
Preprocessing Maximum Flow Algorithms⋆

Frauke Liers and Gregor Pardella

Universität zu Köln, Institut für Informatik, Pohligstraße 1, 50969 Köln, Germany

Abstract. Maximum-flow problems occur in a wide range of applications.Al-
though already well-studied, they are still an area of active research. The fastest
available implementations for determining maximum flows ingraphs are either
based on augmenting-path or on push-relabel algorithms. Inthis work, we present
two ingredients that, appropriately used, can considerably speed up these meth-
ods. On the one hand, we present flow-conserving conditions under which sub-
graphs can be contracted to a single node. These rules are in the same spirit as
presented by Padberg and Rinaldi (Math. Programming (47), 1990) for the mini-
mum cut problem in graphs. On the other hand, we propose a two-step max-flow
algorithm for solving the problem on instances coming from physics and com-
puter vision. In the two-step algorithm flow is first sent along augmenting paths
of restricted lengths only. Starting from this flow, the problem is then solved to op-
timality using some known max-flow methods. By extensive experiments on ran-
dom instances and on instances coming from applications in theoretical physics
and in computer vision, we show that a suitable combination of the proposed
techniques speeds up traditionally used methods.

Key words:maximum flow, minimum cut, subgraph shrinking, hybrid algorithm

1 Introduction

Determining maximum flows in networks belongs to the classical problems in the area
of combinatorial optimization, with many applications abound in different fields. Ele-
gant algorithms and fast implementations are available. They allow the determination
of a solution in a time growing only polynomially in the size of the input in the worst
case, and large instances can be solved in practice.

Given a (directed or undirected) graphG = (V, E) with edge capacitiesce ≥
0 ∀ e ∈ E, if edge(u, v) does not belong toE we assumecuv = 0. We denote by
N(W) = {v ∈ V \ W | (w, v) ∈ E} the neighbor set ofW ⊂ V . For any two subsets
W ⊂ V andU ⊂ V \W the edge set(W : U) = {(w, u) ∈ E | w ∈ W, u ∈ U} defines
the cut between them. For ease of presentation we use the short formN(w) and(w : W)
for a singleton{w}. The task is to determine a maximum flowf =

∑
e∈δ+(s) fe be-

tween specific nodess ∈ V (‘source’) andt ∈ V (’sink’). For a node setS, δ+(S) is the
set of edges with tails inS and heads inV \S. The amount of flow sent along an edgee

cannot exceed its capacityce. A flow is feasible if it also respects the flow-conservation

⋆ Financial support from the German Science Foundation is acknowledged under contract
Li 1675/1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

constraint stating that the flow entering a node excepts, t also has to leave it. A flow
violating this constraint is called apreflow.

The first algorithm for determining maximum flows has been presented in 1956 by
Ford and Fulkerson [5]. Flow is iteratively improved by increasing it along ‘augmenting
paths’ betweens andt. If the capacities take rational values, the algorithm terminates,
yielding pseudo-polynomial running time. Recently, Boykov and Kolmogorov [3] pre-
sented a fast implementation for determining maximum flows using this strategy in an
elaborate way. Two search trees are used simultaneously, one starting from the source
and one from the sink, for determining augmenting paths. Thetrees are updated in each
search step. This ‘double tree strategy’ yields the currently fastest implementation for
instances coming from computer vision. Finally, the methodwith the best practical per-
formance on general instances is the push-relabel algorithm by Goldberg and Tarjan
[7]. We describe the general idea in the ‘highest label push-relabel’ form. The algo-
rithm maintains node labels that correspond to their distances to the sink in the residual
network. While the preflow is not a flow, a nodev with highest label is chosen among
all nodes having positive excess. If possible, the excess atv is pushed along its incident
edges towards the sink (or, if this is not possible, back towards the source). If there
is then still some excess left atv, the distance label ofv is updated accordingly. The
algorithms [4] and [7] have strongly polynomial running time.

In this work, we aim at improving the practical running time of the fastest available
implementations on instances arising in computer vision and theoretical physics. To
this end, we propose to reduce the instance sizes by shrinking node sets to supernodes
if certain conditions are satisfied. Our rules are inspired by the conditions for shrink-
ing node sets that were presented in [11] by Padberg and Rinaldi for the minimum
cut problem in undirected graphs. In our context, we prove the shrinking rules arguing
via flows in the network instead of arguing via general cuts ingraphs. We also show
that these preprocessing steps transform known worst-caseinstances into trivial equiv-
alent instances. Furthermore, we propose a hybrid maximum flow algorithm that in a
first step heuristically increases the flow along augmentingpaths of restricted lengths.
If the resulting flow is not maximum, the problem is solved to optimality by either a
push-relabel or by an augmenting-path strategy. As the performance of these methods
depends on the characteristics of the input, the specific choice of the algorithm depends
on the instance’s structure. Although the methods propose here can in principle be ap-
plied to any instance, we expect best performance for specially structured instances.
More specifically, we test the resulting algorithm on two classes of relevant applica-
tions that occur in theoretical physics and in computer vision. In both applications, the
graph consists of a regular two- or three-dimensional grid graph in which additionally
each node is either connected to the source or to the sink node. By extensive computa-
tional experiments, we find that the proposed algorithm performs very well in practice,
allowing the solution of realistic instances with up to15002 and2003 nodes. We also
evaluate the method on sparse random instances. The outlineof this work is as follows.
In Section 2, we introduce the shrinking of node sets. Subsequently, we present the hy-
brid maximum flow algorithm in Section 3 and evaluate the computational results in
Section 4. The proofs are given in the Appendix.

