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Abstract

In the freight car dispatching problem empty freight cars have to be assigned to
known demands respecting a given time horizon and certain constraints. The
goal is to minimize the resulting transportation costs. One of the constraints is
that customers can specify the type of cars they want. It is possible, however,
that cars of certain types can be substituted by other cars either in a 1-to-1
fashion or at different exchange rates. We show that these substitutions make
the dispatching problem NP-complete. We model the dispatching problem as
a generalized integral minimum cost flow problem on a specific directed graph.
We show that in our setting its linear relaxation is half-integral. Using rounding
techniques, the LP-relaxation can be transformed to a dispatching with small
constraint violation at the same cost, or, under additional assumptions, to a
4-approximation. In practice, both ideas are combined to a heuristic approach
without further assumptions. We conclude with computational results for this
heuristic on application data provided by DB Schenker Rail Deutschland AG
in context of a joint R & D project together with the Technical University of
Kaiserslautern.

Keywords: transportation, logistics, dispatching, generalized flow, complexity,
approximation, heuristic

1. Introduction

The general concern of a cargo railway company is to transport goods be-
tween different customer sites. For this, empty freight cars have to be brought
to the initial location to get loaded and have to be collected at their destination
after unloading. The transport of different goods imposes requirements on the
freight cars (e.g. open or closed, bulk cargo or coil transport), which are there-
fore distinguished into different car types. However, a demand can be satisfied
by cars of several types, as specified by allowed substitutions.
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If the freight cars are owned by the railway company, apart from the trans-
port of loaded freight cars, the company also has to manage the rental of its
freight car stock. Due to the established work flow, the allocation of empty
freight cars is treated as a separate logistic dispatching problem: assign the
available empty freight cars to given customer demands (or storages) with min-
imal total transport cost. Besides various (technical or marketing oriented) side
constraints, a valid dispatching for a certain time interval has to respect a given
freight train schedule and a set of allowed car type substitutions. A freight
car can substitute a demand of a different type either in a 1-to-1 fashion or at
different ’exchange rates’, which make the dispatching problem NP-complete.

In the remainder of the introduction, we formally define our dispatching
problem (DP) and prove that it is NP-complete in Section 2. In Section 3 we
model (DP) as a generalized integral minimum cost flow problem and show that
their respective (optimal) solutions are equivalent. The equivalence implies the
NP-completeness of the generalized integral minimal cost flow problem on re-
stricted networks. We show that we obtain half-integral solutions in polynomial
time for instances relevant in our application by transforming the associated
generalized network to a classical network. An early result ([4]) shows that a
generalized flow network can be transformed to a classical flow network if and
only if its node-arc-incidence matrix is not of full rank. Yet, it is not obvious if
this condition either holds for all generalized networks which model instances of
(DP) or how to characterize instances for which it is true. Section 4 presents two
approximation algorithms based on the half-integral solution and Section 5 con-
cludes with computational results on application data for a heuristic combining
ideas from both approximation algorithms.

A supply si ∈ S of empty freight cars is given by a tuple (li, ti, ci, ni), where
li ∈ N specifies its location, ti ∈ N its type, ci ∈ N the actual availability
time and ni ∈ N the number of supplied cars with the former three attributes.
A demand dj = (lj , tj , cj , nj) ∈ D is defined analogously. We assume that
demands always exceed supplies and supply can be fully disposed. This is
realistic with regard to active disposition into operative storage, as is provided
by the applied model. A set of allowed substitutions S contains tuples σsd =
(nsts, ndtd), such that ns ∈ N cars of type ts satisfy a demand of nd ∈ N cars
of type td. We assume that for each pair of types there is at most one such
substitution. Hence we can define a relative valency v(ts, td) ∈ Q for type ts
with respect to type td as v(ts, td) = nd

ns
(the ’exchange rate’). If for some car

type ts all its relative valencies are independent of td, then v(ts) denotes its total
valency. A supply si is allowed for a demand dj if there exists a σsd ∈ S with
ts = ti and td = tj . We denote it by σij . Furthermore, a timetable T is a set
of tuples θab = (la, ca, lb, ca, rab) representing direct or composed freight train
connections between locations la and lb. The connection θab starts with a train,
which is composed in la at time ca and ends with a train being dissolved in lb at
time cb. The cost for using connection θab is denoted by rab ∈ N. A supply si

is in time for a demand dj if there exists a θab ∈ T with la = li, lb = lj , ca ≥ ci

and cb ≤ cj . We denote such a connection with minimal ca by θij . A supply si

matches a demand dj if it is in time and allowed for the respective demand.
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An instance I of (DP) is given by a tuple I = (S, D,S, T ). It is called
homogeneous, if ns = nd for all σsd ∈ S and heterogeneous otherwise. An
instance in which all car types ti have a total valency is called total. The
allowed substitution occurring in the practical applications by DB Schenker
Rail Deutschland AG only contains tuples σsd with ns = nd = 1 or ns = 2 and
nd = 1. We call such instances 2-heterogeneous in the following.

With δij = (si, dj , nij) we denote a disposition of nij cars of supply si to
demand dj with cost c(δij) = nijrij . A dispatching D = {δij} is a set of
dispositions and its cost c(D) is the sum of the individual disposition costs.

