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Abstract

Recently, Cicalese and Milanič introduced a graph-theoretic concept
called separability. A graph is said to be k-separable if any two non-
adjacent vertices can be separated by the removal of at most k vertices.
The separability of a graph G is the least k for which G is k-separable. In
this paper, we investigate this concept under the following three aspects.

First, we characterize the graphs for which in any non-complete con-
nected induced subgraph the connectivity equals the separability, so-
called separability-perfect graphs. We list the minimal forbidden induced
subgraphs of this condition and derive a complete description of the
separability-perfect graphs.

We then turn our attention to graphs for which the separability is
given locally by the maximum intersection of the neighborhoods of any
two non-adjacent vertices. We prove that all (house,hole)-free graphs
fulfill this property – a class properly including the chordal graphs and
the distance-hereditary graphs. We conclude that the separability can be
computed in O(m∆) time for such graphs.

In the last part we introduce the concept of edge-separability, in anal-
ogy to edge-connectivity, and prove that the class of k-edge-separable
graphs is closed under topological minors for any k. We explicitly give
the forbidden topological minors of the k-edge-separable graphs for each
0 ≤ k ≤ 3.

keywords: separability, connectivity, HH-free graphs, forbidden topo-
logical minors.

MSC: 05C40, 05C75

1 Introduction

Recently, Cicalese and Milanič [2] introduced a graph-theoretic invariant called
separability. A graph is k-separable if any two non-adjacent vertices can be
separated by the removal of at most k vertices. For example, disjoint unions
of complete graphs are precisely the 0-separable graphs, acyclic graphs are 1-
separable and any chordless cycle is 2-separable. The separability number (sep-
arability for short) of a graph G, denoted sep(G), is defined as the least k for
which G is k-separable. If x and y are two non-adjacent vertices of G, we denote
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by sepG(x, y) the least k such that x and y can be separated by the removal of
k vertices.

Cicalese and Milanič introduced the concept of separability to model a prob-
lem arising in the parsimony haplotyping problem from computational biology
[3]. Among the many aspects of their paper [2], they investigate the com-
putational complexity of several optimization problems (e.g. maximum clique,
k-coloring, minimum dominating set) for graphs of bounded separability. Their
main result is a decomposition theorem for the 2-separable graphs. Furthermore,
they prove characterizations of the 2-separable graphs in terms of minimal for-
bidden induced subgraphs and minimal forbidden induced minors.

In this paper we carry on the research on the concept of separability.
In Section 2, we investigate the relationship of the connectivity of a graph

and its separability. We study the graphs for which the separability equals the
connectivity in any non-complete connected induced subgraph. We call these
graphs separability-perfect. We give a full characterization in terms of forbidden
induced subgraphs and derive a complete description of the separability-perfect
graphs. It turns out that separability-perfectness is a rather restrictive condi-
tion. However, the class of block graphs is covered.

Cicalese and Milanič [2] asked for the relation of the separability to other
graph invariants. In Section 3, we study graphs G for which the separability is
locally determined by the maximum intersection of the neighborhoods of any
two non-adjacent vertices, i.e.

sep(G) = max{|N(u) ∩N(v)| : u, v ∈ V (G), u 6= v, {u, v} /∈ E(G)}, (1)

where N(v) denotes the neighborhood of a vertex v. We observe that the sepa-
rability is computed in O(|E(G)|∆(G)) time for such graphs. We show that (1)
holds for HH-free graphs, i.e. graphs that do not contain as induced subgraph a
house or a chordless cycle of length at least five (see Fig. 4). This class properly
includes the chordal graphs and the distance-hereditary graphs. Finally, we con-
jecture that the theorem extends to weakly chordal graphs, a superclass of the
HH-free graphs. If the conjecture holds, it would yield a new characterization
of the weakly chordal graphs.

In Section 4, we introduce the concept of edge-separability. We observe that,
like separability in [2], edge-separability is not monotone under edge-contraction.
Hence for k ≥ 3, the class of k-edge-separable graphs is not closed under taking
(induced) minors. In contrast, we show that edge-separability is monotone under
topological minors and give a characterization of the k-edge-separable graphs in
terms of forbidden topological minors for each 0 ≤ k ≤ 3.

1.1 Preliminaries

Let Pn denote the induced path and Cn the chordless cycle on n vertices. Kn

is the complete graph on n vertices and K−
n is obtained from Kn by removing

an arbitrary edge. The connectivity of a graph G is denoted by con(G). The
join of two graphs G and H is obtained by taking their disjoint union and then
adding all possible edges from G to H . We also say that H is joined to G. A
simplicial vertex is a vertex whose neighborhood forms a clique.
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2 When separability equals connectivity

With the exception of complete graphs, the separability is always an upper
bound for the connectivity. It seems to be natural to ask for which graphs both
parameters coincide. To get a grip on the problem, we require equality for all
induced subgraphs of a graph. Formally, we say that a connected graph G is
separability-perfect if and only if sep(H) = con(H) for any connected induced
subgraph H which is not complete.

Our aim is to derive three equivalent conditions for a graph G to be
separability-perfect. For this, we need the following concepts.

A cycle of cliques is a graph obtained as follows. Start with k ≥ 3 cliques
C1, C2, . . . , Ck of size at least 2 and choose two distinct vertices from each
clique. Say we choose v11 and v12 from C1, v21 and v22 from C2 and so on. Now
identify v12 with v21 , v

2
2 with v31 , and so on until finally vk2 is identified with v11 .

In Fig. 1, two cycles of cliques are displayed.

Figure 1: Two cycles of cliques.

We call a graph F -free if it does not contain as induced subgraphs the graphs
F 1, F 2, F 3 (see Fig. 2) and, for any n, F 4

n and F 5
n (see Figure 3).

Figure 2: The graphs F 1, F 2 and F 3.

A graph is called a block graph if every 2-connected component of it is a
clique. It is known that a graph is a block graph if and only if it is chordal and
K−

4 -free (cf. [1]).
Let G be the class of the following graphs: G is either a block graph, a cycle

of cliques, a complete graph where a matching is removed, or G is obtained by
joining a complete graph to one of the following graphs:

(I) a disjoint union of complete graphs. In this case, the joined complete
graph may not be empty.

(II) a disjoint union of two non-empty complete graphs where a non-empty
matching is added between them.
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Figure 3: The configurations F 4
n and F 5

n . In both configurations, the two vertices
at the bottom are the end-vertices of a path on n ≥ 1 vertices symbolized by
the dotted line. In the case n = 1, the two vertices at the bottom of F 4

n , F
5
n

respectively, are identical.

(III) C5.

