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An SDP Approach to Multi-level Crossing Minimization

Markus Chimani*

Abstract

We present an approach based on semidefinite programs
(SDP) to tackle the multi-level crossing minimization prob-
lem. Thereby, we are given a layered graph (i.e., the graph’s
vertices are assigned to multiple parallel levels) and ask for
an ordering of the nodes on their levels such that, when draw-
ing the graph with straight lines, the resulting number of
crossings is minimized. Solving this step is crucial in the
probably most widely used graph drawing scheme, the so-
called Sugiyama framework.

The problem has received a lot of attention both in the
field of heuristics and exact methods. For a long time, integer
linear programming (ILP) approaches were the only exact
algorithms applicable at least to small graphs. Recently, SDP
formulations for the special case of two levels were proposed
and dominated the ILP for dense instances.

In this paper, we present a new SDP formulation for
the general multi-level version that, for two-levels, is even
stronger than the aforementioned specialized SDP. As a side-
product, we also obtain an SDP-based heuristic which in
practice always gives (near-)optimal solutions.

We conduct a large set of experiments, both on random-
ized and on real-world instances, and compare our approach
to a state-of-the-art ILP-based branch-and-cut implementa-
tion. The SDP clearly dominates for denser graphs, while the
ILP approach is usually faster for sparse instances. However,
even for such sparse graphs, the SDP solves more instances
to optimality than the ILP. In fact, there is no single instance
the ILP solved, which the SDP did not. Overall, our experi-
ments reveal that for sparse graphs, one should usually try to
find an optimal solution with the ILP first. If this approach
does not solve the instance to optimality within reasonable
time, the SDP still has a good chance to do so.

Being able to solve larger real-world instances than
reported before, we are also able to evaluate heuristics for
this problem. In this paper we do so for the traditional
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barycenter-heuristic (showing that it leaves a large gap to the
true optimum) and the state-of-the-art upward-planarization
method (showing that it is usually close to the optimum).

1 Introduction

Multi-level crossing minimization (MLCM) is an important
task in automatic graph drawing. Hierarchical graphs (e.g.,
directed acyclic graphs) are mostly drawn with the frame-
work suggested by Sugiyama et al. [30]. Here, the vertices
are assigned to levels (corresponding to horizontal layers),
essentially fixing the y-coordinates of the vertices. Then, the
graph is transformed into a proper multi-level graph in which
edges are subdivided such that each edge connects two ver-
tices on adjacent layers. The aim of the multi-level crossing
minimization step is to reorder the vertices within the levels
so that the number of crossings is minimized when the edges
are drawn as straight lines. Finally, the position of the ver-
tices are assigned while keeping the leveling and the ordering
of the vertices. An alternative paradigm to Sugiyama’s ap-
proach is based on upward planarization [3]. Also in this set-
ting, finding optimal solutions of MLCM is of interest (see
Section 4).

In practice, MLCM is often reduced to a sequence of
2-level crossing minimization problems in which one level
is fixed. Many heuristics [30, 24] as well as FPT algo-
rithms [7] have been suggested for this restricted problem,
but so far variants of the simple barycenter and median
heuristics belong to the best in practice [22, 24]. General
MLCM is NP-hard, even in this restriced variant [8]. Jiinger
and Mutzel [22] have shown that this restricted problem can
be reduced to a linear ordering problem that can be solved
using an integer linear programming (ILP) approach. Com-
bined with a branch-and-bound method, they solved 2-level
MLCM instances with up to 15 vertices on the smaller level
to optimality. An alternative exact approach for solving 2-
level MLCM, based on semidefinite programming (SDP),
has been suggested by Buchheim et al. [2]. They model
the problem as a quadratic linear ordering problem which
in turn can be reduced to a maximum cut problem. They
suggest new ILP- and SDP-based algorithms exploiting their
observation. Their experiments show that their SDP-based
branch-and-bound algorithm outperforms various versions
of ILP-based branch-and-cut algorithms, and is able to solve
2-level instances with up to 18 vertices per level to optimality
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within reasonable computing time.

The first ILP formulation for general MLCM has been
suggested in [21]. At that time, generic ILP solvers have not
been able to solve practically relevant instances. Healy and
Kuusik extended the ILP formulation by constraints arising
from the so-called vertex-exchange graph [15]. For the first
time they have been able to solve some practically relevant
instances of MLCM to optimality [16].

Contribution. We suggest a new SDP-based approach
for MLCM and prove its polyhedral advantages over the
known ILP models. For two levels, our semidefinite relax-
ation is stronger than the one considered in [2]. We use a
primal-dual interior point method for solving the semidefi-
nite relaxation leading to lower bounds to the optimal value
of MLCM. Our extensive computational experiments on a
large benchmark set of graphs show that this new approach
in combination with an SDP-based heuristic very often pro-
vides optimal solutions. We are able to compute optimal so-
lutions for graph instances from the literature that have not
been solved to optimality before.

