
  

Agent-based modeling and simulation of individual traffic as an environment for bus 
schedule simulation 
 
Daniel Lückerath 
Department of Computer Science, University of Cologne, Albertus-Magnus-Platz, D-50923, 
Cologne, Germany 
 
Oliver Ullrich, Ingo Proff, Patrick Kuckertz, Ewald Speckenmeyer 
Department of Computer Science, University of Cologne, Albertus-Magnus-Platz, D-50923, 
Cologne, Germany 
 

Abstract 

To re-establish the regular driving operations of a tram network, which was disturbed 
significantly by unforeseen external events, traffic schedulers apply rescheduling and 
rerouting strategies. These strategies are usually multi-modal; they consider the interaction 
of trams, buses, even taxis. Thus, to evaluate the applicability of a given rescheduling or 
rerouting strategy prior to its implementation in the real-world system, a multi-modal 
simulation software is needed. In this article we present an agent-based model of individual 
traffic which will be applied as background to a planned simulation of bus traffic. These 
combined models are to be integrated with an existing tram schedule simulation; the 
resulting multi-modal model will then be applied to evaluate the usefulness of given 
rescheduling or rerouting strategies. After a short introduction to agent-based modeling and 
simulation, as well as to existing models of individual traffic, this paper proposes to model 
the behavior of individual traffic as an environment for agent-based bus schedule simulation. 
Finally, some experiments are conducted by modeling and simulating individual traffic in 
Cologne's highly frequented Barbarossaplatz area. 
 

1 Introduction 

 
In many tram networks multiple lines share tracks and stations, thus requiring robust 
schedules which prevent inevitable small delays from spreading through the network. 
Feasible schedules also have to fulfill various planning requirements originating from political 
and economic reasons. In [8] and [17], some of the authors present a tool set designed to 
generate tram schedules optimized for robustness, which also satisfy given sets of planning 
requirements. These tools are aimed to assist traffic schedulers to compare time tables with 
respect to their applicability and evaluate them prior to their implementation in the field. 
We now want to extend the tool set to consider larger disturbances, e.g. originating from 
broken down trams, closed stations, or other blocked resources. Careful schedule design is 
not sufficient to handle these major disturbances, traffic operators have to apply 
rescheduling and rerouting strategies (see [7] and [9]) to reestablish regular operations. To 
be effective, these strategies are inevitably multi-modal: trams are rescheduled to 
compensate for cancellations, buses are rerouted to relieve the tram network, some traffic 
operators even co-operate with taxi companies (see [18]). To evaluate the applicability of a 
given rescheduling or rerouting strategy prior to its implementation in the real-world system, 
a multi-modal simulation software is needed. 
This paper presents a first step towards building that simulation engine. To map multi-modal 
traffic, a model of bus traffic will be incorporated into the existing tram simulation. Buses are 
highly dependent on surrounding individual traffic, so a valid model has to include at least a 
coarse representation of its behavior. Because we aim at an agent-based model of multi-
modal traffic, individual traffic can be seen as the environment in which buses - modeled as 
agents - act and interact according to their set of rules and strategies. Central goal of this 
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paper is to present the design and implementation of an agent-based model of individual 
traffic, to be used as an environmental layer to a bus traffic simulation yet to be developed. 
 
The remainder of this paper begins with a presentation of some background on agent-based 
modeling and simulation and the simulation of individual traffic (section 2). We continue with 
presenting a model of individual traffic as an environment for agent-based bus schedule 
simulation (section 3). Based on an implementation of this model, some experiments are 
conducted, focusing on Cologne's Barbarossaplatz area, a highly frequented part of 
Cologne's inner city street network (section 4). The paper closes with a short summary of the 
lessons learned and some thoughts on future work (section 5). 
 

2 Background 

2.1 Agent-based modeling and simulation 

 
Agent-based modeling and simulation (ABMS) is a comparatively new approach of modeling 
complex systems as sets of autonomous, interacting agents (for this section see [10]). The 
behavior of the agents is determined by state variables (attributes) and sets of internal rules. 
The individual agents act on local information and interact with a subset of other agents and 
the environment they exist in. In many cases, self-organization can be observed, patterns 
and structures emerge that were not explicitly modeled. The approach has a broad range of 
applications in various fields of research, including the study of pastoral-nomadic land use 
systems (see [6]), of the human immune system (see [4]), of the population growth and 
collapse of ancient civilizations (see [1]), and of public and individual traffic systems (e.g. see 
[3], [14], and [15]). 
An agent-based model usually includes three components: The agents, their interaction 
rules, and the agents' environment. 
The agents are usually self-contained and autonomous; they have attributes whose values 
change over the course of the simulation run. Their behavior is determined by a set of rules, 
and they interact dynamically with other agents and the environment they exist in. In more 
complex models, agents are often goal-directed and adaptive, and may even be 
heterogeneous. 
Because agents interact only with a local subset of other agents, their neighbors, only local 
information is available to them. The agents that are part of a neighborhood are usually 
determined by the model's topology, which e.g. might be a (static or dynamic) network, a 
spatial grid, or an aspatial “soup” model. The members of an agent's neighborhood may 
change rapidly during the simulation run.  
In addition to their communication with their neighbors, agents also interact with their 
environment. This interaction may only provide basic information, like the position of the 
agents in a spatial model (e.g. street lanes and crossings in a traffic model). It may also 
provide detailed information, like the capacity of and the maximum velocity on lanes, or the 
state of embedded street lights. An agent's environment is often built as a complex 
simulation model itself, e.g. based on cellular automata (again see [6]). 
 

