
An Integer Programming Approach to Optimal

Basic Block Instruction Scheduling for

Single-Issue Processors

Michael Jünger and Sven Mallach

Institut für Informatik

Universität zu Köln, 50969 Köln, Germany

27th March 2015.

Abstract

We present a novel integer programming formulation for basic block
instruction scheduling on single-issue processors. The problem can be
considered as a very general sequential task scheduling problem with de-
layed precedence-constraints. Our model is based on the linear ordering
problem and has, in contrast to the last IP model proposed, numbers of
variables and constraints that are strongly polynomial in the instance size.
Combined with improved preprocessing techniques and given a time limit
of ten minutes of CPU and system time, our branch-and-cut implemen-
tation is capable to solve all but eleven of the 369, 861 basic blocks of the
SPEC 2000 integer and floating point benchmarks to proven optimality.
This is competitive to the current state-of-the art constraint programming
approach that has also been evaluated on this test suite.

1 Introduction

Today most computer programs are written in high-level programming lan-
guages and developers rely on compilers in order to generate executable machine
code for various operating systems and processor architectures. One of the fun-
damental subroutines of any compiler is the instruction scheduling phase where
the generated machine instructions shall be ordered such that the number of pro-
cessor clock cycles needed to complete all the operations is minimized. Modern
processor architectures are pipelined, i.e., the execution of a single machine in-
struction is partitioned into several stages. As a result, multiple instructions
can be in flight, occupying different stages at the same time [1]. However, in
practice, the ideal flow of instructions through the pipeline may be disturbed
by several conflicts, especially such caused by data dependencies between the
instructions. Therefore, each precedence relationship has an associated latency,
capturing the number of clock cycles needed until the result computed by the
first instruction is available to its successor. The starting times of dependent
instructions must obey these latencies to ensure that no conflicts occur and
all operands are present in logic when they execute. These precedence and

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

latency constraints make instruction scheduling an NP-hard combinatorial op-
timization problem [2], even for single-issue processors that allow only at most
one instruction to be inserted into the pipeline (issued) in every clock cycle.
Polynomial-time solvability is known only for the very restrictive case that the
maximum occurring latency is one clock cycle [3].

In this article, we focus on the exact solution of the basic block instruction
scheduling problem for single-issue processors using integer programming. A
basic block is a series of instructions without any internal branches, i.e., all
the instructions need to be scheduled as a straight-line sequence after entering
the basic block and before exiting it again. Although more global approaches
to instruction scheduling exist, the decomposition of a program into its basic
blocks is still a common approach [4]. This is true for many reasons. The
consideration of so-called superblocks, i.e., a series of basic blocks that allow for
side exits, introduces probabilities into the problem since it is unknown whether
the branch instruction causing a side exit will be taken at runtime. Further, the
opportunity to move instructions across basic block boundaries vastly enlarges
the search space whereas basic block scheduling is already a very hard problem
with a lot of symmetries.

Production compilers typically rely on a list scheduling heuristic, a method
maintaining a list of instructions ready to be scheduled and selecting at each
clock cycle a ready instruction with the highest among some pre-determined pri-
orities. List scheduling is flexible since it can easily handle parallel or multiple-
issue processors and different priority functions. For the problem under consid-
eration, Bernstein, Rodeh, and Gertner [5] showed that, regardless how priori-
ties are assigned, list schedules are no worse than 2 − 1

L+1 times the optimum
where L is the maximum latency occurring. Many computational experiments,
e.g. [6, 7, 8, 9], reveal near-optimal performance of list scheduling when averag-
ing results over a particular set of instances. The fine-grained results in [7, 8]
show however, that the number of basic blocks where list scheduling does not
find optimal schedules grows significantly with increasing size of the instances
(up to 20% for basic blocks with more than 250 instructions in their results).
Moreover, provably optimal schedulers are desirable to enable quality measures
but also in settings where the runtime performance of the final programs is
critical or where longer compile times are tolerable. This is the case, e.g., for
embedded and digital signal processing applications or, in general, software that
is pre-compiled only once before (mass) delivery.

Early branch-and-bound [10, 11], integer programming (IP) [12, 13, 14] and
constraint programming (CP) [6] approaches were limited to small sets of in-
stances with roughly up to 50 instructions. The most recent contribution to
attack the instruction scheduling problem with integer programming was given
by Wilken, Liu and Heffernan [9] in 2000. They were the first to optimally
schedule a larger set of basic blocks with up to 1, 000 instructions by applying
some search space reduction techniques and problem-specific cutting plane sepa-
ration. However, their experiments were restricted to instances with latencies in
the range between zero and two clock cycles and later it was then shown that the
method is not as successful on more realistic instances with larger and varying
latencies [15]. The method has also a limited scalability since the number of vari-
ables and constraints is pseudo-polynomial in the size of the input, it depends
on (an upper bound on) the makespan that can be much larger than the number
of instructions. An important result of their work is however that the reduction

2

techniques are essential to be able to schedule real-world instances to optimality.
One year later, van Beek and Wilken [16] proposed a constraint programming
approach that could optimally schedule the instances used for the experiments
by Wilken, Liu and Heffernan even faster. After Heffernan and Wilken then
proposed a set of methods to even more effectively reduce the search space of
basic block instances [17] in 2005, Malik, McInnes, and van Beek [7] were able
to improve their CP approach to solve the problem also for multiple-issue pro-
cessors on an even larger set of instances (about 350, 000 basic blocks with up
to 2, 600 instructions). While the previous solvers from [9] and [16] could not
solve hundreds of these instances to optimality [15], there is only one instance
that could not be solved by the CP solver within a time limit of ten minutes of
CPU and system time for single-issue processors in our experiments. Notably,
in [7], the authors emphasize that their search space reductions are key to the
success of their solver.

In this paper, we present the first integer programming approach that is
competitive to the CP method of Malik, McInnes and van Beek for single-issue
processors. It is also the first IP model that is based on the linear ordering prob-
lem. With the exception of scheduling models that employ exactly one general
integer (‘completion time’) variable per instruction (see Sect. 5), it is also the
first model whose numbers of variables and constraints is strongly polynomial in
the size of the instance. Our corresponding implementation is able to solve all
but eleven instances of the mentioned benchmark set to optimality within ten
minutes of CPU and system time and is faster on some particular instances. We
highlight the most important existing search space reduction techniques that are
indeed not specific to CP, and we found that several of them can be improved or
extended. We also developed some new reduction ideas and symmetry break-
ing policies that we also report on. Besides that, we believe that our model
can inspire future research for similar scheduling problems with delayed prece-
dence constraints since it offers a comprehensively studied approach to enforce
a certain number of instructions to be between two other instructions, a way
to incorporate processor idle cycles into a model, and several classes of valid
inequalities that can be used as cutting planes. Last but not least, our model
may be relatively straightforwardly adjusted to deal with different objective
functions (e.g., the weighted sum of completion times).

This manuscript is built up as follows. Sect. 2 gives basic definitions and no-
tations necessary to understand the problem and to report on existing (Sect. 3)
and novel (Sect. 4) search space reduction techniques. The general challenges in
modeling scheduling problems with integer programming is the topic of Sect. 5
while Sect. 6 presents our new proposals to do so. In Sect. 7, additional valid
inequalities are presented that can be used as cutting planes with our new mod-
els. Sect. 8 highlights the main features of our branch-and-cut implementation
that is evaluated in Sect. 9. The presentation closes with our conclusions in
Sect. 10.

3

2 Definitions and Notations

2.1 Formal problem statement

We formulate the basic block instruction scheduling problem for single-issue
processors (ISP) as follows.

Definition 2.1. [ISP] Given a set of uni-cycle instructions I and an acyclic
precedence relationship R ⊂ I × I along with a latency function ℓ : R → N0,
compute a schedule σ : I → N0 of the instructions I respecting all the precedence
relations R and latencies ℓ and whose makespan M = 1 + max{σ(i) | i ∈ I} is
minimum.

In the literature, the latencies are often also called delays and the problem
may also be named single-machine scheduling under delayed precedence con-
straints. Using the widely accepted notation proposed in [18], this problem can
be classified as 1|prec(lij), pj = 1|Cmax or 1|prec(delays), pj = 1|Cmax.

The notion of latencies used in this paper complies to the one used in some
older ones (e.g. [3, 19]) but differs from those used in more recent articles tar-
geting also multiple-issue processors, in particular [9, 16, 7]. For a precedence
(i, j) ∈ R with associated latency ℓ(i, j), if ti is the cycle where instruction i

is scheduled, then j can be scheduled earliest in cycle ti + ℓ(i, j) + 1 (and not
ti + ℓ(i, j)).

The definition used in the multiple-issue context stems from the fact that two
instructions with a write after read dependency can typically be issued in the
same clock cycle since the read will take place before the write in the pipeline.
However, for single-issue processors, it leads to the peculiarity that there is no
semantic difference between a zero- and a one-latency which is why the older
definition is preferred.

In general, the latencies cause clock cycles where, even in an optimal sched-
ule, no ready instruction exists. In this case, the processor is left idle or said to
execute a no-operation instruction (NOP).

2.2 Predecessors, Successors, Independence

For each precedence relation (i, j) ∈ R, we call i a predecessor of j and j a
successor of i. Precedence relations are transitive and we denote the transitive
closure of R with R∗. If i (j) is a predecessor (successor) of j (i), we also denote
this by i ≺ j (j ≻ i), and if neither i ≺ j nor j ≺ i, then i and j are said to
be independent (from each other) and we will sometimes denote this by i ‖ j.
For ease of reference, we will denote the immediate predecessor (successor) set
of an instruction v by P (v) (S(v)). If we want to refer to the entire (transitive)
predecessor (successor) set of an instruction, we will write P ∗(v) (S∗(v)) instead.

2.3 Data-Dependency Graphs

A basic block is usually modeled as a data-dependency DAG G = (V,A) along
with a weight function w : A→ N0 where the vertices V identify the instructions
I and there is an arc (i, j) ∈ A for each (i, j) ∈ R with weight w(i, j) = ℓ(i, j).
Each vertex with no predecessor (successor) in G is said to be a source (sink)
of G. We will assume that a DAG is normalized to have a single super source

4

b ∈ V and super sink e ∈ V . A super source (sink) has a leaving (entering) arc
to each source (from each sink) with zero weight. Fig. 1 shows an example.

0 0

LD
s

+ − +

∗ ∗+

∗+

LD
t

LD
u

LD
v

LD
w

ST
x

ST
y

1 1
1

1

1
1

1

1

0
0

0
0

1
2

2
2

0
0 0

0

00

16

0
0
7 8

9 10

11

1 1
1

1

1

1

1

1

0
0

0
0

1
2

2
2

0
0 0

b

00

1

2 3 4

5

6

1213

e

0 0

Figure 1: An example data-dependency DAG for a basic block consisting of the
computations x = (s+t)∗(u−t) and y = w+(x∗(v+((s+t)·(t+u))) assuming the
presence of multiply-accumulate instructions (left) and its normalized version
with a topological numbering of its vertices (right).

In the following, we will treat instructions and their corresponding vertices,
precedences and their corresponding arcs as well as latencies and their corre-
sponding arc weights interchangeably. The super source and super sink are inter-
preted as pseudo-instructions that can be removed from the computed schedule
afterwards without altering optimality. Analogously to the precedence relation-
ships R, we will denote the transitive closure of the arc set A with A∗.

2.3.1 Critical Paths and Distances, Transitivity

Let G = (V,A) be a dependency DAG and i, k ∈ V such that i ≺ k. Consider
a simple path P = i→ j1 → · · · → jp → k from i to k with p ≥ 0 intermediate
vertices in G. We refer to P ’s vertices by V (P) and to its arcs by A(P). The
length of P is given by the sum of its arc weights plus the number of intermediate
vertices, i.e., by |V (P)| − 2 +

∑

(i,j)∈A(P) w(i, j). Any such path P induces a
lower bound on the gap between i and k in any feasible schedule. Hence, a
longest among such paths (called a critical path) between i and k in G imposes
the tightest such lower bound, the critical path distance cp(i, k).

As we will see, there are several ways to obtain good lower bounds on the
minimum number of cycles between two instructions apart from considering
paths only. To be unambiguous in notation w.r.t. the critical path distances
implied by the given DAG G, we introduce a more general and intuitive concept
of distances, and associate such a distance di,k with every pair of instructions
i, k ∈ I, i 6= k. At each point in time, the distance di,k reflects the best known
lower bound on the gap between i and k, regardless how it has been obtained.
We make the convention that di,k is greater than or equal to zero if i ≺ k and
set to −∞ otherwise. Clearly, it holds that cp(i, k) ≥ ℓ(i, k) for each (i, k) ∈ A

5

and di,k ≥ cp(i, k) for all (i, k) ∈ A∗. Naturally, if some particular distance di,k
can be improved, this can be equally exploited to potentially improve transitive
distance information as when considering critical paths. In particular, for any
path P as described above, di,k ≥ |V (P)| − 2 + d(P) where d(P) is the sum of
the distances along the path. More generally, each valid set of distance lower
bounds for a given instance can itself be interpreted as a dependency DAG that
must have the same optimum makespan as the original DAG.

2.3.2 Lower and Upper Bounds

We denote the global lower and upper bounds on the optimum makespanM∗ by
Mlb and Mub. Furthermore, we consider lower and upper bounds on the issue
cycles of each instruction i ∈ I and denote them by lbi and ubi. The interval
[lbi, ubi] will be referred to as the (scheduling) range of an instruction i ∈ I.

We assume the super source b ∈ V to be assigned clock cycle zero, i.e.,
lbb = ubb = 0. For all the instructions i, lower bounds on the issue cycles
(and thus also an initial Mlb) can be directly determined from the best known
distance of an instruction from b, i.e., lbi = db,i+1 and lbe = Mlb− 1 = db,e+1.
In contrast to that, upper bounds on the issue cycles are always related to a
predetermined global upper bound Mub. More precisely, ube = Mub − 1 and
ubi = Mub − di,e − 1 for any instruction i ∈ V \ {b, e}. Further, it holds that
lbk ≥ lbi + di,k + 1 and ubi ≤ ubk − di,k − 1 for each (i, k) ∈ A∗.

2.3.3 Regions

The following notion of sub-DAGs called regions [9] is useful.

Definition 2.2. (Region [9]). Let G = (V,A) be a dependency DAG and s, t ∈ V

such that there are at least two vertex-disjoint paths between s and t. Define Vs,t

to be the set of vertices reachable on any s-t-path in G and As,t as the union of
the arcs of all these paths. Then the DAG Gs,t = (Vs,t, As,t) is called a region
of G.

8

5

9

2
2

2

1
1

1

1

1 1

0
0 0

0

2 3

4 6

1

7

2

2

2

8

5

9

2
2

2

1
1

1

1

1 1

0
0 0

0

2 3

4 6

1

7

2

2

2

8

5

9

2
2

2

1
1

1

1

1 1

0
0 0

0

2 3

4 6

1

7

2

2

2

Figure 2: A DAG and two example regions G3,9 and G2,9.

Regions can be nested. For example, the small region G2,7 (which is not
shown explicitly) is part of the region G2,9 in Fig. 2.

6

3 Search Space Reductions

In this section, we report on already existing search space reduction techniques
that we also incorporated into our approach. Further, we were able to slightly
improve on some of these methods or to apply them in a different fashion to
obtain better results.

Before we start, we provide some central definitions related to global and
local lower and upper bounds.