We are now able to characterize separability-perfectness by three equivalent
conditions. The first one is in terms of degrees and connectivity of the 2-
connected induced subgraphs of G. The second lists the minimal connected non-
separability-perfect graphs. The third condition gives a complete description of
the separability-perfect graphs.

Theorem 1. For a connected graph G, the following conditions are equivalent:

(i) G is separability-perfect.

(ii) |NG(x) ∩ V (H)| ≥ con(H) holds for every non-complete 2-connected
induced subgraph H of G and for every vertex x ∈ V (G) \ V (H). If
NG(x) ∩ V (H) is not a clique in G, then |NG(x) ∩ V (H)| ≥ con(H) + 1.

(iii) G is F -free.

(iv) G ∈ G.

We give the proof of Theorem 1 after a sequence of lemmas, which settle
the main step of the proof. The first one, Lemma 1, considers chordal graphs.
Lemma 2 and 3 consider non-chordal graphs.

Lemma 1. If G is a connected F -free chordal graph, then G ∈ G.

Proof. Let G be a connected F -free chordal graph. In the following case dis-
tinction, a vertex is called central if it is adjacent to all other vertices of G.

Case 1. G has a central vertex.
We claim that G is obtained by joining a complete graph to a disjoint union

of complete graphs (type I) or is the disjoint union of two complete graphs where
a non-empty matching is added (type II). To see this, let U be the (non-empty)
set of central vertices of G,

Since F 1 is forbidden, we know that the graph H = G[V (G) \ U ] does not
contain the disjoint union of P3 and K1, henceforth denoted P3∪K1, as induced
subgraph. Thus if H is disconnected, any connected component of H is P3-free.
Since connected P3-free graphs are complete, G is of type I.

We now assume that H is connected. A classical theorem of Wolk [8] states
that a connected graph without induced P4 and C4 has a central vertex. Since
we excluded U , H cannot have such a vertex and must, by contraposition,
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contain an induced P4 or C4. As H is chordal, the latter is not possible. Let
u1, u2, u3, u4 be the consecutive ordering of an induced P4 of H .

Suppose that there is a vertex x which does not have a neighbor in {u2, u3}.
Then x must be adjacent to u1 or u4, since H is P3 ∪K1-free. By chordality, x
is adjacent to u1 or u4, but not both. We may assume that x is adjacent to u1.
But then H [{x, u2, u3, u4}] ∼= P3 ∪K1, a contradiction. Hence, every vertex has
a neighbor in {u2, u3}.

We define a partition of V (H)\{u2, u3} as follows: let A be the set of vertices
neighboring u2 but not u3, let B be the set of vertices neighboring both u2 and
u3 and let C be the set of vertices neighboring u3 but not u2. We know that
u1 ∈ A and u4 ∈ C and thus both sets are nonempty. Moreover, no member of
A is adjacent to a member of C, by chordality. We claim that B is empty and
both A and C are cliques.

To see this, we first suppose that B is not empty. Let b ∈ B. If there
is a vertex a ∈ A \ NH(b), b must be adjacent to any c ∈ C. Otherwise
H [{a, b, c, u2}] ∼= P3 ∪K1, for any c ∈ C \NH(b). But then H [{a, b, c, u2, u3}] ∼=
F 4
1 for any c ∈ C, a contradiction.
By symmetry we know that for all b ∈ B we have A∪C ⊆ NH(b). Since there

is no vertex in H that is adjacent to all other vertices, there are non-adjacent
vertices b1, b2 ∈ B. But then H [{b1, b2, u1, u3}] ∼= C4, a contradiction to the
chordality of H . Therefore B must be empty.

If A is not a clique, there are non-adjacent vertices a1, a2 ∈ A. But then
H [{a1, a2, u2, u4}] ∼= P3 ∪ K1. By a symmetric argumentation, A and C are
cliques.

Recall that, since G is chordal, no vertex of A is adjacent to a vertex of
C. Therefore, H is the disjoint union of two complete graphs where the edge
{u2, u3} is added. That is, G is of type II.

Case 2. G does not have a central vertex.
If G does not contain K−

4 as an induced subgraph, G is a block graph (cf.
[1]). So we may assume that G has an induced K−

4 on the vertices v1, v2, v3, v4
such that v1 is not adjacent to v4. If V (G) = {v1, v2, v3, v4}, G is a cycle of
cliques. Hence we may assume that there is a vertex x ∈ V (G) \ {v1, v2, v3, v4}.

First, assume that x has a neighbor in {v1, v2, v3, v4}. In view of F 1 and F 4
1 ,

x must have two neighbors in {v1, v2, v3, v4}. By chordality, x has two neighbors
in {v1, v2, v3} or two neighbors in {v2, v3, v4}. By symmetry, we may assume
that x has two neighbors in {v1, v2, v3}.

Now suppose that x has a neighbor y which does not have a neigh-
bor in {v1, v2, v3, v4}. If x has exactly two neighbors in {v1, v2, v3}, then
G[{x, y, v1, v2, v3}] ∼= F 4

1 , a contradiction. Thus x has three neighbors in
{v1, v2, v3}. If x is adjacent to v4, G[{x, y, v1, v2, v4}] ∼= F 1. Otherwise,
G[{x, y, v2, v3, v4}] ∼= F 4

1 . Both yields a contradiction. Since G is connected,
there cannot be a vertex without neighbors in {v1, v2, v3, v4}. All in all, every
vertex x ∈ V (G) \ {v1, v2, v3, v4} has at least two neighbors in {v1, v2, v3} or in
{v2, v3, v4}.

Suppose there are vertices x, y /∈ {v1, v2, v3, v4} such that x has only one
neighbor in {v2, v3, v4} and y has only one neighbor in {v1, v2, v3}. Since x and
y both must have two neighbors in {v1, v2, v3, v4}, we know that x is adjacent
to v1 and, without loss of generality, v2. Conversely, y is adjacent to v4 and to
either v2 or v3.
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Suppose that x is adjacent to y. If y is adjacent to v2, G[{x, y, v1, v3, v4}] ∼=
C5, and if y is adjacent to v3, G[{x, y, v1, v3}] ∼= C4. Both is contradictory to
the fact that G is chordal.

So x is not adjacent to y. If y is adjacent to v2, G[{x, y, v1, v2, v3}] ∼= F 1,
and if y is adjacent to v3, G[{x, y, v1, v2, v3}] ∼= F 4

1 . Both yields a contradiction.
Thus we know that every vertex has two neighbors in {v1, v2, v3} or every

vertex has two neighbors in {v2, v3, v4}. We may assume the first case. In the
remainder of the proof, v4 will not be considered. So, from now on, the roles of
v1, v2 and v3 are interchangeable.

