-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by computer science publication server

Preprocessing Maximum Flow Algorithms*

Frauke Liers and Gregor Pardella

Universitat zu Kaoln, Institut fir Informatik, Pohligstraf, 50969 Koéln, Germany

Abstract. Maximum-flow problems occur in a wide range of applicatiofk.
though already well-studied, they are still an area of aatésearch. The fastest
available implementations for determining maximum flowgiaphs are either
based on augmenting-path or on push-relabel algorithntkidrvork, we present
two ingredients that, appropriately used, can considgrsjpéed up these meth-
ods. On the one hand, we present flow-conserving conditindsruwhich sub-
graphs can be contracted to a single node. These rules dre 8ame spirit as
presented by Padberg and Rinaldi (Math. Programming (@BQ)for the mini-
mum cut problem in graphs. On the other hand, we propose atsmmax-flow
algorithm for solving the problem on instances coming fromygics and com-
puter vision. In the two-step algorithm flow is first sent @augmenting paths
of restricted lengths only. Starting from this flow, the gesh is then solved to op-
timality using some known max-flow methods. By extensiveegipents on ran-
dom instances and on instances coming from applicatiortseiorétical physics
and in computer vision, we show that a suitable combinatibthe proposed
techniques speeds up traditionally used methods.

Key words:maximum flow, minimum cut, subgraph shrinking, hybrid aljon

1 Introduction

Determining maximum flows in networks belongs to the cladgicoblems in the area
of combinatorial optimization, with many applications abd in different fields. Ele-
gant algorithms and fast implementations are availableyTdilow the determination
of a solution in a time growing only polynomially in the sizéthe input in the worst
case, and large instances can be solved in practice.

Given a (directed or undirected) gragh = (V, E) with edge capacities. >
0V e € E, if edge(u,v) does not belong t& we assume.,,, = 0. We denote by
N(W)={veV\W | (wv) € E} the neighbor set diV C V. For any two subsets
W c VandU Cc V\W theedgesgiV : U) = {(w,u) € E | w € W,u € U} defines
the cut between them. For ease of presentation we use thd@tmorV (w) and(w :)
for a singleton{w}. The task is to determine a maximum flov= 3" ., fe be-
tween specific nodese V (‘source’) andt € V ('sink’). For anode sef, 67 (S) is the
set of edges with tails ii§ and heads i\ .S. The amount of flow sent along an edge
cannot exceed its capacity. A flow is feasible if it also respects the flow-conservation

* Financial support from the German Science Foundation isi@eledged under contract
Li 1675/1.

https://core.ac.uk/display/141726369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

constraint stating that the flow entering a node exeeptilso has to leave it. A flow
violating this constraint is called@reflow.

The first algorithm for determining maximum flows has beerspn¢ed in 1956 by
Ford and Fulkerson [5]. Flow is iteratively improved by ieasing it along ‘augmenting
paths’ betweenr andt. If the capacities take rational values, the algorithm teates,
yielding pseudo-polynomial running time. Recently, Boylemd Kolmogorov [3] pre-
sented a fast implementation for determining maximum flosiagithis strategy in an
elaborate way. Two search trees are used simultaneougl\starting from the source
and one from the sink, for determining augmenting paths.tiiges are updated in each
search step. This ‘double tree strategy’ yields the culydastest implementation for
instances coming from computer vision. Finally, the methviiti the best practical per-
formance on general instances is the push-relabel algotith Goldberg and Tarjan
[7]. We describe the general idea in the ‘highest label petibel’ form. The algo-
rithm maintains node labels that correspond to their destarno the sink in the residual
network. While the preflow is not a flow, a nodawith highest label is chosen among
all nodes having positive excess. If possible, the exces$sgiushed along its incident
edges towards the sink (or, if this is not possible, back td&dhe source). If there
is then still some excess left at the distance label of is updated accordingly. The
algorithms [4] and [7] have strongly polynomial running &ém

In this work, we aim at improving the practical running tinfetee fastest available
implementations on instances arising in computer visioth teoretical physics. To
this end, we propose to reduce the instance sizes by shginkide sets to supernodes
if certain conditions are satisfied. Our rules are inspirgdhe conditions for shrink-
ing node sets that were presented in [11] by Padberg anddrifeal the minimum
cut problem in undirected graphs. In our context, we proeestirinking rules arguing
via flows in the network instead of arguing via general cutgriaphs. We also show
that these preprocessing steps transform known worsthesisgces into trivial equiv-
alent instances. Furthermore, we propose a hybrid maximamdlgorithm that in a
first step heuristically increases the flow along augmemiatys of restricted lengths.
If the resulting flow is not maximum, the problem is solved faimality by either a
push-relabel or by an augmenting-path strategy. As theopagnce of these methods
depends on the characteristics of the input, the specificelod the algorithm depends
on the instance’s structure. Although the methods propeee ¢an in principle be ap-
plied to any instance, we expect best performance for sihesiauctured instances.
More specifically, we test the resulting algorithm on twosskes of relevant applica-
tions that occur in theoretical physics and in computeiovisin both applications, the
graph consists of a regular two- or three-dimensional gréghlg in which additionally
each node is either connected to the source or to the sink Bydextensive computa-
tional experiments, we find that the proposed algorithmagrer§ very well in practice,
allowing the solution of realistic instances with up1t800? and200* nodes. We also
evaluate the method on sparse random instances. The caftlime work is as follows.
In Section 2, we introduce the shrinking of node sets. Sulesatty, we present the hy-
brid maximum flow algorithm in Section 3 and evaluate the cotafional results in
Section 4. The proofs are given in the Appendix.