3.1 A Relaxation Technique by Rim and Jain

In 1994, Rim and Jain [20] presented a relaxation technique to obtain lower
bounds on the makespan of a given dependency DAG. Their method exploits
that the upper bounds on issue cycles depend on Mub. More generally, for any
schedule of length M , instruction i must start at time ubMi = M − di,e − 1
the latest. Hence, setting M = Mlb makes it possible to obtain upper bounds
ubMlb

i on issue cycles that must be respected if the schedule length Mlb shall be
realized. Conversely, if we solve the (relaxed) problem and find an instruction i

that is assigned a cycle c > ubMlb

i , then Mlb can be improved by the respective
amount of violation.

The relaxation proposed by Rim and Jain respects only the lower and upper
bounds, and the resource constraints (at most one instruction at a time), but
neglects the latency constraints. Fortunately, this problem can be solved by
a simple greedy algorithm (listed as Algorithm 1) that was also given by the
authors.

Algorithm 1 Greedy Algorithm by Rim and Jain

function RimJain(G = (V,A), lb, ub)
BucketSort(V, ub) # Sort instructions in increasing order of ub
g ← 0
for all v ∈ V do

Assign v to the earliest free cycle c ≥ lbv
if c− ubv > g then

g ← c− ubv
return g

In 1996, Langevin and Cerny [21] proposed to apply this method recursively,
namely to each sub-DAG induced by interpreting each predecessor of an instruc-
tion i ∈ I as the sink prior to running the algorithm on the (sub-)DAG with
sink i. This way, improved lower bounds on the issue cycles of predecessors of
i will be already respected when computing a lower bound on i’s issue cycle.
As the authors report, this leads to better global results in many cases while
the runtime observed in practice increases only moderately since many of the
considered sub-DAGs are small.

In our method, we go one step further and apply the recursive method to
DAGs that reflect the already strengthened distance information that we obtain
during our preprocessing.

7

3.2 Improving Bounds on Issue Cycles, Distances and Prece-
dences

3.2.1 Lower Bounds on Distances by Smart Counting

Considering regions as defined in Sect. 2.3.3 can help to improve the lower bound
on the distance between two dependent instructions in a different way.

Lemma 3.1. (from [16]). Let Gs,t = (Vs,t, As,t) be a region of a DAG G =
(V,A). Then it holds that ds,t ≥ min{ds,v | (s, v) ∈ As,t}+ |Vs,t|−2+min{dv,t |
(v, t) ∈ As,t}.

Correctness of Lemma 3.1 is easy to see: After scheduling the source s of
the region, the minimum latency to any successor of s must be respected before
any interior vertex can be issued. Then all |Vs,t| − 2 interior vertices must be
scheduled and, between the last one and the sink t, again at least the minimum
latency must be respected.

Lemma 3.1 is a general result not specific to regions. There is a lower bound
technique presented in [22] that exploits similar ideas. In fact, one obtains a
lower bound on the distance di,k between any dependent vertices i ∈ V and
k ∈ V by determining the intermediate vertices Vik = {j ∈ V | i ≺ j and j ≺ k}
and computing the value min{di,j | j ∈ Vik}+ |Vik|+min{dj,k | j ∈ Vik}.

Observation 3.2. The lower bound on a distance di,k using the above formula
might be improved by ignoring some of the intermediate vertices Vik.

This is true since removing a vertex from the set Vik decreases the term |Vik|
by one but may increase one or both of the two computed minima by more than
one unit. This poses a new lower bound optimization problem:

Problem 3.3 (Distance Lower Bound Optimization Problem). Given a DAG
G = (V,A) and two vertices i, k ∈ V, i ≺ k, compute a set V ∗

ik ⊆ {j ∈ V |
i ≺ j and j ≺ k} such that min{di,j | j ∈ V ∗

ik} + |V
∗
ik| + min{dj,k | j ∈ V ∗

ik} is
maximum.

In its preprocessing phase, the CP solver related to [7] either schedules re-
gions optimally (if they are small) or applies a parameterized algorithm for the
above problem to them. To the best of our knowledge, the algorithm is undoc-
umented apart from the openly available source code, but since it is effective
and a variant is also incorporated into our solver, we briefly describe it here.

Consider a region Gs,t = (Vs,t, As,t) and let W = Vs,t \ {s, t}. For some
parameter k, the algorithm calculates the k smallest distances ds,v1 < ds,v2 <

· · · < ds,vk of vertices v ∈ W from the source. Further, it computes for each
ds,vi the number ns,i of vertices with strictly smaller distances than ds,vi , i.e.,
ns,i = |{v ∈ W | ds,v < ds,vi}|. The same is done for the k smallest distances
dv1,t < dv2,t < · · · < dvk,t of vertices v ∈ W to the sink and the respective
numbers nt,i of vertices with strictly smaller distances than dvi,t. After that,
the index i ∈ {1, . . . , k} that maximizes ds,vi + |W | − ns,i is selected. Finally, if
it exists, an index j ∈ {1, . . . , k} is determined such that |W | − ns,i − nt,j > 0
and ds,vi + dvj ,t + |W | − ns,i − nt,j is maximal.

The running time of the algorithm as implemented in the CP solver can
be bounded from above by O(k |Vs,t|). There, k is set to four. We compute
the same regions from the given input DAG but never solve regions exactly

8

irrespective of their size. Also, by testing all index pairs i and j whether they
satisfy |W |−ns,i−nt,j > 0, we invest O(k2 |Vs,t|) time in the hope to find more
regions that can be improved.

3.2.2 Improved Bounds on Issue Cycles by Smart Counting

Since lower bounds on issue cycles of instructions are directly related to their
distances from the super-source, one can use similar arguments as in the pre-
vious subsection to possibly improve them. The following techniques can be
analogously applied to upper bounds on issue cycles.

Lemma 3.4. (from [16]). Let G = (V,A) be a DAG and let v ∈ V . Then for
any nonempty subset P ′ ⊆ P (v), it holds that lbv ≥ min{lbu | u ∈ P ′} + |P ′| −
1 + min{du,v | u ∈ P ′}+ 1.

Correctness can be easily verified by comparing Lemma 3.4 with Lemma 3.1
and replacing lbv by db,v + 1, lbu by db,u + 1, and then setting s = b and t = v.
Again, we may formulate an associated optimization problem.

Problem 3.5 (Issue-Cycle Lower Bound Optimization Problem). Given a DAG
G = (V,A) and a vertex v ∈ V , compute a set P ∗ ⊆ P (v) such that min{lbu |
u ∈ P ∗}+ |P ∗| − 1 + min{du,v | u ∈ P ∗}+ 1 is maximum.

In the solver related to [7], this problem is tackled by a simple algorithm.
It first sorts the predecessors of the vertex v ∈ V by their lower bounds. Then,
for each predecessor p ∈ P (v), it constructs a lower bound on v’s issue cycle by
summing up the lower bound of p, the number of predecessors with a greater-or-
equal lower bound, and the minimum distance to v among these. This algorithm
runs in time O(|P (v)|2) in the worst case. The underlying methodology is quite
similar to another lower bounding technique called tighter ASAP presented
in [23]. In fact, the algorithm can quite easily be improved by using the distances
dp,v of predecessors p ∈ P (v) as a second criterion to break ties such that
whenever multiple predecessors of v have the same lower bound, one with the
smallest distance to v will be processed first. This improved version is used
within our solver, too.

3.2.3 Improved Bounds on Issue Cycles by Interval Considerations

Another method to improve lower bounds on issue cycles and to also remove
symmetry from the problem can be derived by considering time intervals. Let
I(a, b) be the set of instructions that can possibly be scheduled in the interval
[a, b], i.e., I(a, b) = {i | i ∈ I, lbi ≤ b and ubi ≥ a}.

Lemma 3.6. (from [15]). If there exists an interval [a, b] such that (i) for all
i ∈ I(a, b) it holds that ubi = b, (ii) for all i ∈ I(a, b), and for all s ∈ S(i) it
holds that lbs−di,s−1 ≥ b and (iii) |I(a, b)| ≤ (b−a+1), then the lower bounds
lbi of all the instructions i ∈ I(a, b) can be set to a.

A proof of this lemma with case distinctions can be found in [8]. The solver
related to [7] uses some fast heuristic tests to check whether there are inter-
vals that satisfy these conditions. In our solver, we only use the routine for
upper bounds because the version for lower bounds is in conflict with our new
symmetry reduction scheme presented in Sect. 4.4.

9

Another useful concept in order to improve bounds based on interval con-
siderations are so-called Hall intervals having their name from their relation to
Philip Hall’s marriage theorem proved in 1935 [24].

Definition 3.7. (Hall interval [24, 25, 26]). Let I∗(a, b) be the set of instructions
that can be scheduled in the interval [a, b] only, i.e., I∗(a, b) = {i | i ∈ I, lbi ≥
a and ubi ≤ b}. The interval [a, b] is called a Hall interval if |I∗(a, b)| = b−a+1.

Hall intervals are those intervals where there is a known set of instructions
I∗(a, b) that must consume all the cycles provided by the interval [a, b]. It is easy
to see that, if [a, b] is a Hall interval and i is an instruction that is in I(a, b) but
not in I∗(a, b), then the interval [a, b] can be removed from the scheduling range
of i. In particular, if lbi ∈ [a, b], then lbi can be improved to b+ 1. Similarly, if
ubi ∈ [a, b], then ubi can be improved to a− 1.

There exist several algorithms to quickly determine Hall intervals from a
given set of scheduling ranges. For example, if n is the number of ranges, the
algorithms by Puget [25] and Lopez-Ortiz et al. [27] both find all Hall intervals
in time O(n log n) and also reduce scheduling ranges accordingly. The algorithm
by Lopez-Ortiz et al. is used in the CP solver and we also incorporate it into
ours. However, we perform an additional run taking (weak) lower and upper
bounds on the position of NOPs into account. The associated idea is that we
can also treat an interval like a Hall interval if we know that the number of
instructions and NOPs that must be placed in it is exactly equal to its size.

3.2.4 Obtaining New Precedences by DAG Transformations

Heffernan and Wilken [17] present a set of conditions under which additional
arcs (precedences) can be inserted into a DAG without altering the optimal
makespan. One of their most effective transformations is based on sub-DAG iso-
morphism. Two graphsG = (V,E) andH = (W,F) are isomorphic if |V | = |W |,
|E| = |F |, and there exists a mapping φ : V → W such that (u, v) ∈ E holds if
and only if (φ(u), φ(v)) ∈ F . For weighted graphs, like our dependency DAGs,
we also force the weights on the mapped edges to coincide.

Theorem 3.1. ([17]). Let G = (V,E) and H = (W,F) be two isomorphic sub-
DAGs. Say V = {v1, . . . , vn} and W = {w1, . . . , wn}. If G and H are such that
for all i ∈ {1, . . . , n}

• vi and wi are independent,

• for each predecessor p ∈ P (vi), p 6∈ V , it holds that l(p, vi) ≤ dp,wi
,

• for each successor s ∈ S(wi), s 6∈ W , it holds that l(wi, s) ≤ dvi,s, and

• for any arc (wi, vj), it holds that l(wi, vj) ≤ dvj ,wi
,

then adding zero-latency arcs (vi, wi) for all i ∈ {1, . . . , n} preserves the optimal
schedule length of the original DAG.

The last condition of Theorem 3.1 may appear counter-intuitive, because
it argues over arcs that ‘cross’ from one sub-DAG to the other which should
be impossible between two DAGs to be tested for isomorphism. However, as
mentioned before, the theorem refers to induced sub-DAGs of vertex sets of a

10

common larger DAG. This way, there might exist such arcs between vertices V
and W in the complete DAG and the last condition is then necessary in order
to define a safe transformation.

Unfortunately, the detection of isomorphic sub-DAGs is NP-complete [28]
(there is a simple and polynomial transformation of the general subgraph iso-
morphism to the sub-DAG isomorphism problem). However, in practice, a lot
of small isomorphic sub-DAGs to which Theorem 3.1 may be applied can be
found by some rather simple heuristic tests [8] and the resulting search space
reduction justifies the invested computation time in the constraint programming
solver [7]. Hence, a similar procedure to the one that is implemented there is
used within our solver implementation, too.

4 New Results and Search Space Reductions

In addition to the existing search space reductions discussed in Sect. 3, we
were able to derive new ways to improve bounds and distances, or to find new
precedence relationships. They can be combined with any instruction scheduler.

4.1 Exploiting Rim-Jain schedules to further improve bounds

Suppose the lower bounding algorithm by Rim and Jain from Sect. 3.1 is run
with global lower bound Mlb so that no instruction misses its corresponding
deadline ubMlb

i , but that there is some instruction i with lbi 6= ubMlb

i placed
exactly at its upper bound. By the construction of the algorithm, instruction i

could not be placed earlier, i.e., in the interval [lbi, ub
Mlb

i − 1], due to a dense
block of instructions that all have a smaller-or-equal upper bound. In some
particular cases that are pointed out in the following theorem and Fig. 3, we
may exploit such situations in order to improve lower bounds.

lbj0 x

i

ubilbi

j

ubj

Figure 3: A situation in Rim-Jain schedules that can be exploited to improve
lower bounds.

Theorem 4.1. Let Mlb be the best lower bound that can be obtained by running
the algorithm of Rim and Jain on a DAG G = (V,A). Further, let σ be the
schedule computed by the algorithm and let σ(v) denote the position of each
v ∈ V in σ. Let i ∈ V be a vertex with lbi < σ(i) = ubMlb

i , and let [x, ubMlb

i]
with x ≤ lbi be a dense block of instructions in σ. If there exists an instruction
j such that ubMlb

j > ubMlb

i and lbj ∈ [x, ubMlb

i], then the earliest position of j in

any feasible schedule of length Mlb (if it exists) is ubMlb

i + 1.

Proof. Suppose there exists a schedule of length Mlb with all lower and upper
bounds as given except that j’s upper bound is decreased to ubMlb

i . Then, given
this input, the Rim-Jain algorithm must report a lower bound less or equal to
Mlb. However, while the constructed schedule starts equally to σ, the algorithm
could now break the tie between i’s and j’s upper bound such that j is processed

11

before i. In this case, j will be placed in a cycle c ∈ [lbj, ub
Mlb

i] with lbj ≥ x.

This causes all the other instructions in the interval [c, ubMlb

i] of σ (including i)
to be shifted one position to the right. As a consequence, i misses its deadline
and the algorithm reports a lower bound of at least Mlb+1. Hence, no schedule
of length Mlb can exist if j is enforced to be scheduled at cycle ubMlb

i the latest.
Consequently, if a schedule of length Mlb does exist, j must be scheduled at
cycle ubMlb

i + 1 the earliest.

4.2 New precedences due to overlapping intervals

A very simple rule to obtain a new precedence relationship that can however be
applied quite frequently in practice is the following.

Lemma 4.2. Let k ∈ I be an instruction with ubk− lbk = 1. Suppose now that
there exist two instructions i, j ∈ I \ {k} such that ubi = ubk and lbj = lbk.
Then i must be a predecessor of j in any feasible schedule of I.

Proof. The situation associated to this lemma is depicted in Fig. 4. We consider
the two cases where instruction k might be scheduled. Suppose k is scheduled
in cycle lbk. Then instruction j can be scheduled earliest in cycle lbk +1 = ubk.
Since ubi = ubk, it follows immediately, that i must be placed before k and,
therefore, also before j. In the other case, k is scheduled in cycle ubk, it is
clear that instruction i must be scheduled at cycle ubk − 1 the latest. Since
ubk − 1 = lbk = lbj, it follows that i must precede j also in this case.

k

i
j

ubklbk

Figure 4: Illustration of the instructions i, j, and k of Lemma 4.2.