2.2 Simulation of individual traffic 

 
Several approaches to model individual traffic are known, many of them based on cellular 
automata (e.g. see [11], [12], and [13]), or based on ABMS (e.g. see [3], [14], and [15]). 
In [12], Nagel and Schreckenberg present a model for freeway traffic, based on simple 
cellular automata. The model utilizes a set of very simple rules: If there is a free lane ahead, 
each car ci tries to accelerate up to a certain maximum velocity. If another car cj is registered 
ahead, ci decreases its velocity. For randomization, the car's velocity is decreased with a 



  

small probability. Lane-switching and overtaking are not possible in this model; it only maps 
one single lane. Even with its very simple rule set, the model shows some non-trivial and 
realistic behavior: Results show that up from a certain traffic density, traffic jams develop 
without an external cause, moving backwards through the model, very much alike observed 
real-world behavior. In [13] Nagel, et al. extend this approach to multi-lane traffic. 
Based on the Nagel/Schreckenberg approach, Moltenbrey and Bungartz (see [11]) aim at 
simulating real world situations. Their model includes lane-switching and heterogeneous 
vehicles, many of them filling more than one node of the cellular grid. Bicycles and 
motorcycles are included with an unique behavior and are not just modeled as slower cars. 
Each vehicle follows its individual activity plan: It has a pre-planned route from trip origin to 
destination, calculated with a shortest-path algorithm. This algorithm considers waiting 
periods resulting from traffic jams, and dynamically chooses alternative routes. The model 
also includes public transportation, modeling time tables as special activity plans. Because 
of all these points, the model is necessarily very complex, and stretches the paradigm of 
cellular automata. 
 
Several agent-based models (of different complexity) of individual traffic are known, each 
fitted for its special application. 
Ehlert and Rothkrantz propose a multi-agent model (see [3]) of urban individual traffic. Their 
agents are quite complex and capable of what they call “tactical-level driving”. The agents 
are designed modular; each module takes part in the decision process and can be adapted 
or replaced. Those modules include a sensor module, memory for storing data, a controller 
for regulating access to the memory, a short-term planner, multiple sets of behavior rules, 
and an arbiter which selects the best action proposed by the behavior rules. 
Paruchuri, Pullalarevu and Karlapalem (see [14]) present a model targeted at simulating 
individual traffic in Indian metropolises, which they term as “chaotic”. Therefore no traffic 
lights or global overtaking rules are modeled. They try to map a realistic behavior of different 
driver types, and therefore include several psychological traits. The driver types have 
attributes like favorite speed, preferred values of acceleration and deceleration, and 
individual reaction time. To further enhance the model's behavior, the simulation engine 
includes a relatively complex model of the involved physics. Among other things, the results 
show a positive correlation between number of aggressive drivers and average speed. 
Seele, et al. (see [15]) describe an agent-based simulation of individual traffic as an 
environment for a human-in-the-loop bicycle simulation. They are therefore interested in a 
sufficiently realistic behavior. The agents are required to comply to traffic rules, but should 
also be able to act irrationally and break those rules, so that human participants can 
experience a sense of danger. Therefore cognitive processes are modeled, based on 
psychological personality profiles. This approach yields complex agents which take up a lot 
of computing power. The agents act and interact in a real time environment, which sets a 
hard upper limit to acceptable processor time. On the other hand, this allows for a complex 
model, because the simulator does not aim at an as-fast-as-possible speed, or analytical 
results obtained by a high number of simulation runs. 
 

3 Modeling individual traffic 

 
Because our model of individual traffic will be applied as a backdrop for a model of time table 
based bus traffic, and thus cannot use up much processor time, we aim for simplicity. From 
the perspective of the bus agents to be embedded, the individual traffic's swarm behavior 
has to be represented accordingly. This means that the behavior of each single agent does 
not necessary have to be mapped in detail, decision processes can therefore be simplified. 
For these reasons, the proposed method will be less complex than the techniques shown in 
section 2.2. 
 