2

2 Capacity Normalization and Shrinking

The computational complexity of maximum flow problems is determined by the number
of nodes and edges and, depending on the solution method, potentially also by the value
of the largest edge capacity.

In this section, we introduce techniques for removing unusable edge capacities and
for reducing the graph size while preserving an optimum solution. We will also show
how to use these techniques as building blocks for more general preprocessing rules.
As it is necessary to do these preprocessing steps fast, we furthermore discuss the com-
plexity of the operations and present implementation details. On the theoretical side, it
will turn out that some well-known instances forming the worst cases for some of the
prominent solution algorithms can be transformed into trivial equivalent instances.

The shrinking conditions presented in this sections are inspired by the conditions
proposed in [11] in the context of minimum cuts in undirectedgraphs. In contrast to
[11], we will prove our rules by looking ats-t-flows. More specifically, we need to
invest arguments ensuring that there exists for each flow in the shrunk graph a corre-
sponding flow in the original graph, and vice versa.

2.1 Undirected Graphs

First, we reduce unusable edge capacities in thecapacity-normalization step. Unus-
able capacitiesc are those such that no feasible flow can exploit. The corresponding
edge capacities can then be reduced, as we observe next.

Observation 1 For edgee ∈ E, let C̄v =
∑

g∈δ(v) cg − ce be the sum of capacities of

all edges incident to nodev except edgee. If ce ≥ C̄v, thence can be reduced to the
maximum possible flow̄Cv that can be sent throughv.

Algorithmically, capacity normalization can be accomplished by determining for each
node an incident edge with largest capacity among all incident edges. If the condition
from Observation 1 is satisfied for an edge, its capacity can be reduced accordingly.
Checking the condition for all nodes takesO(|V ||E|) steps. At mostO(|V |) passes are
needed to ensure that all unusable capacities are removed. Thus, capacity normalization
can be done inO(|V |2|E|) time.

Instead of normalizing a capacity, an edgee = (u, v) can alternatively be shrunk by
identifying the nodesu andv, yielding a supernodeuv. We call this procedureshrink
max edge(SME). Sets consisting of more than two nodes can be shrunk analogously.
Shrinking node sets to a supernode also means replacing multiple edges by one edge
with capacity equal to the sum of capacities of the single edges. It is important to note
that an SME step preserves flow solutions. By potentially routing some units of flow
overe, we show that for an arbitrary feasible flow in the shrunk graph, a corresponding
flow of the same value exists in the original one. This is true because the maximum
amount of flow through supernodeuv over edges previously incident tov is limited by
C̄v ≤ ce. Thus, any feasible flow can be rerouted viae in the original graph.

The complexity of the SME procedure isO(|E|2) if deleting and inserting an edge
takes constant time. As a special case, nodes with degree twocan be removed by shrink-

3

ing the edge with larger capacity. Removing degree-two nodes can thus be performed
in timeO(|V |).

The straightforward SME rule is the building block of more general shrinking rules.
For example, we can extend it by considering cycles as statedin the following lemma.
Suppose we have already preprocessed the instance by applying the SME rule so that
the condition from Oberservation 1 is not satisfied.

Lemma 1. LetK3 = ({q, v, w}, Eqvw) with Eqvw = {(q, v), (q, w), (v, w)} ⊂ E and
q, v, w ∈ V be a cycle of length three. Let

Cv =
∑

g∈δ(v)

cg − cqv − cvw andCw =
∑

g∈δ(w)

cg − cqw − cvw.

(v, w) can be shrunk ifcqv + cvw ≥ max{Cv, Cw} andcqw + cvw ≥ max{Cv, Cw}.

We prove the correctness of Lemma 1 in the Appendix by showingthat any feasible
flow throughvw can be locally rerouted within the cycle in the original graph. (The
reverse direction is obvious.)

We can further strengthen the conditions from Lemma 1 by dropping the maximum
constraint and shrink edge(v, w) if cqv + cvw ≥ Cv andcqw + cvw ≥ Cw are satisfied.
The proof still holds with minor modifications.

As a generalization of Lemma 1, we prove the following lemma in the Appendix.