4.3 New precedences and bounds due to (Hall) intervals

Let [a, b] be a Hall interval with instruction set I∗(a, b).

Observation 4.3. Let p ∈ I \I∗(a, b) be a predecessor of one of the instructions
i ∈ I∗(a, b). Then p is a predecessor of all the instructions in the set I∗(a, b).
The same is true for successors s ∈ I \ I∗(a, b) of any instruction from the set
I∗(a, b).

If a model has a notion of handling NOPs individually, the same observation
can be made concerning NOPs. Moreover, one can restrict the number of NOPs
between any two instructions i, j ∈ I∗(a, b) to zero.

Even in the case where an interval [a, b] is not a Hall interval, one can
potentially derive some useful restrictions from it that can be expressed as con-
straints. Again, we consider the associated set of instructions I∗(a, b) that must
be scheduled within [a, b] and the following additional sets:

12

• I≤ = {v ∈ V \ I∗(a, b) : ubv ≤ b}

• I≥ = {v ∈ V \ I∗(a, b) : lbv ≥ a}

I≤ is the set of instructions that need to be positioned in cycle b the latest
but are not contained in I∗(a, b). Analogously, I≥ is the set of instructions that
need to be positioned at cycle a the earliest, but are not contained in I∗(a, b).
The idea is now to compute, for each i ∈ I∗(a, b), an individual upper bound on
the number of successors from I≤ and on the number of predecessors from I≥.

Lemma 4.4. Let [a, b], I∗(a, b), I≤ and I≥ be given as above. Let i ∈ I∗(a, b).
The number of successors of i from the set I≤ can be bounded by min{(b− a+
1)− |I∗(a, b)|, b − lbi, b − a− |S(i) ∩ I∗(a, b)|} and the number of predecessors
of i from the set I≥ can be bounded by min{(b− a+ 1)− |I∗(a, b)|, ubi − a, b−
a− |P (i) ∩ I∗(a, b)|}.

Proof. Since each i ∈ I∗(a, b) itself needs to be placed in [a, b], it is clear that
any successor s 6∈ I∗(a, b) of i with upper bound less or equal to b needs to be
in the interval as well. The first bound b − a + 1 − |I∗(a, b)| is valid since it
is exactly the remaining number of cycles not already occupied by instructions
from I∗(a, b). The number of successors is trivially bounded by b − lbi since i

cannot start earlier than in cycle lbi and hence at most b − lbi cycles remain
afterwards. In the third bound, the number of remaining cycles after placing
i, which is b − a, is reduced by the number of known successors of i from the
set I∗(a, b). Summing up, all three bounds are valid and the smallest of them
gives the tightest bound on the number of successors from I≤. The proof for
the predecessors of i from the set I≥ is analogous.

4.4 Symmetry Breaking with Latest Ready Times

It is common scheduling terminology to call an instruction i ∈ I ready (at cycle
c), if all of its predecessor instructions have been scheduled and all latency
constraints would be satisfied when scheduling i (at cycle c). A novel concept
to break symmetries considers the latest clock cycle where an instruction must
be ready (or already scheduled) in any case.

Definition 4.5. (Latest Ready Time) Let i ∈ I be an instruction. The value
lrti = max{ubp + ℓ(p, i) + 1 | p ∈ P (i)} is called the latest ready time of i.

The latest ready time (LRT) of instruction i is given by the maximal sum of
an upper bound of a predecessor instruction p and its latency to i plus one cycle.
For artificial predecessors p (those that are not given by the instance but added
a posteriori by preprocessing techniques), it is convenient to assume ℓ(p, i) = 0.
Although ℓ(p, i) may be only a weak lower bound on the distance between p and
i in an optimum schedule, it is guaranteed that instruction i must be ready (or
already scheduled) at time lrti since all predecessors are scheduled, too, and all
latencies induced by data dependencies must be satisfied. The following simple
but central observation shows up a way to exploit LRTs.

Observation 4.6. Let σ be a schedule of the instructions I with makespan
M . Let M > |I| and suppose that a NOP is placed at cycle c. Let i ∈ I be
an instruction with σ(i) > c that is however ready at c. Then altering σ by
scheduling i at c leads to a schedule σ′ with makespan M ′ ≤M .

13

Observation 4.6 simply states that, at each clock cycle, it is always optimal to
schedule an instruction instead of a NOP if there is at least one ready instruction
at hand. This is obvious since both a NOP and an instruction cover one potential
delay cycle of instructions issued earlier, but an instruction that is scheduled
earlier may release further potential successors earlier whereas scheduling a NOP
does not. The resulting schedule must therefore be as least as good as a schedule
where a NOP is preponed w.r.t. the ready instruction. As a consequence, we
may define the policy that each NOP that shall be placed before instruction
i must be placed before i becomes ready, i.e., in particular before cycle lrti
(cf. Fig. 5). Conversely, if we know that a NOP is placed earliest at a time later
than or equal to lrti, then it could be fixed to be after i.

3

0

3

4

3

[0, 0, 0]

[1, 1, 2] [1, 1, 2]

[7, 7, 7]

[3, 3, 6]

[5, 6, 6] [5, 6, 6]

1 2

5

6

Figure 5: A small instance with labels [lbi, lrti, ubi] at each instruction, assuming
an optimal schedule length of eight cycles. Unlabeled arcs have latency zero. An
optimal schedule contains a NOP either at cycle three or four. The upper bound
of instruction 3 could be further reduced to 4 since [5, 6] is a Hall interval. The
LRT of instruction 3 however indicates that it is ready already at cycle three
and can therefore be scheduled before the NOP.

5 Modeling Sequential Schedules

The main challenge in modeling sequential scheduling problems mathematically
is how to enforce independent instructions to attain different clock cycles. Due
to the lack of a ‘not equal’-relation this is a difficult task especially in linear
programming. If ti and tj are integer variables expressing the clock cycles
of two independent instructions i, j ∈ I, then it must hold that either tj ≥
ti + 1 or tj ≤ ti − 1. While these two inequalities are linear expressions, such
disjunctive [29] constraints are not easy to handle since, at any point in time,
only one of them can be enforced and it is subject to the optimization process
to find out which one. The equivalent expression |tj − ti| ≥ 1 is not a linear
inequality and the feasible solutions to it do not even form a convex set. When
using such completion time variables ti ∈ N0 for all i ∈ I, a common approach
to circumvent this problem is the so-called big-M method. In this particular
case, one could replace the mentioned two inequalities by tj − ti +Mbi,j ≥ 1
and ti − tj +M(1− bi,j) ≥ 1 where M is a scalar and bi,j ∈ {0, 1} is a binary
variable that controls which of the two inequalities shall be active. For every
integral solution one of the inequalities is equal to the original one while the

14

other one is trivially satisfied due to the choice of M . It is clear that such an
approach increases the number of variables from linear to quadratic, and that
the big-M notation does not yield strong inequalities. For example, for any
M ≥ 2, both constraints are satisfied when setting ti = tj and bi,j = 1

M
. So

while this formulation works in principle, especially if strong lower and upper
bounds for the variables ti (and Cmax) are known, it cannot be expected to be
well-solvable for larger and more difficult instances.

Another common approach is to derive a so-called time-indexed formulation
(see, e.g., [30]) that does not need a big-M by first computing an upper bound
Mub on the makespan such that all potentially necessary clock cycles for an
optimum schedule can be expressed as the finite set T = {0, . . . ,Mub− 1}. This
allows for the introduction of decision variables xi,t for each i ∈ I and all t ∈ T

with the meaning that:

xi,t =

{

1, if instruction i is scheduled at time t

0, otherwise

Although this leads to an entire {0, 1}-IP, there are also some weaknesses.
First of all, one can consider such a formulation to be of pseudo-polynomial size
since the number of required variables is |I| ·Mub with Mub being a numerical
value rather than an input size. Further, the linear programming relaxations
will typically split instructions over multiple clock cycles and there are several
symmetric ways to do this. Nonetheless, Heffernan, Liu, and Wilken [9] were
able to schedule a considerable number of basic blocks using a similar model.
They also found some cutting planes to separate fractional solutions. Still, it
was shown in [16] and [7] that their method is not competitive to the currently
best-performing constraint programming methods.

A third way to model the problem comes from the insight that every sequen-
tial schedule, independent whether it needs additional NOPs or not, corresponds
to a certain order or permutation of the instructions. A common approach to
model permutations is via linear ordering variables. Indeed, single machine
scheduling with precedences is one of the proposed applications of the linear
ordering problem (LOP) mentioned in the corresponding text book [31]. A
number of IP formulations based on the LOP have been already proposed, es-
pecially in the context of (nondelayed) precedence constrained single machine
job-shop scheduling with and without release times and with the objective to
minimize the weighted sum of completion times [32, 33, 34, 35, 36, 37, 38, 39, 40].
Even more, for objective functions other than makespan minimization, an inter-
esting comparison of LOP-based formulations to completion time variable and
time-indexed formulations has been carried out by Keha et al. [41]. However, as
far as this is known to the author, there is so far no publication that successfully
applies the LOP for a practical approach to single machine problems with the
present form of latencies.

5.1 The Linear Ordering Problem

A linear ordering of n items {1, . . . , n} is a bijective function π : {1, . . . , n} →
{1, . . . , n}, i.e., a ranking, linear sequence, or permutation of the items.

Suppose that for any pair of items i, j ∈ {1, . . . , n}, i 6= j, there is an asso-
ciated weight (benefit) ci,j that becomes effective if i is ranked before j, i.e., if

15

π(i) < π(j). Then the linear ordering problem (LOP) on n items is the task to
find an ordering π∗ such that

∑n

i=1

∑n

j=i+1 cπ∗(i),π∗(j) is maximum. The LOP
is an NP-hard combinatorial optimization problem and has been classified as
such by Garey and Johnson [28].

The LOP is often described using a complete directed graph Gn = (Vn, An)
with arc weights ci,j for each (i, j) ∈ An [31]. So defined, the LOP is to find a
subset T (An such that (i) for every pair of vertices i and j either (i, j) ∈ T or
(j, i) ∈ T , but not both, (ii) T contains no directed cycles, and (iii)

∑

(i,j)∈T ci,j

is maximum. The associated interpretation is that π(i) < π(j) holds exactly for
the case that (i, j) ∈ T and vice versa.

Relying on the graph-based model, a common way [42] to formulate the LOP
mathematically is to define, for each arc i, j ∈ Vn, i < j, a binary variable:

xi,j =

{

1, if π(i) < π(j)

0, if π(j) < π(i)

Then, for n ≥ 3, the LOP can be stated as an integer program as follows:

max
∑

i,j∈Vn,i>j

cj,i +
∑

i,j∈Vn,i<j

(ci,j − cj,i) xi,j

s.t. xi,j + xj,k − xi,k ≥ 0 for all i, j, k ∈ Vn, i < j < k (1)

xi,j + xj,k − xi,k ≤ 1 for all i, j, k ∈ Vn, i < j < k (2)

xi,j ∈ {0, 1} for all i, j ∈ Vn, i < j

The objective function maximizes the total weight of the selected arcs. Di-
rected cycles of length two are impossible by construction. Constraints (1)
and (2) are the so-called three-dicycle inequalities that enforce a solution to
have no directed cycles of three or more vertices. In total, the formulation has
(
n
2

)
variables and 2

(
n
3

)
nontrivial constraints.

5.2 The Linear Ordering Polytope

Let m =
(
n
2

)
. For n ≥ 3, the linear ordering polytope can be described as

Pn
LO = conv{x ∈ {0, 1}m | x satisfies (1) and (2)} [42]. The three-dicycle

inequalities define facets of Pn
LO and completely describe it (together with the

trivial inequalities) up to n = 5. For n ≥ 6, many more valid and facet-inducing
inequalities are known for Pn

LO that was intensively studied, e.g, in [42, 43, 44].
However, for many of them the associated separation problem is itself NP-
hard [31, 44] and sometimes even no practical separation algorithm is known
at all. We refrain from going into further detail here, except for mentioning
one of the few exceptional classes of inequalities for later reference that indeed
have known polynomial-time separation procedures, namely the so-called k-
fence inequalities [42].

Definition 5.1. (k-fence inequalities [42]). Let U = {u1, . . . , uk} and W =

{w1, . . . , wk} be two disjoint sets of vertices of cardinality 3 ≤ k ≤ |V |
2 . Then

the inequalities
∑

i∈{1,...,k}

xui,wi
+
∑

i,j∈{1,...,k},i6=j

xwi,uj
≤ k2 − k + 1 (3)

are called k-fence inequalities.

16

For n ≥ 6, the k-fence inequalities define facets of Pn
LO [43]. They are based

on particular orientations of a complete bipartite graph Kk,k.

6 New Integer Programming Formulations

In this section, we derive new IP formulations for the instruction scheduling
problem based on the LOP. We directly identify the complete directed graph
Gn = (Vn, An) of the LOP with the vertices of the dependency-DAG G = (V,A),
i.e., Vn = V . To ease the description, we will assume that all LOP variables
w.r.t. the complete graph are present while stating additional constraints based
on the arcs of the given dependency-DAG. A strong advantage of linear order-
ing formulations in modeling precedence-constrained problems is that a known
relation (i, j) ∈ A∗ can be immediately exploited by fixing the variable xi,j to
one. Besides removing symmetry from the problem, variable fixings reduce the
size of the LPs to be solved. This is important, since the number of (integer)
variables in the CP approach by Malik et al. is only linear in the number of
instructions which is crucial for their success in solving large scale instances
with more than 1, 000 instructions. Clearly, this is also one reason why we em-
phasized on variable fixings in the search space reduction techniques discussed
in Sect. 3 and 4. Two major challenges remain: How to formulate latency or,
more generally, distance constraints? And how to model NOPs?

6.1 Modeling Distances and Betweenness

For a pair if instructions i, k ∈ I, i ≺ k, j is between i and k if and only if j is
a successor of i and a predecessor of k, i.e., if xi,jxj,k = 1. This is a quadratic
expression that could be linearized, but there is a preferable way to express
the same information without the need for additional variables and constraints.
Clearly, the product xi,jxj,k is equal to one if and only if the sum xi,j + xj,k is
equal to two. The expression xi,j +xj,k = 2 is equivalent to xj,k +(1−xj,i) = 2
and therefore to xj,k − xj,i = 1, stating that j is between i and k, if j is before
k but not before i.

Lemma 6.1. Let G = (V,A) be a dependency DAG and let an instance of the
LOP be defined w.r.t. G, i.e., xi,k = 1 for all (i, k) ∈ A∗. Let x be an integral
solution to the LOP. Then, for each (i, k) ∈ A∗ and each j ∈ V \ {i, k}, it holds
that xj,k − xj,i ≥ 0.

Proof. Clearly, xj,k−xj,i ≥ −1. So suppose that this relation holds with equal-
ity, since otherwise there is nothing to show. Then xj,k = 0 and xi,j = 0, and,
by assumption, xi,k = 1. Hence, the three-dicycle inequality xi,j+xj,k−xi,k ≥ 0
is violated by x which contradicts the assumption that x is a feasible solution
to the LOP.