  

3.1 Modeling lanes and crossings 

 
The street network is modeled as an attributed graph, with directed edges representing 
lanes, and nodes representing splits, joins, traffic lights and other focal points. 
Edges have attributes like length, and up to two neighboring lanes (left and right), which go 
in parallel. Switching lanes is allowed between direct neighbors, as long as the agents find 
enough free space on the neighboring lane. 
As proscribed by the topology of the observed system, nodes dissect lanes into parts of 
maximal length. If a lane is dissected by a node, all neighboring lanes also have to be 
dissected to keep the transitive closure intact. 
There are three types of nodes: Intersections, joins, and splits. Intersections are nodes with 
up to one incoming and up to one outgoing edge, and thus without the opportunity to change 
direction. Some of these are applied as entry points or exit points of the model. Joins are 
nodes with more than one incoming lane and one outgoing lane. Splits are nodes with one or 
more incoming lanes and more than one outgoing lane. Here, it is possible for the vehicle to 
choose one of the outgoing lanes, based on a given set of probabilities. 
Nodes can be blocked when vehicles on incoming lanes have a precedence in the right of 
way. Some nodes include traffic lights, blocking and freeing access to their outgoing edges. 
This is accomplished by a basic event-based system (as described in [2]), which 
administrates the light switching events. Lights switch between phases of red and green, 
following observed time intervals. The lowest common multiple of these phases is called 
cycle time tc. The described event mechanism is also utilized to schedule the generation of 
new vehicles at certain entry points. 
 

3.2 Modeling vehicles 

 
The neighborhood of each agent is described in a predecessor graph, which maps the 
relationship between each vehicle and its preceding and succeeding car. Because the 
predecessor/successor relationship also has to work for two vehicles on different lanes, this 
graph is not always symmetric. The relationship has to be updated each time a vehicle 
passes onto another edge, either by moving over a node or by switching the lane. Thus, 
each agent knows which vehicle constitutes its immediate predecessor, and can therefore 
adapt its speed according to the current distance and speed of that car. 
A vehicle is represented by an agent which includes a set of attributes like speed, position, 
size, and preferred acceleration and deceleration. The agent's rule set can be discerned in 
three areas: Accelerating and braking, changing direction, and switching lanes. 
 
Accelerating and braking: For simplicity we assume uniform acceleration for all vehicles. At 
each step of simulation time, the agent has the opportunity to change its velocity, depending 
on the current distance d0 to the agent's predecessor or an upcoming traffic light. If d0 is 
greater than a lookahead lmax, the obstacle is ignored and the agent accelerates with its 
preferred value, up to its maximum velocity. If d0 is less than or equal to the lookahead, and 
if the obstacle moves faster than the agent, an acceleration value is calculated so the 
minimum security distance is not violated. If the obstacle has a slower speed than the agent, 
a deceleration value is calculated so that the minimum distance SD can be reached and the 
agent has the same velocity as its predecessor at that point. With v0 as the agent's velocity, 
w0 as the obstacle's velocity, and b as the obstacle's acceleration, the agent's acceleration a 
can be computed as: 
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To achieve a higher degree of realism, the agent will only initiate a deceleration if a is lesser 
than a deceleration threshold rd < 0. As an example it could be assumed that a driver going 
at 4 km/h who notices an obstacle 70 meters away, would not immediately brake to reach a 
velocity of zero at the obstacle. Instead she would probably accelerate for a while and then 
brake sharper, thus reaching the other car's position in a shorter time. 
 
Changing direction: If an agent gets to a split node it has to choose one of the outgoing 
edges. To accomplish this in a realistic way, each dissection features a probability table; its 
values are derived by observing the real-world crossing. There is a small probability of an 
agent to move in a circle and thus to never leave the model in the course of the simulation 
run. Though this behavior would not be realistic (or would it?), for our purposes this is 
negligible: A few non-realistic vehicles would not compromise the resulting swarm behavior. 
 
Switching lanes: An agent tests whether switching a lane would be safe and advantageous. 
Thus, two conditions, the security condition and the gain condition have to be fulfilled. 
Security condition: An agent can only switch lanes if there is sufficient free space on the 
target lane. Additionally, the agent can only change its speed up to a given amount vchange to 
match its velocity to the hypothetical successor and predecessor on the target lane. Gain 
condition: A lane-switch is seen as an advantage, if 1) the possible acceleration a' on the 
target lane would be greater than the possible acceleration a on the current lane, and 2) the 
gain of (a' – a) > 0 is not counterbalanced by a loss (b' – b) < 0 of the successor agent on 
the target lane. This comparison is balanced by the agent's individual “altruistic factor” τ and 
a minimal gain parameter λ > 0, which prevents lane-switching for a minimal gain. Thus, 
lane-switching is supposed to be advantageous only, if (a' – a) + τ*(b' – b) > λ. 
 