Lemma 2. For q ∈ V, Z ⊂ V \ {q}, let the subgraphHq,Z be defined asHq,Z =
{{q}∪Z, EH} with EH = {(q, z) ∈ E | z ∈ Z}∪{(zi, zj) ∈ E | zi, zj ∈ Z}. Further,
we require thatq ∈

⋂
z∈Z N(z). Node setZ can be shrunk if it holds∀ ∅ 6= W ⊂ Z :

CW − c(W : q) − c(W : Z \ W) ≤ c(W : q) + c(W : Z \ W), (1)

whereCW =
∑

g∈δ(W) cg.

We show in the Appendix that if (1) is satisfied, then every flowin the shrunk graph
can be rerouted locally in the subgraphHq,Z , yielding a flow with the same value in the
original graph. (1) can be generalized to the situation in

Theorem 1. Let Q ⊂ V, Z ⊂ V \ Q. A node setZ in the subgraphHQ,Z = (Q ∪
Z, EQZ) with EQZ = {(q, z) ∈ E | q ∈ Q, z ∈ Z} ∪ {(zi, zj) ∈ E | zi, zj ∈ Z} and
Q ⊆

⋂
z∈Z N(z) can be shrunk if∀ ∅ 6= W ⊂ Z and∀ ∅ 6= Y ⊆ Q :

CW − c(W : Y) − c(W : Z \ W) ≤ c(W : Y) + c(W : Z \ W) (2)

Theorem 1 follows from similar arguments as used in Lemma 2 byalso incorporating
possibilities of rerouting flow via nodes inQ.

As for the condition in [11] for shrinking node sets in the minimum cut problem,
verifying (1) and (2) is computationally hard. (2) is similar to a condition given by
[11] in the context of minimum cuts in undirected graphs. Formaximums-t-flows, the
proofs are based on a local flow rerouting strategy and do not consider cuts. By the
mincut-maxflow theorem, a maximums-t-flow corresponds to a minimums-t-cut. As
a minimum cut is a minimums-t-cut over all node pairs, Theorem 1 can be used to give
an alternative proof for the shrinking condition given in [11]. Reversely, as in general a
maximums-t-flow cannot be derived from a given minimum cut, it is not easily possible
to directly use the conditions from [11] for flows. We howeverhave given proofs that
they indeed also hold in this context.

4

2.2 Directed graphs

The SME rule can be adapted to directed graphs when applied toedges that are incident
to either the source or the sink. Letesv = (s, v) be a directed edge froms to v and
ewt = (w, t) be a directed edge fromw to t. If cesv

≥
∑

g∈δ+(v) cg, thenesv can be
shrunk. Simultaneously, ifcewt

≥
∑

g∈δ−(w) cg, thenewt can be shrunk. Moreover,
SME can be applied to all nodesv with |δ+(v)| ≤ 1 or |δ−(v)| ≤ 1. If none of these
conditions is satisfied, there potentially can exist feasible flows in the shrunk graph that
do not correspond to feasible flows in the original one.

For similar reasons, either the source or the sink must be part of a cycle of length
three as stated in the next lemma.

Lemma 3. Lets, v, w ∈ V andt, x, y ∈ V be two directed cycles of length three, with
directed edges(s, v), (s, w), (v, w) and(x, t), (y, t), (x, y). Let

Cv =
∑

g∈δ+(v)

cg − cvw − cwv, Cw =
∑

g∈δ+(w)

cg − cvw − cwv,

Cx =
∑

g∈δ−(x)

cg − cxy − cyx, andCy =
∑

g∈δ−(y)

cg − cxy − cyx.

If csv ≥ Cv and csw ≥ Cw then edge(v, w) can be shrunk. Similarly,(x, y) can be
shrunk ifcxt ≥ Cx andcyt ≥ Cy.

Proving correctness relies on the fact that flow can be rerouted not only locally in
the cycle that was shrunk, but also globally by rerouting units of flow back to the source.
We can also formulate statements similar to Theorem 1 for directed graphs.

2.3 Implementation details

We restrict ourselves to the application of rules that affect node sets of small cardinality.
We apply the SME rule and test cycles of length three. For undirected graphs, we test the
condition with the maximum constraint as proposed in Lemma 1. The sum of capacities
at each node should be precomputed and updated after a shrinking operation. To verify
the condition in Lemma 1 any pair of edges incident at a nodeq has to be considered as
each pair might be part of a cycle of length three. Thus, an adjacency oracle is needed
that returns a potential edge between nodesv andw in O(1) time, e.g. by a local ad-
jacency hashmap for each node. In a straightforward implementation the total number
of steps can be bounded byO(|V |4 × Nvw), whereNvw = min{|δ(v)|, |δ(w)|} is the
time to shrink edgee = (v, w) to supernodevw.

In practice, we do not check all cycles but consider only a (small) set of promising
cycles of length three. Doing this, we potentially miss someshrinking steps but found
better overall performance.