We also compared our approach to a standard ILP
formulation, solved via branch-and-cut within a generic ILP
solver. Surprisingly, while the SDP approach dominates for
denser graphs, the ILP turns out to be very fast for sparse,
practical instances. It solves almost all instances of the
Rome benchmark set, a standard graph drawing library. Yet,
our experiments show that the SDP approach solves more
instances to optimality than the ILP approach, although the
former is not combined with a branch-and-bound scheme.
This also suggests a new heuristic for MLCM based on SDP
which clearly outperforms the classical heuristics.

Having obtained optimal solutions for graphs of inter-
esting size, we can for the first time evaluate heuristic so-
lutions. We show that the upward planarization approach
is very close to the optimum concerning the given leveling,
while this is not true for the standard barycenter heuristic.
For our studies, we collected a large benchmark set of lev-
eled graphs, available at http://www.ae.uni-jena.
de/Research_Pubs/MLCM. html.

In the following, we will always consider a proper level
graph G = (V, E), with vertex set V' = Ulevr and edge

set £ = Ulz;iEr with £, C V. x V1. Let us further
denote by N (v) the set of vertices on level r + 1 that are
the destinations of edges adjacent to vertex v on level r.
We ask for an ordering of the vertices (when drawn on their
respective level) such that the number of crossings between
straight-line edges is minimized. For notational simplicity,
we will assume that the vertices are uniquely numbered
(increasing by level), starting from 1.

Copyright © 2011 by SIAM
Unauthorized reproduction is prohibited.

2 ILP Formulations

MLCM has a natural formulation as a quadratic linear pro-
gram in 0-1 variables [21]. We introduce binary variables

that shall be 1 if vertex ¢ comes before j on layer r, and
0 otherwise (i.e., j comes before 7). We may use the
substitution 27, := 1 — z7; for 1 < i < j < [V;[.Then
the following 3-cycle constraints describe linear orderings

on the layers of a given proper level graph:

(22) 0<aj; +afy, —xy <1,

1§T§p7 i7j7k€‘/7“7 Z<j<k
They rule out the existence of directed 3-cycles and are
sufficient to insure that there are no directed cycles. Hence

the feasible binary solutions w.r.t. (2.2) describe complete
acyclic digraphs on the layers. Minimizing

2 2

1<r<p 1<i<j<|V.| kEN(3),lEN(j)

r4+1

(xzrjxlk T—H)

s
+ x5y

over the constraints (2.1) and (2.2) therefore solves MLCM.
We can linearize the objective function by introducing binary
crossing variables

ciim € {0, 1},

that shall be 1 if the edges (i,%k) and (j,1) cross and 0
otherwise. To bind the crossing variables with the linear
ordering variables, we need

(2.3) 1<r<p, (i,k),(4,1) € B,

2.4) !

+
— Cigpt STy — Tiy < Gt
(i7k)v (Jal) € ETV k < l’
. 1
2.5) 1—cfj Sap +ay <1+,

(i,k),(4,1) € B, k> 1.

Let = be the vector collecting the variables z7; and ¢ € B
be the vector of crossing variables, with ¢ the total number
of crossing variables for the graph. Then we can formulate
MLCM as a binary linear program as

2. X

1<r<p (i,k)(§,1)EE,

2, = min (z,c) € Zor(G)

T .
Cijkl *

where
TZer(G) :={ (z,¢) € {0, 1} that satisfy (2.2), (2.4), (2.5)}.

Replacing the integrality conditions with 0-1 bounds
gives the linear relaxation denoted by (LP) with objective
value z;;,. An exact algorithm using (LP) has been intro-
duced by Jiinger and Mutzel [22] and was further extended
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by [21] and [15]. All these algorithms perform best on sparse
instances (d < 0.1) (see [2]) as for higher densities the gaps
between z, and the LP bounds become too large for effi-
cient pruning in Branch-and-Bound or Branch-and-Cut al-
gorithms. In fact, by setting all x variables to 0.5, we can
always—independently on the instance—obtain a feasible
fractional solution with z;,p = 0. To prevent this, we pro-
pose to fix a single linear ordering variable to 1 or 0, to break
the symmetry without loosing all optimal solutions; yet in
practice the obtained relaxed solution still gives only a weak
bound. We will investigate this in more detail in Section 4.
Thus it would be desirable to have some tighter approxima-
tion available in these cases.

3 The Semidefinite Program

In this section we concentrate on the lower bound compu-
tation for MLCM by analyzing matrix liftings of ordering
problems. For this purpose it is convenient to transform the
linear ordering variables x;; into variables taking the values
—1and 1:

(36) yirj:zrzrj_la 1§7'§P7 ivje‘/;‘ai<j'

This leads to inequalities equivalent to (2.2)
G —1<y;+yp—vix <1
1<r<p,i,j,k€V, i<j<k.

In [17] it is shown that one can easily switch between
the {0,1} and {—1,1} formulations of bivalent problems
so that the resulting bounds remain the same and structural
properties are preserved.

3.1 Lower bound: semidefinite relaxation The matrix
lifting approach takes a vector y collecting the variables y;;
and considers the matrix Y = yy”. Our object of interest
now is

Poc :=conv { yy’ : y € {—1,1}, y satisfies (3.7) }.