2 Capacity Normalization and Shrinking

The computational complexity of maximum flow problems issdetined by the number
of nodes and edges and, depending on the solution methaatjzdty also by the value
of the largest edge capacity.

In this section, we introduce techniques for removing ublesadge capacities and
for reducing the graph size while preserving an optimumtgmiu We will also show
how to use these techniques as building blocks for more gépegprocessing rules.
As it is necessary to do these preprocessing steps fastrthefnore discuss the com-
plexity of the operations and present implementation tet@in the theoretical side, it
will turn out that some well-known instances forming the starases for some of the
prominent solution algorithms can be transformed intadtigquivalent instances.

The shrinking conditions presented in this sections arpiiied by the conditions
proposed in [11] in the context of minimum cuts in undirectgdphs. In contrast to
[11], we will prove our rules by looking at-t-flows. More specifically, we need to
invest arguments ensuring that there exists for each flowarshrunk graph a corre-
sponding flow in the original graph, and vice versa.

2.1 Undirected Graphs

First, we reduce unusable edge capacities inclygacity-normalization step. Unus-
able capacitieg are those such that no feasible flow can exploit. The corredipg
edge capacities can then be reduced, as we observe next.

Observation 1 For edgee € E, letC, = deé(v) ¢q — ¢ be the sum of capacities of

all edges incident to nc_>de except edge. If ¢c. > C,, thenc, can be reduced to the
maximum possible flow, that can be sent through

Algorithmically, capacity normalization can be accomipéid by determining for each
node an incident edge with largest capacity among all imtideges. If the condition
from Observation 1 is satisfied for an edge, its capacity @amnelduced accordingly.
Checking the condition for all nodes tak@$|V'||E|) steps. At mosO(|V|) passes are
needed to ensure that all unusable capacities are remowvesl, dapacity normalization
can be done i (|V|?|E|) time.

Instead of normalizing a capacity, an edge (u, v) can alternatively be shrunk by
identifying the nodes andw, yielding a supernodev. We call this procedurshrink
max edge(SME). Sets consisting of more than two nodes can be shrualbg@ously.
Shrinking node sets to a supernode also means replacingplawdtiges by one edge
with capacity equal to the sum of capacities of the singlessdt is important to note
that an SME step preserves flow solutions. By potentialltingusome units of flow
overe, we show that for an arbitrary feasible flow in the shrunk @apcorresponding
flow of the same value exists in the original one. This is treeduse the maximum
amount of flow through supernode over edges previously incident tais limited by
C, < c.. Thus, any feasible flow can be rerouted i@ the original graph.

The complexity of the SME procedured(| E|?) if deleting and inserting an edge
takes constant time. As a special case, nodes with degrezatwoe removed by shrink-

ing the edge with larger capacity. Removing degree-two s@ada thus be performed
intime O(|V|).

The straightforward SME rule is the building block of morengeal shrinking rules.
For example, we can extend it by considering cycles as shatie following lemma.
Suppose we have already preprocessed the instance byrapiiigi SME rule so that
the condition from Oberservation 1 is not satisfied.

Lemma 1. Let K5 = ({q,v,w}, Equw) With Eg,, = {(q,v), (¢, w), (v,w)} C E and
q,v,w € V be acycle of length three. Let

C, = Z Cqg — Cqv — Cow ANACY, = Z Cg — Cquw — Cow-
)

ged(v g€ (w)
(v, w) can be shrunk ity + ¢y > max{Cy, Cy} andegy + cyw > max{C,, Cy}.

We prove the correctness of Lemma 1 in the Appendix by shottiagany feasible
flow throughvw can be locally rerouted within the cycle in the original dgrapThe
reverse direction is obvious.)

We can further strengthen the conditions from Lemma 1 by pirgpthe maximum
constraint and shrink edde, w) if ¢4, + cyw > Cy aNdegy + cpw > C,,, are satisfied.
The proof still holds with minor modifications.

As a generalization of Lemma 1, we prove the following lemmthe Appendix.