2.4 Shrinking Makes Worst-Case Instances Trivial

Applying the above proposed techniques, well-known worst-case examples for differ-
ent maximum flow algorithms can be transformed to equivalenttrivial instances that

5

only consist of source and sink node. Figures 1 and 3 show worst-case instances for
augmenting path algorithms (cf. [2]).2M augmenting steps are needed for solving the
instance in Figure 1. Using non-rational capacities as in Figure 3 from [13] can even
prohibit augmenting path strategies to terminate. The instance from Figure 1 can be
transformed into an equivalent one by shrinking the cycle oflength three that contains
the source. The result is shown on the right in Figure 1. Applying shrinking operations
on the dotted (red) cycles shown in Figure 3 and capacity normalizations on the dotted
(red) edges, we arrive again at a trivial equivalent case.

M

M

M

M

1

source sink source sink

2M

Cv = M

Cw = M − 1

v

w

Fig. 1. Worst-case instance for augmenting
path strategies.

s

t
M MM

1 111
n − 2

1 2 n-2

s t

Fig. 2. Worst-case instance for FIFO
push/relabel strategy.

4

4 4 4

4 4

1 1 r

s

t

4

4 4 4

8

1 r

s

t

4

4 8

8

1

s

t

9

s

t

9

9

s

t

4

4 5

5

1

s

t

Fig. 3. Worst-case by U. Zwick [13] for
augmenting path strategies, withr =
√

5−1

2
.

FIFO push/relabel algorithms maintain nodes with positiveexcess in a queue. New
nodes with positive excess are added at the rear of the queue.Nodes are selected by pop-
ping them from the queue. For FIFO push/relabel strategies,a worst-case instance and
the trivial shrunk one are shown in Figure 2. In the worst case, the FIFO push/relabel
algorithm pushes in the original instance flow from the source to all adjacent nodes
1, 2, . . . , n − 2 and adds these nodes to the queue in the ordern − 2, n − 3, . . . , 1.
The nodes are considered in this order and flow is pushed towards the sink. Only the
last node in the queue loses its excess while all other nodes have positive excess. Thus,
n − 2 push/relabel phases andΩ(n2) many push operations are executed until the pre-
flow becomes a flow. Applying the directed SME (resp. the degree-two) rule for all
edges with capacityM shrinks the instance to the graph shown on the right in Figure
2. As a consequence, the above worst-case instances can be solved even without call-
ing a maximum flow algorithm. Only the preprocessing steps proposed here need to be
applied.

3 Hybrid Maximum Flow Algorithm

In this section, we propose a hybrid algorithm that in a preprocessing step shrinks node
sets according to the rules presented in Section 2. Subsequently, we start increasing

6

flow through the network in a greedy fashion, using only shortaugmenting paths whose
lengths do not exceed a certain threshold. This step either finds a maximum flow or
a (good) initial flow. In the latter, the flow is increased further to an optimal one by
some known maximum flow algorithm. Depending on the problem structure, we either
use a lowest push/relabel approach or an augmenting path strategy. The performance
of different maximum flow algorithms strongly depends on theproblem structure. For
example, while some approach may perform well on sparse graphs, it might take long
on dense instances, or vice versa. As it is known [6] that the ‘double tree’ augmenting
path strategy by Boykov and Kolmogorov [3] is especially fast on sparse instances, we
use it in the latter case. For dense instances, a lowest push/relabel approach performs
considerably better than the ‘double tree’ procedure and ispreferable in this case. We
thus exploit the algorithmic advantages of the different methods. After having solved
the problem to optimality, all shrunk nodes have to be expanded. The optimum flow
has to be rerouted accordingly. The hybrid algorithm is outlined in Algorithm 1. The
general idea in the depth-restricted flow augmentation phase is to label the nodes de-
pending on the labels of their local neighborhood. This yields a rough classification
of the node set with regard to their distance froms andt. The labeling then controls
a depth-restricted flow augmenting step which is performed until no augmenting path
between source and sink is found. As it would take too long to determine node labels
exactly, we only determine whether a node is ‘near to’ the source and/or near to the sink
or not. Intuitively, greedy augmenting paths between nodesthat are far away from the
source and the sink are allowed to be longer than those between nodes that are near to
the source and the sink. In the following, we explain the details of this greedy step.

Algorithm 1 : hybrid maximum flow algorithm
1: apply shrinking rules
2: label nodes
3: repeat
4: depth-restricted flow augmentation
5: update node labels afterr augmentations
6: until no augmenting path with prescribed length betweens andt is found
7: switch to ‘double tree’ or ‘push/relabel’ strategy
8: undo shrinking steps, reroute the flow locally

We assign node labelsS, T, ST, N that indicate whether a node is adjacent only
to s, only tot, to boths andt, or whether it is neither adjacent tos nor tot, respectively.