Let I = (S, D,S, T ) be a DP instance, D be a dispatching and δij =
(si, dj , nij) ∈ D a disposition.

We call a disposition δij = (si, dj , nij) LP-feasible if si ∈ S, dj ∈ D, si

matches dj , nij ∈ R, nij ≤ ni and v(ti, tj) · nij ≤ nj . A dispatching D{δij} is
LP-feasible if all the dispositions are LP-feasible and:

∑
δij∈D

nij = ni for all si ∈ S (1)

∑
δij∈D

v(ti, tj) · nij ≤ nj for all dj ∈ D. (2)

An LP-feasible dispatching with minimal transportation costs is LP-optimal. A
disposition (dispatching) is feasible if it is LP-feasible and all nij are integral.
A feasible dispatching with minimal cost is optimal and a solution for (DP).

2. Complexity of the Dispatching Problem

As usual, we consider the decision version of the dispatching problem (DDP):
given an instance I of the dispatching problem and a number cI ∈ N, is there
a dispatching D∗(I) with cost c(D∗) smaller or equal to cI? We prove that
(DDP) is NP-complete by a reduction of a variant of the satisfiability problem
[3]. For this, we consider the following SAT-type problem, which was shown to
be NP-complete in [7]:

[3V2L3SAT] Given a Boolean 3-SAT formula α in which each vari-
able occurs at most three times and each literal occurs at most two
times. Decide whether α is satisfiable.

Let α = C1 ∧ · · · ∧ Cn with Ci = li1 ∨ li2 ∨ li3 and lij ∈ {xk,¬xk|1 ≤ k ≤
m} ∪ {0} be a 3V2L3SAT-formula with m variables in n clauses. We construct
a 2-heterogeneous instance Iα = {S, D,S, T } such that the supply of Iα can
completely be dispatched at cost cI = 0 if and only if α is satisfiable.

The set S consists of two sets Sc and Sv with supplies corresponding to
clauses and variables in α. For each clause ci, Sc contains one supply si and for
each variable xk, Sv contains three supplies s1

k, s2
k, s3

k defined as follows:

Sc = {si = (li, t1, 0, 1) : 1 ≤ i ≤ n}

Sv = {s1
k = (l1k, t1, 0, 2) : 1 ≤ k ≤ m} ∪ {s2

k = (l2k, t2, 0, 1) : 1 ≤ k ≤ m}

∪ {s3
k = (l3k, t1, 0, 2) : 1 ≤ k ≤ m}
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For each variable xj we specify four demands, two for each of the literals:

D = {d1
j = (l1j , t3, 0, 1) : 1 ≤ j ≤ m} ∪ {d2

j = (l2j , t3, 0, 1) : 1 ≤ j ≤ m}

∪ {d̄1
j = (l̄1j , t3, 0, 1) : 1 ≤ j ≤ m} ∪ {d̄2

j = (l̄2j , t3, 0, 1) : 1 ≤ j ≤ m}.

The substitution rules are defined as S = {(2t1, t3), (t2, t3)}. Note that each
supply si ∈ S is allowed for every demand dj ∈ D. The timetable T is defined
as follows:

T = {(li, 0, l1j ,∞, 0) : ci is the first clause containing xj}

∪ {(li, 0, l2j ,∞, 0) : ci is the second clause containing xj}

∪ {(li, 0, l̄1j ,∞, 0) : ci is the first clause containing ¬xj}

∪ {(li, 0, l̄2j ,∞, 0) : ci is the second clause containing ¬xj}

∪ {(l1k, 0, l1j ,∞, 0), (l1k, 0, l2j ,∞, 0) : k = j}

∪ {(l2k, 0, l2j ,∞, 0), (l2k, 0, l̄1j ,∞, 0) : k = j}

∪ {(l3k, 0, l̄1j ,∞, 0), (l3k, 0, l̄2j ,∞, 0) : k = j}

∪ {(la, 0, lb,∞, M) : for each other combination of locations}

Note that all supplies si and and demands dj are in time with respect to
T , while only some corresponding connections θij have associated cost zero.
Nevertheless all supplies match all demands.

We can visualize matching supplies and demands corresponding to a single
variable xj in α as shown in Figure 1: solid vertices and lines correspond to
supplies in Sv (which always exist for variable xj) matching demands with
associated costs zero. The numbers at the vertices represent the number of
available and demanded cars respectively. The clauses in α containing either
xj or ¬xj are indicated by the dotted vertices in correspondence to associated
supplies. The dotted lines also represent connections with associated cost zero.
Figure 1 shows four dotted vertices, as S contains up to two supplies associated
with a clause containing xj (upper part of the figure) and up to two supplies
associated with a clause containing ¬xj (lower part of the figure). Still the total
number of such supplies in Sc is three.

Lemma 1. The total supply of Sv can only be dispatched at cost zero by either
of the following dispositions for each j with 1 ≤ j ≤ m:

(i) dispose two cars of s1
j to d1

j , one car of s2
j to d2

j and the two cars of s3
j

either both to d̄1
j or both to d̄2

j or one to each of them.

(ii) dispose two cars of s3
j to d̄2

j , one car of s2
j to d̄1

j and the two cars of s1
j

either both to d1
j or both to d2

j or one to each of them.
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Figure 1: Matching supplies and demand associated with a variable xj (solid) and its occur-
rence in clauses of α (dotted).