Lemma2. Forq € V, Z C V \ {q}, let the subgraptf, z be defined adi, » =
{H{@VZ, Eg}withEy = {(q,2) € E | z € Z}U{(z;,%j) € E | z,z; € Z}. Further,
we require thayy € (.., N(z). Node setZ can be shrunkiifitholds () # W c Z :

Cw—c(W:q)—c(W:Z\W)<c(W:q)+c(W:Z\W), (1)

whereCy = 3- 5w Co-

We show in the Appendix that if (1) is satisfied, then every fiowhe shrunk graph
can be rerouted locally in the subgrafl, ~, yielding a flow with the same value in the
original graph. (1) can be generalized to the situation in

Theorem 1. LetQ C V, Z C V \ Q. A node setZ in the subgraphHg z = (Q U
Z,Eqz)WithEgz ={(q,2) € E|qe Q,z € Z} U{(zi,2) € E | z;,2z; € Z} and
Q CN.ez N(z)canbeshrunkifty) #W C ZandVP#Y CQ:

Cw—c(W:Y)—c(W:Z\W)<c(W:Y)+c(W:Z\W) 2

Theorem 1 follows from similar arguments as used in Lemma alby incorporating
possibilities of rerouting flow via nodes @.

As for the condition in [11] for shrinking node sets in the minm cut problem,
verifying (1) and (2) is computationally hard. (2) is sinmil@ a condition given by
[11] in the context of minimum cuts in undirected graphs. Faximums-t-flows, the
proofs are based on a local flow rerouting strategy and do osider cuts. By the
mincut-maxflow theorem, a maximusat-flow corresponds to a minimugit-cut. As
a minimum cut is a minimuna-¢-cut over all node pairs, Theorem 1 can be used to give
an alternative proof for the shrinking condition given iiJ1Reversely, as in general a
maximums-t-flow cannot be derived from a given minimum cut, it is not Bgsossible
to directly use the conditions from [11] for flows. We howetene given proofs that
they indeed also hold in this context.

2.2 Directed graphs

The SME rule can be adapted to directed graphs when applettbes that are incident
to either the source or the sink. Let, = (s,v) be a directed edge fromto v and
ewt = (w,t) be a directed edge from to ¢. If c.,, > deﬁ(v) ¢q, theneg, can be
shrunk. Simultaneously, ., > deé,(w) ¢cq, thene,,, can be shrunk. Moreover,
SME can be applied to all nodeswith |6+ (v)] < 1 or |6~ (v)| < 1. If none of these
conditions is satisfied, there potentially can exist fdadiows in the shrunk graph that
do not correspond to feasible flows in the original one.

For similar reasons, either the source or the sink must begparcycle of length
three as stated in the next lemma.

Lemma 3. Lets,v,w € V andt, z,y € V be two directed cycles of length three, with
directed edgess, v), (s, w), (v, w) and(z, t), (y,t), (z,y). Let

C’U = E Cqg — Cyw — Cuwuw, C’w = E Cqg — Cyw — Cww)

gEST (v) geST (w)
C, = Z Cg — Cay — Cyz, @aNACy = Z Cg — Cay — Cya-
g€d~(x) 9€8~(y)

If ¢, > C, andecg,, > Cy, then edg€v, w) can be shrunk. Similarlyx,y) can be
shrunk ifc,; > C, andcy: > C,,.

Proving correctness relies on the fact that flow can be recbnbt only locally in
the cycle that was shrunk, but also globally by reroutingsiof flow back to the source.
We can also formulate statements similar to Theorem 1 feictéd graphs.

2.3 Implementation details

We restrict ourselves to the application of rules that affiecie sets of small cardinality.
We apply the SME rule and test cycles of length three. Formeatid graphs, we test the
condition with the maximum constraint as proposed in Lemniéhe sum of capacities
at each node should be precomputed and updated after aisgroperation. To verify
the condition in Lemma 1 any pair of edges incident at a nollas to be considered as
each pair might be part of a cycle of length three. Thus, aacadcy oracle is needed
that returns a potential edge between nodesidw in O(1) time, e.g. by a local ad-
jacency hashmap for each node. In a straightforward impi¢atien the total number
of steps can be bounded B(|V|* x N,.,), whereN,,, = min{|6(v)], [6(w)|} is the
time to shrink edge = (v, w) to supernodew.

In practice, we do not check all cycles but consider only aaffrset of promising
cycles of length three. Doing this, we potentially miss sahenking steps but found
better overall performance.

2.4 Shrinking Makes Worst-Case Instances Trivial

Applying the above proposed techniques, well-known woeste examples for differ-
ent maximum flow algorithms can be transformed to equivatiévitl instances that

only consist of source and sink node. Figures 1 and 3 showtwage instances for
augmenting path algorithms (cf. [2DM augmenting steps are needed for solving the
instance in Figure 1. Using non-rational capacities as gufé 3 from [13] can even
prohibit augmenting path strategies to terminate. Theaimst from Figure 1 can be
transformed into an equivalent one by shrinking the cycllenfth three that contains
the source. The result is shown on the right in Figure 1. Aipglghrinking operations
on the dotted (red) cycles shown in Figure 3 and capacity abizations on the dotted
(red) edges, we arrive again at a trivial equivalent case.