Case 2.1. There is a vertex w adjacent to all three members of {v1, v2, v3}.
Since G does not have a central vertex, there must be a non-neighbor of w

in G.
First we suppose that there is a vertex x with exactly two neighbors

among {v1, v2, v3} such that w is not adjacent to x. We can assume that
N(x) ∩ {v1, v2, v3} = {v1, v2}. But then there must be a vertex, say y, that
is not adjacent to v1 or v2. Since any vertex has at least two neighbors among
{v1, v2, v3}, we can assume that N(y) ∩ {v1, v2, v3} = {v1, v3}. Suppose that
x is adjacent to y. But then G[{x, y, v2, v3}] ∼= C4, in contradiction to the
chordality of G. Hence, x is not adjacent to y. So G[{x, y, w, v1, v3}] ∼= F 1 if
y is not adjacent to w and G[{x, y, w, v2, v3}] ∼= F 4

1 otherwise. Both gives a
contradiction.

So every vertex with exactly two neighbors in {v1, v2, v3} is adjacent to w
but there is a vertex w′ not adjacent to w (since w is not central). Then w′ is
adjacent to v1, v2, and v3. Since no two members of {v1, v2, v3} are adjacent
to all other vertices, there must be x and y, both having exactly two neighbors
among {v1, v2, v3}, such that N(x) ∩ {v1, v2, v3} 6= N(y) ∩ {v1, v2, v3}. As seen
above, x is not adjacent to y. Moreover, by the assumption of the third case,
x and y are both adjacent to w and, as seen in the second case, x and y must
also be both adjacent to w′. But then G[{x, y, w, w′}] ∼= C4, a contradiction.

Case 2.2. Every vertex has exactly two neighbors among {v1, v2, v3}.
As seen in Case 2.1, whenever two vertices x, y ∈ V (G) \ {v1, v2, v3} do not

have the same neighbors in {v1, v2, v3}, x and y cannot be adjacent. Suppose
there are two vertices x, y that have the same two neighbors in {v1, v2, v3},
say v1 and v2, but are not adjacent. By assumption, there is a vertex z not
adjacent to both v1 and v2. As shown above, z is not adjacent to x or y, thus
G[{x, y, z, v1, v2}] ∼= F 1, a contradiction. Hence G is a cycle of cliques. This
completes the proof.

We now come to the non-chordal graphs.

Lemma 2. Let G be a connected F -free graph. If G contains a chordless cycle
C of length n ≥ 4, then the following holds:

(i) Every vertex of V (G) \ V (C) is either adjacent to all vertices in C or to
exactly two adjacent vertices in C.

(ii) If x, y ∈ V (G) \ V (C), both have exactly two neighbors in C and these
neighbors are the same, then x is adjacent to y.

(iii) If there is no vertex in V (G) \ V (C) with exactly n neighbors in the cycle
and n ≥ 5, then G is a cycle of cliques.
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Proof. Let C = {v1, v2, . . . , vn} be an induced cycle of length n ≥ 4 with vertices
ordered consecutively.

(i) Let x ∈ V (G) \ V (C). We distinguish two cases and first assume that
N(x) ∩ V (C) 6= ∅. Then, since F 5

n is forbidden, x has at least two neighbors in
V (C).

Suppose x has exactly two neighbors in V (C), w.l.o.g. v1 and vk, and they are
not adjacent. In particular, k ≥ 3. By symmetry, we may assume that k ≤ d(n+
1)/2e. If n = 4, then k = 3 and thus G[{x, v1, v2, v3, v4}] ∼= F 3, a contradiction.
If n ≥ 5, vk is not adjacent to vn and thus G[{x, v1, v2, . . . , vk, vn}] ∼= F 5

k−2.
Since k ≥ 3, this is again a contradiction.

Now suppose that x has more than two but less than n neighbors in V (C).
W.l.o.g. we assume that v1 is a neighbor of x but v2 is not. Let k > 2 be the
smallest number such that vk is a neighbor of x. Since x has more than two
neighbors, k ≤ n− 1.

Suppose vk+1 is not a neighbor of x. Since x has more than two neighbors
in V (C), vk+1 6= vn. Hence, G[{x, v1, v2, . . . , vk+1}] ∼= F 5

k−2, a contradiction.
Thus vk+1 is a neighbor of x. Suppose k + 2 ≤ n. Suppose vk+2 is

not a neighbor of x. Then it is not a neighbor of v1 neither, since other-
wise G[{x, v1, v2, vk+1, vk+2 = vn}] ∼= F 5

1 . Thus G[{x, v1, v2, . . . , vk+2}] ∼=
F 4
k−1, a contradiction. Therefore, vk+2 is a neighbor of x and so

G[{x, vk−1, vk, vk+1, vk+2}] ∼= F 4
1 , a contradiction.

Hence, k + 2 > n and so k + 1 = n. It is not possile that n ≥ 5, since
we assumed k ≤ d(n + 1)/2e. So n = 4 and thus G[{x, v1, v2, v3, v4}] ∼= F 2, a
contradiction. This means that if x has a neighbor in V (C), (i) holds.

Suppose there is a vertex y ∈ V (G)\V (C) with no neighbors in V (C). Since
G is connected, we can choose y such that it has a neighbor x withN(x)∩V (C) 6=
∅. We know that either N(x) ∩ V (C) = V (C) or x has exactly two neighbors
in V (C) and they are adjacent. In the first case, G[{x, y, v1, v2, v3}] ∼= F 1, a
contradiction. In the second, G[{x, y, v1, v2, . . . , vn}] ∼= F 4

n−2, a contradiction.
Hence (i) holds.

(ii) Let x and y be two vertices with N(x) ∩ V (C) = N(y) ∩ V (C), say
N(x)∩V (C) = {v1, v2}. Then, if x is not adjacent to y, G[{x, y, v1, v2, v3}] ∼= F 1,
a contradiction.

(iii) Assume there is a vertex x /∈ V (C) which has exactly two neighbors in
V (C), say v1 and v2. If V (G) = V (C) ∪ {x}, G is a cycle of cliques and we
are done. Hence we can assume that there is another vertex y with exactly two
neighbors vi, vj ∈ V (C). As before, we may assume that 2 ≤ i ≤ d(n + 1)/2e.
In particular i ≤ n− 1 and thus j = i+ 1.

If y shares exactly one neighbor with x, then i = 2. Since n ≥ 5, v4 is
not adjacent to x or y. If x and y are adjacent, G[{x, y, v2, v3, v4}] ∼= F 4

1 , a
contradiction.

Now assume x and y do not share a neighbor in C. By assumption, vn 6= vi+1.
If x and y are adjacent, G[{x, y, vn, v1, v2, . . . , vi}] ∼= F 4

i−2, a contradiction.
Together with (ii) this completes the proof of (iii).