We relax the nonconvex equation Y — yy? = 0 to the
constraint Y — ny > 0, which is convex due to the Schur-
complement lemma. Moreover, the main diagonal entries of
Y correspond to yfj, and hence diag(Y) = e, the vector of
all ones. We therefore conclude that any Y € Pgc satisfies

(3.8) Y —yy’ =0, diag(Y)=e.

).

where ¢ := dim(Z) = 1+ Y7_, (%) and Z = (z;;). In
this case Y—ny > 0 & Z > 0. Hence, the following basic

To simplify our notation, we introduce

1yT

(3.9) y Y

7= 2v) =
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set BB contains Pgc (in the submatrix of Z corresponding to
Y),

(3.10) B:={Z: diag(Z) =e,Z =0 }.

In order to express constraints on y in terms of Y, they have
to be reformulated as quadratic conditions in y where we
denote the product yj;y;, by y;%,. Usingy € {-1,1}
in (3.7) gives |y{] + Yik — yh| = 1. A natural way for
a quadratic reformulation of this equation is to square both
sides, which, since y?j = 1, simplifies to

(3.11) y:jj;k - y;j;k - y:i:]k =-1,

1<r<p, i,5,keV,., i<j<k.

In [2] it is shown that these equations (formulated in
the {0, 1} model) describe the smallest linear subspace that
contains Pgoc. We formulate MLCM as a semidefinite
optimization problem in bivalent variables, where Z is given
by (3.9), and C' is a symmetric matrix of order ¢ assigned
to count the number of crossings for any given feasible
ordering y.

THEOREM 3.1. MLCM is equivalent to the problem z, =
min { (C,Z) : Z € Igc }, where

Zoc = { Z partitioned as in (3.9) and
satisfies 3.11), Z € B, y € {—1,1} }.

When we drop the integrality condition on y, we get the
following basic semidefinite relaxation (SDP;) for MLCM:
(SDPp) min { (C,Z) : Z partitioned as in (3.9) and

satisfies (3.11), Z € B }.

There are some obvious ways to tighten the relaxation
(SDPy,) . First of all we observe that Y, and therefore Z,
is actually a matrix with {—1,1} entries in the ordering
formulation. Hence it satisfies the triangle inequalities,
defining the metric polytope

(3.12)
1 -1 -1
.
-1 1 1 t
4 1 -1 1 Zik | <e,
M= 11 -1 Zik

Vi<i<j<k<(

We note that this polytope is defined through 4(5) =
O((>_F_, [V;i|?)?) facets. They are used as triangle inequal-
ities of the max-cut polytope in [23, 27, 29]. The basic re-
laxation (SDPy) can therefore be improved by additionally
asking that Z € M.
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Another generic improvement was suggested by Lovész
and Schrijver in [23]. Applied to our problem, their approach
suggests to multiply the 3-cycle inequalities (3.7) by the
nonnegative expressions (1—y; ) and (1+y;,,). This results
in the following inequalities forall 1 < r,s < p,i,7,k € V.,
andl,m € Vi withi < j < kandl < m:

-1- ylgm <
<l+y’
3.13 - lm?
r,8 T, T,
Yii Y Yik — Yik = Yijum — Yjkim T Yikim
S 1- ylsm'

1=

There are overall 4(25’:1 (l‘gl))( b 1('?“)) =
O(r_ VA2 )(X-P_, IVi|?)) such inequalities and we
define

LS :={Z: Z satisfies (3.13) }.

In summary, we get the following tractable relaxation
of Pgc, part of which (without the matrix cuts (3.13)) has
been investigated in [2] for bipartite crossing minimization
problems, in [1] for single-row layout problems, and, includ-
ing (3.13), in [20] for general quadratic linear ordering prob-
lems.

(sbp;) min { (C,Z) : Z partitioned as in (3.9) and

satisfies 3.11), Z € B, Ze M, Z € LS }

We close this section by relating (SDPj) (and therefore
also (SDP;) ) to the linear relaxation (LP) of MLCM (proof
in the appendix):

THEOREM 3.2. The basic semidefinite relaxation (SDPy)
together with the constraints (1 + y;;)(1 £ v t) > 0 (and
therefore also (SDP;) ) is at least as strong as the linear
relaxation (LP).

3.2 Further facets used for separation We omit the
proofs of the following theorems; they can be found in
the appendix. ~We know from [21] that Pogr(G) =
conv(Zor(G)) € B+t s full dimensional. We first
relate Por(G) to Poc; then we present various classes
of facet-defining inequalities for Por(G) and show that
(SDP;) contains them. For the former, we consider the
lifting P¢, of Pcr by extending the variable vector ¢ to
incorporate all possible crossing variables, not only for ver-
tex pairs of adjacent layers with associated costs # 0, and
by adding upper bounds for these variables. Formally, let
I = {(i,5,k))|i < jandk < land (i < kor(i =
k and j < 1))}, and consider the constraints

B.14) ¢y < Ty,

Cijkl S Tgly,  Cijpl < 1—Ti5—xp.
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for all (4,j,k,1) € I. Considering the extended variable
vector ¢, we define

PER = conv{(z, c) satisfy (2.2), (3.14), (z,c) € {0,1}}.