Proof: The one car of s2
j can either be disposed to d2

j or to d̄1
j with zero

cost and satisfies either of their demands completely. Otherwise it cannot be
disposed with zero cost. Consequently, either s1

j is completely disposed to d1
j or

s3
j is completely disposed to d̄2

j respectively, as otherwise the supply cannot be
disposed with zero cost. Possibly remaining supply may be distributed to the
other demands with zero cost.

�

In either case, the total demand of four cars associated with a variable xj is
not satisfied. We associate the only two possible dispositions with zero cost per
variable with its two possible truth values. We set xj to false if the dispatching
satisfies both demands dj , and we set xj to true if the dispatching satisfies
both demands d̄j . Observe that the first variant allows no disposition of a
supply si ∈ Sc to a demand dj with zero cost. The second variant allows both
of the possibly two matching supplies from Sc to be disposed with zero cost,
each to either of the demands. The latter disposition corresponds to the truth
assignment of xj satisfying the clause ci. A similar argument holds for clauses
containing ¬xj . Given that any supply corresponding to a clause ci can only
be disposed with zero cost to one of the demands corresponding to a literal
which occurs in ci, a dispatching which disposes the total supply with zero cost
corresponds to a satisfying truth assignment.

Theorem 2. Let Iα = {S, D,S, T } be defined as above. The formula α is
satisfiable if and only if all supply can be disposed with zero cost.

Proof: Let α be satisfiable and x, a satisfying assignment. Dispose the
supply ev = 5m of Sv by the variant of Lemma 1 which corresponds to the
satisfying truth assignment of xj for each j. Then ev is completely disposed at
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zero costs, and only demands corresponding to literals set to true are not yet
completely satisfied. Since x satisfies every clause, each corresponding supply
ci is at least a match with a connection of zero associated cost for one not yet
satisfies demand. Dispose ci to the latter demand, which corresponds to a true
literal. Thus the additional unit supply for each clause ec = n is also disposable
at zero cost.

Conversely, suppose α is not satisfiable. Each dispatching of ev with zero
cost according to the variants in Lemma 1 corresponds to a consistent truth
assignment and therefore blocks at least one clause from all matching demands
with associated connections of zero cost. Hence at most 5m + n− 1 supply can
be disposed at zero cost. If on the other hand, we allow any other dispatching
of ev, by Lemma 1, not all supply ev can be disposed at zero costs and any
complete dispatching of the total supply 5m + n needs at least cost of M > cI .

�

As we can check in polynomial time for a given dispatching if it disposes the
total supply at zero costs and does not violate the constraints, we have:

Corollary 3. (DDP) is NP-complete for total 2-heterogeneous instances.

�

By omitting connections with cost M in the timetable, the previous con-
struction also proves the existence of a feasible dispatching if and only if the
formula α is satisfiable. Hence (DDP) is strongly NP-complete. We chose the
variant with costs in order to keep the proof closely related to the optimization
problem. Also remember that in our practical applications the instances are
2-heterogeneous so that we have to find a compromise between running times
and solution quality in practice.

3. Generalized Network Model

Let a generalized network N = (V, A) be a directed graph with the following
four functions on arcs and nodes, respectively: a capacity function u : A → R,
a multiplier function m : A → R, a cost function c : A → R and a balance
function b : V → R.

As usual, we call a node s ∈ V a source if b(s) > 0 and a node t ∈ V a sink if
b(t) < 0. A feasible generalized flow f : A → R in N is a function which assigns
a flow value f(a) to each arc a = (u, v) ∈ A such that the following capacity
and node balancing constraints are satisfied:

0 ≤ f(a) ≤ u(a) for all a ∈ A (3)
∑

a=(u,v)∈A

f(a) −
∑

a=(w,u)∈A

m(a)f(a) = b(u) for all u ∈ V (4)
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c(vi, vj) = rij, u(vi, vj) =∞, m(vi, vj) = v(ti, tj)

c(vj, t) = 0,
u(vj, t) = nj,
m(vj, t) = 1

s

v1 vj

t

vi vn

c(s, vi) = 0,
u(s, vi) = ni,
m(s, vi) = 1

Figure 2: Generalized Network N(I) associated with a DP instance I.

The cost c(f) of f is the sum of the costs of all arcs weighted with the flow
on this arc: c(f) =

∑
a∈A f(a)c(a). A generalized minimum cost flow f∗ in N

is a feasible generalized flow with minimal cost [1, 2, 5].
Similar to the reduction of bipartite matchings to network flows, we construct

a generalized network N(I) = (V, A) for a given instance I = (S, D,S, T ) of
(DP) (cf. Figure 2). The node set V consists of three sets VS ∪ VD ∪ {s, t}. For
each supply si ∈ S we have a node vi ∈ VS , for each dj ∈ D we have a node
vj ∈ VD and an additional source s and sink t. The set A is the union of the
arc sets AS = {(s, vi)|vi ∈ VS}, AD = {(vj , t)|vj ∈ VD} and arcs (vi, vj) ∈ AT

for which the corresponding supply si and demand dj match with respect to I.
We call AT the set of transit arcs.