Cy=M

M M
O 1 o 2M
sourde Sink sour ;p ;“,\\
N

Cy=M-1

Fig. 1. Worst-case instance for augmenting
path strategies.

M M Q M

. . Fig. 3. Worst-case by U. Zwick [13] for
Fig.2. Worst-case instance for FIFQaugmenting path strategies, with =
push/relabel strategy. \/52—1)

FIFO push/relabel algorithms maintain nodes with positiveess in a queue. New
nodes with positive excess are added at the rear of the gNedes are selected by pop-
ping them from the queue. For FIFO push/relabel strategi@gyrst-case instance and
the trivial shrunk one are shown in Figure 2. In the worst ctfse FIFO push/relabel
algorithm pushes in the original instance flow from the seuw all adjacent nodes
1,2,...,n — 2 and adds these nodes to the queue in the atder2,n — 3,...,1.
The nodes are considered in this order and flow is pushed devwhe sink. Only the
last node in the queue loses its excess while all other naglesgositive excess. Thus,

n — 2 push/relabel phases afit{n?) many push operations are executed until the pre-
flow becomes a flow. Applying the directed SME (resp. the dedgwe) rule for all
edges with capacity/ shrinks the instance to the graph shown on the right in Figure
2. As a consequence, the above worst-case instances calvéa eseen without call-

ing a maximum flow algorithm. Only the preprocessing stepppsed here need to be
applied.

3 Hybrid Maximum Flow Algorithm

In this section, we propose a hybrid algorithm that in a ppepssing step shrinks node
sets according to the rules presented in Section 2. Substyjuge start increasing

flow through the network in a greedy fashion, using only saagmenting paths whose
lengths do not exceed a certain threshold. This step eithds 2 maximum flow or
a (good) initial flow. In the latter, the flow is increased het to an optimal one by
some known maximum flow algorithm. Depending on the problenocture, we either
use a lowest push/relabel approach or an augmenting patlegir The performance
of different maximum flow algorithms strongly depends on pheblem structure. For
example, while some approach may perform well on sparsehgrépmight take long
on dense instances, or vice versa. As it is known [6] thatdioable tree’ augmenting
path strategy by Boykov and Kolmogorov [3] is especiallyt fas sparse instances, we
use it in the latter case. For dense instances, a lowestrpledhe| approach performs
considerably better than the ‘double tree’ procedure amégerable in this case. We
thus exploit the algorithmic advantages of the differenthrods. After having solved
the problem to optimality, all shrunk nodes have to be expdnd@he optimum flow
has to be rerouted accordingly. The hybrid algorithm isioet in Algorithm 1. The
general idea in the depth-restricted flow augmentationeisto label the nodes de-
pending on the labels of their local neighborhood. Thisdgeh rough classification
of the node set with regard to their distance frerand¢. The labeling then controls
a depth-restricted flow augmenting step which is perform&d no augmenting path
between source and sink is found. As it would take too longetemeine node labels
exactly, we only determine whether a node is ‘near to’ thes@and/or near to the sink
or not. Intuitively, greedy augmenting paths between ndidasare far away from the
source and the sink are allowed to be longer than those betmartes that are near to
the source and the sink. In the following, we explain the itketd this greedy step.

Algorithm 1 : hybrid maximum flow algorithm
1: apply shrinking rules
label nodes
repeat
depth-restricted flow augmentation
update node labels afteraugmentations
until no augmenting path with prescribed length betweandt is found
switch to ‘double tree’ or ‘push/relabel’ strategy
undo shrinking steps, reroute the flow locally

We assign node labelg T, ST, N that indicate whether a node is adjacent only
to s, only tot, to boths andt, or whether it is neither adjacentiaor tot, respectively.
We subsequently refine the label of each node depending oimitaklabels of
its adjacent nodes. The label refinement for node independent of its own initial
label. Suppose is adjacent only to nodes labeled By(resp.ST, S). Then the refined
label isOT (OT, OS, respectively). Otherwise, if at least one but not all nbigls
of v are labeled byl" or ST, then the refined label is set 167". If v does not have a
neighbor labeled by’ or ST but at least one neighbor with lab®] thenv receives the
refined labelNV S. In the remaining cases, the refined label is s&1é. The labeling
is determined by a breath-first search starting at the sandeuses the initial labels

S, T, ST, N only. With the labeling at hand we search for augmenting p&tbm
nodes with initial label. We restrict the length of those paths depending on the tkfine
node label. These paths are short and can be checked fadabéie may be updated
after some depth-restricted augmentations and the augmesstarch may be repeated.
In our experiments we found that after= 5 augmentations, a label update should be
performed.