THEOREM 3.3. Pcr(G) contains P¢p, when projected
onto the common variables. Pt p(G) and Poc describe the
same polytope, modulo transformation (3.6).

COROLLARY 3.1. Facet-defining inequalities of Pcr(G)
are valid inequalities for Pgc.

PROPOSITION 3.1. ([21]) Let C' be a cycle and Wy a q-
claw in G. The following inequalities are valid for Pcr(G):

(3.15) > cim=Cl2-1,
(i,k) (G ) EC
1(12-1 even
(3.16) T {2q : ) 4 h
(k) G EW, (%) qo

Let T' be the set consisting of all pairs of edges of a
Ws except those pairs of edges that are either both within
the lower part of the 3-claw. The following inequalities are
facet-defining for Pcr(G):

>

(k,1)€C, ki, l#i+1

(3.17) Cik(i+1)l T Ci(ir1)(i—1)(i+2) = 1

>

(4,9),(k,)ET

(3.18) it > 1.

Fori,jke Vi, i<j<k IlmeV.,1<r<p
the following inequalities constructed from dome paths are

facet-defining for Pcr(G):

T = 220 + T — Cip — Chpem <0,
_l‘gj + 258:1(: - x;k - C:j,lm - C;k,lm <0,
(3.19) 2wy — T + X — Clgo i — Chjum < 1,
—2x; + T — Ty — Cig i — Cham < —1,
T3 — T + 225 — i — Cipgm < 1
=T+ T — 2T — € — Cigim < — 1
THEOREM 3.4. (SDP;) satisfies (3.15)—(3.19) except

(3.16) for ¢ > 5 and odd.

COROLLARY 3.2. (SDP;) is as least as tight as (LP)
together with (3.16)—(3.19) except (3.16) for ¢ > 5 and odd.

In summary, any of the inequality types considered in
(SDP;) is required to ensure facet-defining inequalities for
Pcor(G).! On the other hand, if we want an SDP relaxation

TAs (3.13),.4, is not relevant for identifying known facets of Pgc
and because of efficiency considerations, we do not use (3.13),., in our
computational experiences.
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that ensures more known facets of Por(G) than (SDP;),
we have to consider additionally clique inequalities of size
q > 5 odd in the relaxation. As separating them is far too
expensive, this supports our model choice.

3.3 Solving (SDP;) Looking at the constraint classes and
their sizes in the relaxation (SDP;), it should be clear that
maintaining explicitly O(>"_, |V;]®) or more constraints is
not an attractive option. We therefore consider an approach
suggested in [10] and adapt it to our problem. Firstly, we
only aim at maintaining the constraint Z € B (i.e., Z >
0 A diag(Z) = e) explicitly, which can be achieved with
standard interior point methods, see for instance [18].

All other constraints are dealt through Lagrangian dual-
ity. For notational convenience, let us formally denote the
3-cycle equations (3.11) by e — A(Z) = 0. Similarly we
write M N LS as e — D(Z) > 0. We consider the partial
Lagrangian dual defined through the Lagrangian

L(Z M p):=(C,Z)+ X (e — A(Z)) +u' (e = D(Z)).

The dual function is thus given by

fp) = rznelgﬁ(Z, A ) =

= e Atelptmin(C—AT(N) =D (), 2).

It is not hard to verify that (SDP;) has strictly feasible
points, so strong duality holds and we can solve the relax-
ation through
(3.20) max FO ).

The function f is well-known to be convex but non-
smooth. For a given feasible point (A, 1) the evaluation of
f (A, 1) amounts to solving a problem over 8.

In our experiments, we use a primal-dual interior-point
method, that also provides the primal optimum Z) ,, yield-
ing a subgradient of f. Having a subroutine available that
evaluates f and an element of the subdifferential of f, it
is straightforward to get an approximate minimizer of f us-
ing subgradient optimization techniques, such as the bundle
method [10]. Since these methods have rather weak local
convergence behavior, we limit the number of function eval-
uations to control the overall computational effort. In fact
these evaluations constitute the computational bottleneck as
they are responsible for more than 95% of the required run-
ning time.

3.4 Upper bound computation Standard heuristics and
also some metaheuristics perform quite poorly for MLCM-
instances of sizes of our interest [22, 24]. Therefore we apply
a heuristic that exploits information obtained during the
bundle method in the following way. Initially, we consider

Copyright © 2011 by SIAM
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a vector ', that encodes a feasible, random ordering on
all layers. The algorithm stops after 1000 executions® of
step 2; x’ is then the heuristic solution. If the duality gap
is not closed after the heuristic, we continue with further
bundle iterations and then retry the heuristic (retaining the
last vector z').

1. Let X" be the current primal fractional solution of
(SDP;) obtained by the bundle method. Compute the
convex combination R := A(2'z'T)+(1—\) X", using
some random A € [0.3,0.7]. Compute the Cholesky
decomposition DD of R.