The capacity u(a) of arcs a = (s, vi) (a = (vj , t)) is set to ni (nj) of the
associated supply (demand) and u(a) = ∞ for transit arcs. The cost of transit
arcs a = (vi, vj) are set to the actual transport costs of the associated connection
θij ∈ T : c(a) = rij . All other arcs have cost zero. The multiplier m(a) for a
transit arc a = (vi, vj) is the relative valency v(ti, tj) and one for all other arcs.
Node balances b(v) are zero for all nodes v ∈ VS ∪VD and b(s) =

∑
a∈AS

u(a) =∑
si∈S ni, −b(t) =

∑
a∈AD

u(a) =
∑

dj∈D nj . Note that b(s) ≤ −b(t) due to
our assumption on I. Thus there may be no feasible generalized flow in N at
all. We apply a maximum flow computation and adapt b(t) accordingly before
computing such a flow or assume f to be a feasible pseudoflow in N , such that
only the balance of the sink is violated.

Theorem 4. Every LP-feasible dispatching D(I) is equivalent to a feasible flow
or pseudo flow f(N).

Proof: Let D(I) be an LP-feasible dispatching. On transit arcs, let
fD(vi, vj) = nij if D contains a disposition δij = (si, dj , nij) and fD(vi, vj) = 0
otherwise. For arcs in AS ∪ AD we set:

fD(s, vi) =
∑

δij∈D
nij (5)

fD(vj , t) =
∑

δij∈D
v(ti, tj)nij (6)

Then fD(N) fulfills the capacity constraint (3). The feasibility of D(I) implies
that the sum of disposed cars is equal to the number of available cars for each
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supply node corresponding to f(s, vi) = u(s, vi) and the sum of cars disposed to
a demand (weighted with the relative valency of the supply car type) does not
exceed the number of demanded cars. Flow fD(N) further satisfies the node
balancing constraints (4) in all nodes, eventually except in node t.

Conversely, let f(N) be a feasible (pseudo-)flow. We define Df (I) as follows:

Df (I) = {δij = (si, dj , nij = f(vi, vj))|f(vi, vj) > 0}.

By the construction of the network (si ∈ S matches dj ∈ D) and since f satisfies
the constraints (4) for all nodes (possibly except t), each disposition δij ∈ Df (I)
is LP-feasible, i.e.

nij ≤
∑

δij∈D

nij ≤ f(s, vi) ≤ u(s, vi) = ni

and
nij ≤

∑

δij∈D

v(ti, tj)nij ≤ f(vj , t) ≤ u(vj , t) = nj .

Hence the complete dispatching is LP-feasible.

�

From this equivalence the following corollary is obvious:

Corollary 5. A generalized minimal cost (pseudo) flow f∗(N) provides an op-
timal dispatching D∗(I) if and only if f∗(N) is integral.

For homogeneous instances of (DP), N(I) is a classical flow network. So if
input values are integral (after scaling, if necessary), an integral minimum cost
flow can be computed in polynomial time. Corollaries 3 and 5 imply that such
a result is very unlikely for the 2-heterogeneous instances which occur in our
application. On the other hand, suppose we drop the integrality constraint and
obtain a generalized minimal cost flow solution f∗ in polynomial time - how
infeasible (or in other words how fractional) can D∗ be?

We call a function β-fractional for some β ∈ N if all its values can be
expressed as integer multiples of 1

β
. In the following, we investigate the fraction-

ality of minimal cost flows in generalized networks which correspond to total
instances.

Let I = (S, D,S, T ) be a total instance of (DP) such that p is the least
common multiple of the nominators and q is the least common multiple of
the denominators of all total valencies v(ti), si ∈ S. We define an instance
It = (St, D,St, T ) as:

St = {(li, ti, ci, v(ti) · ni) : si ∈ S}, St = {(ts, td) : σsd ∈ S}.

We slightly change the definition of the associated network N(It) by setting
the arc costs ct(vi, vj) = v(ti)rij . By definition of St, the relative valencies
vt(ts, td) are now one, i.e. the network N(It) is a classical flow network. We
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further modify N(It) to N(It, q) such that the capacity and balance function are
scaled by q to uq(a) = qu(a) and bq(v) = qb(v). Thus N(It, q) is a classical flow
network with integral input data such that an integral minimal cost flow f∗

q in
N(It, q) can be computed in polynomial time. By the linearity of the capacity
and balance constraints, a flow ft = 1

q
fq is feasible in N(It) if and only if fq is

feasible in N(It, q). Similarly, f∗
t = 1

q
f∗

q is a minimal cost flow in N(It) if f∗
q is

a minimal cost flow in N(It, q) and f∗
t is obviously q-fractional.

Lemma 6. Let Dt = {δt
ij = (si, dj , nij = 1

v(ti)
· f∗

t (vi, vj))|f∗
t (vi, vj)) > 0}.

Then Dt is a pq-fractional LP-optimal dispatching to I.