Lemma 3. If G is a connected F -free graph that contains a chordless cycle of
length at least 4, then G ∈ G.

Proof. Let G be a connected F -free graph that contains a chordless cycle of
length at least 4. We distinguish the cases that G contains as induced subgraph
a C4, G contains a C5 and G contains a Cn, n ≥ 6.

7



Case 1. G contains an induced C4.
Let v1, v2, v3, v4 be a consecutive ordering of the vertices of an induced C4

of G. By Lemma 2(i), every vertex in V (G) \ {v1, v2, v3, v4} has exactly two or
exactly four neighbors among the set {v1, v2, v3, v4}.

Case 1.1. First we assume that every vertex of V (G) \ {v1, v2, v3, v4} has
exactly two neighbors in {v1, v2, v3, v4}.

Let C1,2 be the neighbors of v1 and v2, C2,3 be the neighbors of v2 and v3,
C3,4 be the neighbors of v3 and v4 and finally C4,1 be the neighbors of v4 and v1.
By Lemma 2(ii), each of these sets is a (possibly empty) clique. In particular,
if V (G) = {v1, v2, v3, v4}, G is a cycle of cliques and we are done.

First we assume that both C1,2 ∪ C3,4 and C2,3 ∪ C4,1 are not empty, and
let C1,2 and C2,3 be non-empty. Let x ∈ C1,2 and y ∈ C2,3. Indeed, x and y
cannot be adjacent since otherwise G[{x, y, v2, v3, v4}] ∼= F 4

1 . If there is a vertex
z ∈ C3,4, y and z cannot be adjacent either. Hence, x and z cannot be adjacent
since otherwise G[{x, y, z, v1, v3, v4}] ∼= F 4

2 , a contradiction. By symmetry, G is
a cycle of cliques.

Now we assume that C2,3∪C4,1 is empty but C1,2∪C3,4 is not. If there is no
edge from C1,2 to C3,4, G is a cycle of cliques. Hence let x ∈ C1,2 and assume
that x has two neighbors in C3,4, say y and z. Then G[{x, y, z, v1, v3}] ∼= F 4

1 ,
a contradiction. Thus G is obtained from the two disjoint complete graphs
G[C1,2 ∪ {v1, v2}] and G[C3,4 ∪ {v3, v4}] by adding a matching. Hence G is of
type II.

Case 1.2. There are vertices adjacent to all four vertices v1, v2, v3, v4.
We denote the set of these vertices by D. Let C̃1,2, C̃2,3, C̃3,4 and C̃4,1 be

defined as follows: C̃1,2 contains the neighbors of v1 and v2 which are not in D,

C̃2,3 contains the neighbors of v2 and v3 which are not in D and so on.

First we assume that C̃1,2 ∪ C̃2,3 ∪ C̃3,4 ∪ C̃4,1 is not empty. We can assume

that there is a vertex x ∈ C̃1,2. We observe that x is adjacent to any member
of D: if y ∈ D is not adjacent to x, G[{x, y, v2, v3, v4}] ∼= F 4

1 , a contradiction.
Furthermore, D is a clique: If there are two non-adjacent members of D, say
d1 and d2, then G[{x, d1, d2, v3, v4}] ∼= F 2, a contradiction. Now assume there
is a vertex z ∈ C̃2,3 ∪ C̃4,1, say z ∈ C̃2,3. Then, like x, z is adjacent to any
member of D. As shown in the case D = ∅, x and z can not be adjacent.
But then, G[{x, y, z, v2, v4}] ∼= F 1 for any y ∈ D, a contradiction. That is, if
C̃1,2∪ C̃3,4 6= ∅, then C̃2,3 ∪ C̃4,1 = ∅. By the same analysis as above we see that

G[{v1, v2, v3, v4} ∪ C̃1,2 ∪ C̃3,4] is of type II. Thus G is obtained from a graph
of type II by joining the complete graph G[D] and so again is of type II.

Now we assume that C̃1,2 ∪ C̃2,3 ∪ C̃3,4 ∪ C̃4,1 is empty. Thus V (G) =
{v1, v2, v3, v4} ∪ D. Now, G[D] is not necessarily complete. However, in G[D]
any vertex is adjacent to all but at most one vertex: If there are vertices x, y, z ∈
D such that x is non-adjacent to both, G[{x, y, z, v1, v3}] ∼= F 2 in the case
{y, z} ∈ E(G) and G[{x, y, z, v1, v3}] ∼= F 3 otherwise. Both is contradictory.
Hence, in G[D] and thus in G any vertex is adjacent to all but at most one
vertex. That is, G is obtained from a complete graph by removing a matching.

Case 2. G contains C5 as induced subgraph.
Let C be that cycle and let v1, v2, v3, v4, v5 be a consecutive ordering of the

vertices of C. If there is no vertex in G that has five neighbors in C, Lemma 2(iii)
gives that G is a cycle of cliques. Hence, we can assume that there is a vertex x
that has five neighbors in C. Assume there is another vertex y ∈ V (G) \ V (C).
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First suppose that y does not have five neighbors among C. By Lemma 2(i),
y has exactly two neighbors in C and they must be adjacent, say y is adjacent
to v1 and v2. If x and y are adjacent, G[{x, y, v3, v4, v5}] ∼= F 1. If x and y are
not adjacent, G[{x, y, v1, v2, v4}] ∼= F 4

1 . Both is contradictory.
Thus, y has exactly five neighbors in C. If x and y are not adjacent,

G[{x, y, v1, v2, v4}] ∼= F 2, a contradiction.
As x and y were arbitrary, G is obtained from C5 by joining a complete

graph. Hence G is of type III.
Case 3. G contains Cn as induced subgraph, for some n ≥ 6.
Let C be that cycle and let v1, v2, . . . , vn be a consecutive ordering of the

vertices of C. Assume for contradiction that there is a vertex x that has n
neighbors in C. Then G[{x, v1, v2, v3, v5}] ∼= F 1, a contradiction.

Lemma 2(iii) implies that G is a cycle of cliques which completes the proof.

We are now able to prove our main result.

Proof of Theorem 1. Let G be a connected graph.
(i) ⇒ (ii): (i) ⇒ (ii): Assume that G is separability-perfect. Let H be a 2-

connected induced subgraph of G which is not complete and let x ∈ V (G)\V (H)
be arbitrary.

First we suppose that |N(x)∩V (H)| = 0, so G[V (H)∪{x}] is disconnected.
Since G is connected, there is a shortest path from x to V (H) in G, say (x =
v0, v1, . . . , vk) where vk ∈ V (H). Let H ′ = G[V (H) ∪ {v0, v1, . . . , vk}]. Since v1
is a cut-vertex of H ′, con(H ′) = 1. On the other hand, sep(H ′) ≥ sep(H) ≥ 2,
a contradiction to the assumption that G is separability-perfect.

