
Reducing blocking effects in multi-block layouts
Felix Werth, Oliver Ullrich, Ewald Speckenmeyer

{werth|ullrich|esp}@informatik.uni-koeln.de
Institut für Informatik, Universität zu Köln

Pohligstraße 1, 50969 Köln, Germany

Abstract
Tour  planning  in  multi-block  layouts  is  a  common  exercise  in  logistics.  In  those 

systems,  blocking  effects  result  from  conflicting  agents  competing  for  resources. 
Although clearly exceptional in real world applications, most methods of tour planning 
assume only one active agent, and thus do not consider blocking effects.

In this paper we examine heuristic methods of tour planning in multi-block layouts  
with multiple agents, finding that blocking effects have a significant impact on system 
performance. We show that methods devised for the mentioned special case do not scale 
very well when applied to scenarios with multiple agents. We propose a heuristic method 
which is capable of reducing blocking effects. It generates tours of equal or shorter length 
than those produced by the other examined methods.

1 Introduction
The  layout  of  many  real  world  systems  can  be  considered  as  a  multi-block 

configuration. Examples include warehouse floors, parking lots, or supermarkets. Tour 
planning is a common task related to those systems.

Most methods of tour planning assume generated tours to be independent, and take it 
for granted that they do not interfere, even if executed concurrently. This assumption is  
not  self-evident,  considering that  in most  real  world problems there are lots of  active 
workers or vehicles, which we call agents for our concerns. As shown in [12], blocking 
effects occur in those systems and can have a significant impact on system performance.

In  this  paper  we  examine  to  what  degree  blocking  effects  in  multi-block  layouts 
downgrade  system  performance,  and  how  this  impact  can  be  reduced.  We  define 
blocking effects as the relative increase in average tour duration caused by deploying 
multiple  agents  simultaneously.  This  can  easily  be  converted  into  other  performance 
indicators like order throughput.

We begin by describing the background of blocking effects in multi-block layouts with 
multiple  agents  and  discuss  related  work  (Section  2).  We then  show that  commonly 
applied heuristics do not scale very well under the mentioned conditions, especially in 
configurations with high utilization, and propose a method optimized for the described 
multi-block layout with multiple active agents (Section 3). A line of experiments is then 
conducted on those methods, whose results are described and discussed (Section 4). We 
close with a short summary of the lessons learned and some thoughts on further research  
(Section 5).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Background
2.1 Blocking effects in multi-block layouts

A common multi-block layout  (e.g. found in warehouses) consists of access points 
along parallel aisles, which are subdivided by cross aisles. (see fig. 3a) Aiming for high 
space  utilization  during  layout  planning  often  results  in  narrow aisles.  This  leads  to  
situations where two or more agents interfere with each other. The effect is a decrease in 
overall system performance, since agents are slowed down or blocked. We regard three  
types of blocking in this paper: Concurrent access to a storage location, moving passed 
occupied access locations and head-on collisions in aisles. (see fig. 1) In situations of the 
first type, an agent is completely blocked when trying to access the next location on its  
tour. It has to wait until the access location is freed. Agents engaged in situations of type  
two and three have to draw aside and thus are slowed down on their travel.

The  blocking  effects'  impact  depends  on  several  aspects  of  the  system  under 
consideration,  like  layout  size  and number  of  agents  deployed.  Routing methods  and 
storage assignment strategies further influence system behavior. 

Most often blocking effects are neglected and a linear relationship between number of 
agents and key performance indicators is assumed. We call this the static case. In the  
dynamic case, blocking effects are no longer ignored and their effect is explicitly taken 
into account.

For  the  rest  of  this  paper,  we  adopt  part  of  the  terminology of  order  picking for 
simplicity's sake. In this context, items to be fetched or stored at an access point are called 
picks.

2.2 Related work
In general  it  is  not  possible to find an optimal  solution to the  routing problem in 

feasible time since it  is  known to be NP-hard.  A well  known method to compute  an 
optimal solution on a general layout using exponential time in the number of items to be 
picked was introduced by Held and Karp. [5] This is a major improvement compared to 
the brute force combinatorial method having factorial time complexity but it is still not 
applicable to large number of picks. Because of this a lot of heuristic methods have been 
developed for several applications. 