Proof: By definition of It and N(It), for each δt
ij ∈ Dt supply si ∈

S matches demand dj ∈ D with respect to I. The feasibility of f∗
t gives

f∗
t (vi, vj) ≤ u(s, vi) = v(ti)ni and f∗

t (vi, vj) ≤ u(vj , t) = nj . Hence:

nij =
1

v(ti)
· f∗

t (vi, vj) ≤
1

v(ti)
· u(s, vi) =

1

v(ti)
· v(ti)ni = ni (7)

v(ti)nij = v(ti)
1

v(ti)
· f∗

t (vi, vj) = f∗
t (vi, vj) ≤ u(s, vi) = nj (8)

Thus each δt
ij ∈ Dt is pq-fractional LP-feasible, as f∗

q is integral and by definition
of p, q, f∗

t . By construction of the network, the inequalities (7) and (8) and the
node balance of the flow at s, Dt is a pq-fractional LP-feasible dispatching for
I. Furthermore:

c(f∗
t ) =

∑

a∈AT

f∗
t (a)c(a) =

∑

δt
ij
∈Dt

nijrij = c(Dt)

Thus, by minimality of c(f∗
t ), Dt is a pq-fractional LP-optimal dispatching for

I.

�

Lemma 6 answers the question of the fractionality of a LP-optimal dispatch-
ing. It assumes, however, that the instances are total. We can extend this result
slightly as follows. Let I = (S, D,S, T ) be a (non-total) instance of (DP) and
TD = {t = td|σsd ∈ S}. We call I totalizable if there is a function w : TD → Q,
such that the instance I ′ = (S, D′,S′, T ) with

D′ = {(lj, tj , cj , w(tj)nj)|dj ∈ D} and S′ = {(nsts, w(td) · ndtd)|σsd ∈ S}

is total.

Lemma 7. Let D′ be a pq-fractional LP-optimal dispatching to I ′. Then D′ is
also a pq-fractional LP-optimal dispatching for I.

Proof: By definition of I and I ′, supply si ∈ S matches demand dj ∈ D
for each δ′ij ∈ D′ with respect to I. Furthermore, nij ≤ ni and v′(ti, tj)nij =
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w(tj)v(ti, tj)nij ≤ w(tj)nj implies v(ti, tj)nij ≤ nj . Hence each δ′ij ∈ D′ is
pq-fractional LP-feasible for I. Moreover:

∀si ∈ S :
∑

δ′

ij
∈D′

nij = ni

and

∀dj ∈ D :
∑

δ′

ij
∈D′

v′(ti, tj)nij ≤ w(tj)nj ⇔
∑

δ′

ij
∈D′

v(ti, tj)nij ≤ nj

such that D′ is a pq-fractional LP-optimal dispatching for I.

�

By Lemma 7, we can obtain β-fractional LP-optimal dispatchings for total-
izable instances of (DP) in polynomial time.

4. Approximate Dispatchings for Application Instances

As usual, we call a feasible dispatching a ρ-approximation if its cost are at
most ρ times the optimal cost. In the sequel we will also consider a different type
of approximation. For this, we call a 1-to-1-exchange of a car of type ta with a car
of type tb an upgrade with respect to a demand dj of type tc, if σac, σbc ∈ S and
v(ta, tc) < v(tb, tc) and a downgrade if σac, σbc ∈ S and v(ta, tc) > v(tb, tc). A
ν-upgraded dispatching D, is a dispatching containing only feasible dispositions,
obeying condition 1 and

∑
dij∈D

v(ti, tj) · nij ≤ nj + ν, dj ∈ D and furthermore

after downgrading a single car for all dj ∈ D with
∑

dij∈D
v(ti, tj) ·nij > nj , we

obtain a feasible dispatching. Observe that downgrading has no effect on the
cost of the dispatching.

Since our DB-instances of the dispatching problem contain substitution rules
of the form (2tx, tz), they are heterogeneous. We can totalize these instances
by setting w(tx) = 1, w(ty) = w(tz) = 2 (and continue w : TD → {1, 2} for all
other car types). Since we assume integrality of the input data, the previous
results give a half-integral LP-optimal dispatching in polynomial time.

In the following, let I = (S, D,S|xyz, T ) be such an instance with S|xyz =
{(tx, tx), (ty, ty), (2tx, tz), (ty, tz)} and D a half-integral LP-optimal dispatching
for I. Note that with w as above, the total valencies of I ′ are v′(tx) = 1, v′(ty) =
1
2 , v′(tz) = 1

2 . Since tz is an artificial type introduced to allow customers to
demand either type tx or ty, tz only occurs as demand. Hence half-integral
dispositions only occur from supplies with type ty to demands of type ty or tz. To
obtain an integral dispatching from D, we round the solution trying to keep (LP-
)feasibility (as much as we can). Feasibility of a rounded integral dispatching
can be guaranteed if for each supply si (demand dj) the number of dispositions
δiy (δxj) which are rounded up equals the number of those dispositions which
are rounded down.
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Consider the following undirected bipartite graph G(D) = (V = VS ∪VD, E)
representing the fractional dispositions with

VS = {vi : δij = (si, dj , nij) ∈ D, nij /∈ N}

VD = {vj : δij = (si, dj , nij) ∈ D, nij /∈ N}

E = {(vi, vj)|δij ∈ D}.

A feasible solution based on rounding half-integral dispositions can be guar-
anteed if the node degree deg(v) is even for each v ∈ V (i.e. G(D) is Eulerian).
While in general this may not be the case, at least deg(vi), vi ∈ VS has to be
even: the supply is completely disposed by D, i.e.