We subsequently refine the label of each node depending on theinital labels of
its adjacent nodes. The label refinement for nodev is independent of its own initial
label. Supposev is adjacent only to nodes labeled byT (resp.ST , S). Then the refined
label isOT (OT , OS, respectively). Otherwise, if at least one but not all neighbors
of v are labeled byT or ST , then the refined label is set toNT . If v does not have a
neighbor labeled byT or ST but at least one neighbor with labelS, thenv receives the
refined labelNS. In the remaining cases, the refined label is set toON . The labeling
is determined by a breath-first search starting at the sourceand uses the initial labels

7

S, T, ST, N only. With the labeling at hand we search for augmenting paths from
nodes with initial labelS. We restrict the length of those paths depending on the refined
node label. These paths are short and can be checked fast. Thelabels may be updated
after some depth-restricted augmentations and the augmenting search may be repeated.
In our experiments we found that afterr = 5 augmentations, a label update should be
performed.

The definition of the path lengths depends on the problem. Setting the thresholds to
a large value increases the running time without yielding considerably better flows. Set-
ting them to a very small threshold keeps the running time lowbut only yields flows with
very small values. In our tests, we found good performance for the following depths:

1 (OT), 3 (NT), 7 (OS), andmin{ |δ̄+(s)|
20 , 14} (ON). For nodes with refined label

ON we incorporatēδ+(s) the degree of the source in the residual graph. This should
prohibit the usage of long paths if the source is only sparsely connected in the residual
graph. Our computational results in the next section indicate that this hybrid algorithm
works well on the classes of instances occurring in physics and in computer vision.

4 Computational Results

Among the many applications for maximum flows in graphs, we focus here on applica-
tions in computer vision and in theoretical physics. Although these applications are in
different areas, the typical instances share a similar structure. In the random-field Ising
model (RFIM) from theoretical physics, the so-calledbase graphis a two- or three-
dimensional grid graph in which all edges have the same capacity. Furthermore, each
node in the grid is either connected to the additional nodes or tot with equal probability.
The latter edges can have different capacities. Networks with a similar graph structure
but different capacity choices also occur in image segmentation or image restoration
applications in computer vision.

More specifically, our experiments focus on the following different instance types:

(vision) directed computer vision instances [1] as reported in [3,6] with integral capacities
(rfim) (directed and undirected) RFIM instances as for example proposed in [8].

We used the value4 as capacity for the edges in the base graph. The capacity of
the edges containing the source or the sink take integer values that depend on some
parameter∆, where larger value of∆ yields larger capacities, see [8]. We tested
∆ = 1, 4, 8 and used varying grid sizes up to15002 in 2D and up to2003 in 3D.

(random) (directed and undirected) sparse random instances generated with the graph
generator ‘rudy’ [12] as
rudy -rnd_graph 500000 D S -random 1 100 S with D = 1 and2
the density parameter, seedS, and capacities in the range[1, 100]. We considered
different variants in which we varied the probability of nodes being connected to
the source (resp. the sink). We call the variant in which all nodes of the base graph
are connected tos or t with equal probability100% connected. According to the
probabilityP with which the nodes are connected to either source or sink, we use
the nameP% connectedwith P ∈ {10, 20, 30, 40, 50, 100}. The capacity for
the edges from source (resp. sink) to the nodes in the basis graph was drawn from
an interval that was10 times larger than the capacities of edges in the basis graph.

8

Due to the specific structure, many cycles of length three arepresent in all instance
classes which makes shrinking possible. We evaluate the following algorithms and im-
plementations:

(g) highest push/relabel implementation by Goldberg [7] for directed graphs with inte-
ger capacities

(j) ‘mincut-lib’ by Jünger et al. [9] with a fast implementation of a ‘highest push/relabel’
algorithm for undirected graphs

(bk) ‘double tree’ implementation by Boykov and Kolmogorov, specialized for com-
puter vision instances [3],

(o) hybrid method with the ‘double tree’ implementation by Boykov and Kolmogorov
[3] in the second step

(pr) hybrid method with a lowest label push/relabel implementation in the second step.

In the tables the abbreviations ((g), (j), (bk), (o), (pr)) are suffixed by ‘s’ if used on
the shrunk graph. All computations were carried out on IntelR© Xeonc© CPU E5410
2.33GHz (16GB RAM) (running under Debian Linux 5.0). Implementations(o) and
(pr) are based on the graph library OGDF [10]. In Tables 1-3 we report average running

Table 1.Running times in seconds and graph reduction in % for computer vision instances.

BVZ KZ LBbunny
sawtoothtsukubavenussawtoothtsukubavenus small

o 0.18 0.12 0.22 0.39 0.30 0.49 1.04
bk 0.27 0.18 0.34 0.61 0.47 0.76 1.45

opr 0.55 0.34 0.73 1.15 0.83 1.51 2.82
g 0.75 0.58 1.23 2.02 2.26 3.17 3.04

shrinking 0.33 0.15 0.26 1.32 0.58 1.10 0.93
reduction

|V| 34.86 36.33 26.48 25.97 20.40 19.19 7.92
|E| 33.52 33.13 25.50 23.45 17.74 16.87 6.71
os 0.15 0.10 0.20 0.39 0.30 0.49 1.02

bks 0.28 0.15 0.34 5.94 0.63 1.50 3.46
oprs 0.46 0.31 0.60 2.18 0.91 1.65 2.82

gs 0.76 0.62 1.20 2.01 2.22 3.27 3.07

times for the largest instances in seconds for the differentsolution approaches until the
maximum flow was found, without unshrinking and without reading in the instance.
For the random and the rfim instances, the averages are taken over five instances each.
The number of instances contained in the computer vision classes are: LBbunny one,
tsukuba 16, sawtooth 20, and venus 22. We report averages over each instance class. The
time for shrinking is reported separately. Additionally, the resulting graph reduction is
given in %.