Concerning the domain of order picking the static case has been extensively studied. 
Ratliff and Rosenthal developed a linear time algorithm for calculating optimal solutions 
in 1-block layouts. [9] Their result was extended to series-parallel graphs by Cornuéjols 
et al. [1] Roodbergen and de Koster applied the same technique to 2-block layouts. [11] 
Distance approximations of some common heuristics were presented by Hall. [4] Optimal  
and heuristic solutions were compared by de Koster et al. [6] 

Figure 1: Three types of blocking situations



The dynamic case has received far less attention. Some authors dealt with measuring 
blocking effects under different system configurations. Existing heuristics developed for 
the  static  case  were used without  exceptions.  Gue et  al.  built  an analytical  model  to  
quantify congestion for the  s-shape heuristic in 1-block layouts, assuming deterministic 
pick times. [3] Their work was extended to non-deterministic pick times by Parikh and  
Meller. [8] Furmans et al. demonstrated how to transform a manual order picking system 
into a queueing model.  After comparing the analytical results obtained from queueing 
theory to simulation results they concluded that queueing theory is a suitable means of 
modeling manual order picking systems. Their results showed that blocking can reduce 
overall throughput by 10% in typical implementations. [2]

3 Heuristic approach
3.1 Common heuristics for tour planning in multi-block layouts

One can distinguish general purpose heuristics which work on arbitrary layouts from 
special case heuristics which take the layout's structure into account. A common heuristic  
of  the  former  kind  is  nearest  neighbour,  prominent  examples  of  the  latter  for  block 
layouts with parallel aisles are s-shape, largest gap and return. All these heuristics were 
developed  for  the  static  case,  minimizing  the  length  of  a  single  tour.  No 
interdependencies  between parallel  tours  were regarded,  and thus  no blocking effects 
have been considered.

S-shape constructs  tours  blockwise starting with the  block farthest  away from the 
depot.  For each block every aisle containing picks is entirely traversed with alternating 
directions. Subaisles are visited from left to right or vice versa, skipping empty subaisles.  
(see fig. 2a)

Largest  gap applies  a  blockwise scheme  similar  to  s-shape but  enters  every aisle 
containing picks only up to the largest gap between two adjacent picks, taking  exception  
for the leftmost or rightmost relevant aisle, which is traversed entirely. (see fig. 2b)

Nearest  neighbour  generated  tours  start  from the  depot  and  go  on  to  the  nearest 
location which has not been visited yet. They continue iteratively to the nearest unvisited  
location until all locations have been visited and return to the depot. (see fig. 2c)

For single block layouts it was shown in [12] that a return strategy is outperformed by 
all other described strategies. For this reason return is not paid further attention to in the 
remainder of this paper.

3.2 A blocking avoidance heuristic
To yield good results with rising system utilization, a tour planning method has to  

adhere to two conditions: First, the generated tours must be short, and second, the tour 
planning has to avoid collisions and their associated costs. 

To generate short tours a method has to exploit the given grid-like layout structure 
with comparatively short pick aisles and connecting cross aisles to avoid detours.

To avoid collisions, tours should adhere to the following conditions: First, aisle space 
should be utilized evenly. Uneven utilization leads to congestion in parts of the system,  
resulting in bottlenecks and high numbers of collisions. Second, cross aisles should be 
traversed  unidirectionally.  Conflicting  agents  in  cross  aisles  are  a  major  source  of 
collision costs, which can be avoided by moving through the cross aisles in a common 



Figure 2: Example tours for four heuristics

a) S-shape b) Largest gap

d) WUSHc) Nearest neighbour



direction. Congestion of aisles caused by agents picking cannot be avoided. It is possible 
though to minimize the time agents traverse through pick aisles and are thus subjected to 
potential blocking.

Following this strategy we impose  an alternating one-way traffic scheme on cross 
aisles starting with leftward traffic on the first cross aisle where the depot is located. 