Lemma 6.1 shows that we can use the expression xj,k − xj,i to count the
instructions between two dependent instructions i and k. For now, let us assume
that the problem of modeling NOPs is absent, i.e., all required distances between
two instructions could be realized with other instructions only. Then it is easy

17

to see that
∑

j∈V \{i,k}

(xj,k − xj,i) ≥ di,k for all (i, k) ∈ A (4)

is a valid formulation of a distance constraint for (i, k) ∈ A with distance di,k. It
is worth mentioning that, despite the equivalence of the expressions xj,k−xj,i =
1 and xi,j + xj,k = 2, inequalities (4) are stronger than their apparent pendant
inequalities

∑

j∈V \{i,k}(xi,j + xj,k) ≥ 2di,k because any j not between i and k

also contributes to either xi,j or xj,k [45].
In the following, we will frequently use the terms lower bound constraints

and upper bound constraints referring to the special distance inequalities where
respectively i is the super source b and k is the super sink e:

∑

j∈V \{b,k}

xj,k ≥ db,k ⇔
∑

j∈V \{b,k}

xj,k −
∑

j∈V \{b,k}

xj,b

︸ ︷︷ ︸
=0

≥ db,k (5)

∑

j∈V \{i,e}

xi,j ≥ di,e ⇔
∑

j∈V \{i,e}

xj,e

︸ ︷︷ ︸

=|V |−2

−
∑

j∈V \{i,e}

xj,i ≥ di,e (6)

6.2 Stronger distance constraints by examination of inter-
mediate instructions

Constraints that enforce distances between pairs of instructions can be
strengthened considerably when examining the candidate instructions that may
potentially be in between. Let us take a closer look on the just established
distance constraints

∑

j∈V \{i,k} xj,k −
∑

j∈V \{i,k} xj,i ≥ di,k.

The left hand side considers all the instructions j ∈ V \{i, k} while, except for
i = b and k = e, clearly not all these instructions are indeed candidates in order
to attain a position between i and k. We will therefore aim at making the left
hand side as sparse as possible such that the right hand side imposes a maximal
restriction on the real candidate instructions. The following ideas are applicable
not only to our but to any model that uses variables permitting to express
constraints on the set of instructions placed between two other instructions. To
constitute a first simple observation, we consider lower bound constraints as
special cases of distance constraints.

Observation 6.2. Let k ∈ V be an instruction with lower bound lbk. Then any
instruction p that is placed at some cycle c ∈ [0, lbk− 1] must have itself lbp ≤ c

since otherwise it could not be placed there.

So while there are potentially many more instructions (and NOPs) that
might be placed before instruction k, there is only a reduced candidate set
responsible for establishing the lower bound of k. The same is also true for
upper bounds, i.e., an instruction i with upper bound ubi must have at least
Mub − ubi − 1 NOPs or instructions j with upper bound ubj > ubi succeeding
it. This can be exploited by restricting the variables incorporated into the lower
bound constraints (5) to instructions from the set Jk

lb = {j ∈ V \{b} | lbj < lbk}
and those incorporated into the upper bound constraints (6) to stem from the
set J i

ub = {j ∈ V \ {e} | ubj > ubi}.

18

A similar observation can be made and exploited for distance constraints
between two dependent instructions i, k ∈ V . Let di,k > 0 and consider the set
of instructions J = {j ∈ V \ {i, k} | j 6≺ i, k 6≺ j, lbj < ubk and ubj > lbi}.
Clearly, these are all the candidates that might be between i and k, even if
they take their respective extreme positions lbi and ubk. However, we may
again ask for the candidate instructions that are responsible for establishing
the distance di,k between i and k (short responsible). Even for the minimal
position lbk that k can attain, an instruction j that is responsible can only be
in the range [lbk − di,k, lbk − 1]. So the corresponding candidate set is Jk =
{j ∈ V \ {i, k} | j 6≺ i, k 6≺ j, lbj < ubk and ubj ≥ lbk − di,k}. Similarly,
even for the maximal position ubi of i, instructions j responsible can only be
in the range [ubi + 1, ubi + di,k] such that the corresponding candidate set is
Ji = {j ∈ V \ {i, k} | j 6≺ i, k 6≺ j, lbj ≤ ubi + di,k and ubj > lbi}.

i

lbi0 ubi

k

di,k

di,k

di,k

ubklbk

Ji: lbj ≤ ubi + di,k

Jk: ubj ≥ lbk − di,k

Ji: ubj > lbi

Jk: lbj < ubk

Figure 6: Illustration of the case for general distance relationships di,k > 0.

Fig. 6 illustrates the clock cycle intervals corresponding to Ji and Jk that
must be intersected by the scheduling ranges of potentially responsible instruc-
tions. Again, the variables to be incorporated into the distance constraints can
be reduced accordingly. Moreover, if the candidate sets do not coincide, then it
may be beneficial to add two distance constraints related to Ji and Jk for each
precedence relationship. We want to elaborate to some more extent when this
is the case.

A necessary condition for the sets Ji and Jk to differ and to be smaller than
J is that the distance lower bound di,k must be either not binding for the lower
bound of k, i.e., lbk > lbi + di,k, or not binding for the upper bound of i, i.e.,
ubi < ubk − di,k (or both).

Theorem 6.3. Let i, k ∈ V be two dependent instructions such that i ≺ k. If
it holds that lbk = lbi + di,k + 1 and ubi = ubk − di,k − 1, then Ji = Jk = J .

Proof. Consider the definition of Ji = {j ∈ V \ {i, k} | j 6≺ i, k 6≺ j, lbj ≤
ubi + di,k and ubj > lbi}. Using the second equation of the theorem, the term
lbj ≤ ubi + di,k may be replaced by lbj ≤ ubk − 1 which is equal to lbj < ubk
and, hence, the altered Ji matches exactly the definition of J . With the first
equation, Jk can equally be turned into J .

In nonbinding cases however, the intersection Ji ∩ Jk may even be empty
(this is true even in the absence of NOPs while then |Ji∪Jk| ≥ di,k is a necessary
condition for feasibility). Look at Fig. 7. By further reducing ubi or di,k, or
by increasing lbk in the depicted example, the ranges for the two sets could be
made completely disjoint.

19

i

lbi0 ubi

k

di,k

di,k

di,k

ubklbk

Ji: lbj ≤ ubi + di,k

Jk: ubj ≥ lbk − di,k

Ji: ubj > lbi

Jk : lbj < ubk

Figure 7: An example where there is only a small overlap of the ranges defining
the sets Ji and Jk so that |Ji ∩ Jk| might not be large enough to cover di,k.

There are more special cases that allow for an exploitation during the solu-
tion process. If the positions of both vertices i and k are fixed, it might still be
not clear which particular instructions are the ones to be in between. However,
the distance inequality then turns into an equation since we exactly know how
many instructions (and NOPs) need to be in between. In this case, all instruc-
tions that are known to be not in between i and k can be enforced to be either a
successor or predecessor of both. Similarly, if the cardinality of a candidate set
exactly matches di,k and it is impossible that NOPs can occur between i and k,
it is clear that exactly the instructions of the set must be the responsible ones.

6.3 Modeling NOPs

We consider two different ways how to incorporate NOPs into the linear ordering
model.

The first method considers NOPs as what they in fact are - instructions.
With this interpretation, we can simply extend the graph-based LOP formula-
tion (by setting V = I ∪ N with N being a set of NOP vertices) and this will
already guarantee to obtain a permutation of all instructions and NOPs. The
mathematical formulation of this method is given by the basic LOP model ex-
tended by inequalities (4) and variable fixings corresponding to the precedences.
To minimize the number of NOPs needed, one could, e.g., state the convention
that all NOPs that can be placed behind the artificial sink instruction e ∈ V are
proven superfluous and therefore maximize them. The corresponding objective
function would be max

∑

n∈N

xe,n.

The advantages of this approach are clearly that the complete formulation
is a {0, 1}-IP and that, for each NOP, we are able to express and iteratively
improve the bounds on its position in the schedule like for every instruction.
However, since the number |N | of NOP vertices to add depends on (an upper
bound on) the optimal schedule length (and therefore on a number rather than
an input size), the size of the problem formulation is pseudo-polynomial and can
become significantly large especially for instances where |N | > |I|.

Therefore, we strive to develop a formulation that remains of size O(|I|2) in
the number of variables and of size O(|I|3) in the number of constraints, i.e., is
independent from the number of NOPs necessary to construct a feasible sched-
ule. Our method of choice is to have an integer variable ni ∈ N0 that expresses
the number of NOPs placed before an instruction i ∈ I. We first state the full
model and then proceed with its description and a proof of its correctness.

20

min ne

s.t. xi,j + xj,k − xi,k ≥ 0 for all i, j, k ∈ V, i < j < k

xi,j + xj,k − xi,k ≤ 1 for all i, j, k ∈ V, i < j < k

xi,k = 1 for all (i, k) ∈ A∗ (7)

(nk − ni) +
∑

j∈V \{i,k}

(xj,k − xj,i) ≥ di,k for all (i, k) ∈ A (8)

nk ≥ ni for all (i, k) ∈ A (9)

nk +Mi(1 − xi,k) ≥ ni for all i, k ∈ V, i ‖ k (10)

ni +Mk(1 − xk,i) ≥ nk for all i, k ∈ V, i ‖ k (11)

xi,j ∈ {0, 1} for all i, j ∈ V, i < j

ni ∈ N0 for all i ∈ V

The objective function is to minimize the number of NOPs placed before
the artificial sink instruction. Besides the three-di-cycle inequalities from the
LOP, we have fixed variables for each precedence (i, k) ∈ A∗. Further, for each
(i, k) ∈ A, there is a distance constraint (8) that is composed from constraint (4)
by adding the NOPs before k and subtracting the NOPs before i, effectively
yielding the number of NOPs in between i and k. Also, for (i, k) ∈ A, we
already know that nk ≥ ni must hold. For independent instructions i, k ∈ V

however, we would usually need the following two (nonlinear) constraints in
order to achieve globally consistent solutions:

nk ≥ nixi,k for all i, k ∈ V, i ‖ k

ni ≥ nkxk,i for all i, k ∈ V, i ‖ k

Here we obtain products of a general integer and a {0, 1}-variable and do not
favor linearization by the introduction of additional variables and constraints.
Instead, we prefer a linearization using big-M constraints (10) and (11) in this
case, since we can hope to compute relatively strong Ms by using lower and
upper bounds N lb

i ∈ N0 and Nub
i ∈ N0 on each of the NOP variables ni. A good

choice for Mi (Mk) is an upper bound on the difference of NOPs between k and
i (i and k) in the case that k precedes (succeeds) i. Hence, Mi should be equal
to Nub

i −N
lb
k (or greater) and, similarly, Mk ≥ Nub

k −N
lb
i is a valid choice. In the

case that k precedes i, it holds that xi,k = 0 and the subtraction of Mi makes in-
equality (10) trivially satisfied while (11) is binding. The other case is analogous.
For later reference, we denote the polytope corresponding to the inequalities of
the integer program for a DAG G = (V,A) with v = |V | and m =

(
n
2

)
by

PG
ISP = conv{(x, n) ∈ {0, 1}m ×Nv

0 | x ∈ P v
LO and (x, n) satisfies (7)-(11)}. We

will write just PISP whenever we want to refer to the set of feasible solutions
of the integer program without relation to a distinct graph instance.

Theorem 6.4. Let G = (V,A) be a dependency DAG, v = |V | and m =
(
n
2

)
.

Then the set of integral solutions to PG
ISP corresponds exactly to the set of

feasible schedules σ of G.

Proof. Moved to Appendix A.

21

The advantages concerning the size of this model come at the cost of some
disadvantages. First of all, due to the big-M constraints, it is possible in frac-
tional solutions (x, n) ∈ [0, 1]m×Rn

0 that nj < nixi,j . In essence, the n-variables
reintroduce the same disjunctive modeling challenges as with issue-cycle vari-
ables (discussed in Sect. 5) for the original problem itself. However, the lower
and upper bounds we can compute on n-variables are much better than they
would be for issue cycles of instructions leading to much smaller M-values. An-
other weakness is that the position of NOPs is encoded only implicitly, i.e., we
cannot easily improve bounds on their positions during the optimization process
and exploit them when formulating constraints. However, despite these issues,
we found the model with integer NOP variables promising in our experiments.

7 Additional Classes of Inequalities

The following classes of inequalities will be presented w.r.t. to the model with
integer NOP variables presented in Sect. 6.3. If the model with linear ordering
variables only is used, most of the constraints can be adopted by simply replacing
terms with ni-variables by terms employing a sum over the respective variables
of the at most Nub

i NOPs before an instruction i.

7.1 Conditional Issue Cycle Bound Constraints

In general, the lower and upper bounds associated to independent pairs of ver-
tices i, k ∈ V are unrelated to each other. Nevertheless, a particular relative
order may impose some restrictions on the positions of i and k. Let lbi > lbk,
such that the conditional position lbi+1 for the case xi,k = 1 is a stronger lower
bound than k’s usual one and is (due to the strict relation) not immediately
implied by a combination of a strengthened lower bound constraint for k and
xi,k = 1 alone. For the same reason, let ubk < ubi. Then, with a = lbi− lbk and
b = ubi − ubk, we may formulate the following inequalities:

nk +
∑

j∈V \{i,k}

xj,k ≥ lbk + axi,k for all i, k ∈ V, i ‖ k, lbi > lbk (12)

ni +
∑

j∈V \{i,k}

xj,i ≤ (ubi − 1)− bxi,k for all i, k ∈ V, i ‖ k, ubi > ubk (13)

Theorem 7.1. Inequalities (12) and (13) are valid for PISP .

Proof. We restrict ourselves to the lower bound constraint (12) since the proof
for the upper bound version is analogous.

First, let xi,k = 1. Then π(i) < π(k), so the number of predecessors of k can
be enforced to be at least lbi + 1. In fact, the right hand side of constraint (12)
enforces only lbk + lbi − lbk = lbi predecessors. This is correct however since,
in the case xi,k = 1, i is also a predecessor that will not be accounted for on
the left hand side. Now, let xi,k = 0, i.e., π(k) < π(i). Since then i is not a
predecessor of k, still lbk others need to be enforced.

At this point, it should be shortly noted that the straightforward implication
inequality nk +

∑

j∈V \{i,k} xj,k ≥ lbixi,k is also valid, but much weaker than

inequality (12) for fractional values of xi,k. In contrast to that, the upper bound

22

version ni +
∑

j∈V \{i,k} xj,i ≤ (ubk − 1)xi,k is not a valid inequality since it
imposes invalid restrictions in the case that xi,k = 0.

An important property of inequalities (12) and (13) is that, although the
bounds lbi + 1 (ubk − 1) are implied by a combination of lower (upper) bound
constraints, three-dicycle inequalities and the case xi,k = 1 for integer solutions,
there exist fractional LP solutions that violate them, i.e., they are nonredundant
and can be used as cutting planes.

Theorem 7.2. PISP has fractional vertex solutions that violate inequalities (12)
and (13).

Proof. Moved to Appendix B.1.

Lower and upper bound inequalities may be strengthened using the con-
cepts from Sect. 6.2. They may be even further strengthened by taking fixed
instructions and Hall intervals into account. For instance, if the conditional
position lbi + 1 in inequalities (12) is known to be already attained by another
instruction, then the conditional lower bound of k for the case xi,k = 1 may be
increased to the first cycle not already occupied.