2. Apply Goemans-Williamson hyperplane rounding [13]
to D and obtain a —1/41 vector T (cf. [26]).

3. Compute the induced crossing number z(Z). If z(T) >
z(x'): goto step 2.

4. If T satisfies all 3-cycle inequalities: set 2’ := T and
goto 2. Else: modify T by changing the signs of one
of three variables in all violated inequalities and goto
step 3.

4 Computational Experience

Due to licensing issues and overall CPU time we conducted
our experiments on two different machines. All SDP com-
putations where conducted on an Intel Xeon E5160 (Dual-
Core) with 24 GB RAM, running Debian 5.0. The algorithm
itself runs on top of MatLab 7.7.

For comparison, we also considered a newly written ILP
implementation (along the lines of [21]) using Branch-and-
Cut. Thereby the triangle inequalities are separated on the
fly, instead of adding all of them initially. We do not specif-
ically separate further inequalities as the ones described in
Proposition 3.1: It was observed in [16] that even though
the number of branch-and-bound nodes decreases, the ad-
ditional effort needed to identify violated constraints—even
of the simple cycle types (3.15) and (3.17)—Ileads to overall
increased running times. We also evaluated the ILP variant
without separation; as this approach resulted clearly worse
running times, we only report on the code with separation.
These experiments were conducted on an Intel Xeon E5520
(Dual-CPU, Quad-Core) with 72 GB RAM, running Debian
6.0. The C++ code uses CPLEX 12.1 (with default settings)
as a B&C framework.

Both codes were run in 32bit mode, restricting them to
effectively 2GB RAM. Note that both the second machine
as well as the implementation language C++ and the highly
tuned commercial (I)LP solver can be expected to be faster
than their SDP counterparts. Herein we are not so much
interested in the exact running times, but in the order of
magnitude. Not only can we assume that our setting can
achieve such a comparison, we will in fact see that the SDP

ZBefore its 501st execution, we perform step 1 again. As this is quite

expensive, we refrain from executing it too often.
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approach outperforms the ILP approach despite this setting.

We restrict the SDP approach to 1500 function evalua-
tions of f(A, u), as the convergence process of the bundle
method mostly slows down before that point, independent
of problem size (. After every fifth function evaluation we
search for newly violated constraints at our current primal
point. We add all constraints with violation > 0.001 to the
bundle and additionally remove constraints with relatively
speaking small associated Lagrangian multipliers (\; <
0.01 - Apean)- A further critical operation is the first-time ini-
tialization of the dual variables, where we choose the initial

. « 2-initial duality gap vl . . o5y
A; as ol constraint violation |2 violation of constraint ¢”.

4.1 Graphs with varying densities We argued that the
LP-gap becomes too large for dense instances, in order to
allow practically efficient ILP methods to succeed in such
cases; this argument is supported by the known results for
two-layer crossing minimization [2]. Hence we start out with
considering a synthetic benchmark where we have control
over this density parameter: We generated a set of instances
having p € {2,...,20} layers and n € {8,...,25} vertices
on each layer. For each combination of p and n, we consider
random instances with densities d € {0.1,0.2,...,0.9}, i.e.,
with |dn?| edges per layer, where all possible edges have
equal probability of being selected. For each triple (p,n, d),
we report the average over 10 generated instances.

Table 1 summarizes our results for some representative
values of p,n,d. We restricted the ILP approach to 1 hour
of computation per instance: We observe that the solved
instances always require less than 1 minute (except for four
instances with 24, 6, 3 and 1.5 minutes, respectively); for the
unsolved instances the gaps are still very large after 1 hour
and progress stagnates.

Not surprisingly, we can observe that the graph density
is not so important for the SDP; while very sparse and
dense graphs allow the SDP to find solutions quickly, even
most of the instances with a more complicated cost structure
(d =~ 0.5) can be solved within seconds. On the other hand,
the ILP approach is applicable only to very sparse graphs:
it can solve all instances with d = 0.1. Thereby it is by an
order of magnitude faster than the SDP. Yet, it solves not a
single instance with d > 0.2 within 1 hour.

Regarding the two-level case, we note that the similar
approach [2] using a weaker SDP relaxation was not able to
solve all n = 18 instances®. The ILP approach suggested
in [15] considered 10 random instances with p = 8,n =
12,d = 0.109. We also tested the only still available in-
stance of these, observing equivalent behavior to our random
instances.

3The effects of including the matrix cuts are also already demonstrated

on exemplary instances in [20, Subsection 4.5].
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4.2 Real-world graphs Motivated by the above results we
now turn our attention to commonly used benchmark sets in
the area of graph drawing, where the considered graphs are
relatively sparse, and investigate our algorithm more deeply.
Both instance sets described below are said to be at least
similar to real-world instances; to our knowledge this is the
first time that these instances are tackled in the context of any
exact multi-level crossing minimization.

Rome graphs. The Rome graphs, originally proposed in [6],
were obtained from a basic set of 112 real-world graphs. The
collection contains 11,528 instances with 10-100 vertices
and 9-158 edges and, although originally undirected, can
be unambiguously interpreted as directed acyclic graphs, as
proposed in [9].

