., Misra, J.: Asynchronous dis-

tributed simulation via a sequence of parallel

computations. In: Communications of the

ACM, Vol. 24, No. 4, pp. 198-205, 1981.

[5] Fujimoto, R. M.: Parallel and Distributed

Simulation. New York: John Wiley & Sons,

2000.

[6] Greenberg, A. G., et al.: Algorithms for Un-

boundedly Parallel Simulations. In: ACM

Transactions on Computer Systems, Vol. 9,

No. 3, pp. 201-221, 1991.

[7] Heidelberger P., Stone, H.: Parallel Trace-

Driven Cache Simulation by Time Partition-

ing. In: Proceedings of the 1990 Winter Simu-

lation Conference, pp. 734-737, 1990.

[8] Jefferson, D.R.: Virtual Time. In: ACM Trans-

actions on Programming Languages and Sys-

tems, Vol. 7, No. 3, pp. 404-425, 1985.

[9] Kernighan, B. W., Lin, S.: An Efficient Heuris-

tic Procedure for Partitioning Graphs. Bell

Syst. Tech Journal, Volume 49, Number 2, pp.

291-307, 1970.

[10] Lückerath, D.: Thoughts on restauration of

regular tram operation. In: Proceedings of

Sommertreffen Verkehrssimulation 2012, AM

143, ARGESIM/ASIM Pub., TU Vienna, pp.

4-6, 2012.

[11] Lückerath, D., Ullrich, O., Speckenmeyer, E:

Modeling time table based tram traffic. In:

Simulation Notes Europe (SNE), ARGES-

IM/ASIM Pub., TU Vienna, Volume 22, Num-

ber 2, pp. 61-68, 2012.

[12] Lückerath, D., Ullrich, O., Speckenmeyer, E.:

Applicability of rescheduling strategies in

tram networks. In: Proceedings of ASIM-

Workshop STS/GMMS 2013 - ARGESIM Re-

port 41, AM 145, ARGESIM/ASIM Pub., TU

Vienna, 2013.

[13] Meisgen, F.: Dynamic Load Balancing for

Simulations of Biological Aging. In: Interna-

tional Journal of Modern Physics C, Vol. 8, Is-

sue 3, pp. 575-582, 1997.

[14] Meisgen, F.: Dynamische

Lastausgleichsverfahren in heterogenen

Netzwerken. Aachen: Shaker Verlag, 1998.

[15] Merz, M., Bröcker, E.: Einsatz von Open

Source Frameworks zur Parallelisierung von

Dymola Simulationen. In: Proc. ASIM/GI

Workshop STS/GMMS, Ed.: W. Commerell,

ISBN 978-3-9810998-3-6, Ulm, März 04-05,

S. 283-289, 2010.

[16] Nagel, K., Schreckenberg, M.: A cellular au-

tomaton model for freeway traffic. In: Journal

371

Model-based parallelization of discrete traffic simulation models

de Physique I, Volume 2, Issue 12, pp. 2221-

2229, 1992.

[17] Nicol, D. M.: The cost of conservative syn-

chronization in parallel discrete event simula-

tions. Journal of the Association of Computing

Machinery, Vol. 40, No. 2, pp. 304-333, 1993.

[18] Rönngren, R., Ayani, R.: A Comparative Study

of Parallel and Sequential Priority Queue Al-

gorithms. In: ACM Transactions on Modeling

and Computer Simulation, Vol. 7, No. 2, pp.

157-209, 1997.

[19] Schlagenhaft, R.: Dynamischer Lastausgleich

optimistisch synchronisierter, verteilter

Simulation. In: Proc. ASIM-Workshop VSPP,

1999.

[20] Sedgewick, R.: Algorithms in C++, Vol. 1.

Boston: Addison-Wesley, 1998.

[21] Steinman, J.: SPEEDES: Synchronous parallel

environment for emulation and discrete event

simulation. Advances in Parallel and Distrib-

uted Simulation, SCS Simulation Series, Vol.

23, pp. 95-103, 1991.

[22] Ullrich, O.: Modellbasierte Parallelisierung

von Anwendungen zur Verkehrssimulation -

Ein dynamischer und adaptiver Ansatz.

Dissertation, Univ. Köln, 2014.

[23] Ullrich, O., Lückerath, D., Franz, S.,

Speckenmeyer, E.: Simulation and optimiza-

tion of Cologne's tram schedule. In: Simula-

tion Notes Europe (SNE), ARGESIM/ASIM

Pub., TU Vienna, Volume 22, Number 2, pp.

69-76, 2012.

[24] Ullrich, O., Proff, I., Lückerath, D, Kuckertz,

P, Speckenmeyer, E.: Agent-based modeling

and simulation of individual traffic as an envi-

ronment for bus schedule simulation. In: Pro-

ceedings of mobil.TUM 2013, 10 pg, to ap-

pear.

[25] Ullrich, O., Lückerath, D., Speckenmeyer, E.:

A robust schedule for Montpellier's Tramway

network. In: Proceedings of ASIM 2014 - 22nd

Symposium on Simulation Technique, Berlin,

2014, 9 pg.

[26] Zeng, A.Z., Durach, C.F., Fang, Y.: Collabora-

tion decisions on disruption recovery service

in urban public tram systems. In:

Transportation Research Part E, 48, pp. 578-

590, 2012.

372