4 Experiments 

4.1 Modeling Cologne's Barbarossaplatz area 

 
The Barbarossplatz area (see figure 1) is a highly frequented part of Cologne's inner city 
network. Here the major arteries of Hohenstauffenring/Salierring, Luxemburger 
Straße/Weyerstraße, and Roonstraße meet; they are joined by minor roads like 
Mauritiuswall and Kyffhäuserstraße. Barbarossaplatz is also one of the hubs of Cologne's 
public transport network, so that buses and trams cross the area periodically. 
The area was modeled with 88 nodes and 58 lanes of an accumulated length of 6,979 
meters (see figure 2 and table 1). There are eight traffic lights, with a traffic light cycle time tc 
of 105 seconds. The vehicle numbers at the entry points were measured at a typical 
workday evening (see table 2), tables of probabilities for direction changing were also 
derived from observations. 
As major simulation parameters we set a maximum velocity vmax of 54 kilometers per hour, a 
maximum speed change for lane-switching vchange of 18 kilometers per hour, a maximum 
lookahead for obstacles lmax of 70 meters, and a driver's response time of 0.5 seconds. The 
application is then run to simulate a time interval of 240 minutes. 



  

 

4.2 Results and discussion 

 
In the course of a typical simulation run, 18,623 vehicles were generated, they employed an 
average speed of 19.1 kilometers per hour. 
The model's overall behavior seems realistic: The numbers of agents at the entry points are 
direct results of the simulation parameters and show therefore almost no variations (see 
table 2). The numbers of leaving agents at the exit points (see table 3) result from the path 
through the model chosen by individual agents and therefore show some variations. These 
can be partially explained by the mode of the observation: The numbers of cars at the entry 
and exit points were gathered sequentially, not simultaneously at all roads. 
The simplicity of the model yields some constraints: An agent's path through the model is 
composed by sequential, independent, and randomized picks without any overriding strategy. 
Thus, though single decisions are modeled after observations, and therefore match reality, 
some agents' long-term behavior does not. While the lane-switching behavior seems 
plausible, it also clearly shows a missing strategy. Agents can be observed to switch lanes in 
front of traffic lights even if the queue at their current lane is shorter than the one at the 
target lane, if the predecessor on the target lane is still moving and the one at the current 
lane is not. 

Figure 1: Cologne's Barbarossaplatz area (Source: [5]) 



  

 
No. N/O Lanes Lengths  No. N/O Lanes Lengths 

 A1 2 12  M1 2 100 

A2 3 230  M2 4 110 

A3 1 120  M3 2 90 

A4 2 170  M4 2 90 

A5 2 160  M5 3 70 

A6 3 200  M6 3 120 

V1 2 150  M7 2 55 

V2 1 100  M8 1 105 

V3 2 150  M9 1 110 

V4 1 60  M10 2 120 

V5 2 50  M11 3 140 

V6 2 160  M12 3 55 

V7 1 160  M13 3 95 

V8 2 200  M14 1 140 
 

Table 1: Number and lengths of lanes 

Figure 2: Traffic lane model of the Barbarossaplatz area 



  

Entry points Cars per second 

No. Name Observed Simulated 

A1 Salierring 0.18 0.16 

A2 Neue Weyerstraße 0.50 0.48 

A3 Weyerstraße 0.04 0.05 

A4 Hohenstaufenring 0.23 0.20 

A5 Roonstraße 0.18 0.19 

A6 Luxemburger Straße 0.19 0.17 

Total 1.32 1.29 
 

Table 2: Numbers of observed and simulated cars at entry points 

 

Exit points Cars per second 

No. Name Observed Simulated 

V1 Salierring 0.15 0.19 

V2 Pantaleonsmühlengasse 0.00 0.00 

V3 Neue Weyerstraße 0.40 0.40 

V4 Mauritiuswall 0.01 0.01 

V5 Hohenstaufenring 0.15 0.14 

V6 Roonstraße 0.18 0.11 

V7 Kyffhäuserstraße 0.02 0.03 

V8 Luxemburger Straße 0.36 0.39 

Total 1.27 1.28 
 

Table 3: Numbers of observed and simulated cars at exit points 

5 Summary and further research 

 
This article presents an approach to model and simulate individual traffic as an 
environmental layer for the simulation of time table based public bus systems. Following an 
introduction to the goals and context of our work, it presents some background of ABMS in 
general and the modeling of individual traffic in particular. We then demonstrate our 
modeling approach and apply it to Cologne's Barbarossaplatz area.  
As a further step of our research, we will develop an agent-based representation of time 
table based bus traffic which utilizes the proposed model as a background. The combined 
models will then be embedded with the already existing model of tram traffic (described in 
[16]) into a common simulation application. This multi-modal application will then be utilized 
to represent our hometown Cologne's public transportation system. 
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