North DAGs. The North DAGs have been introduced
in an experimental comparison of algorithms for drawing
DAGs [5]. The benchmark set contains 1,158 DAGs col-
lected by Stephen North that were slightly modified by
Di Battista et al. The graphs are grouped into 9 sets, where
set ¢ contains graphs with 10¢ to 10¢+9 arcs fort = 1,...,9.

Both instance sets contain regular graphs, which are not
proper level graphs. As they have been regularly used as
benchmarks for Sugiyama style drawings, we consider two
different leveling approaches:

GKNW. As indicated in the introduction, the first step of the
traditional Sugiyama approach is to level the given graph.
There are multiple strategies to decide on a leveling; in
these experiments, we consider the optimal LP-based algo-
rithm [12]. In this context, we can also evaluate traditional
multi-level crossing minimization strategies: In the tables
below, we will also give the number of crossings B ob-
tained by the level-wise barycenter heuristic (sweeping over
all level until the solution does not further improve).

UPL. Recent algorithms have combined the first and the
second step of Sugiyama’s framework to obtain an upward
planarization algorithm [3]. Thereby, a planarization P
with few crossings is computed without the need for levels.
Afterwards, P is fitted into the smallest leveling allowing the
specified crossing configuration [4], in order to be applicable
for Sugiyama’s third step. We will also consider the layering
obtained by this approach, as it allows a much smaller
number of crossings in practice. This also allows us to
deduce if (thinking inversely) the UPL approach gives a
(near-)optimal number of crossings with respect to the finally
computed layering.

Results. Recall that the matrix dimension ¢ does not only
depend on the original number of vertices (or edges), but on
the derived proper level graph, i.e., also on the number of
artificial vertices and the vertex distribution over a number
of layers. Hence the algorithm will be mostly dependent
on ( rather than the original size. Figure 1 shows the
dependency between these different metrics. We calculated
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SDP ILP

d= 0.1 0.2 0.3 0.5 0.7 0.9 0.1
p n, ( v/, time v/, time v/, time v, time v, time v/, time v/, time
20, 381 10, 45.1 | 10, 223.1 | 10, 578.3 | 10, 4786 | 10, 513.5 | 10, 319.6 10, 3.40
2 21,421 10, 582 | 10, 246.5 | 10, 9129 8, 1601.5 | 10, 1292.0 | 10, 458.4 10, 15.67
22, 463 10, 117.8 9, 505.9 9, 788.5 7, 3621.3 9, 2866.2 | 10, 9234 10, 28.15
16, 361 10, 56.0 | 10, 238.5 | 10, 601.9 | 10, 559.1 9, 8582 | 10, 209.6 10, 3.99
3 17, 409 10, 1304 | 10, 324.6 8, 738.8 7, 863.9 9, 1300.2 | 10, 557.2 10, 11.22
18, 460 10, 112.1 | 10, 804.5 9, 1278.9 7, 1684.0 8, 21875 | 10, 534.2 10, 23.70
12, 397 10, 524 | 10, 279.3 8, 158.8 9, 641.0 | 10, 1262.7 | 10, 281.1 10, 0.70
6 13, 469 10, 149.2 9, 772.7 | 10, 978.1 7, 2898.5 | 10, 1079.8 | 10, 688.4 10, 4.90
14, 547 10, 347.5 8, 923.9 6, 1898.0 2, 2037.4 5, 3643.6 | 10, 1602.3 10, 189.04
10, 495 10, 97.1 | 10, 383.8 | 10, 987.8 9, 2539.3 | 10, 1289.7 | 10, 722.4 10, 045
11 | 11,605 10, 248.1 | 10,1189.3 | 10, 1861.7 9, 44433 6, 55185 | 10,1171.3 10, 2.07
12,726 10, 615.1 9, 1843.7 6,7864.2 8, 8490.7 4, 8940.0 | 10,2959.9 10, 50.52
8, 561 10, 13.5 | 10, 356.7 | 10, 701.6 | 10, 11459 | 10, 1220.6 | 10, 591.5 10, 0.01
20 9,721 10, 1494 | 10,1395.8 | 10,2284.4 9, 3023.7 | 10, 3523.8 | 10,2605.1 10, 0.21
10, 901 10, 1000.9 | 10,3213.6 | 10,5979.1 4,11407.5 | 10, 13976.2 | 10, 6430.9 10, 2.46

Table 1: SDP and ILP approaches on random graphs with representatively chosen values for d, n and p. “v"” denotes the
number of instances solved to optimality (out of 10) ,“time” gives the average time (in seconds) over the solved instances.

For the ILP, no instance with d > 0.2 could be solved.

all graphs with ¢ < 900 and ¢ < 1500 for the Rome and
North instances, respectively, and summarize the results in
Table 2. Our benchmark instances, except for very small
graphs, are all sparse: The average density of the considered
instances with ¢ > 300 is 0.10, 0.11, 0.12, and 0.12 for
the combinations, Rome-GKNYV, Rome-UPL, North-GKNYV,
and North-UPL, respectively. For the ILP approach, we
applied a time limit of 4 hours for each instance with { <
900, and 16 hours for { < 1500.* These ILP time limits
were chosen such that the SDP approach always finished its
at most 1500 function evaluations within that time, i.e., the
ILP approach has at least as much CPU time as the SDP
approach.