7.2 Transitivity-driven Conditional Bound Constraints

Constraints similar to the usual conditional bound inequalities can be derived
by considering triples of instructions i, j, k ∈ V , i < j < k, where exactly
one of the three associated precedence decisions is already made. Exploiting
that transitivity of precedence relationships must hold, even stronger logical
implications on the bounds of instructions may be imposed using conditional
expressions.

We discuss in detail the case where i ≺ j (xi,j = 1) is the only decided rela-
tion. The transitivity of precedence relations (the corresponding three-dicycle
inequalities) w.r.t. i, j, and k would then be violated if and only if xj,k = 1 and
xi,k = 0 at the same time.

By assuming, e.g., xi,k = 0, we can therefore conclude that xj,k has to be
zero in any feasible schedule, too. The corresponding order is π(k) < π(i) < π(j)
so that, in this case, the position of j must be at least lbk+2 (while lbj ≥ lbi+1
already holds since i ≺ j is already decided). If this imposes a new constraint
on j, i.e., lbk + 2 > lbj, then an inequality of the form

nj +
∑

a∈V \{j}

xa,j ≥ lbj + (lbk + 2− lbj)xk,i (14)

can be added to the problem. A remarkable property of this construction is that
the conditional variable xk,i is not related to j. Hence, the inequality imposes
restrictions on the position of j from decisions made on the relative order of
two other instructions. Another valid implication (where this property does not
hold anymore) is that k must be placed at position ubj − 2 the latest if xi,k = 0
(xk,i = 1). This leads to the following inequality:

nk +
∑

a∈V \{i,k}

xa,k ≤ (ubk − 1)− (ubk − (ubj − 1))xk,i (15)

23

While the correctness of constraint (14) is easy to verify since it is con-
structed very similarly to constraint (12), the case of constraint (15) needs
some formal explanation.

Theorem 7.3. Inequalities (15) are valid for PISP .

Proof. If xk,i = 0, the constraint shall not be more restrictive than the usual
upper bound constraint for k. In this case, i is a predecessor of k that is not
counted on the left hand side, so we may enforce only at most ubk − 1 other
predecessors.

In the other case that xk,i = 1, i is not a predecessor of k and the position of
k shall be smaller or equal to ubj−2. Hence, it is correct to limit the number of
predecessors from V \ {i, k} (and preceding NOPs) by (ubk− 1)− (ubk − (ubj −
1)) = ubk − 1− ubk + ubj − 1 = ubj − 2.

As indicated above, for xi,j = 1, further implications can be made by as-
suming xj,k = 1. Further, one can consider similar same case distinctions for
xi,j = 0 and the other possible relations of the variables xj,k and xi,k (some of
which are symmetric [45]).

7.3 Conditional NOP Constraints

Let i, k ∈ I be two independent instructions such that the lower bound on the
number of NOPs before i, N lb

i , is strictly larger than the corresponding lower
bound N lb

k of k.
The inequalities

nk ≥ N lb
k + (N lb

i −N lb
k)xi,k for all i, k ∈ V, i ‖ k,N lb

i > N lb
k (16)

are valid for PISP because, if xi,k = 1, then k is a successor of i and must
have at least as many preceding NOPs as i, and, if xi,k = 0, then an inequality of
this form is no more restrictive than the usual variable lower bound associated
to nk. In addition to that, the big-M notation used in the constraints (10)
and (11) allows for situations where these constraints may be violated. Let us
consider inequalities (10) written as

nk ≥ ni −Mi(1− xi,k) for all i, k ∈ V, i ‖ k

and assume that xi,k takes some fractional value. Then, for Mi > 0, there will
be some positive amount x = Mi(1 − xi,k) subtracted from the value of ni on
the right hand side while there will be a positive amount y = (N lb

i − N lb
k)xi,k

added to N lb
k on the right hand side of inequalities (16). In particular, in any

case where ni−x < N lb
k + y, inequalities (16) impose a stronger lower bound on

the value of variable nk. To construct a simple example where a solution that
is binding w.r.t. the big-M constraints is violated by inequalities (16), assume
further that ni = N lb

i . Then

ni −Mi(1− xi,k) < N lb
k + (N lb

i −N lb
k)xi,k

⇔ N lb
i −Mi +Mixi,k < N lb

k + (N lb
i −N lb

k)xi,k

⇔ N lb
k + (N lb

i −N lb
k)−Mi +Mixi,k < N lb

k + (N lb
i −N lb

k)− ((N lb
i −N lb

k)(1 − xi,k))

⇔ −Mi +Mixi,k < −(N lb
i −N lb

k) + (N lb
i −N lb

k)xi,k

24

holds for any Mi such that Mi > (N lb
i −N lb

k). This is the usual case in practice
since Mi must be chosen such that it is larger than or equal to Nub

i − N lb
k

(cf. Sect. 6.3). A weakness of inequalities (16) is however that they are only
helpful in the presence of LP solutions where the variables ni and nk take values
that are close to their lower bounds.

A symmetric version for NOP upper bounds may be formulated as well:

ni ≤ Nub
i − (Nub

i −Nub
k)xi,k for all i, k ∈ V, i ‖ k,Nub

k < Nub
i (17)

7.4 Gap Filling Cuts

The following inequalities target the frequent cases where an instruction i ∈ I

has a lower bound on its issue cycle but the set of instructions that will ‘fill’
these preceding cycles is not completely determined. More formally, we consider
instructions i ∈ I with issue cycle lower bound lbi and an upper bound on the
number of preceding NOPs Nub

i such that |P ∗(i)| + Nub
i < lbi. Let g be the

corresponding lower bound gap, i.e., g = lbi − (|P ∗(i)| + Nub
i). By a similar

argument as discussed in Sect. 6.2, there must be at least g instructions j

currently independent from i that have a lower bound lbj < lbi.

Observation 7.4. Let i ∈ I be an instruction with lower bound gap g > 0
and let I< = {j ∈ I | j ‖ i and lbj < lbi}. An instruction p ∈ I< must be a
gap-filling instruction (i.e., must attain a position ≤ lbi− 1) if there are strictly
less than g other predecessors of i from the set I< \ {p}.

In other words, whenever i has less than g predecessors from I< \{p} closing
its gap, we can conclude that p is needed to close it. This implication works
only in this direction since p may still be gap-filling if i has g or more other
predecessors from I< \ {p}, namely whenever i attains a position strictly later
than lbi. Nonetheless, the observation can be used to construct an effective
separation scheme. Let up = ubp − (lbi − 1) be the individual gap between the
original upper bound of p and the upper bound attained if p was one of the
instructions to fill the gap before lbi. Then we may formulate the following
special upper bound constraint for p:

np +
∑

j∈I\{p}

xj,p ≤ ubp − gup + up

(∑

j∈I<\{p}

xj,i

)

(18)

Theorem 7.5. Inequalities (18) are valid for PISP .

Proof. We observe first that inequality (18) is equivalent to the usual upper
bound constraint for p if

∑

j∈I<\{p} xj,i = g. In this case, i has exactly g and

therefore sufficient predecessors from the set I< \ {p} in order to fill the lower
bound gap. Thus, no stronger than its usual upper bound may be imposed on
p. If

∑

j∈I<\{p} xj,i > g, then constraint (18) is dominated by p’s usual upper
bound constraint.

The remaining and interesting case is that
∑

j∈I<\{p} xj,i < g, i.e., there are

strictly less than g predecessors from the set I<\{p}. Then p must be one of the
predecessors of i responsible to close the lower bound gap. However, since we
know that at least g predecessors from I< must exist, we also know that at least
g − 1 predecessors from I< \ {p} must exist. Hence, for each feasible solution,
it holds that g −

∑

j∈I<\{p} xj,i ≤ 1 so that at most up is subtracted from p’s
usual lower bound ubp. By construction, ubp − up = lbi − 1 as intended.

25

The beneficial property of this construction is that, while we exploit that
g−

∑

j∈I<\{p} xj,i ≤ 1 holds for any integer feasible solution, LP solutions may
have a difference strictly larger than one in general. The higher the infeasibility
of an LP solution is w.r.t. this relation, the stronger will be the reduction of
p’s upper bound, such that these solutions will frequently be cut off by the
inequality. But even for fractional solutions where 0 < g −

∑

j∈I<\{p} xj,i ≤ 1

holds, the inequality will lead to a (potentially scaled) reduction of p’s upper
bound.

Theorem 7.6. PISP has fractional vertex solutions that violate inequalities (18).

Proof. Moved to Appendix B.2.

A straightforward separation procedure for these constraints can be imple-
mented to have an asymptotic running time ofO(|I|2) [45]. The inequalities (18)
may even be slightly strengthened and the separation procedure can be improved
to potentially find more violations. So far, the property to be a predecessor
(successor) of i is used as a certificate for instructions to be (not) gap-filling.
However, there are other possible certificates. For instance, an instruction p

is also proven (not) to be gap-filling if p is a predecessor (successor) of any
other instruction that has a lower bound greater than or equal to lbi. Let
L = {r ∈ I | lbr ≥ lbi}. Then we may determine, for each j ∈ I< \ {p}, the
minimal xj,r such that r ∈ L and sum up over all these values instead of just
over all xj,i.

An analogous version of the constraint can be formulated and separated for
upper bound gaps of an instruction i. In this case, potential successor candidates
I> of i are determined and any s ∈ I> must have its lower bound increased to
ubi + 1 if not enough other potential successors are in fact successors of i. The
associated inequality is:

ns +
∑

j∈I\{s}

xj,s ≥ lbs + gls − ls

(∑

j∈I>\{s}

xi,j

)

(19)

To close this subsection, we remark that the concept exploited in these in-
equalities can be further generalized to interval filling cuts [45] whose separation
is however more time consuming in practice and therefore not considered for our
final solver implementation.

7.5 Predecessor / Successor Set Constraints

Sometimes it may be beneficial to enforce a certain bound on the number of
predecessors or successors out of a given particular set of instructions. In a
very general fashion with particular predecessor sets P ⊆ P ∗(i) and successor
sets S ⊆ S∗(i), such upper bounding (lower bounding with ‘≥’ instead of ‘≤’)
constraints can be formulated for an instruction i ∈ I as

∑

j∈P xj,i ≤ k and
∑

j∈S xi,j ≤ k. Lemma 4.4 in Sect. 4.3 provides an example to straightforwardly
construct such inequalities.

7.6 Superiority Inequalities

By a superiority inequality we mean a very simple constraint of the form xc,d ≥
xa,b for some a, b, c, d ∈ V , a 6= b and c 6= d, that has the interpretation xc,d = 1

26

whenever xa,b = 1, and xa,b = 0 whenever xc,d = 0. In general, the impact
of such inequalities is rather weak. However, if one succeeds in linking rather
unrelated variables due to logical implications, these constraints might help to
find solutions or detect infeasibility more quickly.

A possible application is strongly related to the ideas presented in Sect. 4.2.
There, we were able to derive new precedences from a particular case of overlap-
ping intervals. Here, making weaker assumptions about the relations between
the involved instructions, we are at least able to derive a superiority relationship.

Theorem 7.7. Let u, v ∈ V such that lbu ≥ ubv − 1. Let i ∈ V , i ‖ u, and
i ‖ v. Then it holds that i is a successor of v whenever i is a successor of u, and
that i is a predecessor of u whenever i is a predecessor of v, i.e., xv,i ≥ xu,i.

Proof. The only case where u can precede v is if lbu = ubv − 1 and u attains
its lower bound position while v attains its upper bound position. In all other
cases, u must be a successor of v and then it is clear that, if i succeeds u, it
must also succeed v and that, if i precedes v, it must also precede u.

Coming back to the first case: Suppose that i succeeds u. Then the position
of i is at least lbu + 1 ≥ ubv. As a consequence, i must succeed also v. Finally,
suppose that i precedes v. Then the position of i is at most ubv − 1. Hence, i
must also precede u whose position is at least ubv − 1.

7.7 Variable Equality Constraints

A variable equality constraint is literally a constraint that enforces the equality
of two linear ordering variables, i.e., xc,d = xa,b for some a, b, c, d ∈ V , a 6= b and
c 6= d. Being very simple, these constraints can have very different modeling
semantics besides their intuitive interpretation. For example, they can be used
to model an exclusive-or relation. So if an expression like xa,b+xc,d = 1 shall be
formulated, then this is equivalent to enforcing xa,b = xd,c. This can be easily
verified by applying the projection relation xc,d = 1 − xd,c. Again, we give a
practical application.

In Sect. 4.3, we already made the observation that, for any Hall interval
[a, b] with instruction set I∗(a, b), any instruction j ∈ I \ I∗(a, b) that is a
predecessor (successor) of any instruction i ∈ I∗(a, b) must be a predecessor
(successor) of all the instructions in the set I∗(a, b). Sometimes, we may find
instructions j ∈ I \ I∗(a, b) being neither a predecessor nor a successor of any
of the instructions in I∗(a, b). It must then hold that [a, b] ⊂ [lbj, ubj] since
otherwise we could decide which side of [a, b] is the right one for j. In this case,
we can still enforce that j must be either before or after all the instructions
I∗(a, b) by adding the constraints:

xj,u = xj,v for all u, v ∈ I∗(a, b), u 6= v

7.8 NOP Difference Constraints

Like for the usual distance constraints, we are sometimes in the situation that we
can derive a minimum, maximum or even exact difference between the number
of NOPs before two dependent instructions i and k. For example, by carefully
building the normal distance constraints using the strengthening principles pre-
sented in Sect. 6.2, we may find out that the distance di,k can be covered by at

27

most bubi,k, b
ub
i,k < di,k, instructions and that therefore at least N lb

i,k = di,k − bubi,k
NOPs are necessary between the two. If all the bubi,k instructions are already
decided to be successors of i and predecessors of k, then the usual distance
constraint reduces to a minimum NOP difference constraint nk − ni ≥ N lb

i,k.
More interesting is the case where the number of instructions known to be

fixed between i and k, blbi,k, is large so that (ubk−lbi−1)−b
lb
i,k < Nub

k −N
lb
i . Then,

the lower bound blbi,k allows to derive a better upper bound on the number of
NOPs between i and k as is given by the NOP variable upper and lower bounds.
While we cannot improve the variable bounds since we do not know whether N lb

i

needs to be increased or Nub
k needs to be decreased, we may add the inequality

nk − ni ≤ Nub
i,k with Nub

i,k = (ubk − lbi − 1)− blbi,k.
An example where we may apply an exact NOP difference inequality of the

form nk − ni = Ni,k can be obtained in the same fashion as with the variable
equality constraint for Hall intervals following Sect. 7.7. Since we know for any
Hall interval [a, b] that it is completely filled with instructions, we also know
that there can be no NOP contained in [a, b]. Hence, the number of NOPs
preceding or succeeding any pair of instructions i, j contained in [a, b] must be
equal.

8 The Branch-and-Cut Approach

We present the main ingredients of our Branch-and-Cut solver for the ISP. It
solves the IP formulation associated to the polytope PISP presented in Sect. 6.3.
The three-di-cycle inequalities are not added to the IP from the beginning, but
separated instead. Distance constraints are added for each distance relationship
that is not already implied transitively.