The definition of the path lengths depends on the problentin§ehe thresholds to
a large value increases the running time without yieldingstterably better flows. Set-
ting them to a very small threshold keeps the running timedotonly yields flows with
very small values. In our tests, we found good performancéhi following depths:
1(0T), 3 (NT), 7 (OS), andmin{%((f)‘, 14} (ON). For nodes with refined label
ON we incorporatéS* (s) the degree of the source in the residual graph. This should
prohibit the usage of long paths if the source is only spgrsaehnected in the residual
graph. Our computational results in the next section irtditdaat this hybrid algorithm
works well on the classes of instances occurring in physidsmcomputer vision.

4 Computational Results

Among the many applications for maximum flows in graphs, weifchere on applica-
tions in computer vision and in theoretical physics. Altghuihese applications are in
different areas, the typical instances share a similactra. In the random-field Ising
model (RFIM) from theoretical physics, the so-callease graphis a two- or three-
dimensional grid graph in which all edges have the same dgpkarthermore, each
node in the grid is either connected to the additional noaleto ¢ with equal probability.
The latter edges can have different capacities. Networks avsimilar graph structure
but different capacity choices also occur in image segntientar image restoration
applications in computer vision.

More specifically, our experiments focus on the followinfjetient instance types:

(vision) directed computer vision instances [1] as reported in| (@it integral capacities
(rfim) (directed and undirected) RFIM instances as for examppgsed in [8].
We used the valué as capacity for the edges in the base graph. The capacity of
the edges containing the source or the sink take integeesdhat depend on some
parametetA, where larger value of\ yields larger capacities, see [8]. We tested
A =1,4,8and used varying grid sizes up16002 in 2D and up t2003 in 3D.
(random) (directed and undirected) sparse random instances gedevéh the graph

generator ‘rudy’ [12] as
rudy -rnd_graph 500000 D S -random 1 100 Swith D = 1 and2
the density parameter, sesdand capacities in the rangkg 100]. We considered
different variants in which we varied the probability of redbeing connected to
the source (resp. the sink). We call the variant in which atles of the base graph
are connected te or ¢t with equal probabilityl00% connected According to the
probability P with which the nodes are connected to either source or sialyse
the nameP% connectedwith P € {10, 20, 30, 40, 50, 100}. The capacity for
the edges from source (resp. sink) to the nodes in the bagih gvas drawn from
an interval that was0 times larger than the capacities of edges in the basis graph.

Due to the specific structure, many cycles of length threepagsent in all instance
classes which makes shrinking possible. We evaluate tlewfiolg algorithms and im-
plementations:

(g) highest push/relabel implementation by Goldberg [7] fioected graphs with inte-
ger capacities
() ‘mincut-lib’ by Junger et al. [9] with a fast implementatiof a ‘highest push/relabel’
algorithm for undirected graphs
(bk) ‘double tree’ implementation by Boykov and Kolmogorovesjalized for com-
puter vision instances [3],
(0) hybrid method with the ‘double tree’ implementation by Boy and Kolmogorov
[3] in the second step
(pr) hybrid method with a lowest label push/relabel implemgatein the second step.

In the tables the abbreviations ((g), (j), (bk), (0), (pné auffixed by § if used on
the shrunk graph. All computations were carried out on Rté{eon© CPU E5410
2.33GHz (16GB RAM) (running under Debian Linux 5.0). Impkemtations(o) and
(pr) are based on the graph library OGDF [10]. In Tables 1-3 wentep@rage running

Table 1. Running times in seconds and graph reduction in % for compig®n instances.

BvVZ KZ LBbunny

sawtoothtsukubavenussawtoothtsukubavenus small

o 0.1 0.12 0.22 0.39 0.30 0.49 1.04

bk 0.277 0.18 0.34 0.61] 0.47 0.74 1.45

opr| 0.55 0.34 0.73 1.1§ 0.83 1.51 2.82

g 0.73 0.58 1.23 2.02 2.2 3.17 3.04

shrinking 0.33 0.15 0.24 1.32 0.58 1.10 0.93
reductio

V]| 34.8§ 36.3326.44 25.971 20.4019.19 7.92

|E|] 33.52 33.1325.5Q 23.45 17.7416.87 6.71

0s 0.1 0.10 0.29 0.39 0.370 0.49 1.02

bks 0.28§ 0.15 0.34 594 0.63 1.50Q 3.46

oprg 0.46 0.31 0.60Q 2.18 0.91 1.65 2.82

gs 0.7 0.62 1.20 2.0l 2.22 3.27 3.07

times for the largest instances in seconds for the diffeselution approaches until the
maximum flow was found, without unshrinking and without rieggdin the instance.
For the random and the rfim instances, the averages are takefive instances each.
The number of instances contained in the computer visicsselare: LBbunny one,
tsukuba 16, sawtooth 20, and venus 22. We report averagesaniteinstance class. The
time for shrinking is reported separately. Additionallyetresulting graph reduction is
given in %.