A tour is constructed blockwise. We generate a left path and a right path which are  
combined on the first front cross aisle and on the last back cross aisle. (see fig. 2d) The 
left path corresponds to the way down from the depot to the farthest cross aisle, while the 
right path corresponds to the way up. The method consists of three steps. (see fig. 4)

In a preprocessing step, we apply a largest gap strategy to each subaisle to map every 
item either to the front cross aisle or to the back cross aisle of the corresponding block. In 

Figure 4: The proposed method

Algorithm WUSH:
1. for each cross aisle c do

for each subaisle s do
assign all picks in s from adjacent blocks to c regarding largest gap

2. for each second block b do
i. determine the best combination of pick aisles for entering front cross aisle and exiting
   back cross aisle of b on the left path
ii. add left subpath to left path starting from last position on left path
iii. add right subpath to right path starting from last position on right path

3. assemble path p by combining left and right path

Figure 3: Terminology and subpath construction

front cross aisle 0
pi

ck
 a

is
le

 0
   

   
   

   
   

   
   

   
left path right pathdepot

back cross aisle 0 = front cross aisle 1

back cross aisle 1 = front cross aisle 2

back cross aisle n-1 = front cross aisle n

back cross aisle n

...

...

...

...

pi
ck

 a
is

le
 m

   
   

   
   

   
   

  
  

... ...

a) Terminology b) Subpath construction 

bl
oc

k 
0

bl
oc

k 
1

bl
oc

k 
n

su
b 

ai
sl

e
su

b 
ai

sl
e

su
b 

ai
sl

e
su

b 
ai

sl
e

su
b 

ai
sl

e

su
b 

ai
sl

e

pick 
items

a

dc

b

e f g

ih j k

depot



a second step, we iterate over every second block to construct the left path and the right  
path. Finally the two paths are combined into the resulting tour.

Main part of the algorithm is planning the left and right subpaths for a block i. (see fig. 
5 and 6) The previous iteration for block  i-2 resulted in a left path ending (see fig. 3b 
point a) and a right path ending (point b) accordingly. During the current iteration, care 
has to be taken of those items, which have to be picked from both front and back cross 
aisle of block i. This leads to the decision which items should be picked on the left path  
leaving the other items for the right path. Part of the decision is made by choosing a pick 
aisle to enter the front  cross aisle of block  i  from a set of potential  entry pick aisles 
(points d, e). Each item to the right of that pick aisle has to be picked on the way back. 
On  the  front  cross  aisle  agents  are  only  allowed  to  move  left  due  to  the  one-way 
restriction. The left subpath is extended to the leftmost relevant pick aisle (point c). This 
pick aisle is used to go down to the back cross aisle of block i. Now the pick aisle to exit 
the back cross aisle of block i has to be chosen, which leaves any unpicked items on the 
back cross aisle to be picked on the right subpath. After having decided where to exit the  
back cross aisle from a set of potential exit pick aisles (points h, i, j, k), the right subpath 
is constructed by collecting any unpicked items from front and back cross aisle of block i, 
thereby regarding traffic directions.

The decision where to enter the front cross aisle and where to exit the back cross aisle 
of block  i is made by a greedy approach. For every combination of potential entry and 
exit  pick  aisle  the  length  of  both  left  and  right  subtour  is  computed.  Finally  the 
combination which yields the minimum subtour length is chosen. (see fig. 7)

Lacking a better name, we modestly call the described heuristic after ourselves, which 
makes it wush.

Figure 5: Constructing left sub path

Algorithm 2.ii. Construct left subpath:
1. collect all picks on the following path:
2. go right from last position on previous back cross aisle to best entry pick aisle
3. go down to front cross aisle
4. go left to the leftmost pick aisle of front and back cross aisle
5. go down to back cross aisle
6. go right to best exit cross aisle
7. left ending pick aisle = best exit pick aisle

Figure 6: Constructing right sub path

Algorithm 2.iii. Construct right subpath:
1. collect all picks on the following path:
2. if first relevant pick aisle f right of best entry pick aisle on front cross aisle is left of 

right ending pick aisle then
 go left to f on previous back cross aisle
3. go down to front cross aisle
4. go right to rightmost pick aisle of front and back cross aisle
5. go down to back cross aisle
6. go left to first pick aisle p with picks right to best exit cross aisle
7. right ending pick aisle = p



4 Experiments
4.1 Modeling blocking effects in multi-block layouts

To evaluate the proposed method, we built an agent based software application. Agent 
based modeling and simulation is especially useful for examining global dynamics of a  
system whose rules of behaviour are set on a local or individual level. [7] In our model,  
while tours are assigned locally to individual agents, we want to observe the resulting 
system's global key data, especially the average tour duration.