∑
δij∈D

nij = ni ∈ N. Hence

the number of dispositions δij = (si, dj , nij /∈ N) ∈ D is even.
Let U ⊆ VD be the set of nodes vj with odd degree. We use the greedy

Algorithm 1 to cover E by a set P ⊆ E of paths and a set C ⊆ E of cycles. P
consists of paths puv between nodes u, v ∈ U and |P | = 1

2 |U |. Then each edge
e ∈ E occurs exactly once in P∪C. Since the parity of the nodes v ∈ VS , w ∈ VD

and u ∈ U are invariant throughout the algorithm, the appropriate choice of
edge e in lines 6 and 8 is always possible. Once U is empty, all remaining nodes
have even degree with respect to the remaining edge set E′, which justifies line
16.

Algorithm 1 Cover Construction

1: Cover = ∅
2: while U 6= ∅ do

3: Chose x = u ∈ U .
4: p = ∅
5: repeat

6: Chose e = (x, v) ∈ E
7: p = p ∪ e, E \ {e}
8: Chose e = (v, w) ∈ E
9: p = p ∪ e, E \ {e}, x = w

10: until w ∈ U
11: Cover = Cover ∪ p
12: if u 6= w then

13: U = U \ {u, w}
14: end if

15: end while

16: Cover the remaining arcs e ∈ E by cycles c.
17: Cover = Cover ∪ c.

Let Cover be the set of paths and cycles in G(D) provided by Algorithm 1.
Observe that both paths and cycles have even length. We obtain an integral
dispatching Dr by rounding the half-integral dispositions corresponding to edges
e alternately up and down along the paths and cycles p, c ∈ Cover. Let p =

11



v1, v2, . . . , vr ∈ Cover be a path between u = v1, v = vr ∈ U . Then either the
dispositions corresponding to the odd edges e2k+1 = (v2k+1, v2k+2) ∈ p, k ∈ N

are rounded up and the dispositions corresponding to the even edges e2k =
(v2k, v2k+1) ∈ p, k ∈ N are rounded down or vice versa. The same possibilities
or rounding directions occur for cycles c ∈ Cover. In the following we will speak
of rounding edges when referring to rounding the corresponding dispositions. We
call a demand dj with

∑
δij∈Dr

v(ti, tj)nij = nj + 1
2 over-satisfied.

So far, we did not specify the rounding direction for paths and cycles in
Cover. Let c(p) =

∑
e=(vi,vj)∈p

1
2rij , p ∈ Cover account for the cost of the

strictly half-integral portion of the associated dispositions δij ∈ D. (The cost of
a cycle is defined analogously.) Then we define codd(p) =

∑
e2k+1=(vi,vj)∈p,k∈N

rij

as the cost of p with respect to Dr, if we chose to round up the odd edges in p and
ceven(p) =

∑
e2k=(vi,vj)∈p,k∈N

rij in the opposite case. We chose the rounding

direction for Dr, such that cr(p) = min{codd(p), ceven(p)}. We first observe that
rounding D to Dr in this way does not affect the cost:

Lemma 8. The cost of Dr with appropriate choice of rounding directions does
not exceed c(D).

Proof: The dispatchings Dr and D only differ in originally half-integral
dispositions corresponding to edges e ∈ p (c) ⊆ Cover. Let c|2(D) denote the
sum of the costs of the strictly half-integral portion of dispositions δij ∈ D and
c|2(Dr) denote the sum of the costs of the same dispositions after rounding,
such that cr(p) = min{codd(p), ceven(p)}. Then:

c|2(Dr)

=
∑

p∈Cover

cr(p) +
∑

c∈Cover

cr(c)

=
∑

p∈Cover

min{codd(p), ceven(p)} +
∑

c∈Cover

min{codd(c), ceven(c)}

= 2
∑

p∈Cover

1

2
min{codd(p), ceven(p)} + 2

∑

c∈Cover

1

2
min{codd(c), ceven(c)}

≤
∑

p∈Cover

1

2
codd(p) +

1

2
ceven(p) +

∑

c∈Cover

1

2
codd(c) +

1

2
ceven(c)

= c|2(D)

Thus c(Dr) ≤ c(D).

�

Theorem 9. The dispatching Dr is a 0.5-upgraded optimal dispatching for I
with at most 1

2 |U | over-satisfied demands.

Proof: Each path p ∈ Cover and cycle c ∈ Cover enters and leaves
v ∈ V r U the same number of times. Hence the number of incident edges

12



rounded up and down is the same and Dr is feasible for these nodes. For each
v ∈ U there is exactly one path which only enters or leaves v via some edge e.
If e is rounded down

∑
δij∈D

v(ti, tj)nij ≤ nj holds. Otherwise, if e is rounded

up and
∑

δij∈D
v(ti, tj)nij = nj the sum of disposed cars exceeds nj exactly by

half the freight car which was rounded up on e. This occurs at most 1
2 |U | times

at demands dj ∈ VD. Knowing that the number of half-integral dispositions
δij ∈ D to dj is odd (otherwise vj /∈ U), there must be an odd number of
dispositions δij ∈ D with ti = tx, otherwise the dispositions δij ∈ D cannot sum
up to nj ∈ N. Hence there is at least one feasible disposition of type tx, thus
tj = tz , and we can downgrade one car of type ty to type tx for each over-satisfied
demand dj . Given the relative valencies v(tx, tx) = v(ty, ty) = v(ty , tz) = 1,
v(tx, tz) = 1

2 , the downgrade makes Dr feasible and we obtain a 0.5-upgraded
dispatching. Optimality then follows directly by Lemma 8.