The computer vision instances have betwgéghnodes and * 10° edges (BVZt-
sukuba) an@ = 10° nodes and = 10° edges (LBbunny). The running times are small for
all implementations. Often, shrinking can reduce the gsagamsiderably. Within short

time, the sizes are reduced by ab@i to 35%. However, the programs often cannot
profit from the reduced graph sizes as computing an optimuuatiso on the shrunk
graph takes almost the same running time as on the origieal@ur new hybrid imple-
mentation without shrinkin¢p) is however considerably faster than the implementation
(9). Moreover, it is always the fastest method. It can even impver the pure ‘dou-
ble tree’ strategybk). This is remarkable a#k) is the state-of-the-art maximum-flow
implementation for instances from computer vision. For2berfim instances, there is

Table 2. Running times in seconds and graph reduction in % for two) @2l three-dimensional
(3D) rfim instance A values are put in parenthesép, for undirected andg) for directed in-
stances.

2D rfim undirected 2D rfim directed 3D rfim undirected
1000 (1]1000 (8]1500 (1]1500 (8J1000 (1]J1000 (8]1500 (1]1500 (8150 (1) 150 (8] 200 (1] 200 (8)
o| 10.56 0.67 48.91 1.54 2.76 0.57 7.05 1.29 251.40 4.3111050.44 41.12
bk| 20.52 0.97 98.23 2.23 2.87 0.80 6.69 1.70 399.86 6.01]1546.21 14.30
opr| 16.88 0.51] 69.56 1.08 10.38 0.1§ 26.34 0.41] 49.13 18.1Q 162.13 61.20
jlgl 31.4Q0 459.08 109.542356.2 16.36 0.58 50.29 1.34 47.996090.57 161.5635622.33
shrink 0.43 2.87 1.01 6.71 1.31 2.21 2.62 4.23 2.29 7.82 0.47 13.46
red|
V| 0.00 100.00 0.00 100.0¢ 0.1 60.0¢ 0.07 60.00 0.00 58.13 0.00 23.56
|E| 0.00 100.04 0.00 100.00 0.0§ 54.19 0.04 54.19 0.00 61.4Q0 0.00 24.79
o 10.44 0.00 49.00 0.01 2.9 0.45 7.33 1.05 251.62 2.101044.87 10.14
bks 20.77 0.00 98.00 0.00 3.14 0.58 6.98 1.29400.07 3.161599.13 14.14
oprg 16.91 0.00 69.51 0.00 10.64 0.54 29.33 1.18 49.09 5.71] 145.04 25.04
jslgg 31.44 0.00 109.62 0.0 17.02 0.22 50.89 0.51 48.04 673.23 190.4613413.39

a threshold value forA above which shrinking is possible. For small values'gfthe
differences in edge capacities are too small to allow siminkn Table 2, we show re-
sults for the largest graphs, where capacity choices aosveehd above the threshold.
Above the threshold, shrinking can be performed fast anldyia drastic graph reduc-
tion, sometimes even by 100%. It however has almost no effieche running time
except when using the implementation [9]. The latter needtsnionger on the original
graph, while the graph can be shrunk to a trivial equivalestance in a few seconds.
When compared to undirected instances, the shrinking stepd longer for directed
graphs. For dense directed graphs, shrinking may be cquinthrctive as can be seen
in Table 3. Although the graph size is drastically reduchd,tbtal running times in-
creases. On those instances, each augmentation stepdages While the number of
augmentations remains similar. Let us consider the imphtations without shrinking.
The hybrid variants perform comparable or better than thditipnal algorithms on
two-dimensional instances. For undirected graphs, thaeingrtime can considerably
be reduced in the highest push/relabel approach when fiesti¢pth-restricted flow
augmentation is applied. The situation is similar for 3D rfimtances. For directed
graphs, the highest push/relabg) (mplementation is slightly faster on average than
the hybrid versions. Due to memory limitations, directestamces of size00° could
not be solved. We get comparable results for instances wafithral edge capacities.