8.1 Formulation as a Feasibility Problem

In Sect. 3, we addressed the fact that upper bounds on the issue cycles of instruc-
tions are strongly related to the global upper bound Mub on the makespan. We
already discussed that we may therefore consider any M in the range [Mlb,Mub]
in order to obtain the corresponding issue cycle upper bounds ubMi = M−di,e−1
that need to be respected if a schedule of length M shall be realized. A crucial
observation is that new precedences i ≺ j can be obtained as soon as ubMi ≤ lbj
holds for some particular M . These precedences may in turn lead to additional
issue cycle bound improvements and thus to further precedences. Hence, con-
ceptually fixing the current lower bound schedule length and effectively turning
the optimization problem into a (series of) feasibility problem(s) can be very
profitable w.r.t. search space reductions and in either finding a schedule of the
current length or proving that none exists.

8.2 Objective Function

Even though we solve feasibility problems, the objective function is not obsolete
and can be used to steer the optimization process towards good or optimal
solutions. For instance, it can be observed that schedules being one or two cycles
better than the currently best known one usually do not deviate too much from
each other. Rather, there are some key instructions moved in their position

28

such that NOPs can be saved. Let σ be the best known schedule so far and let
σ(i) be the position of i ∈ V . We assign the cost coefficient ci,j = σ(i)−σ(j) to
the linear ordering variable xi,j (the NOP variable coefficients are zero). This
objective function (to be minimized) has the following properties:

• The coefficients are strictly negative if σ(i) < σ(j). Hence, setting xi,j = 1
and therefore placing j after i again will be rewarded by the objective
function.

• The coefficients are strictly positive in the opposite case and with the same
effects.

• The reward depends on how far the two instructions were placed apart be-
fore. In particular, a large distance between two instructions is considered
as a stronger suggestion to keep the order of the two as before.

• No linear ordering variable will have a zero coefficient since no two in-
structions can have the same position in σ (which ensures that we do not
add symmetries this way).

8.3 Branching Rules

A common standard branching rule selects from a set of candidate variables
with LP value closest to 0.5 the one with the highest absolute objective function
coefficient (often referred to as close half expensive). Such a rule is also provided
by ABACUS and it is applied at all subproblems with depth level less than five,
in the hope that this helps in finding a solution quickly (if any exists). After
that, we first try to apply the following rules in the order of their presentation.
If no variable can be found by them, we fall back to the standard rule.

8.3.1 Branching on Critical NOP Variables

We consider instructions i that satisfy their lower bound position only due to a
fraction of NOPs, i.e. there is a NOP variable ni such that

∑

j∈V \{i} xj,i+ni ≥

lbi, but
∑

j∈V \{i} xj,i + ⌊ni⌋ < lbi. If there is at least one such variable, we
select the one that causes the largest violation of the corresponding lbi when
it is reduced to ⌊ni⌋. In the first created subproblem, the upper bound on the
variable will be set to ⌊ni⌋ in the hope that it quickly proves infeasible. In the
other one, the lower bound of ni will be set to ⌈ni⌉.

8.3.2 Branching on Contradictory Positions

This branching rule deals with all pairs of instructions i, k ∈ V, i 6= k, such that,
considering only the linear ordering variables, i precedes k, but considering
also the NOP variables, i succeeds k in total. In other words, we look for
variables xi,k such that

∑

j∈V,j 6=i xj,i <
∑

j∈V,j 6=k xj,k, but ni+
∑

j∈V,j 6=i xj,i >

nk+
∑

j∈V,j 6=k xj,k. Such a scenario is possible due to the big-M constraints (10)
and (11). Among all variables satisfying the displayed conditions, we select the
one that has its LP value closest to one half.

29

8.3.3 Branching on Equal Positions

Here, we relax the condition of the previous rule to also consider variables
whose two involved instructions i and k obtain the same position, i.e., ni +∑

j∈V,j 6=i xj,i = nk +
∑

j∈V,j 6=k xj,k.

8.3.4 Branching on Illegal Positions

This is another relaxation where we consider pairs i, k ∈ V , i 6= k such that
∑

j∈V,j 6=i xj,i <
∑

j∈V,j 6=k xj,k, but ni ≥ nk (although this neither leads to
equal nor contradictory positions in total).

8.4 Propagation at Subproblems

Whenever a linear ordering variable is set during the branch-and-bound proce-
dure, the corresponding decision induces a new precedence in each of the two
resulting subproblems. Before the first LP is solved, we propagate the transitive
precedences and distance updates that result from the set branching variable.
The resulting new distance constraints are added to the LP and those that have
become redundant are removed. In addition, some of the preprocessing steps
described in Sect. 3 and 4 are carried out in order to potentially further improve
on the data or to detect infeasibility of the subproblem.

8.5 Cutting Plane Separation Strategy

For the experimental evaluation, we considered two different separation strate-
gies. The first is a minimum configuration, where the separation is mainly re-
stricted to the three-dicycle inequalities (3CYC). Besides these, there are some
constraints that are always separated as byproducts of other routines, especially
of those dealing with Hall intervals and the addition of distance constraints.
These are:

• Variable equality constraints w.r.t. Hall intervals following Sect. 7.7 (VEC).

• NOP difference constraints exploiting the situations mentioned in Sect. 7.8
(NOPD).

The second ‘full’ configuration activates all the separation routines for the men-
tioned classes of inequalities in order to permit an evaluation of their impact.
The additionally separated inequalities are:

• Three-fence inequalities (heuristically as described in Sect. 8.5.1), if no
violated three-dicycle inequalities were found (3FEN).

• Conditional bound constraints from Sect. 7.1 (CND).

• Conditional bound constraints exploiting transitivity implications follow-
ing Sect. 7.2 (CNDT).

• Conditional NOP constraints as discussed in Sect. 7.3 (CNOP).

• Gap filling cuts as presented in Sect. 7.4 (GAP).

30

• Predecessor/successor set constraints as described in Sect. 7.5 and based
on Lemma 4.4 from Sect. 4.3 (PSB).

• Superior variable inequalities based on overlapping intervals as described
in Sect. 7.6 (SVC).

The capital abbreviations in parenthesis will be used in the tables of the
evaluation section. The corresponding separation algorithms are, with the ex-
ception of the three-fence heuristic, all of straightforward enumerative character.
Further, they are all of polynomial time complexity. Irrespective whether the
minimum or full separation configuration was used, a branching step is enforced
after at most five iterations of interleaved LP solving and separation or if no
violated inequality is found.

8.5.1 Fences

We implemented a simple three-fence separation heuristic based on the algo-
rithm described in [42]. Our version is as follows: Determine three arcs xui,wi

,
i ∈ {1, 2, 3}, with no endpoint in common and such that 0.3 ≤ xui,wi

≤ 0.7. Let
U and W be the ordered sets (u1, u2, u3) and W = (w1, w2, w3) respectively.
Looking at the definition in Sect. 5.2 again, we see that the other arcs xwi,uj

,
i, j ∈ {1, . . . , 3}, i 6= j of the three-fence inequality corresponding to U and W

are immediately implied and a violation by the current LP solution can easily
be tested.

8.6 A Primal Heuristic based on List Scheduling

In most of the cases, the solved LPs will have either fractional variables or
violated three-dicycle constraints, or both, i.e., the solution is not feasible for
the integer program. In any of these cases, we apply primal heuristics that
construct list schedules by employing the current LP solution in order to make
decisions. More specifically, we construct two forward and two backward list
schedules as follows. The first forward and backward list schedules obey prece-
dences and latencies from the initial dependency DAG. The second ones obey
all precedences and distances known in the current subproblem. The priority
of each instruction is its distance to the artificial super sink (backward: super
source) in terms of the LP solution. Further, since the precedences change with
each branching step, two usual critical path list schedules (again, one forward,
one backward) are carried out once at each subproblem. If a new incumbent
solution is found by any of these list schedules, it is stored, the global upper
bound on the makespan is updated and, if it not does not already match the
currently assumed schedule length, the optimization process is restarted with
an updated objective function (cf. Sect. 8.2). The primal heuristics are key in
finding good and optimal schedules quickly.

8.7 Implementation with ABACUS

We implemented our integer programmingmodel with the branch-and-cut frame-
work ABACUS [46]. We kept all standard parameters, except that we disabled
strong branching, told the framework that optimal objective values must be
integer, and limited the number of inequalities to add by 100, 000 per iteration.

31

The LP solver to be employed can be selected from a list of supported ones. For
the subsequently printed results, we chose CPLEX in version 12.6 [47].

The choice of ABACUS permitted us to implement the interleaving of LP solv-
ing, the application of cutting planes, and the propagation at the subproblems
of the branch-and-bound tree in a straightforward and flexible way. However, in
contrast to (commercial) IP solvers that often provide fast heuristic separators,
ABACUS does not provide a fine-tuned separation of general cutting planes for
integer programs, such as, e.g., {0, 12}-cuts [48]. This is a potential disadvantage
since it is likely that these would help in detecting infeasibility of some schedule
lengths more quickly, especially because the (feasibility) problem to be solved
is indeed to prove that a particular polyhedron contains no integer point. Even
more, some of the more complex classes of facet defining inequalities of the lin-
ear ordering polytope, such as, e.g., the Möbius ladders [43], are in fact special
cases of {0, 12}-cuts [44] that could possibly be recognized this way.

Despite knowing about these disadvantages, ABACUS was preferred over a
commercial IP optimization software because we did not aim at competing with
the CP solver by means of black-box tools. Clearly, the sustained performance
of the models derived in this chapter could possibly even be better if even more
sophisticated integer programming techniques were implemented or by simply
profiting from some closed-source implementation tweaks. Using ABACUS,
it could be made sure that the results presented in the following section are
achieved by means of the models and techniques that arose from the research
presented in this thesis only.

9 Experimental Evaluation

We evaluated our approach using the same test suite that was used in the
paper presenting the optimal CP approach by Malik, McInnes and van Beek [7].
Fortunately, Peter van Beek sent the instances. The set contains even roughly
17, 000 instances more than were used in their experiments and that we now
solved in addition. In total, the set comprises 369, 861 pre- and post-register-
allocation basic blocks taken from 28 application codes of the SPEC 2000 integer
and floating point benchmarks. When referring to particular instances, the
prefix AR indicates a post-register-allocation block. Solvers presented prior to
the mentioned CP solver failed to solve hundreds of instances from this set.
In [7], the authors report that they were able to solve all but two instances to
optimality for single-issue processors within a time limit of ten minutes of CPU
and system time. In our repeated experiments, that were run single-threaded
on a Debian Linux system with g++ 4.7.2 and optimization level -O2 on an Intel
Core i7-3770T processor running at 2.5 GHz and with 32 GB RAM, we found
only one instance that timed out with their solver. Within the same time limit,
our solver was not able to solve eleven instances using the minimum separation
configuration described in Sect. 8.5.

Table 1 categorizes the instances and the computational results w.r.t. the
size of the basic blocks. The third column states the number of instances that
could be solved by the applied preprocessing techniques only, i.e., by proving
optimality of a list schedule without solving an IP. The large numbers reflect the
importance of these methods for instruction scheduling while being completely
independent from the final (exact) solution approach. While we concentrated

32

IP CP [7]

Size #DAGs Prep >600s >60s >1s >600s >60s >1s

3 - 5 190, 726 190, 726

6 - 10 96, 807 96, 803

11 - 15 33, 229 33, 166

16 - 25 23, 994 23, 903 1

26 - 50 15, 801 15, 602 2

51 - 100 5, 945 5, 819 3 7 11 17

101 - 250 2, 956 2, 851 3 3 13 16

251 - 500 256 235 1 1 17 38

501 - 1000 105 94 2 3 33 1 2 70

1001 - 2597 42 33 2 11 33 7 41

total 369, 861 369, 231 11 25 109 1 9 183

Table 1: Size distribution of the instances, number of instances solved by pre-
processing and timeouts for various time limits.

our presentation (and implementation) to those search space reduction tech-
niques that appeared to have at least some influence on the performance of the
solver, it is hard to tell which method has which impact in detail. Many fac-
tors, such as the decision when to call these methods at all, the order of calling,
and the thresholds that define when to stop the surrounding loop have signif-
icant, but very different, consequences that depends mainly on the structure
of an instance. Especially for very large instances, an iterative application of
the methods described in Sect. 3.2.4 to obtain new precedences and their tran-
sitive propagation could run for hours before reaching a fixed point where no
more precedences can be derived. We consciously refrained from parameterizing
these options and employed only a simple rule that stops the derivation of new
precedences if less than half of a percent of the precedences obtained in the very
first run are obtained in the current iteration. The other routines are not at
all steered and run until a fixed point is reached. In contrast to that, the CP
solver sets relative time limits for various subroutines based on the size of the
instances. A more intensive tuning of parameters could therefore lead to be-
ing even more competitive, but a meaningful evaluation of the several possible
parameter settings would require a computational study at the length of this
paper for itself. It is also unclear what would be a good measure for the impact
of a search space reduction method in this setting.

In total, 74 instances more could be scheduled in less than a second compared
to the CP solver. However, there are also 16 more instances that needed between
one and 60 seconds and ten instances more that could not be solved within a
time limit of ten minutes of CPU and system time. Table 2 lists all the instances
that the solver was not able to solve within this limit. The optimization was not
always stopped exactly after this time (as is shown in the last column) because
the time limit was passed to the internal timer provided by ABACUS for the
IP solution phase. So if the preprocessing took a long time or multiple IPs were
solved, the total time could exceed the limit given for a single IP. Column ILB
gives the initial lower bound on the makespan (after the preprocessing phase).
PLB denotes the lower bound that the whole solver was able to prove in the
time denoted in the last column, and BEST the best solution it could find.

33

OPT is the optimum makespan (if known) and IUB is the length of the best
initially determined list schedule. We remark that the DAGs corresponding to
the instances AR-12061 and AR-11852 are identical.

Basic Block # Instr. ILB PLB OPT BEST IUB Time

crafty/AR-2903 495 876 878 879 879 882 632

crafty/AR-4661 713 1, 301 1, 303 [1, 306, 1, 307] 1, 308 1, 310 773

fma3d/6261 141 250 250 251 251 251 608

fma3d/5417 77 99 101 102 102 107 601

fma3d/6916 149 259 259 260 260 260 607

fma3d/AR-9459 860 923 925 932 938 1, 039 784

jpeg/AR-3529 1, 824 3, 554 3, 554 3, 554 3, 556 3, 561 922

mesa/AR-11436 1, 508 1, 735 1, 736 1, 737 1, 737 1, 739 699

sixtrack/AR-12061 87 93 94 95 95 101 1, 007

sixtrack/AR-11852 87 93 94 95 95 101 1, 007

sixtrack/5960 195 195 195 198 198 210 602

Table 2: Instances not solved within 600 seconds by our solver (AR = after
register allocation).

Instance AR-4661 is the only one that could be solved by neither of the
two methods. Hence, the optimum makespan is unknown. However, the list
scheduler implemented into the CP solver found a solution of length 1307 and
the solver could prove that no schedule with a makespan smaller than 1306
exists. Only in a single case (AR-3529), the lower bound proven by the branch-
and-cut solver is optimal, but an optimal solution was not found within the
time limit. An optimal solution was also not found for the instances AR-4661
and AR-9459 but also without having proved that no better schedule can exist.
In all the other cases, the optimum solution has been found, but the instances
could eventually not be solved because the solver was not able to prove that no
better schedule exists.