An agent based model consists of the agents themselves (with their set of attributes 
and set of behavioral rules), their methods of interaction and the environment in which  
they move and interact with. [7]

In  our  application,  the  environment  is  modeled  as  an undirected,  weighted graph.  
Nodes represent picking points and junctions of aisles. Edges represent aisles between 
those points, weighted by their length l.

Agents move along the edges with speed  v, following their assigned tour. If agents 
collide on an edge, they adjust their speed to vcoll. When picking, an agent blocks a node, 
unblocking it after  tblock.  Agents have no knowledge about other agents'  tours, so they 
cannot avoid collisions by adaptive tour planning. When an agent is done with its tour, it 
gets assigned the next one from a global queue. If there are no more tours to execute, the  
agent stops.

We compare the proposed heuristic to largest gap, s-shape and nearest neighbour, and 
also include random for good measure. The agents' speed is assigned to v=120cm/sec. In 
case of collision the agents slow down to  vcoll=24cm/sec. The length of edges is set to 
100cm for pick aisles and 200cm for cross aisles, reflecting the distance between two 
pick points and two pick aisle entrances, respectively. Access time tblock is set to 10sec. 

We build scenarios by varying the number of agents (1 to 25), the number of items per 
tour (10 to 25) and two layout sizes (5 and 7 blocks). For each of those scenarios we 
execute 30 simulation runs with 1,000 picking tours each.

Figure 7: Determine best combination of entry and exit aisles

Algorithm 2.i. Determine best combination for block b:
1. set of potential entry pick aisles = { left ending pick aisle }
2. for each pick aisle p with picks on front cross aisle of b do

if p is between left ending pick aisle and right ending pick aisle then
potential entry pick aisles = potential entry pick aisles U {p}

3. set of potential exit pick aisles = { leftmost pick aisle on front cross aisle }
4. for each pick aisle p with picks on back cross aisle do

potential exit pick aisles = potential exit pick aisles U {p}
5. length of best subtour = ∞
6. for each potential entry pick aisle p1 do

for each potential exit pick aisle p2 do
calculate length of left and right subtour for p1 and p2

if length of current subtour < length of best subtour then
length of best subtour = length of current subtour
best entry pick aisle = p1
best exit pick aisle = p2



4.2 Results and discussion
To evaluate the absolute performance the average tour duration has to be taken into 

account. Regarding the static case, the proposed strategy dominates random, largest gap, 
and  s-shape at  every  point  of  measurement  (see  table  1,  col.  5).  In  the  smaller 
configuration of 5 blocks, nearest neighbour yields a slight advantage if tours have 10 to 
20 picks (2.4% at 10, 1.0% at 15, 0.01% at 20 picks), but at 25 picks  wush generated 
tours  save  a  modest  0.9%  of  time.  In  7-block  configurations  the  proposed  heuristic 
dominates all contestants.

Table 1: Blocking effect for five heuristics

5 10 15 20 25

5 10 21391 178258 3,08% 6,92% 10,78% 14,56% 18,30%
5 15 30788 256567 3,14% 7,09% 10,98% 14,82% 18,64%
5 20 40109 334242 3,19% 7,18% 11,12% 15,04% 18,93%
5 25 49472 412267 3,21% 7,23% 11,22% 15,14% 18,67%
7 10 26889 224075 2,13% 4,78% 7,47% 10,05% 12,61%
7 15 38496 320800 2,15% 4,89% 7,57% 10,21% 12,85%
7 20 50134 417783 2,20% 4,92% 8,36% 10,31% 12,97%
7 25 61719 514325 2,22% 4,95% 8,07% 10,35% 13,03%