10

Table 3. Running times in seconds and graph reduction in % for randwtances.X = 10°,
M = 10%, graph size of the random base graph whithout edges to santtsink,(j) for undi-
rected andg) for directed instances.)

rando undirected directed

rfim 50% connected 100% connected 50% connected 100% connected
500k (4.5M)500k (9M) 500k (4.5MJ500k (9M)500k (4.5MJ500k (9M) 500K (4.5M]500k (9M)
o} 47.46 160.58 11.02 132.95 3.65 15.14 3.06 9.92
bk 75.62 233.49 15.39 246.77 4.42 18.72 3.76 14.13
opr| 14.59 9.89 35.92 17.36 10.24 46.75 6.54 36.82
ilg 13.12 10.05 77.17 19.71 3.03 8.92 2.53 7.19
shrin 1.24 0.77 3.61 3.03 10.74 12.98 22.12 37.97

red,

V| 9.02 0.03 20.9] 0.05 28.84 16.01 56.57 41.45
|E| 7.06 0.01 23.95 0.03 29.67 18.11 60.17 54.37
0s 39.92 159.99 7.43 132.87 2595.02 1289.1(2694.99 2014.12
bks 63.0§ 231.77 10.64 243.04 3674.14 2669.79 3476.53 5725.78
oprs 10.50 9.72 25.81] 17.37 1889.02 1170.8(1783.09 1703.39
jslgs 11.89 9.91 54.03 20.46 2.28 7.76 0.98 4.02

Forthe physicsinstances, implementa{jojneeds the same number of augmenting
steps agbk), most of them take place in the greedy step. This is also wu¢he
directed random instances. On the other hand, on the utelireandom instances)
needs considerably less augmentation steps(thign

Although the preprocessing steps introduced above havelyrtzgen designed for
the applications mentioned above, it is interesting toweatathem on random instances.
As can be expected, shrinking has no effect for random ineain which less than
50% of the nodes in the base graph are adjacent to source or diekgBph size is
then reduced by at mo$%. This can be understood as not many small cycles are
present that contain edges of large capacity. The correlépgmunning times show
the same characteristics as those given in Table 3 and aefdhe skipped. We note
it is advantageous to apply our algorithm on undirected lygdap which the nodes in
the base graph are highly connected to the source and theGiinérwise, traditional
methods likg(g) are preferable. This is especially true for directed graphs

As a summary, our hybrid algorithm without shrinking redsitiee running time on
undirected random instances that are highly connectedutews@nd sink, furthermore
on vision and rfim instances. There, it even improves the atethk) which is the
currently fastest available program for sparse graphs.rliheing time of the hybrid
implementation with the ‘double tree’ stratefp) is at least comparable or faster than
(bk).

5 Conclusion

In this work, we proposed preprocessing routines for maxinflaw algorithms. We
showed that the input size can be reduced by shrinking ndaessiwhile preserving

11

an optimal solution. Moreover, well-known worst-caseamstes for different maximum
flow algorithms can be transformed into trivial equivalergtances.

Subsequently, we presented a depth-restricted augmeatihglgorithm that yields
very fast a good initial flow. In combination with known sabrt strategies, the running
times of traditional maximum flow algorithms are considéyaieduced on relevant
instances from physics and computer vision. Taking theiapgcaph structure into
account, shrinking can remarkably reduce the graph sizésakmo the running time
of highest push/relabel algorithms on undirected graplevelheless, shrinking has
to be applied with care: For directed graphs, the running tcan increase as each
augmentation step takes longer. For instances from theakghysics and computer
vision, the fastest method uses augmenting path strategfiesut shrinking but with
the new depth-restricted augmentation step as proposed er directed instances,
the implementation from [7] is the fastest one. It however caly be used for integral
capacities.

References

1. Computer vision instances: http://vision.csd.uwaoreadflow-data.

2. R. K. Ahuja, T. L. Magnanti, and J. B. OrlinNetwork Flows: Theory, Algorithms, and
Applications Prentice Hall Inc., 1993.

3. Y. Boykov and V. Kolmogorov. An Experimental ComparisdnMin-Cut/Max-Flow Al-
gorithms for Energy Minimization in Vision.|IEEE Trans. Pattern Anal. Mach. Intell.
26(9):1124-1137, 2004.

4. E. A. Dinic. An algorithm for the solution of the problemmiximal flow in a network with
power estimationDokl. Akad. Nauk SSSR94:754-757, 1970.

5. L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow through awwek. Canad. J. Math.
8:399-404, 1956.

6. A. V. Goldberg. The partial augment-relabel algorithmtfee maximum flow problem. In
ESA '08: Proceedings of the 16th annual European symposiudlgorithms pages 466—
477, Berlin, Heidelberg, 2008. Springer-Verlag.

7. A. V. Goldberg and R. E. Tarjan. A new approach to the maxirflow problem.J. Assoc.
Comput. Mach.35(4):921-940, 1988.

8. A. H. Hartmann and H. RiegeiOptimization Algorithms in PhysicsWiley-VCH Verlag
GmbH & Co. KGaA, 2003.

9. M. Jlnger, G. Rinaldi, and S. Thienel. Practical perfarogeof efficient minimum cut algo-
rithms. Algorithmicg 26:172-195, 2000.