Disappointingly, this situation does not change when activating the full sep-
aration strategy as described in Sect. 8.5. Tables 3 and 4 show statistical data
about the number of subproblems and LPs solved as well as the number of sep-
arated inequalities for both separation strategies and the timed-out instances.
While it is a positive result that a large number of violated inequalities could
be found by the various separation routines, these inequalities could not prove
essential in determining infeasibility of the respective integer programs. On
the contrary, the additional time spent for separation even led to three more
timeouts for the instances fma3d/5416, fma3d/6612, and vpr/3140. Only for
the instance 5960, we can observe that the additional inequalities helped to
prove at least the nonexistence of a schedule without NOPs more quickly. The
three-fence separator described in Sect. 8.5.1 could only seldom find violated
inequalities. However, besides its heuristic nature, other reasons for this may
be that it was only invoked if no three-dicycle inequality was violated (which
is not often the case in the first iterations) and only up to five cutting plane
phases were carried out before the next branch takes place (see also Sect. 8.5).
The reason for the strategy to branch early is that, due to the large number
of generated inequalities, the time spent at one subproblem can be sometimes
very exhaustive. Further, a tailing-off strategy is not promising because the
artificial objective function is not really indicative. Even more, the impact of

34

the (transitive) implications of a branching step when re-applying some of the
preprocessing techniques was found to be stronger than the impact of the sev-
eral classes of inequalities in general. The employed branching rules had only
a limited impact on the question how many instances can or cannot be solved
within the time limit, but may have impact on the solvability of single instances.
Despite the fact that some rules worked well on some particular instances, none
of them proved to be superior for all of them. Changing the rule can lead to one
or more of the instances from Table 2 to be solved in less than ten minutes, but
cause others not to be. The improvement over the standard close half expensive
rule is very small, in fact, the unexceptional application of this rule causes only
two more instances to fail within ten minutes.

The tables 3 and 4 also show that for some of the largest instances only a
few subproblems and LPs were solved within the time limit. As discussed in
Sect. 8.7, the speed of enumeration is a weakness of the implementation that
could easily be alleviated if a practical use of these methods was to be considered.

Subsuming, it appears that the relaxation of integrality ruled out to be
rather a disadvantage of the IP method compared to the enumerative construc-
tion character of a CP solver when it comes to proving that no schedule of a
given length can exist for the hardest instances. Especially for instances with
a lot of symmetry, an aggressive fixing and propagation of instructions to issue
cycles can detect infeasibility of all possible configurations more quickly than the
solution of linear programs where it must be proven that no fractional solution
exists that satisfies all the inequalities. Another difference to the CP solver is
that the LP-solution-based branching rules and primal heuristics typically make
the branch-and-cut solver more sensitive to the underlying LP solver, as LPs
frequently do not have a unique optimum solution. Different solutions, how-
ever, may lead to different branching decisions or results of the primal heuristic,
potentially with impact on the solution process. In our case, the objective func-
tion further depends on the reference schedule used. Nevertheless, the presented
method proved to be successful and reliable in practice for a very large range
of instances. The quadratic number of variables turned out to be no severe
limitation when it comes to the solution of larger instances. On the contrary,
large instances with many NOPs could be handled because the model size does
not depend on the makespan. The increase in the number of variables com-
pared to the CP approach appeared to be alleviated by the opportunity to fix
many of these variables, to profit from transitive precedence propagation, and
to formulate tighter distance constraints having some notion of betweenness of
instructions and NOPs.

35

Basic Block IPs SUB LPs 3CYC 3FEN CND CNDT GAP VEC SVC PSB NOPD CNOP Time

crafty/AR-2903.txt 1 112 366 15, 726 0 142 632

crafty/AR-4661.txt 1 15 35 27, 000 0 699 773

fma3d/6261.txt 1 25, 507 60, 456 463, 563 0 0 608

fma3d/5417.txt 2 2, 205 5, 693 132, 268 6 12 601

fma3d/6916.txt 1 23, 411 53, 961 397, 058 2 0 607

fma3d/AR-9459.txt 1 8 9 2, 007 0 1, 628 784

jpeg/AR-3529.txt 1 42 85 1, 221 0 17 922

mesa/AR-11436.txt 1 17 43 3, 841 84 710 699

sixtrack/AR-12061.txt 2 22, 207 71, 521 1, 554, 133 20 25 1, 007

sixtrack/AR-11852.txt 2 22, 268 71, 723 1, 557, 721 20 25 1, 007

sixtrack/5960.txt 1 371 940 163, 691 0 0 602

Table 3: Solution and separation statistics for the instances not solved when using the minimum separation configuration.

Basic Block IPs SUB LPs 3CYC 3FEN CND CNDT GAP VEC SVC PSB NOPD CNOP Time

crafty/AR-2903.txt 1 78 316 21, 488 0 1, 287 6, 438 120 0 8, 728 54 135 1, 084 611

crafty/AR-4661.txt 1 6 12 9, 000 0 1, 913 23, 379 37 0 47, 698 6 431 2, 608 629

fma3d/6261.txt 1 16, 004 38, 789 290, 784 15 11, 309 15, 591 1, 349 4 13, 676 4 0 0 608

fma3d/5417.txt 2 1, 863 5, 591 124, 842 300 9, 862 30, 610 1, 024 11 43, 127 100 7 0 603

fma3d/6916.txt 1 14, 523 34, 743 251, 369 27 9, 782 12, 669 1, 991 0 9, 256 8 0 0 608

fma3d/AR-9459.txt 1 10 15 3.194 0 198 1, 068 0 0 113 0 1, 628 0 934

jpeg/AR-3529.txt 1 33 78 1.066 0 312 848 39 121 583 17 24 133 921

mesa/AR-11436.txt 1 4 4 2, 000 0 364 1, 565 29 56 3, 707 0 424 2, 972 853

sixtrack/AR-12061.txt 2 19, 536 62, 959 1, 287, 886 8, 961 97, 269 423, 934 9, 367 80 355, 462 402 16 3 985

sixtrack/AR-11852.txt 2 19, 538 62, 965 1, 287, 926 8, 961 97, 272 423, 945 9, 368 80 355, 479 402 16 3 985

sixtrack/5960.txt 2 237 816 142, 622 0 10, 831 121, 023 635 0 14, 078 36 0 0 680

Table 4: Solution and separation statistics for the instances not solved when using the full separation configuration.

3
6

10 Conclusion

We presented a complete branch-and-cut approach to the basic-block instruction
scheduling problem for single-issue processors. It consists of existing, extended
and new preprocessing techniques, a first strongly polynomial-size IP model
based on the linear ordering problem with several additional cutting planes,
and a final implementation that is shown to be competitive to state-of-the-art
constraint programming methods. Our results confirm the previously observed
impression that search space reductions are essential in solving a broad range of
real-world instances to optimality. Further, they show that these can be success-
fully combined not only with CP methods but also with IP methods. Whereas
previous IP approaches failed to solve hundreds of instances of the 369, 861 pre-
and post-register-allocation basic blocks used for the evaluation, our methods
fails to solve only eleven instances within a time limit of ten minutes. Never-
theless, the currently best CP method is somewhat more robust as it fails to
solve only one instance within this time limit and appears to still have some
advantages in proving that a schedule of a certain length does not exist. A dis-
appointing result is that even the derivation and application of several cutting
planes could not prove to be a tool to determine IP infeasibility more quickly
in our setting. Nonetheless, the associated inequalities expose a lot of structure
of the problem and typical issues that can occur in fractional LP solutions, so
they may be of interest for further research.

Acknowledgments

We gratefully thank Abid Muslim Malik, Jim McInnes and Peter van Beek for
making their constraint programming solver source code publicly available and
sending us the instances they derived and used for their experiments.

References

References

[1] J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quantitative
Approach, Elsevier, 2007.

[2] L. Finta, Z. Liu, Single machine scheduling subject to prece-
dence delays, Discrete Applied Mathematics 70 (3) (1996) 247–266.
doi:10.1016/0166-218X(96)00110-2.

[3] D. Bernstein, I. Gertner, Scheduling expressions on a pipelined processor
with a maximal delay of one cycle, ACM Trans. Program. Lang. Syst. 11
(1989) 57–66. doi:10.1145/59287.59291.

[4] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986.

37

http://dx.doi.org/10.1016/0166-218X(96)00110-2
http://dx.doi.org/10.1145/59287.59291

[5] D. Bernstein, M. Rodeh, I. Gertner, Approximation algorithms for schedul-
ing arithmetic expressions on pipelined machines, J. Algorithms 10 (1989)
120–139. doi:10.1016/0196-6774(89)90027-8.

[6] M. A. Ertl, A. Krall, Optimal instruction scheduling using constraint logic
programming, in: J. Maluszyński, M. Wirsing (Eds.), Programming Lang.
Implem. and Logic Programming, Vol. 528 of LNCS, Springer, 1991, pp.
75–86.

[7] A. M. Malik, J. McInnes, P. van Beek, Optimal basic block instruction
scheduling for multiple-issue processors using constraing programming, Int.
J. on Artificial Intelligence Tools 17 (1) (2008) 37–54.

[8] A. M. Malik, Constraint programming techniques for optimal instruction
scheduling, Ph.D. thesis, University of Waterloo, Waterloo, Canada (2008).

[9] K. Wilken, J. Liu, M. Heffernan, Optimal instruction scheduling using in-
teger programming, SIGPLAN Not. 35 (2000) 121–133.

[10] H.-C. Chou, C.-P. Chung, An optimal instruction scheduler for superscalar
processor, IEEE Trans. on Parallel and Distributed Systems 6 (3) (1995)
303–313.

[11] S. Haga, R. Barua, EPIC instruction scheduling based on optimal ap-
proaches, in: In Proc. 1st Annual Workshop on Explicitly Parallel Instruc-
tion Computing Architectures and Compiler Technology, 2001, pp. 22–31.

[12] S. Arya, An optimal instruction-scheduling model for a class of vec-
tor processors, IEEE Trans. on Computers 34 (11) (1985) 981–995.
doi:http://doi.ieeecomputersociety.org/10.1109/TC.1985.1676531.

[13] C.-M. Chang, C.-M. Chen, C.-T. King, Using integer linear programming
for instruction scheduling and register allocation in multi-issue processors,
Computers & Mathematics with Applications 34 (9) (1997) 1–14.

[14] R. Leupers, P. Marwedel, Time-constrained code compaction for DSP’s,
IEEE Trans. Very Large Scale Integr. Syst. 5 (1) (1997) 112–122.

[15] A. M. Malik, J. McInnes, P. van Beek, Optimal basic block instruction
scheduling for multiple-issue processors using constraing programming, in:
Proc. 18th IEEE Intern. Conf. on Tools with Artificial Intelligence (ICTAI
’06), IEEE Computer Society, Los Alamitos, CA, USA, 2006, pp. 279–287.

[16] P. van Beek, K. Wilken, Fast optimal instruction scheduling for single-
issue processors with arbitrary latencies, in: Proc. of the 7th Intern. Conf.
on Principles and Practice of Constraint Programming, CP ’01, Springer,
2001, pp. 625–639. doi:647488.726807.

[17] M. Heffernan, K. Wilken, Data-dependency graph transformations
for instruction scheduling, J. of Scheduling 8 (5) (2005) 427–451.
doi:10.1007/s10951-005-2862-8.

38

http://dx.doi.org/10.1016/0196-6774(89)90027-8
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TC.1985.1676531
http://dx.doi.org/647488.726807
http://dx.doi.org/10.1007/s10951-005-2862-8

[18] R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, Optimization
and approximation in deterministic sequencing and scheduling: a survey,
in: P. L. Hammer, E. L. Johnson, B. H. Korte (Eds.), Discrete Optimization
II, Proc. of the Advanced Research Institute on Discrete Optimization and
Systems Applications of the Systems Science Panel of NATO and of the
Discrete Optimization Symp., Vol. 5 of Annals of Discrete Mathematics,
Elsevier, 1979, pp. 287–326.

[19] K. V. Palem, B. B. Simons, Scheduling time-critical instructions on
RISC machines, ACM Trans. Program. Lang. Syst. 15 (1993) 632–658.
doi:10.1145/155183.155190.

[20] M. Rim, R. Jain, Lower-bound performance estimation for the
high-level synthesis scheduling problem, IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems 13 (1994) 451–458.
doi:10.1109/43.275355.

[21] M. Langevin, E. Cerny, A recursive technique for computing lower-bound
performance of schedules, ACM Trans. Des. Autom. Electron. Syst. 1 (4)
(1996) 443–455. doi:10.1145/238997.239002.

[22] G. Tiruvuri, M. Chung, Estimation of lower bounds in scheduling algo-
rithms for high-level synthesis, ACM Trans. Des. Autom. Electron. Syst.
3 (2) (1998) 162–180.

[23] H. P. Peixoto, M. F. Jacome, A new technique for estimating lower bounds
on latency for high level synthesis, in: Proc. of the 10th Great Lakes Symp.
on VLSI, GLSVLSI ’00, ACM, New York, NY, USA, 2000, pp. 129–132.

[24] P. Hall, On representatives of subsets, Journal of the London Mathematical
Society 10 (1) (1935) 26–30.

[25] J.-F. Puget, A fast algorithm for the bound consistency of alldiff con-
straints, in: Proc. of the 15th National/10th Conf. on Artificial Intelli-
gence/Innovative Applications of Artificial Intelligence, AAAI ’98/IAAI
’98, American Association for Artificial Intelligence, Menlo Park, CA, USA,
1998, pp. 359–366. doi:295240.295635.

[26] W. J. van Hoeve, The alldifferent constraint: A survey, CoRR
cs.PL/0105015.

[27] A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, P. van Beek, A fast and simple
algorithm for bounds consistency of the alldifferent constraint, in: Proc. of
the 18th Intern. Joint Conf. on Artificial Intelligence, IJCAI’03, Morgan
Kaufmann Publishers, Inc., San Francisco, CA, USA, 2003, pp. 245–250.

[28] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA,
1979.

[29] E. Balas, J. K. Lenstra, A. Vazacopoulos, The one-machine problem with
delayed precedence constraints and its use in job shop scheduling, Manage-
ment Science 41 (1) (1995) 94–109. doi:10.1287/mnsc.41.1.94.

39

http://dx.doi.org/10.1145/155183.155190
http://dx.doi.org/10.1109/43.275355
http://dx.doi.org/10.1145/238997.239002
http://dx.doi.org/295240.295635
http://dx.doi.org/10.1287/mnsc.41.1.94

[30] J. P. Sousa, Time indexed formulations of non-preemptive single-machine
scheduling problems, Ph.D. thesis, Université Catholique de Louvain, Lou-
vain, Belgium (1989).

[31] R. Mart́ı, G. Reinelt, The Linear Ordering Problem, Springer, 2011.

[32] C. N. Potts, An algorithm for the single machine sequencing problem with
precedence constraints, in: V. J. Rayward-Smith (Ed.), Combinatorial Op-
timization II, Vol. 13 of Mathematical Programming Studies, Springer,
1980, pp. 78–87.

[33] F. A. Chudak, D. S. Hochbaum, A half-integral linear programming re-
laxation for scheduling precedence-constrained jobs on a single machine,
Operation Reseach Letters 25 (5) (1999) 199–204.

[34] L. A. Wolsey, Formulating single machine scheduling problems with prece-
dence constraints, in: J. J. Gabszewic, J. F. Richard, L. A. Wolsey
(Eds.), Economic Decision-Making: Games, Econometrics and Optimisa-
tion, North-Holland, 1990, pp. 473–484.

[35] M. E. Dyer, L. A. Wolsey, Formulating the single machine sequencing prob-
lem with release dates as a mixed integer program, Discrete Applied Math-
ematics 26 (2-3) (1990) 255–270.

[36] J. R. Correa, A. S. Schulz, Single-machine scheduling with precedence con-
straints, Mathematics of Operations Research 30 (4) (2005) 1005–1021.