5 10 13899 115825 2,64% 6,09% 9,27% 12,55% 15,85%
5 15 17605 146708 2,81% 6,35% 10,06% 13,24% 16,65%
5 20 20818 173483 2,98% 6,90% 10,51% 13,91% 17,47%
5 25 23625 196875 2,94% 6,81% 10,79% 14,55% 17,98%
7 10 16316 135967 1,86% 4,19% 6,44% 8,64% 10,89%
7 15 20244 168700 2,03% 4,61% 6,98% 9,40% 11,67%
7 20 23808 198400 2,16% 4,86% 7,47% 9,95% 12,49%
7 25 27051 225425 2,11% 5,02% 7,65% 10,34% 12,89%
5 10 14126 117717 2,69% 6,06% 9,35% 12,65% 15,87%
5 15 17933 149442 2,86% 6,51% 10,01% 13,29% 16,53%
5 20 21165 176375 3,00% 6,83% 10,39% 13,85% 17,50%
5 25 23908 199233 2,98% 6,77% 10,90% 14,77% 18,13%
7 10 16521 137675 1,85% 4,22% 6,51% 8,64% 10,82%
7 15 20592 171600 2,02% 4,56% 6,87% 9,37% 11,44%
7 20 24239 201992 2,12% 4,82% 7,31% 9,81% 12,17%
7 25 27502 229183 2,22% 4,95% 7,60% 10,14% 12,86%
5 10 12640 105333 3,14% 7,10% 10,74% 14,41% 18,10%
5 15 15384 128200 3,27% 7,28% 11,28% 15,17% 18,96%
5 20 17874 148950 3,39% 7,59% 11,75% 15,81% 19,67%
5 25 20139 167825 3,51% 7,95% 12,19% 16,49% 20,44%
7 10 15514 129283 2,22% 4,95% 7,56% 10,19% 12,82%
7 15 18460 153833 2,31% 5,20% 7,97% 10,79% 13,32%
7 20 21123 176025 2,37% 5,38% 8,28% 11,14% 13,85%
7 25 23642 197017 2,46% 5,55% 8,67% 11,51% 14,57%
5 10 12943 107858 2,21% 5,01% 7,68% 10,20% 12,79%
5 15 15553 129608 2,33% 5,47% 8,33% 11,02% 13,81%
5 20 17888 149067 2,60% 5,98% 9,15% 11,87% 15,04%
5 25 19968 166400 2,90% 6,38% 9,90% 13,09% 16,23%
7 10 15456 128800 1,68% 3,76% 5,69% 7,46% 9,46%
7 15 18175 151458 1,71% 3,96% 5,96% 7,84% 9,73%
7 20 20715 172625 1,87% 4,24% 6,47% 8,45% 10,40%
7 25 23086 192383 2,01% 4,51% 6,96% 9,03% 11,29%

Method
No. of 
blocks

No. of 
items

Average 
tour length

Ø tour duration 
(static case)

Number of agents (dynamic case)

Random

Largest Gap

S-Shape

Nearest
neighbour

wush



Concerning the blocking effect of the dynamic case, the proposed strategy dominates 
all other methods. Independent of layout, order size and number of agents deployed wush 
generated tours have the lowest increase in average tour duration. This means that if the  
proposed method dominates another method in the static case it  remains  dominant  in 
terms of absolute tour duration in the dynamic case. Three configurations of the static 
case  remain  where  wush is  outperformed  by  nearest  neighbour. Those  are  examined 
further to find the break even point where the reduction of blocking effects on the part of 
the  proposed method  outweighs the slightly lower  average tour  duration achieved by 
nearest neighbour. In the 5-block configuration, the tours generated by nearest neighbour 
produce better results, if both the number of picks per tour and the number of agents are 
small (see table 2). At all other combinations of parameters, the proposed heuristic yields 
the shortest tour durations.

The proposed method is optimized for multi-block layouts with multiple active agents. 
Even  with  just  one  active  agent  wush competes  well since  it  generates  tours  of 
comparatively short length, and thus dominates most of the more general routing methods  
like  s-shape,  largest  gap and  random,  which  yield  considerably  longer  tours  in  our 
layout. The remaining competitor is the nearest neighbour method, which produces tours 
of comparable length.

When expanding to multiple agents,  s-shape,  random, and  largest gap do not avoid 
conflicts and thus yield relatively high collision costs. Additionally, their generated tours 
are comparatively long, so that they perform even worse when applied to a configuration  
with  high  utilization.  Nearest  neighbour,  on  the  other  hand,  produces  even  more 
collisions  because  concurring  tours  form  a  unpredictable  pattern  with  no  regard  to 
collisions.