10. OGDF. Open Graph Drawing Framework. http://www.ogelf.2007.

11. M. Padberg and G. Rinaldi. An efficient algorithm for thasnimum capacity cut problem.
Math. Programming47(1, (Ser. A)):19-36, 1990.

12. G. Rinaldi. rudy — A rudimentary graph generator: htfpsvw-user.tu-
chemnitz.de/~helmberg/rudy.tar.gz, 1998.

13. U. Zwick. The smallest networks on which the Ford-Fusker maximum flow procedure
may fail to terminate Theoretical Computer Scienc&48(1):165 — 170, 1995.

12

Appendix

In this section, we show the proofs for shrinking certaineedts as presented in Sec-
tion 2.

Proof (Lemma 1)Let w.l.o.g.C, = max{C,, Cy,cqw + cquw}. Note that the value
of a feasible flow through supernode using edges formerly incident to(to w, ¢,
resp.) is bounded by, (resp.Cy, cqv + cqw). SUPPOSE’,, units of flow (which is
the maximum amount of flow throughov using edges formerly incident to) should
be rerouted fromv to w. Routec,,, units directly fromv to w. The remaining units
Cw — cyw €an be rerouted over, because the shrinking condition

Cqu + Cpw 2> maX{CU7 Cw} = C’U

was satisfied. Therefore, itig, > C,, — c,. The same is true for edgew) so that
we havecy, > Cyp — Cyu.

Using similar argumentsy,, + c4., uUnits of flow (which is the maximum amount
of flow throughvw using edge(g, vw)) can be rerouted tg. First we routec,, units
over(gq,v). cqw < Cy — ¢qy UNItS can be routed to nodeusing edgdv, w) asc,,, >
Cy — Cqv 2 Cquw- O

Proof (Lemma 2)Assume the SME rules have already been applied such thamMke S
condition is not satisfied for any edge= Ez. The proof is analogous to that of Lemma
1: We show that any feasible flow through the supernode caretoeited locally in
the subgraplfi, ». We need to consider different cases. Suppose there exiside

z € Z thatisinH, z only adjacent ta;. As (1) is satisfied folW = {z} C Z, it
follows thatc,. > C. — c4.. Let f denote the amount of flow that passes through
the supernode using edges formerly incidenttoe Z. Thus, we have to reroutg
units of flow viag to z. Consider any node; € Z \ {z} with C,, = deA(Zi) Cq
where A(z;) = {(z;,w) | w # qw ¢ Z}. LetC, = min{C,, C,,} be the limiting
capacity, i.e. the maximum amount of flow that can pass thersiggle in the shrunk
graph through edges formerly incident 4cor z;. If node z; is only adjacent tag; in
the subgraplH, z, thenC, flow units can be routed t@ and then toz as it holds
Cqz = Cuy — g2y > C, — ¢y, If there exists an edge;, z;) with z; € Z in Ez, then
the nodeg, z;, z; form a cycle of length three. In this case, we rerayte = C, —c(z; :

Z \ {z}) flow units toq via (g, z;) and further toz via (¢, z). The remaining amount
offlow C, — (2 : Z\ {zi}) < cz,., is routed toz;. Suppose; andz; are part of only
one such cycle. Consid&r = {z;,z;} C Z thenc(W : Z\ W) = 0andCy — (W :

q) < c(W : ¢q). We already sent,,, units flow fromz; to ¢ over edge(z;, ¢), thus
Cy —Czq +Co; — (W = q) < ¢z : q). Therefore we can reroute the remaining
amount of flow tog and then tez. If there exists an edge;, z;) with z; # 2z € Z in
Ez, nodez; is part of another cycle of length three and the argumemtési@pplied
recursively. This is also donejif is part of several cycles of length three. If there exists
an edggz, z;) with z; € Z in E, thenz is not only adjacent tq in H, » and similar
arguments are used to first route every possible flogvand then to:. The remaining
flow units can be sent over the cut-edges betweand Z \ {z} in the same way as
argued above. O

13

Fig. 4. Rerouting flow in the directed case.

Proof (Lemma 3)The only interesting case is the one displayed in Figure 4ttaer o
cases directly follow from it. Suppose there is flow frerand! passing the supernode
to nodeh in the shrunk graph. This flow cannot be rerouted locally mdficle as the
direction of the edge forbids to send flow from nad¢o eithers or v. We however can
reroute the amount of incoming floyvat nodew back to the source. This is possible
as the considered flow is feasible. Moreover, thenits of flow can be sent via edge
sv. This is possible because it holds, > de5+(v) Cg — Cow — Cuwo. FOI the specific
example shown in Figure5, we hawg > ¢;,. For supernodey we do not need to use
any global rerouting. The maximum amount of flow that reactres value:;: + c. It

is not difficult to see that this amount of flow can be reroutexlly within the directed
cycle. a

sent flow back to source

Fig. 5. Rerouting flow in the directed case.

14