The computer vision instances have between105 nodes and5 ∗ 105 edges (BVZt-
sukuba) and8∗105 nodes and5∗106 edges (LBbunny). The running times are small for
all implementations. Often, shrinking can reduce the graphs considerably. Within short

9

time, the sizes are reduced by about7% to 35%. However, the programs often cannot
profit from the reduced graph sizes as computing an optimum solution on the shrunk
graph takes almost the same running time as on the original one. Our new hybrid imple-
mentation without shrinking(o) is however considerably faster than the implementation
(g). Moreover, it is always the fastest method. It can even improve over the pure ‘dou-
ble tree’ strategy(bk). This is remarkable as(bk) is the state-of-the-art maximum-flow
implementation for instances from computer vision. For the2D rfim instances, there is

Table 2.Running times in seconds and graph reduction in % for two- (2D) and three-dimensional
(3D) rfim instance,∆ values are put in parentheses,(j) for undirected and(g) for directed in-
stances.

2D rfim undirected 2D rfim directed 3D rfim undirected
1000 (1)1000 (8)1500 (1)1500 (8)1000 (1)1000 (8)1500 (1)1500 (8)150 (1) 150 (8) 200 (1) 200 (8)

o 10.56 0.67 48.91 1.54 2.76 0.57 7.05 1.29 251.40 4.311050.44 41.12
bk 20.52 0.97 98.23 2.23 2.87 0.80 6.69 1.70 399.86 6.011546.21 14.30

opr 16.88 0.51 69.56 1.08 10.38 0.18 26.36 0.41 49.13 18.10 162.15 61.20
j/g 31.40 459.08 109.54 2356.28 16.36 0.58 50.29 1.34 47.996090.57 161.5635622.33

shrink 0.43 2.87 1.01 6.71 1.31 2.21 2.62 4.23 2.29 7.82 0.47 13.46
red.
|V| 0.00 100.00 0.00 100.00 0.10 60.00 0.07 60.00 0.00 58.13 0.00 23.56
|E| 0.00 100.00 0.00 100.00 0.06 54.19 0.04 54.19 0.00 61.40 0.00 24.79
os 10.44 0.00 49.00 0.01 2.91 0.45 7.33 1.05 251.62 2.101044.82 10.14

bks 20.77 0.00 98.00 0.00 3.14 0.58 6.98 1.29 400.07 3.161599.13 14.14
oprs 16.91 0.00 69.51 0.00 10.66 0.54 29.33 1.18 49.09 5.71 145.04 25.04
js/gs 31.44 0.00 109.62 0.00 17.02 0.22 50.89 0.51 48.04 673.23 190.4613413.39

a threshold value for∆ above which shrinking is possible. For small values of∆, the
differences in edge capacities are too small to allow shrinking. In Table 2, we show re-
sults for the largest graphs, where capacity choices are below and above the threshold.
Above the threshold, shrinking can be performed fast and yields a drastic graph reduc-
tion, sometimes even by 100%. It however has almost no effecton the running time
except when using the implementation [9]. The latter needs much longer on the original
graph, while the graph can be shrunk to a trivial equivalent instance in a few seconds.
When compared to undirected instances, the shrinking stepsneed longer for directed
graphs. For dense directed graphs, shrinking may be counterproductive as can be seen
in Table 3. Although the graph size is drastically reduced, the total running times in-
creases. On those instances, each augmentation step takes longer while the number of
augmentations remains similar. Let us consider the implementations without shrinking.
The hybrid variants perform comparable or better than the traditional algorithms on
two-dimensional instances. For undirected graphs, the running time can considerably
be reduced in the highest push/relabel approach when first the depth-restricted flow
augmentation is applied. The situation is similar for 3D rfiminstances. For directed
graphs, the highest push/relabel (g) implementation is slightly faster on average than
the hybrid versions. Due to memory limitations, directed instances of size2003 could
not be solved. We get comparable results for instances with rational edge capacities.