5 Conclusion and future work
In this paper we examined heuristic methods for tour planning in multi-block layouts 

with multiple agents. We found that blocking effects have a measurable impact on system 
performance, especially in configurations with high utilization. We showed that methods 
devised  for  the  special  case  of  one  active  agent,  like  s-shape,  nearest  neighbour,  or 
largest gap, do not scale well when applied to scenarios with more active agents. 

The proposed heuristic is capable of reducing blocking effects considerably in every 
instance of the dynamic case. Considering tour lengths, it competes well against nearest  
neighbour and generates significantly shorter tours than all other examined methods.

Table 2: Comparison of average tour duration of nearest neighbour and wush

5 10 15 20 25

5 10 12640 105333 108637 112808 116646 120511 124397
5 15 15384 128200 132391 137529 142664 147646 152501
5 20 17874 148950 153997 160252 166448 172496 178255
5 25 20139 167825 173724 181172 188282 195503 202130
5 10 12943 107858 110242 113262 116141 118865 121654
5 15 15553 129608 132629 136698 140410 143889 147509
5 20 17888 149067 152939 157976 162711 166767 171490
5 25 19968 166400 171226 177022 182866 188188 193415

Method
No. of 
blocks

No. of 
items

Average 
tour length

Ø tour duration 
(static case)

Number of agents (dynamic case)

Nearest
neighbour

wush



After working on the heuristic approach, it seems natural to look for an exact solution. 
It might be possible to find such an algorithm feasible for configuration sizes found in 
real  world instances.  A first  step would be to simplify the problem radically without  
losing its core characteristics. 

Even if it should not be feasible to employ such an exact method for runtime reasons, 
insights won by examining a simplified problem might spawn better heuristic solutions.

6 References
[1] Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem 

on a graph and some related integer polyhedra. Mathematical Programming 33 
(1985), No. 1, pp. 1-27.

[2] Furmans, K., Huber, C., Wisser, J.: Queueing Models for manual order picking 
systems with blocking. Logistics Journal 01 (2009), http://www.logistics-
journal.de/archive/2009/2092.

[3] Gue, K. R., Meller, R. D., Skufca, J. D.: The effects of pick density on order picking 
areas with narrow aisles. IIE Transactions 38 (2006), pp. 859-868.

[4] Hall, R. W.: Distance approximations for routing manual order pickers in a 
warehouse. IIE Transactions Vol. 30 (1985), No. 1, pp. 76-87.

[5] Held, M., Karp, R. M.: A dynamic programming approach to sequencing problems. 
Journal of the Society for Industrial and Applied Mathematics 10 (1962), No. 1, pp. 
196-210.

[6] de Koster, R., van der Poort, E.: Routing orderpickers in a warehouse: a comparison 
between optimal and heuristic solutions. IIE Transactions 30 (1998), pp. 469-480.

[7] Macal, C. M.; North, M. J.: Tutorial on agent-based modelling and simulation. 
Journal of Simulation 4 (2010), pp. 151-162. 

[8] Parikh, P. J., Meller, R.D.: A note on worker blocking in narrow-aisle order picking 
systems when pick time is non-deterministic. IIE Transactions 42 (2010), pp. 392-
404.

[9] Ratliff, H. D., Rosenthal, A. S.: Order-Picking in a Rectangular Warehouse: A 
Solvable Case of the Traveling Salesman Problem. Operations Research 31 (1983), 
No. 3, pp.  507-521.

[10] Roodbergen, K. J., de Koster, R.: Routing methods for warehouses with multiple 
cross aisles. International Journal of Production Research 39 (2001), No. 9, pp. 
1865-1883.

[11] Roodbergen, K. J., de Koster, R.: Routing order pickers in a warehouse with a 
middle aisle. European Journal of Operational Research 133 (2001), pp. 32-43.

[12] Werth, F., Ullrich, O.: Simulation ausgewählter Heuristiken zur Tourenplanung in 
manuellen Kommissionierstationen, In: ASIM-Treffen 2011 - Simulation techni-
scher Systeme und Grundlagen und Methoden in Modellbildung und Simulation, 
Hrsg: Andreas Brenke. Krefeld: Shaker-Verlag, 2011, pp. 161-166.