[37] G. L. Nemhauser, M. W. P. Savelsbergh, A cutting plane algorithm for
the single machine scheduling problem with release times, in: M. Akgül,
H. W. Hamacher, S. Tüfekçi (Eds.), Combinatorial Optimization, Vol. 82
of NATO ASI Series, Springer, 1992, pp. 63–83.

[38] A. S. Schulz, Scheduling to minimize total weighted completion time: Per-
formance guarantees of LP-based heuristics and lower bounds, in: W. H.
Cunningham, S. T. McCormick, M. Queyranne (Eds.), Integer Program-
ming and Combinatorial Optimization, Vol. 1084 of LNCS, Springer, 1996,
pp. 301–315.

[39] L. A. Hall, A. S. Schulz, D. B. Shmoys, J. Wein, Scheduling to minimize
average completion time: Off-line and on-line approximation algorithms,
Mathematics of Operations Research 22 (3) (1997) 513–544.

[40] F. Margot, M. Queyranne, Y. Wang, Decompositions, network flows, and
a precedence constrained single-machine scheduling problem, Operations
Research 51 (6) (2003) 981–992.

[41] A. B. Keha, K. Khowala, J. W. Fowler, Mixed integer programming formu-
lations for single machine scheduling problems, Comput. Ind. Eng. 56 (1)
(2009) 357–367. doi:10.1016/j.cie.2008.06.008.

[42] M. Grötschel, M. Jünger, G. Reinelt, A cutting plane algorithm for the
linear ordering problem, Operations Research 32 (6) (1984) 1195–1220.

[43] M. Grötschel, M. Jünger, G. Reinelt, Facets of the linear ordering polytope,
Mathematical Programming 33 (1) (1985) 43–60.

40

http://dx.doi.org/10.1016/j.cie.2008.06.008

[44] S. Fiorini, Polyhedral combinatorics of order polytopes, Ph.D. thesis, Uni-
versité Libre de Bruxelles, Brussels, Belgium (2001).

[45] S. Mallach, Exact integer programming approaches to sequential instruc-
tion scheduling and offset assignment, Ph.D. thesis, Universität zu Köln,
Cologne, Germany (2015).

[46] M. Elf, C. Gutwenger, M. Jünger, G. Rinaldi, Branch-and-cut algorithms
for combinatorial optimization and their implementation in ABACUS, in:
Comput. Comb. Opt., Optimal or Provably Near-Optimal Solutions, Vol.
2241 of LNCS, Springer, 2001, pp. 157–222. doi:647776.734760.

[47] CPLEX optimization studio version 12.6, Reference manual, IBM ILOG
(2013).

[48] A. Caprara, M. Fischetti, {0, 1
2}-Chvátal-Gomory cuts, Mathematical Pro-

gramming 74 (3) (1996) 221–235. doi:10.1007/BF02592196.

41

http://dx.doi.org/647776.734760
http://dx.doi.org/10.1007/BF02592196

A Correctness proof of the IP formulation

Theorem 1. Let G = (V,A) be a dependency DAG, v = |V | and m =
(
n
2

)
.

Then the set of integral solutions to PG
ISP FG

ISP = {(x, n) ∈ {0, 1}m × Nv
0 |

x ∈ P v
LO and (x, n) satisfies (7)-(11)} corresponds exactly to the set of feasible

schedules σ of G.

Proof. ⇐: Suppose a feasible schedule σ of G is given. We construct a corre-
sponding solution (x, n) ∈ FG

ISP as follows. For each pair i, j ∈ V , i < j, we set
xi,j = 1 if i precedes j in σ, and xi,j = 0 otherwise. Clearly, since σ imposes a to-
tal order on V , x ∈ P v

LO. Because σ is feasible, xmust also satisfy the precedence
constraints (7). For each i ∈ V , we set ni to the number of NOPs preceding i in
σ. Hence, the position of i in σ maps exactly to ni +

∑

j∈V \{i} xj,i. Let (i, k) ∈

A∗. By construction, dσi,k = (nk +
∑

j∈V \{k} xj,k)− (ni +
∑

j∈V \{i} xj,i)− xi,k.
Since xi,k is equal to one and hence contributes only to the first sum, an equiva-
lent expression is dσi,k = (nk − ni) +

∑

j∈V \{i,k}(xj,k − xj,i). Because σ is a fea-

sible schedule, dσi,k ≥ di,k and (8) is satisfied. For the same reason, constraints
(9) are satisfied by the ni variables set as described. If xi,k = 1, constraint (10)
coincides with (9) and, with the proposed choice of Mk, constraint (11) evalu-
ates to ni ≥ N lb

i + nk −Nub
k which is trivially satisfied. If xi,k = 0, the roles of

i and k are exchanged which leads to an equally feasible situation.
⇒: Now suppose that (x, n) ∈ FG

ISP and we are asked to construct a fea-
sible schedule σ of G. First, we set the position of each i ∈ V in σ to
ni +

∑

j∈V \{i} xj,i. Since (x, n) ∈ FG
ISP implies x ∈ P v

LO, x imposes a lin-
ear ordering on V . Thus, for each pair i, k ∈ V , i 6= k, it holds that either
∑

j∈V \{i} xj,i <
∑

j∈V \{k} xj,k if xi,k = 1, or
∑

j∈V \{k} xj,k <
∑

j∈V \{i} xj,i if

xi,k = 0. Due to constraints (9), (10) and (11), nk ≥ ni if xi,k = 1, or ni ≥ nk

if xi,k = 0. Summing up, either i strictly precedes k or k strictly precedes i for
every pair of vertices i, k ∈ V , i 6= k. So each position of an instruction i in σ is
unique and, due to constraint (8), all distances between dependent instructions
are satisfied. Hence, σ is a unique feasible schedule of G.

B Proofs for the cutting plane theorems

B.1 Conditional Issue Cycle Bound Constraints

We start with the proof of Theorem 7.2, here at first restricted to the nonre-
dundancy of the conditional issue cycle lower bound constraints.

Theorem 2. PISP has fractional vertex solutions that violate inequalities (12)
and (13).

Proof. We prove the claim constructively by showing that there exists a basic
feasible solution to the linear programming relaxation of the integer program
from Sect. 6.3 that violates inequality (12). This can be done by solving the
LP relaxation for a particular instance while maximizing the left hand side of
inequality (12) in the objective function. If an optimum solution to this LP has
an objective function value larger than the right hand side of (12), then it must
correspond to a basic feasible solution that violates the inequality.

Fortunately, the instance that we will use for the proof is small and has a
simple structure. It is shown in Fig. 8. Basically, it must only be decided which

42

of the two orders 2−4−3 and 3−4−2 shall be taken. W.l.o.g., for the proof, we
consider the problem as a pure feasibility problem, assuming the upper bound
on the number of NOPs in the integer program to match the optimum (which
is zero). Hence, the NOP variables are all fixed to zero in advance and the
goal of the integer program is just to show that a feasible solution exists. The
corresponding lower and upper bounds on the issue cycles of the vertices are
drawn next to them in Fig. 8.

2 3

5

00 1

00 1

4

1 [0, 0]

[1, 3] [1, 3][2, 2]

[4, 4]

Figure 8: The instance used for the proofs of Theorem 7.2 and Theorem 7.6.

Let us consider vertices 2 and 3. Both have a lower bound of one and are
candidates to take the places immediately before or after 4. Any vertex that
is a successor of 4 must be placed at a position larger or equal to three. We
choose to consider the corresponding conditional lower bound inequality (12)
for vertex 3 with a = lb4 − lb3 = 2− 1 = 1:

n3 +
∑

j∈V \{3,4}

xj,3 ≥ lb3 + 1x4,3

⇔ n3 + x1,3 + x2,3 + x5,3 ≥ lb3 + x4,3

Replacing variables xj,i with j > i by 1 − xi,j , we obtain the inequality
n3 + x1,3 + x2,3 + x3,4 + (1− x3,5) ≥ 2. The only three linear ordering variables
that are not fixed in advance are x2,3, x2,4, and x3,4. By inserting the already
fixed values, we obtain the inequality x2,3 + x3,4 ≥ 1.

Due to its small size, we may write down the linear program completely in
Fig. 9, omitting only the trivial inequalities and the already fixed NOP variables.
The right LP in Fig. 9 is the reduced form of the left one after fixing also the
known values of linear ordering variables.

An optimum vertex solution to this LP, that is in particular a basic feasible
solution, is x2,3 = 0, x2,4 = 1

2 , and x3,4 = 1
2 . The corresponding binding

inequalities are (1b), (6b), and (14) and the objective function value is x2,3 +
x3,4 = 0 + 1

2 = 1
2 < 1.

The same LP solution also violates the conditional upper bound constraint (13)

43

min −1 + x1,3 + x2,3 + x3,4 − x3,5

s.t.
(1a): x1,2 + x2,3 − x1,3 ≤ 1
(2a): x1,2 + x2,4 − x1,4 ≤ 1
(3a): x1,2 + x2,5 − x1,5 ≤ 1
(4a): x1,3 + x3,4 − x1,4 ≤ 1
(5a): x1,4 + x4,5 − x1,5 ≤ 1
(6a): x2,3 + x3,4 − x2,4 ≤ 1
(7a): x2,4 + x4,5 − x2,5 ≤ 1
(8a) x3,4 + x4,5 − x3,5 ≤ 1
(1b): −x1,2 − x2,3 + x1,3 ≤ 0
(2b): −x1,2 − x2,4 + x1,4 ≤ 0
(3b): −x1,2 − x2,5 + x1,5 ≤ 0
(4b): −x1,3 − x3,4 + x1,4 ≤ 0
(5b): −x1,4 − x4,5 + x1,5 ≤ 0
(6b): −x2,3 − x3,4 + x2,4 ≤ 0
(7b): −x2,4 − x4,5 + x2,5 ≤ 0
(8b): −x3,4 − x4,5 + x3,5 ≤ 0
(9): x3,2 − x3,1 + x4,2 − x4,1 ≥ 0
(10): x2,3 − x2,1 + x4,3 − x4,1 ≥ 0
(11): x2,4 − x2,1 + x3,4 − x3,1 ≥ 1
(12): x3,5 − x3,2 + x4,5 − x4,2 ≥ 0
(13): x2,5 − x2,3 + x4,5 − x4,3 ≥ 0
(14): x2,5 − x2,4 + x3,5 − x3,4 ≥ 1

min x2,3 + x3,4

s.t.
x2,3 ≤ 1
x2,4 ≤ 1

0 ≤ 0
x3,4 ≤ 1

0 ≤ 0
x2,3 + x3,4 − x2,4 ≤ 1

x2,4 ≤ 1
x3,4 ≤ 1

−x2,3 ≤ 0
−x2,4 ≤ 0

0 ≤ 0
−x3,4 ≤ 0

0 ≤ 0
−x2,3 − x3,4 + x2,4 ≤ 0

−x2,4 ≤ 0
−x3,4 ≤ 0

−x2,3 − x2,4 ≥ −2
x2,3 − x3,4 ≥ −1
x2,4 + x3,4 ≥ 1
x2,3 + x2,4 ≥ 0

−x2,3 + x3,4 ≥ −1
−x2,4 − x3,4 ≥ −1

Figure 9: The linear program without trivial inequalities and NOP variables
(left) and its reduced form after fixing the linear ordering variables (right).

for vertex 2 with b = ub2 − ub4 = 3− 2 = 1.

n2 +
∑

j∈V \{2,4}

xj,2 ≤ (ub2 − 1)− 1x2,4

⇔ n2 + x1,2 + x3,2 + x5,2 ≤ (ub2 − 1)− x2,4

⇔ 0 + 1 + (1− x2,3) + 0 ≤ 2− x2,4

⇔ −x2,3 + x2,4
︸ ︷︷ ︸

= 1

2

≤ 0

B.2 Gap inequalities

Theorem 3. PISP has fractional vertex solutions that violate inequalities (18).

Proof. The claim can be proved using the same strategy and instance as for the
nonredundancy proof of inequalities (12) from Sect. 7.1.

Vertex 4 in Fig. 8 has a lower bound of two and a lower bound gap g of
one since its only decided predecessor is vertex 1 and no NOPs can precede it.
The corresponding set I< consists of the vertices {2, 3}. For both 2 and 3, the
gap up is equal to 3 − (2 − 1) = 2. We choose vertex 3 as our p ∈ I<. The

44

corresponding inequality (18) for 3 is

n3 +
∑

j∈I\{3}

xj,3 − u3x2,4 ≤ ub3 − gu3

⇔ n3 + x1,3 + x2,3 + x4,3 + x5,3 − 2x2,4 ≤ 3− 1(2)

⇔ n3 + x1,3 + x2,3 + (1− x3,4) + (1− x3,5)− 2x2,4 ≤ 1

⇔ n3 + x1,3 + x2,3 − x3,4 − x3,5 − 2x2,4 ≤ −1

Inserting the already fixed values, and inverting the inequality to consider it
as a minimization objective, we obtain −1− x2,3 + x3,4 + 2x2,4 ≥ 0.

Taking a close look at the reduced linear program in the right of Fig. 9,
one can see that the value assignments x2,3 = 1, x2,4 = 1

2 , and x3,4 = 1
2

yield another basic feasible solution with binding inequalities (1a), (6a), and
(14). The corresponding objective function value is −1− x2,3 + x3,4 + 2x2,4 =
−1− 1 + 1

2 + 2 · 12 = − 1
2 < 0.

45

	Introduction
	Definitions and Notations
	Formal problem statement
	Predecessors, Successors, Independence
	Data-Dependency Graphs
	Critical Paths and Distances, Transitivity
	Lower and Upper Bounds
	Regions

	Search Space Reductions
	A Relaxation Technique by Rim and Jain
	Improving Bounds on Issue Cycles, Distances and Precedences
	Lower Bounds on Distances by Smart Counting
	Improved Bounds on Issue Cycles by Smart Counting
	Improved Bounds on Issue Cycles by Interval Considerations
	Obtaining New Precedences by DAG Transformations

	New Results and Search Space Reductions
	Exploiting Rim-Jain schedules to further improve bounds
	New precedences due to overlapping intervals
	New precedences and bounds due to (Hall) intervals
	Symmetry Breaking with Latest Ready Times

	Modeling Sequential Schedules
	The Linear Ordering Problem
	The Linear Ordering Polytope

	New Integer Programming Formulations
	Modeling Distances and Betweenness
	Stronger distance constraints by examination of intermediate instructions
	Modeling NOPs

	Additional Classes of Inequalities
	Conditional Issue Cycle Bound Constraints
	Transitivity-driven Conditional Bound Constraints
	Conditional NOP Constraints
	Gap Filling Cuts
	Predecessor / Successor Set Constraints
	Superiority Inequalities
	Variable Equality Constraints
	NOP Difference Constraints

	The Branch-and-Cut Approach
	Formulation as a Feasibility Problem
	Objective Function
	Branching Rules
	Branching on Critical NOP Variables
	Branching on Contradictory Positions
	Branching on Equal Positions
	Branching on Illegal Positions

	Propagation at Subproblems
	Cutting Plane Separation Strategy
	Fences

	A Primal Heuristic based on List Scheduling
	Implementation with ABACUS

	Experimental Evaluation
	Conclusion
	Correctness proof of the IP formulation
	Proofs for the cutting plane theorems
	Conditional Issue Cycle Bound Constraints
	Gap inequalities