�

Obviously, an over-satisfied demand receives too many cars. Knowing that
each over-satisfied demand is of type tz and receives at least one car of type tx,
this is either half a car of type ty or one car of type tx. We can now choose the
rounding directions of paths, such that the number of over-satisfied demands
is minimized. If we do so, for each over-satisfied demand dj , there is another
demand d′j , such that pjj′ between vj , v

′
j is in Cover. The demand d′j is of type

tz as a change of rounding direction over-satisfies d′j , otherwise, we would choose
this rounding direction and obtain a smaller number of over-satisfied demands.
Further, d′j lacks at least half a freight car of type ty due to rounding down the
incident edge e ∈ p and we can view this also as a lack of one car of type tx.
Let si be the supply from which the spare freight car of type tx is disposed to
dj . If si is also in time for d′j , si matches d′j and we can redispose a car of type
tx to d′j . We assume that T allows all such redispositions and the cost function
satisfies the triangle inequality, which is reasonable as we have transport costs
per kilometre. Let D′

r be the appropriately rounded half-integral dispatching
with redispositions for I.

Theorem 10. The rounded dispatching D′
r is a 4-approximation to the optimal

dispatching for I.

Proof: Similar to Dr, D′
r is feasible except for up to 1

2 |U | demands dj ,
which are over-satisfied by one car of type tx. The latter are feasibly redisposed
to matching demands d′j as argued above. Further, D′

r and D differ in originally
half-integral dispositions corresponding to edges e ∈ p (c) ⊆ Cover and the
redispositions R ⊂ D′

r. Note that each redisposed car corresponds to a path
p ∈ Cover and its cost can be charged to twice the cost of the path (as on each
edge of the path only half a car was disposed). Let c|2(D) and c|2(D′

r) denote

13



the cost of both dispatchings with respect to these dispositions. Then:

c|2(D′
r) =

∑

p∈Cover

cr(p) +
∑

c∈Cover

cr(c) +
∑

δij′∈R

rij′

≤ 2
∑

p∈Cover

c(p) + 2
∑

c∈Cover

c(c) + 2
∑

p∈Cover

c(p)

≤ 4c|2(D)

Thus c(D′
r) ≤ 4c(D) and D′

r is a 4-approximation to the optimal dispatching
for I.

�

Remember that we bounded the cost of an optimal dispatching c(D∗) by the
cost of an LP-optimal dispatching c(D), which suffices for the approximation
guarantee as c(D) ≤ c(D∗). On the other hand, the deviation of c(D∗) from
c(D) can be quite large, such that the approximations are likely to perform
better in practice.

5. Computational Results

Without further prerequisites (such as a ’friendly’ freight train schedule
allowing all necessary redispositions), applying the 4-approximation in prac-
tice does not always yield a fully feasible dispatching. We therefore combine
the 0.5-upgraded dispatching with the idea of redispositions used in the 4-
approximation. We now allow spare cars to be redisposed to any matching
demand. For this, we modify the original (DP) instance I by reducing all sup-
plies and demands appropriate to the dispositions δij ∈ Dr, except for the
dispositions of spare freight cars of type tx. Let I ′ be the reduced instance.
Then I ′ does not contain any supplies of type ty any longer, as they are fully
disposed by Dr and I ′ is (empirically) a homogeneous instance. Consequently
N(I ′) is a classical network and we obtain an integral minimal cost flow and thus
an optimal solution D′ in polynomial time. Unfortunately, we cannot bound the
additional cost c(D′), as the following example (see Figure 3) shows:

Let I = (S, D,S|xyz, T ) with

S = {s1 = (l1, c1, tx, 1), s2 = (l2, c2, tx, 1), s3 = (l3, c3, ty, 1)},

D = {d4 = (l4, c4, tx, 1), d5 = (l5, c5, tz , 1), d6 = (l6, c6, tz, 1), d7 = (l7, c7, tx, 1)}

and T such that s1 is in time for d4 and d5, s2 for d5 and d6 and s3 for d6

and d7. The transport cost are rij = r for all supply-demand-pairs except for
r14 = r37 = R >> r. Then the half-integral LP-optimal dispatching D(I) is
as displayed by the dispositions in Figure 3. Let D(I) be w.l.o.g. rounded to
Dr(I) = {(1, 5, 1), (2, 6, 1)}, such that s3 provides the spare car of type tx as
otherwise d6 would be over-satisfied. Then Figure 4 shows the reduced instance
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d4

d5

(1, 5, 1)

(2, 5, 1

2
)

(2, 6, 1

2
)

(3, 6, 1)

d6

d7

Figure 3: DP instance with half-integral dispatching.

s t

s3

d4

d5

d7

Figure 4: Reduced DP instance after rounding the half-integral dispatching: Solution δ37 =
(3, 7, 1) with cost R is forced.
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Table 1: Instances.
|S|

∑
ni (het.) (%) |D|

∑
nj (het.) (%) het.%

2 · 103 17789 (327) (1.84) 2 · 103 19900 (916) (4.6) 3.3
3 · 103 26243 (670) (2.55) 3 · 103 30116 (1313) (4.36) 3.52
4 · 103 31439 (670) (2.13) 4 · 103 40095 (1815) (4.53) 3.47
5 · 103 40913 (935) (2.29) 5 · 103 49657 (2105) (4.24) 3.36
6 · 103 49427 (1285) (2.6) 5715 62466 (2777) (4.45) 3.63
7 · 103 54926 (1285) (2.34) 5715 62466 (2777) (4.45) 3.46
8 · 103 63655 (1476) (2.32) 5715 62466 (2777) (4.45) 3.37
9 · 103 72130 (1835) (2.54) 5715 62466 (2777) (4.45) 3.43
104 78308 (1835) (2.34) 5715 62466 (2777) (4.45) 3.28

for which any dispatching ist forced to contain the single possible disposition

(3, 7, 1) at cost r37 = R. The cost ratio c(Dr)+c(D′)
c(D(I)) = r

R
is then unbounded.