Now let |N(x) ∩ V (H)| ≥ 1. If |N(x) ∩ V (H)| ≤ con(H) − 1, then
con(G[V (H) ∪ {x}]) = |N(x) ∩ V (H)| ≤ con(H)− 1. Since the separability is
monotone under vertex-deletion (cf. [2]), sep(G[V (H) ∪ {x}]) ≥ sep(H), con-
tradicting the separability-perfectness of G. Hence, |N(x) ∩ V (H)| ≥ con(H).
If N(x)∩V (H) is not a clique in G then let y, z ∈ N(x)∩V (H) be non-adjacent.
Since G is separability-perfect, sepH(y, z) = con(H). Thus,

sepG[V (H)∪{x}](y, z) = sepH(y, z) + 1 = con(H) + 1.

If |N(x) ∩ V (H)| = con(H), then con(G[V (H) ∪ {x}]) = con(H), again a
contradiction to the fact that G is separability-perfect. Therefore, |N(x) ∩
V (H)| ≥ con(H) + 1, and (ii) follows.

(ii) ⇒ (iii): None of the graphs of the family F fulfills (ii) as can be seen as
follows. If we remove a vertex x of minimum degree, we obtain a 2-connected
graph H which is not complete. In the cases of F 1, F 4

n and F 5
n , for all n, x has

only one neighbor in H , a contradiction to (ii). In the cases of F 2 and F 3, x
has only two neighbors in H and they are not adjacent, again contradicting (ii).
Thus, the forbidden induced subgraphs of property (iii) are not separability-
perfect and this proves (iii).

(iii) ⇒ (iv): This follows from the Lemmas 1 and 3.
(iv) ⇒ (i): We show that all graphs in G are separability-perfect.
Let G be a block graph. If G is a complete graph, then G is separability-

perfect by definition. Otherwise sep(G) = con(G) = 1. Since block graphs are
closed under induced subgraphs, they are separability-perfect.
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Let G be a cycle of cliques. In the case of G ∼= K3, G is separability-perfect
by definition. In every other case we observe that sep(G) = con(G) = 2.
Furthermore, if one of the simplicial vertices is removed, another cycle of cliques
is obtained. If one of the non-simplicial vertices is removed, a block graph is
obtained. Thus G is separability-perfect.

Let G be a complete graph with some matching M removed. If M = ∅, G is
a complete graph and we are done. If M 6= ∅, sep(G) = con(G) = |V (G)| − 2.
Since any connected induced subgraph of G is again some complete graph with
a matching removed, G is separability-perfect.

Let G be of type I, i.e. G is obtained from the disjoint union of complete
graphs by joining a non-empty complete graph H . Again, if G is a complete
graph, we are done. Otherwise we have sep(G) = con(G) = |V (H)|. Since any
connected induced subgraph of G is again of type I, G is separability-perfect.

Let G be of type II, i.e. G is obtained from two disjoint complete graphs
by adding a non-empty matching M and joining a complete graph H . If G
is a complete graph, we are done. Otherwise we have sep(G) = con(G) =
|M |+ |V (H)|. Since any connected induced subgraph of G is of type I or II, G
is separability-perfect.

Let G be of type III, i.e. G is obtained from C5 by joining a complete graph
H . Then sep(G) = con(G) = |V (H)| + 2. Furthermore, if a vertex of H is
removed, G is again of type III. If a vertex from the C5 is removed, G is of type
II. Hence G is separability-perfect.

3 Graphs with locally determined separability

Let G = (V,E) be a graph. For any non-adjacent pair x, y ∈ V ,

sepG(x, y) ≥ |N(x) ∩N(y)|. (2)

As a consequence, for any non-complete graph G

sep(G) ≥ max{|N(u) ∩N(v)| : u, v ∈ V, u 6= v, {u, v} /∈ E}. (3)

The question arises, for which graphs equality holds in (3). We say that the
separability number of G is locally determined if G is complete or equality holds
in (3).

If the separability of a graph G = (V,E) is locally determined, the separa-
bility number can easily be computed in O(|V |2∆) time, where ∆ denotes the
maximal degree of G. The idea of this procedure is to determine, for any two
non-adjacent vertices, the size of the intersection of their neighborhoods. With
a little organization, we can replace the term |V |2 by the number m of edges:

Lemma 4. For connected graphs with locally determined separability, the sep-
arability number can be computed in O(m∆) time.

Proof. Let G = (V,E) be a connected graph given by an adjacency list. We can
decide in linear time if G is a complete graph. In this case we are done.

If G is not a complete graph, we use Algorithm 1 to solve the problem. For
a given graph G, it computes the value

X∗ = max{|N(u) ∩N(v)| : u, v ∈ V, u 6= v, {u, v} /∈ E}
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and finds a non-adjacent pair of vertices P = (x, y) with |N(x) ∩N(y)| = X∗.
We now explain Algorithm 1 and thereby observe its correctness.

Initially, the value of the current optimal solution, X∗, is set to 0. In
the loop starting in line 2, to any vertex of G we assign an integer variable
CommonNeighbors (initially 0) and a Boolean variable IsNeighbor (initially
false).

In the loop starting in line 5, for any vertex u the following is done: The
inner loop starting in line 6 sets the value of IsNeighbor(v) to true for any
neighbor v of u. In the inner loop starting in line 9, for any neighbor w of
any neighbor of u the number of common neighbors of u and w is computed,
provided that IsNeighbor(w) is false. Thus, when the loop finishes in line 15,
we have CommonNeighbors(x) = |N(u)∩N(x)| for any vertex x with distance
exactly two from u. For every other vertex, CommonNeighbors is 0. Finally,
the loop starting in line 16 updatesX∗ and P if necessary and afterward defaults
all variables CommonNeighbors and IsNeighbor.

Algorithm 1 Compute local separability

Require: A connected non-complete graph G = (V,E).
Ensure: X∗ = max{|N(u) ∩ N(v)| : u, v ∈ V, u 6= v, {u, v} /∈ E} and a non-

adjacent pair P = (u, v) with X∗ = |N(u) ∩N(v)|.
1: X∗ ← 0
2: for all u ∈ V do

3: CommonNeighbors(u)← 0 and IsNeighbor(u)← false

4: end for

5: for all u ∈ V do

6: for all neighbors v of u do

7: IsNeighbor(v)← true

8: end for

9: for all neighbors v of u do

10: for all neighbors w of v do

11: if IsNeighbor(w) = false then

12: CommonNeighbors(w)← CommonNeighbors(w) + 1
13: end if

14: end for

15: end for

16: for all neighbors v of u do

17: for all neighbors w of v do

18: if X∗ < CommonNeighbors(w) then
19: X∗ ← CommonNeighbors(w) and P ← (u,w)
20: end if

21: CommonNeighbors(w)← 0
22: end for

23: IsNeighbor(v)← false

24: end for

25: end for

26: return P and X∗

It remains to analyze the running time of Algorithm 1. The loop starting in
line 2 is done in O(|V |) steps. For any vertex u ∈ V , the loop starting in line 6
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is done in O(|N(u)|) steps. The loop starting in line 9 needs O(|N(u)|∆) steps.
The same holds for the loop starting in line 16.