10

Table 3. Running times in seconds and graph reduction in % for random instances. (k = 10
3,

M = 10
6, graph size of the random base graph whithout edges to sourceand sink,(j) for undi-

rected and(g) for directed instances.)

random undirected directed
rfim 50% connected 100% connected 50% connected 100% connected

500k (4.5M)500k (9M) 500k (4.5M)500k (9M) 500k (4.5M)500k (9M) 500k (4.5M)500k (9M)
o 47.46 160.58 11.02 132.95 3.65 15.14 3.06 9.92

bk 75.62 233.49 15.39 246.72 4.42 18.72 3.76 14.13
opr 14.59 9.89 35.92 17.36 10.24 46.75 6.54 36.82
j/g 13.12 10.05 77.17 19.71 3.03 8.92 2.53 7.19

shrink 1.24 0.77 3.61 3.03 10.76 12.98 22.12 37.97
red.
|V| 9.02 0.03 20.91 0.05 28.86 16.01 56.57 41.45
|E| 7.06 0.01 23.95 0.03 29.67 18.11 60.17 54.37
os 39.92 159.98 7.43 132.82 2595.02 1289.10 2694.99 2014.12

bks 63.05 231.77 10.66 243.05 3674.14 2669.79 3476.53 5725.78
oprs 10.50 9.72 25.81 17.37 1889.02 1170.80 1783.09 1703.39
js/gs 11.89 9.91 54.03 20.46 2.28 7.76 0.98 4.02

For the physics instances, implementation(o)needs the same number of augmenting
steps as(bk), most of them take place in the greedy step. This is also true for the
directed random instances. On the other hand, on the undirected random instances(o)
needs considerably less augmentation steps than(bk).

Although the preprocessing steps introduced above have mainly been designed for
the applications mentioned above, it is interesting to evaluate them on random instances.
As can be expected, shrinking has no effect for random instances in which less than
50% of the nodes in the base graph are adjacent to source or sink. The graph size is
then reduced by at most6%. This can be understood as not many small cycles are
present that contain edges of large capacity. The corresponding running times show
the same characteristics as those given in Table 3 and are therefore skipped. We note
it is advantageous to apply our algorithm on undirected graphs in which the nodes in
the base graph are highly connected to the source and the sink. Otherwise, traditional
methods like(g) are preferable. This is especially true for directed graphs.

As a summary, our hybrid algorithm without shrinking reduces the running time on
undirected random instances that are highly connected to source and sink, furthermore
on vision and rfim instances. There, it even improves the method (bk) which is the
currently fastest available program for sparse graphs. Therunning time of the hybrid
implementation with the ‘double tree’ strategy(o) is at least comparable or faster than
(bk).

5 Conclusion

In this work, we proposed preprocessing routines for maximum flow algorithms. We
showed that the input size can be reduced by shrinking node subsets while preserving

11

an optimal solution. Moreover, well-known worst-case instances for different maximum
flow algorithms can be transformed into trivial equivalent instances.

Subsequently, we presented a depth-restricted augmentingpath algorithm that yields
very fast a good initial flow. In combination with known solution strategies, the running
times of traditional maximum flow algorithms are considerably reduced on relevant
instances from physics and computer vision. Taking the special graph structure into
account, shrinking can remarkably reduce the graph sizes and also the running time
of highest push/relabel algorithms on undirected graphs. Nevertheless, shrinking has
to be applied with care: For directed graphs, the running time can increase as each
augmentation step takes longer. For instances from theoretical physics and computer
vision, the fastest method uses augmenting path strategieswithout shrinking but with
the new depth-restricted augmentation step as proposed here. For directed instances,
the implementation from [7] is the fastest one. It however can only be used for integral
capacities.

References

1. Computer vision instances: http://vision.csd.uwo.ca/maxflow-data.
2. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network Flows: Theory, Algorithms, and

Applications. Prentice Hall Inc., 1993.
3. Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min-Cut/Max-Flow Al-

gorithms for Energy Minimization in Vision. IEEE Trans. Pattern Anal. Mach. Intell.,
26(9):1124–1137, 2004.

4. E. A. Dinic. An algorithm for the solution of the problem ofmaximal flow in a network with
power estimation.Dokl. Akad. Nauk SSSR, 194:754–757, 1970.

5. L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow through a network. Canad. J. Math.,
8:399–404, 1956.

6. A. V. Goldberg. The partial augment-relabel algorithm for the maximum flow problem. In
ESA ’08: Proceedings of the 16th annual European symposium on Algorithms, pages 466–
477, Berlin, Heidelberg, 2008. Springer-Verlag.

7. A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.J. Assoc.
Comput. Mach., 35(4):921–940, 1988.

8. A. H. Hartmann and H. Rieger.Optimization Algorithms in Physics. Wiley-VCH Verlag
GmbH & Co. KGaA, 2003.

9. M. Jünger, G. Rinaldi, and S. Thienel. Practical performance of efficient minimum cut algo-
rithms. Algorithmica, 26:172–195, 2000.

10. OGDF. Open Graph Drawing Framework. http://www.ogdf.net, 2007.
11. M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut problem.

Math. Programming, 47(1, (Ser. A)):19–36, 1990.
12. G. Rinaldi. rudy – A rudimentary graph generator: https://www-user.tu-

chemnitz.de/~helmberg/rudy.tar.gz, 1998.
13. U. Zwick. The smallest networks on which the Ford-Fulkerson maximum flow procedure

may fail to terminate.Theoretical Computer Science, 148(1):165 – 170, 1995.