The following examples show the empirical approximation ratios achieved by
the above described redispatching heuristic on instances generated from appli-
cation data. DB Schenker Rail Deutschland AG provided supply and demand
data of one calendar week comprising of more than 104 supplies and about 6000
demands, each for a single up to hundreds of cars. Usually, around 2000− 3000
supplies (the number of actual available cars scales roughly by a factor of 10)
are available per day. About the same number of demands are considered, scat-
tered over a time horizon of about two and a half days. The daily dispatching
thus assigns about 3 · 104 cars. To keep typical supply-demand-structures in
the considered instances, we did not draw supplies and demands from the data
set randomly. Instead, from lists of supplies and demands sorted by availability
and demand time respectively, we subsequently enlarged the supply and demand
sets for our instances in steps of 103. This way we dispatched cars with a time
horizon between one up to five dispatching days. Additionally, we incorprated
operational storage as a kind of low priority demand. (Otherwise, cars may
simply be undisposable in the redispatching process, but in practice each such
car has to be stored somewhere nevertheless.)

Table 1 provides an overview over the structure of considered instances.
Columns ’|S|’ and ’|D|’ contain the number of supplies and demands respec-
tively, clustered by location, time and type (among more attributes, which are
relevant to further side constraints in the application). Column 3 contains the
total number of available cars, followed by the total number of cars involved
in heterogeneous substitution and the percentage of such cars with respect to
the total number of cars (in brackets). Column 5 contains analogous data for
demands. The last column displays the percentage of cars involved in heteroge-
neous substitution with respect to both supply and demand. The latter shows
that instances in the application are almost homogeneous. Yet, for the practi-
cal performance the integrated view is important, for example with respect to
mixed type storage capacities.
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Table 2: Running times in minutes for half-integral LP-optimal dispatching and heuristic
dispatching.

|S| t(D) t(Dr + D′) t
2 · 103 0.32 0.08 0.40
3 · 103 1.02 0.12 1.14
4 · 103 1.97 0.13 2.10
5 · 103 3.76 0.17 3.93
6 · 103 5.48 0.35 5.83
7 · 103 6.90 0.72 7.62
8 · 103 9.05 1.45 10.50
9 · 103 11.92 3.12 15.04
104 13.51 6.87 20.38

Table 3: Costs for half-integral LP-optimal dispatching and heuristic dispatching.

|S| c(D) c(Dr + D′) c(Dr+D
′)

c(D) c(Dr + D′) − c(D) (%)

2 · 103 1.09 ·107 1.11 ·107 1.01 1.16 ·105 (1.06)
3 · 103 1.32 ·107 1.35 ·107 1.02 2.34 ·105 (1.77)
4 · 103 1.43 ·107 1.46 ·107 1.02 2.93 ·105 (2.05)
5 · 103 1.84 ·107 1.87 ·107 1.02 3.34 ·105 (1.81)
6 · 103 2.05 ·107 2.09 ·107 1.02 3.46 ·105 (1.69)
7 · 103 2.40 ·107 2.43 ·107 1.01 3.49 ·105 (1.45)
8 · 103 3.04 ·107 3.07 ·107 1.01 3.54 ·105 (1.17)
9 · 103 3.47 ·107 3.60 ·107 1.04 13.24·105 (3.81)
104 3.50 ·107 4.01 ·107 1.14 50.51 ·105 (14.42)

Table 2 shows running times for the computation of the half-integral dis-
patching in column ’t(D)’, the rounding and redisposition to obtain a feasible
dispatching (column ’t(Dr + D′)’) and their sum (column ’t’) in minutes with
respect to the number of (clustered) supplies (column ’|S|’). Running times are
measured without input time (less than three seconds in each case) and network
construction time (around two minutes maximum). All tests were carried out
sequentially on one cluster node (Intel Xeon CPU E5410, 2.33 GHz, 6144 KB
RAM).

The empirical approximation ratios drawn from the costs of the computed
half-integral LP-optimal dispatching and the cost of the feasible dispatching
found by the heuristic are presented in Table 3. Columns 2 and 3 contain
the absolute cost c(D) and c(Dr + D′) of the half-integral and the heuristical
dispatching respectively. Column 4 displays the ’empirical approximation factor’
c(Dr)+c(D′)

c(D) . We also show the difference of both costs and its percentage with

respect to c(D) in columns 5 and 6. As remarked above, the latter cannot be
seen as pure cost increase on c(D), as the cost of an optimal solution can exceed
the cost c(D(I)) of a half-integral LP-optimal dispatching by far.
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