Since G is connected, |E| ≥ |V |−1. Thus we haveO(|V |+
∑

u∈V |N(u)|∆) =
O(|E|∆) steps in total.

In the following, we need an easy consequence of Menger’s Theorem [5].

Lemma 5. Let G be a graph and let x and y be two distinct non-adjacent vertices
of V (G). Then sepG(x, y) equals the maximal number of internally vertex-
disjoint paths from x to y. Furthermore, sep(G) equals the maximal number of
internally vertex-disjoint paths with the same non-adjacent end-vertices.

If G = (V,E) is a non-complete graph with sep(G) > 0 for which the
separability number is locally determined, then there is a non-adjacent pair
x, y ∈ V that has exactly sep(G) common neighbors. This means that any
induced path from x to y has length exactly two. In the literature, a pair of
vertices x, y for which any induced path from x to y has length exactly two is
called a two-pair [6, 7]. Thus we know that such a graph G necessarily has a
two-pair. As the following discussion shows, the notion of a two-pair is closely
related to the question of locally determined separability.

A chordless cycle of length at least five is called a hole. The complement of
a hole is called an anti-hole. A graph G is called weakly chordal if it does not
contain a hole or an anti-hole as induced subgraph. It is shown by Hayward,
Hoàng and Maffray [6] that every non-complete weakly chordal graph has a
two-pair. On the other hand, holes and anti-holes do not have a two-pair [6].
This leads to the following:

Lemma 6. Let G be a graph for which in any induced subgraph the separability
is locally determined. Then G is weakly chordal.

We conjecture that the other direction holds as well:

Conjecture 1. For any weakly chordal graph the separability is locally deter-
mined.

Note that, since the class of weakly chordal graphs is closed under induced
subgraphs, Conjecture 1 combined with Lemma 6 would give a new characteri-
zation of the class of weakly chordal graphs.

So far we can only prove a partial result of Conjecture 1, namely Theorem
2 stated below. A graph is called HH-free if it does not contain a hole or the
house (both displayed in Fig. 4) as induced subgraph. Since any anti-hole other
than C5 contains a house as induced subgraph, the class of HH-free graphs is a
proper subclass of the weakly chordal graphs [1]. On the other hand, the class
of HH-free graphs is a proper superclass of both chordal graphs and distance-
hereditary graphs [1].

Recently, a new characterization of the HH-free graphs was found by Kratsch,
Spinrad and Sritharan [7]. Roughly speaking, it says that a graph is HH-free if
and only if in any induced subgraph any vertex is part of a two-pair. We need
the non-trivial direction of this characterization:

Lemma 7 (Kratsch, Spinrad and Sritharan [7]). Let G be a connected HH-free
graph. Every vertex of G either is adjacent to all other vertices or is part of a
two-pair.
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Figure 4: Hole and house. The two vertices at the bottom are the end-vertices
of a path on n ≥ 2 vertices symbolized by the dotted line.

Using Lemma 7, we obtain the following result.

Theorem 2. For any HH-free graph, the separability is locally determined.

Proof. Let G be an HH-free graph. Since for a disjoint union of cliques the
separability is locally determined, we may assume that sep(G) ≥ 1. Let H =
(V,E) be an induced subgraph of G such that sep(H) = sep(G) and the removal
of any vertex from H results in a graph with lower separability. Let x, y ∈ V
be two non-adjacent vertices such that sepH(x, y) = sep(H). We observe that
H is connected.

Suppose there is a proper subset S of NH(x) that is a cut-set of H . Let
C1, C2, . . . , Ck be the connected components ofH [V \S]. As S is a proper subset
ofNH(x), x and y belong to the same component ofH [V \S], say C1. Otherwise,
some vertex of NH(x) \ S could be removed from H without a decrease of the
separability. By choice of H , there is a path P in H from x to y that contains
a vertex u of a component Ci for some 2 ≤ i ≤ k. But then P contains at least
two vertices from S, say v and w. Since v and w are neighbors of x, P cannot be
an induced path. Thus no induced path from x to y contains u. By Lemma 5, x
and y are connected by exactly sepH(x, y) internally vertex-disjoint paths and
each of these paths can clearly be chosen to be induced. Hence for the graph
H ′ = H [V \ {u}] it holds that sep(H ′) = sepH′(x, y) = sepH(x, y) = sep(H),
a contradiction to the choice of H .

Therefore no proper subset of NH(x) is a cut-set of H . Since H is connected
and x is not adjacent to y, x is contained in a two-pair by Lemma 7. Let z be
the partner of x in this two-pair. Suppose z 6= y. By choice of H , sepH(x, z) <
sep(H), since otherwise y is superfluous. Hence, the set S = NH(x) ∩NH(z) is
a proper subset of NH(x). As seen before, S cannot be a cut-set of H . Thus
there is an induced path P from x to z in H [V \ S]. By choice of S, P has
length at least three, a contradiction to the fact that x and z form a two-pair.
Hence, z = y and so sepH(x, y) = |NH(x) ∩NH(y)| by Lemma 5 and (2).

All in all,

sep(G) = sep(H) = sepH(x, y) = |NH(x) ∩NH(y)| ≤ |NG(x) ∩NG(y)|.

This, together with |NG(x) ∩NG(y)| ≤ sep(G) by (3), shows that the separa-
bility of G is locally determined.

Combining Lemma 4 and Theorem 2, we obtain the following.

Corollary 1. In the class of connected HH-free graphs, the separability num-
ber is computed in O(m∆) time, where m denotes the number of edges and ∆
denotes the maximum degree of the graph considered.
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Note that the separability can be computed in polynomial time in general
[2], but probably not in O(m∆) time.

As said before, the chordal graphs form a proper subclass of the HH-free
graphs. Indeed, for any chordal graph G and any pair of non-adjacent vertices
x, y ∈ V (G), the setN(x)∩N(y) is a clique. Hence, Theorem 2 has the following
consequence.

Corollary 2. For any non-complete chordal graph G,

sep(G) = max{n : K−
n+2 is an induced subgraph of G}.