12

Appendix

In this section, we show the proofs for shrinking certain node sets as presented in Sec-
tion 2.

Proof (Lemma 1).Let w.l.o.g.Cv = max{Cv, Cw, cqv + cqw}. Note that the value
of a feasible flow through supernodevw using edges formerly incident tov (to w, q,
resp.) is bounded byCv (resp.Cw, cqv + cqw). SupposeCw units of flow (which is
the maximum amount of flow throughvw using edges formerly incident tow) should
be rerouted fromv to w. Routecvw units directly fromv to w. The remaining units
Cw − cvw can be rerouted overq, because the shrinking condition

cqv + cvw ≥ max{Cv, Cw} = Cv

was satisfied. Therefore, it iscqv ≥ Cw − cvw. The same is true for edge(qw) so that
we havecqw ≥ Cw − cvw.

Using similar arguments,cqv + cqw units of flow (which is the maximum amount
of flow throughvw using edge(q, vw)) can be rerouted toq. First we routecqv units
over(q, v). cqw ≤ Cv − cqv units can be routed to nodew using edge(v, w) ascvw ≥
Cv − cqv ≥ cqw. ⊓⊔

Proof (Lemma 2).Assume the SME rules have already been applied such that the SME
condition is not satisfied for any edgee ∈ EZ . The proof is analogous to that of Lemma
1: We show that any feasible flow through the supernode can be rerouted locally in
the subgraphHq,Z . We need to consider different cases. Suppose there exists anode
z ∈ Z that is inHq,Z only adjacent toq. As (1) is satisfied forW = {z} ⊂ Z, it
follows that cqz ≥ Cz − cqz . Let f denote the amount of flow that passes through
the supernode using edges formerly incident tozi ∈ Z. Thus, we have to reroutef
units of flow viaq to z. Consider any nodezi ∈ Z \ {z} with Czi

=
∑

g∈∆(zi)
cg

where∆(zi) = {(zi, w) | w 6= q, w 6∈ Z}. Let Cz = min{Cz, Czi
} be the limiting

capacity, i.e. the maximum amount of flow that can pass the supernode in the shrunk
graph through edges formerly incident toz or zi. If nodezi is only adjacent toq in
the subgraphHq,Z , thenCz flow units can be routed toq and then toz as it holds
cqzi

≥ Czi
− cqzi

≥ Cz − cqzi
. If there exists an edge(zi, zj) with zj ∈ Z in EZ , then

the nodesq, zi, zj form a cycle of length three. In this case, we reroutecqzi
= Cz−c(zi :

Z \ {zi}) flow units toq via (q, zi) and further toz via (q, z). The remaining amount
of flow Cz − c(zi : Z \ {zi}) ≤ czizj

is routed tozj . Supposezi andzj are part of only
one such cycle. ConsiderW = {zi, zj} ⊂ Z thenc(W : Z \W) = 0 andCW − c(W :
q) ≤ c(W : q). We already sentcziq units flow fromzi to q over edge(zi, q), thus
Cv − czq + Czj

− c(W : q) ≤ c(zj : q). Therefore we can reroute the remaining
amount of flow toq and then toz. If there exists an edge(zj, zl) with zi 6= zl ∈ Z in
EZ , nodezj is part of another cycle of length three and the argumentation is applied
recursively. This is also done ifzi is part of several cycles of length three. If there exists
an edge(z, zj) with zj ∈ Z in EZ , thenz is not only adjacent toq in Hq,Z and similar
arguments are used to first route every possible flow toq and then toz. The remaining
flow units can be sent over the cut-edges betweenz andZ \ {z} in the same way as
argued above. ⊓⊔

13

s vw

csv + csw

csv

cvw

csw

v

w

s
?

ch

cl

ch

cl

h

l

l

h

Fig. 4. Rerouting flow in the directed case.

Proof (Lemma 3).The only interesting case is the one displayed in Figure 4 as other
cases directly follow from it. Suppose there is flow froms andl passing the supernode
to nodeh in the shrunk graph. This flow cannot be rerouted locally in the cycle as the
direction of the edge forbids to send flow from nodew to eithers or v. We however can
reroute the amount of incoming flowf at nodew back to the sources. This is possible
as the considered flow is feasible. Moreover, thef units of flow can be sent via edge
sv. This is possible because it holdscsv ≥

∑
g∈δ+(v) cg − cvw − cwv. For the specific

example shown in Figure5, we havecsv ≥ ch. For supernodexy we do not need to use
any global rerouting. The maximum amount of flow that reachest has valuecxt +cyt. It
is not difficult to see that this amount of flow can be rerouted locally within the directed
cycle. ⊓⊔

s vw

csv + csw

csv

cvw

csw

v

w

s

ch

cl

ch

cl

h

l

l

h

sent flow back to source

Fig. 5. Rerouting flow in the directed case.

14