Table 2 summarizes our experiments. The first and most
surprising result is that both approaches are in fact very suc-
cessful on these real-world instances, as only few instances
at all remain unsolved by either of these approaches. In
accordance to our finding with the random graphs, we ob-
serve that the ILP is usually faster. Yet we also observe
that the SDP is stronger with respect to overall solvability:
It solves all instances except for 2 North-GKNV instances;
the ILP approach fails for 21 graphs, including the afore-
mentioned 2. When both algorithms fail, the SDP approach
obtained tighter pairs of upper/lower bounds: 498/518 and
853/854 in contrast to the ILP’s 418/499 and 336/854. We
conclude that for sparse graphs one should usually try the
ILP first; when it fails to prove an optimal solution within

4These large computation times did not leave time for the Rome in-
stances with ¢ € [900 — 1500), so we restricted ourselves to the more
diverse North graphs.

Copyright © 2011 by SIAM
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reasonable time, the SDP approach has a good chance to suc-
ceed for such hard instances.

Analyzing the distinct benchmark sets, we observe that
the traditional leveling and crossing minimization heuristics
leave plenty of room for improvement when considering
the minimum number of crossings. In contrast to this,
the graphs leveled by the UPL approach only allow much
smaller improvements. In fact, it shows that the upward
planarization approach [3] gives near-optimal solutions for
its respective leveling. We also observe that the fact that UPL
produces more but smaller levels and requires less crossings
is beneficial for both exact approaches: they solve all UPL
instances, while the GKNYV instances are harder.

4.3 Polytopes and further instances from literature We
close our experimental study with looking at further in-
stances of interest. Often, one considers the graphs mod-
eling the incidence relation between faces (corner, edge, 2D-
face,...) of an (LP-)polytope, and hence we are interested in
drawing them within a Sugiyama framework. These graphs
are naturally very dense. Table 3 shows that we can solve
such instances as long as the dimension of our matrix is
within reasonable bounds. We observe that the SDP ap-
proach is clearly beneficial over the ILP. Even for polytopes
that cannot be solved to optimality by either approach, the
bounds obtained by the SDP are clearly stronger.

We also considered the instances from the Graphviz
gallery [14] as it was recently suggested in [11]. We
only report on the non-trivial instances. We observe that
our ILP implementation gives comparable running times
to those in [11]; thereby our approach is much simpler.
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optimal, imp optimal, ni imp/ni ILP

(< # cr (std) diff (max) ti tup # tp tub #I# —opt time

Q 300 | 2015 11.14(8.24) 3.7(18) 20.55 025 | 1538 238 0.02 0/0 0 0.26

g 600 | 2572 26.01 (14.55) 11.2 (52) 0:04:13 9.34 11 0:02:03 0.19 0/0 0 7.46

> = 900 | 1325 42.01(23.02) 24.87(75) 0:31:55 101.14 0 - - 0/0 11 3:57
z 300 90  16.78 (33.05) 2.04 (10) 16.77 0.09 316 3.77  0.03 0/0 1 8.20
% £ 600 80 25.26 (51.86) 3.81(20) 0:04:05 5.88 35 0:03:04 032 0/1 6 9.82
S 900 36 29.25(32.99) 8.03 (29) 0:17:11 22.56 13 0:17:33  2.36 0/0 1 1:14

1200 29  47.48 (54.01) 8.24 (32) 3:28:34 3:39 7 0:06:24 449 0/1 2 1:57

1500 11 64.18 (63.22) 8.45 (17) 6:35:53 6:35 2 0:05:14 6.98 0/0 0 8:58

o 300 136 1.38 (1.62) 1.18 (4) 5.84 0.10 442 397  0.05 0/0 0 0.04

g 600 617 3.12 (2.11) 1.52(8) 0:02:44 2.71 711  0:02:36  0.92 0/0 0 0.25

a 900 731 5.23 (2.95) 2.12(9) 0:25:13 21.13 338  0:18:29 335 0/0 0 0.93

= 300 30 4.73 (4.27) 1.57 (5) 9.85 0.09 126 3.02  0.03 0/0 0 0.04
- 5 600 45 5.98 (4.68) 1.91 (5) 0:03:14 1.10 43 0:01:31 0.3 0/0 0 0.61
’g 900 14 9.50 (6.73) 2.79 (6) 0:18:24 25.79 20 0:13:24 265 0/0 0 18.86

1200 11 11.55(17.30) 2.27 (6) 1:31:38 38.17 9 2:04:10 553 0/0 0 1:03

1500 11 35.00 (27.17) 4.64 (9) 4:40:28  0:05:04 5 207112 774 0/0 0 10:19

Table 2: The results for the SDP approach on real-world benchmark instances with ¢ > 0. The results are split into four
categories: whether or not SDP found a proven optimal solution (“optimal”), and whether this solution was better than the
one from the respective heuristic (“imp” vs. “ni”’=no improvement) (see benchmark description). The instances are grouped
by matrix dimension ( in intervals of 300, where ( is less than the given number. “#” denotes the number of instances, “cr
(std)” reports mean and standard deviation of the optimal crossing numbers, “diff (max)” gives the average and maximal
difference between the optimal and the heuristic solution. t;, and t,; give the average time (in seconds) to compute the
lower bound (via the relaxation (SDP;)) and the upper bound (via the rounding heuristic described in Subsection 3.4),
respectively. We also give the number of instances not solved to optimality by the ILP approach (—opt) as well as the

average solution time over the other instances.