4 Edge-separability

Let G be a graph and let x and y be two distinct vertices of V (G). We define
the edge-separability of x and y, denoted sep

′
G(x, y), as the minimal number

of edges whose removal from G separates x and y. The edge-separability of G,
denoted sep

′(G), is defined by

sep
′(G) = max{sep′G(x, y) : x, y ∈ V (G), x 6= y}.

G is called k-edge-separable if sep′(G) ≤ k. Hence, the k-edge-separable graphs
are those graphs where any pair of vertices can be separated by the removal of
at most k edges.

By Menger’s Theorem [5], we immediately obtain the following equality:

Lemma 8. Let G be a graph and let x and y be two distinct vertices of V (G).
Then sep

′
G(x, y) equals the maximal number of edge-disjoint paths from x to y.

Furthermore, sep′(G) equals the maximal number of edge-disjoint paths with the
same end-vertices.

Furthermore, we have the following useful observation. As usual, a block in
a graph is a maximal two-connected component.

Lemma 9. Let G be a graph and let G1, G2, . . . , Gk be its blocks. Then

sep
′(G) = max

i=1,...,k
sep

′(Gi). (4)

Proof. Let G be a graph and let G1, G2, . . . , Gk be its blocks. Clearly sep
′(G) ≥

maxi=1,...,k sep
′(Gi).

Suppose sep
′(G) > maxi=1,...,k sep

′(Gi). Let x and y be of minimum dis-
tance in G such that sep

′
G(x, y) = sep

′(G). By assumption, x and y do not
belong to the same block of G. Hence, there is a cut-vertex z, distinct from x
and y, that separates x from y. Thus, any path connecting x and y contains z.
Hence, sep′G(x, z) ≥ sep

′
G(x, y) = sep

′(G), in contradiction to the choice of x
and y.

Indeed, any partial subgraph of a k-edge-separable graph is k-edge-separable,
too. However, the next lemma shows that the class of k-edge-separable graphs
is closed under a stronger operation.

Lemma 10. For any k, the class of k-edge-separable graphs is closed under
topological minors.
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Proof. Let G be a k-edge-separable graph for some k. We can assume that G
is connected. Observe that the removal of vertices and edges does not increase
the edge-separability of G.

Now let v ∈ V (G) be a vertex of degree two (say NG(v) = {u,w}) and let
G′ be the graph obtained from G by contracting v. By definition, G′ contains
the edge {u,w}. Suppose sep

′(G′) > sep
′(G). Thus there are two vertices

x, y ∈ V (G′) such that sep′
G′(x, y) ≥ k+1. From Lemma 8 we know that there

are k + 1 edge-disjoint paths from x to y. By assumption, one of these paths
has to contain the edge {u,w}. But then this edge can be substituted by the
edges {u, v} and {v, w} to obtain a path in G which is still edge-disjoint to the
other k paths. By Lemma 8, G is (k + 1)-edge-separable, a contradiction.

In contrast, k-edge-separable graphs are not closed under (induced) minors
in general.

Lemma 11. For each k ≥ 3, the class of k-separable graphs is not closed under
edge-contraction.

Proof. Let k ≥ 3 be arbitrary. Consider the graph Gk defined by

V (Gk) = {u, v, w, x1, x2, . . . , xk+1},

E(Gk) = {{u, xi} : 1 ≤ i ≤ k + 1} ∪ {{v, xi} : 1 ≤ i ≤ k − 1}

∪{{w, xi} : k ≤ i ≤ k + 1} ∪ {{v, w}}.

Gk is displayed schematically in Fig. 5. We observe that

sep
′
G(xi, y) = 2, for all 1 ≤ i ≤ k + 1 and y ∈ V (Gk) \ {xi},

sep
′
G(u, v) = k,

sep
′
G(u,w) = 3,

sep
′
G(v, w) = 3.

Now consider the graph G′
k (displayed schematically in Fig. 5) obtained

from Gk by contracting the edge {v, w} to a single vertex z. G′
k is obtained

from Gk by a single edge-contraction, but sep′G′

k
(u, z) = k + 1. Thus, the class

of k-edge-separable graphs is not closed under edge-contraction.

u v w

x1 x2 xk−1 xk xk+1

u z

x1 x2 xk−1 xk xk+1

Figure 5: Gk and G′
k from the proof of Lemma 11.

Our next result gives the characterization in terms of forbidden topological
minors for the k-edge-separable graphs for each 0 ≤ k ≤ 3. For this, we need
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the following special graphs: The graph A is the join of K2 and the complement
of K3 (cf. Fig. 6).

For each n ≥ 3, the graph Bn is defined as follows:

V (Bn) = {vi, ui : 1 ≤ i ≤ n}, (5)

E(Bn) = {{vi, vi+1}, 1 ≤ i ≤ n− 1} ∪ {{vi, ui}, 1 ≤ i ≤ n} (6)

∪{{vi+1, ui}, 1 ≤ i ≤ n− 1} ∪ {{vn, v1}, {v1, un}}. (7)

As an example, B4 are displayed in Fig. 6.

Figure 6: A and B4.

Theorem 3. (i) A graph is 0-edge-separable if and only if it does not contain
K2 as topological minor. That is, G consists of isolated vertices only.

(ii) A graph is 1-edge-separable if and only if it does not contain K3 as topo-
logical minor. That is, G is an acyclic graph.

(iii) A graph is 2-edge-separable if and only if it does not contain K−
4 as topo-

logical minor. That is, any block of G is an edge or a cycle.

(iv) A graph is 3-edge-separable if and only if it does not contain A or Bn, for
any n ≥ 3, as topological minor.

Proof. We omit the proofs of (i) and (ii) since both are straightforward.
(iii) We observe that sep

′(K−
4 ) = 3. On the other hand, let G be a graph

that does not contain K−
4 as topological minor. As shown by El-Mallah and

Colbourn [4], any block of G is an edge or a cycle. By Lemma 9, G is 2-edge-
separable.

(iv) We observe that sep′(A) = sep
′(Bn) = 4 for any n. On the other hand,

let G be a graph with sep
′(G) ≥ 4. We can assume that any proper topological

minor of G is 3-edge-separable. In this sense we call G minimal. In particular,
sep

′(G) = 4. Hence, there are two vertices x and y that have four edge-disjoint
paths connecting them.

In the following argumentation, we need multiple indices. We use upper and
lower indices which are not to be confused with arithmetical expressions (e.g.
powers of numbers).

