
The Open Graph Drawing Framework

Markus Chimani1, Carsten Gutwenger1, Michael Jünger2, Karsten Klein1,
Petra Mutzel1, and Michael Schulz2

1 University of Dortmund, Germany
{markus.chimani,carsten.gutwenger,karsten.klein,petra.mutzel}@cs.uni-dortmund.de

2 University of Cologne, Germany
{mjuenger,schulz}@informatik.uni-koeln.de

1 Introduction

Many aspects of graph drawing research are motivated from practice, and practi-
cal evaluation of graph drawing algorithms is essential. However, graph drawing
has now grown for several decades and a huge amount of algorithms for various
drawing styles and applications has been proposed. Many sophisticated algo-
rithms build upon complex data structures and other algorithms, thus making
new implementations from scratch cumbersome and time-consuming. Obviously,
graph drawing libraries can ease the implementation of new algorithms a lot. The
LEDA-based C++-library AGD was very popular in the past, since it covers a
wide range of graph drawing algorithms. However, the lack of publicly available
source-code restricted the portability and extendability, not to mention the un-
derstanding of the particular implementations. Other currently available graph
drawing libraries suffer from the same problems, or are even only commercially
available or focus only on special graph layout methods.

Our goals for the Open Graph Drawing Framework (OGDF ) were to transfer
essential design concepts of AGD and to overcome its main deficiencies for use
in academic research:

• A wide range of graph drawing algorithms that allow to reuse and replace
particular algorithm phases by using a dedicated module mechanism.

• Sophisticated data structures that are commonly used in graph drawing,
equipped with rich public interfaces.

• Self-contained code that does not require any additional libraries (except for
some optional branch-and-cut algorithms).

• Portable C++-code that supports the most important compilers for Linux,
MacOS, and Windows operating systems.

• Open source code available under the terms of the GPL.

2 Algorithms and Data Structures

A key advantage of OGDF is that it provides a wide range of adaptable layout
algorithms like its customizable implementation of the planarization method.
The crossing minimization module can also be used independently of the layout

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


algorithm and provides unique features like optimal edge insertion with variable
embedding, non-planar core graph reduction, and exact crossing minimization
based on branch-and-cut.

We extended these well known and practically successful methods to simulta-
neous drawing and hypergraphs. Recently, we studied the relationship of the mi-
nor crossing number and the hypergraph crossing number (in the edge-standard)
by considering a generalization of the minor crossing number. For the former
problem, only some theoretical results had been published so far, whereas the
latter problem has important applications in practice (e.g., layout of electrical
wiring schemes). The key idea for generalizing the planarization approach to
hypergraphs was the generalization of the edge insertion algorithms. We could
show that this is possible with the same time complexity as for regular graphs,
even in the variable embedding case. OGDF contains implementations of these
yet unpublished algorithms.

Most data structures and algorithms used in the implementation of the pla-
narization approach are available as building blocks for developing new algo-
rithms. These include planarity testing and embedding algorithms, algorithms
for computing planar subgraphs, and algorithms for optimizing planar embed-
dings (e.g., minimum depth, maximum external face). Moreover, a recently pro-
posed method for the extraction of a large number of Kuratowski subdivisions
(which is used by the optimal crossing minimization algorithm) is provided.

The main components for optimizing over the set of all planar embeddings
are the data structures BC- and SPQR-trees. OGDF contains not only efficient
implementations of the static variants (such as the static SPQR-trees in AGD),
but also efficient dynamic implementations. To our knowledge, this is the only
implementation of dynamic SPQR-trees.

The implementation of the Sugiyama approach is also highly customizable
and implements various algorithms (including optimal node ranking and coordi-
nate assignment). Further algorithms deal with clustered graphs, planar drawing,
planar augmentation, and upward planarity, as well as force-directed layout for
large graphs with the fast multipole multilevel method (FM3).

At the moment, a new graph editor based on OGDF is in preparation, which
does not only provide easy access to OGDF’s graph layout algorithms, but also
introduces powerful features like graph perspectives and a plugin mechanism that
allows users to easily extend the editor with new functionality. More information
about the OGDF project can be found at:

http://ls11-www.cs.uni-dortmund.de/ogdf

Acknowledgements. Many further people contributed to the OGDF. We wish
to thank Sebastian Leipert, Christoph Buchheim, Stefan Hachul, Andrea Wag-
ner, Joachim Kupke, Matthias Elf, Dino Ahr, Hoi-Ming Wong, and our students
Martin Gronemann, Bernd Zey, Mathias Jansen, Thorsten Kerkhof, Jan Papen-
fuß, and Jens Schmidt.