This observation validates the finding in [15] which already
suggested that additional separation routines need not pay off
in practice. Finally we report on the traditional real-world
instances MS88 [25] and SM96 [28]. For the latter, the prior
publications only considered a subgraph consisting of three
layers, due to the graph’s complexity. For the first time,
we also report optimal results for the full graph (depicted
in Fig. 2). Again we can observe that the SDP approach is
beneficial when considering the more complex instances.

5 Conclusions

We presented a systematic investigation and comparison of
different exact approaches for MLCM. We demonstrated that
the semidefinite relaxation provides essentially tighter lower
bounds than the linear programming relaxation. Although
computing the former relaxation is more time consuming,
our experiments demonstrate that it pays off in practice. As
the SDP approach is relatively independent on the graph’s
density, it is not surprising that the SDP approach clearly
dominates the ILP approach on dense graphs. Yet, we also
showed that the SDP approach is beneficial on sparse, real-
world benchmark sets.

In a very recent, yet unpublished conference paper,
Gange et al. [11] suggested a SAT-based approach and com-
pared it to a reimplementation of [15]. They concluded that

Copyright © 2011 by SIAM
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the ILP dominates the SAT-based alternative. Their exper-
imental performance of the ILP, performed on a compara-
ble PC (Intel Xeon X5472), shows analogous results to our
ILP implementation: this can be, e.g., seen when comparing
the running times for the Graphviz instances, as proposed
in their paper. The random graphs considered in their paper
have 7-10 vertices per level and 3-10 levels.

Although not necessary in our experiments, we want
to note that the SDP approach could be combined with a
branch-and-bound scheme to guarantee an optimal solution
upon termination, even when the SDP lower bound does not
induce the optimum. Furthermore, (SDP;) could be further
tightened by multiplying multiply pairs of different 3-cycle
inequalities or by pentagonal inequalities, cf. [19].

In the course of developing the SDP algorithm, we also
obtained a seemingly strong SDP-based upper bound heuris-
tic. This heuristic never resulted in worse solutions than tra-
ditionally used heuristics, often improving their solutions to
optimality. Even on the layering obtained to suit the result
of the layer-free upward-planarization heuristic, it was reg-
ularly able to find even better solutions. This allowed us to
prove many optimal solutions in conjunction with the tight
SDP lower bound. We think that this new heuristic itself,
being very fast to compute, is already a promising new tool
to obtain good solutions even for instances that are too large
for the full SDP approach. Although beyond the scope of this
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SDP ILP

Type Instance P d ¢ Zx ti tub time prev ILP time
Tetrahedron 3 0.5 28 22 0.09 0.03 0.08 —

Octahedron 3029 110 80 10.61 0.05 2.62 —

Cube3 3029 110 80 10.87 0.06 3.14 TO (1h) [21]

Polytopes | Dodecahedron 3 0.13 692 393/394 4:40:07 2.03 18h: 132/427 —
Icosahedron 3 013 692 393/394 4:37:23 1.98 16h: 174/401 —

Cube4 4 014 921 | 1192/1195 7:10:19 7.10 | S51h: 197/1334 —

Soccer ball 3 004 6272 | 1627/2353  91:23:06  0:11:10 | 52h: 118/2630 —

switch 6 0.2 169 20 1.87 0.05 0.66 0.75[11]

Graphviz unix 11 0.19 176 0 0.24 0.01 0.01 =
world 9 0.09 815 46 1:11:42  0:02:07 0:02:45 | TO (1 min) [11]

profile 9 0.08 846 37 0:51:32  0:02:02 2.84 6.81[11]

MS88 3024 217 91 2.62 0.17 5.02 0:04:29 [21]

Other SM96-3L 3 0.07 615 13 0:01:19 7.14 0.18 0:05:32 [21]
SM96-full 7 0.10 915 162 0:53:16 12.75 3:05:05 —

Table 3: Results for Polytopes and further known instances. Cube3(4) denotes a 3(4)-dimensional cube. z, gives the optimal
objective value (or final lower and upper bound), and ¢, t,,;, the time for the lower and upper bound, respectively. ILP-time
gives the time of the ILP approach; when the process terminated due to insufficient memory (2GB restriction due to 32bit),
we give the respective time up to this point and the final lower and upper bound. Due to its complexity, we only computed
50 function evaluations of f(\, 1) for soccer ball. The last column gives the reported running time in the cited paper to
obtain the optimal solution (or TO=timeout). All times are given in seconds or as h:min:sec.

study, it would be interesting to further compare it to other,
more involved (meta-)heuristics [24].
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Figure 2: Example drawing: optimal ordering for SM96-full
(graph proposed in [28]), requiring 149 crossings.
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