We claim that we can choose x and y such that there are four edge-disjoint
paths connecting them, say P 1, P 2, P 3 and P 4, with the property that P 1 is
internally vertex-disjoint to P 2, P 3 and P 4 and furthermore P 2 is internally
vertex-disjoint to P 3 and P 4.
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For this, choose x and y such that sep
′
G(x, y) = 4 and let P 1 = (x =

p11, p
1
2, . . . , p

1
k1 = y), P 2 = (x = p21, p

2
2, . . . , p

2
k2 = y), P 3 = (x = p31, p

3
2, . . . , p

3
k3 =

y) and P 4 = (x = p41, p
4
2, . . . , p

4
k4 = y) be any four edge-disjoint paths connecting

them. Let i1 be the smallest number such that p1
i1

is contained in one of the
other paths (P 2, P 3 or P 4). Let i2, i3 and i4 be chosen accordingly.

Suppose p1
i1
, p2

i2
, p3

i3
and p4

i4
are mutually distinct. We can assume that p1

i1

is contained in P 2, say p1
i1
= p2

j2
.

Assume that p2i2 is contained in P 1, say p2i2 = p1j1 . Then i1 < j1 and i2 < j2

by assumption. But then the paths P 1 and P 2 can be substituted by the paths

(x = p11, p
1
2, . . . , p

1
i1 = p2j2 , p

2
j2+1, . . . , p

2
k2 = y)

and
(x = p21, p

2
2, . . . , p

2
i2 = p1j1 , p

1
j1+1, . . . , p

1
k1 = y).

We observe that the non-empty partial paths (p1i1 , p
1
i1+1, . . . , p

1
j1) and

(p2
i2
, p2

i2+1, . . . , p
2
j2
) are superfluous. This contradicts the minimality of G.

Thus we can assume that p2i2 is contained in P 3, say p2i2 = p3j3 .

By similar argumentation as above, p3i3 is not contained in P 2. Suppose that
p3
i3

is contained in P 1, say p3
i3

= p1
j1
. Then i1 < j1, i2 < j2 and i3 < j3 by

assumption. But then the paths P 1, P 2 and P 3 can be substituted by the paths

(x = p11, p
1
2, . . . , p

1
i1 = p2j2 , p

2
j2+1, . . . , p

2
k2 = y),

(x = p21, p
2
2, . . . , p

2
i2 = p3j3 , p

3
j3+1, . . . , p

3
k3 = y),

and
(x = p31, p

3
2, . . . , p

3
i3 = p1j1 , p

1
j1+1, . . . , p

1
k1 = y).

Again this contradicts the minimality of G, since the non-empty partial paths
(p1

i1
, p1

i1+1, . . . , p
1
j1
), (p2

i2
, p2

i2+1, . . . , p
2
j2
) and (p3

i3
, p3

i3+1, . . . , p
3
j3
) are superfluous.

Thus p3i3 is contained in P 4, say p3i3 = p4j4 . By similar argumentation as

above, p4
i4

is contained in P 1, say p4
i4

= p1
j1
. Then i1 < j1, i2 < j2, i3 < j3

and i4 < j4 by assumption. But then the paths P 1, P 2, P 3 and P 4 can be
substituted by the paths

(x = p11, p
1
2, . . . , p

1
i1 = p2j2 , p

2
j2+1, . . . , p

2
k2 = y),

(x = p21, p
2
2, . . . , p

2
i2 = p3j3 , p

3
j3+1, . . . , p

3
k3 = y),

(x = p31, p
3
2, . . . , p

3
i3 = p4j4 , p

4
j4+1, . . . , p

4
k4 = y),

and
(x = p41, p

4
2, . . . , p

4
i4 = p1j1 , p

1
j1+1, . . . , p

1
k1 = y).

Again this contradicts the choice of G, since the non-empty par-
tial paths (p1

i1
, p1

i1+1, . . . , p
1
j1
), (p2

i2
, p2

i2+1, . . . , p
2
j2
), (p3

i3
, p3

i3+1, . . . , p
3
j3
) and

(p4i4 , p
4
i4+1, . . . , p

4
j4 ) are superfluous.

All in all we see that p1i1 , p
2
i2 , p

3
i3 and p4i4 cannot be mutually distinct. We

can assume p1i1 = p2i2 . Let y′ = p1i1 = p2i2 . There are four edge-disjoint paths
connecting x and y′:

Q1 = (x = p11, p
1
2, . . . , p

1
i1 = y′),
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Q2 = (x = p21, p
2
2, . . . , p

2
i2 = y′),

Q3 = (x = p31, p
3
2, . . . , p

3
k3 = y = p1k1 , p1k1−1, . . . , p

1
i1 = y′),

and
Q4 = (x = p41, p

4
2, . . . , p

4
k4 = y = p2k2 , p2k2−1, . . . , p

2
i2 = y′).

Hence sep
′
G(x, y

′) = 4 and furthermore Q1 is vertex-disjoint to Q2, Q3 and Q4.
Moreover, Q2 is vertex-disjoint to Q3 and Q4. This proves our claim.

Hence, we can choose x and y such that P 1 is internally vertex-disjoint to
P 2, P 3 and P 4 and furthermore P 2 is internally vertex-disjoint to P 3 and P 4.
If P 3 is internally vertex-disjoint to P4, G ∼= A by minimality.

Assume that P 3 is not internally vertex-disjoint to P4. Again let P 3 = (x =
p31, p

3
2, . . . , p

3
k3 = y) and P 4 = (x = p41, p

4
2, . . . , p

4
k4 = y). Let p3

i3
1

, p3
i3
2

, . . . , p3
i3
j

with

i31 < i32 < . . . < i3j be the vertices of P3 that are contained in P 4. Conversely let

p4
i4
1

, p4
i4
2

, . . . , p4
i4
j

with i41 < i42 < . . . < i4j be the vertices of P4 that are contained

in P 3.
Clearly p3

i3
1

= p4
i4
1

= x and p3
i3
j

= p4
i4
j

= y. We claim that p3
i3
l

= p4
i4
l

for all

1 ≤ l ≤ j. To see this, choose m minimal such that p3i3m
6= p4i4m

. Let p3i3m
= p4i4n

and p4i4m
= p3i3r

. Then i3m < i3r and i4m < i4n. But then the paths P 3 and P 4 can

be substituted by the paths

(x = p31, p
3
2, . . . , p

3
i3m

= p4i4n , p
4
i4n+1, . . . , p

4
k4 = y),

and
(x = p41, p

4
2, . . . , p

4
i4m

= p3i3r , p
3
i3r+1, . . . , p

3
k3 = y).

We observe that the partial paths (p3i3m
, p3i3m+1, . . . , p

3
i3r
) and (p4i4m

, p4i4m+1, . . . , p
4
i4n
)

are superfluous. Since, p3i3m
6= p4i4m

, both paths are non-empty. This contradicts

to the minimality of G.
Therefore, p3

i3
l

= p4
i4
l

for all 1 ≤ l ≤ j. It is straightforward that G ∼= Bn.
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